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Abstract. We discuss general features of noise and fluctuations in active polar gels close to and away from
equilibrium. We use the single-component hydrodynamic theory of active polar gels built by Kruse and
coworkers to describe the cytoskeleton in cells. Close to equilibrium, we calculate the response function
of the gel to external fields and introduce Langevin forces in the constitutive equations with correlation
functions respecting the fluctuation-dissipation theorem. We then discuss the breakage of the fluctuation-
dissipation theorem due to an external field such as the activity of the motors. Active gels away from
equilibrium are considered at the scaling level. As an example of application of the theory, we calculate the
density correlation function (the dynamic structure factor) of a compressible active polar gel and discuss
possible instabilities.

PACS. 87.17.Jj Cell locomotion, chemotaxis – 82.70.Gg Gels and sols – 82.35.Gh Polymers on surfaces;
adhesion

1 Introduction

Active systems are driven out of equilibrium by a con-
stant energy consumption that can be dissipated as heat
or used to produce work. Typical examples are gels driven
by chemical reactions [1], vibrated granular materials [2],
coordinated motion of self-propelling agents such as bird
flocks or fish pools [3], the cell cytoskeleton and tissues [4].
Although such systems have very different characteristic
length scales or time scales, they share general features in
a coarse-grained limit where conservation laws and sym-
metries govern hydrodynamic behaviors which are there-
fore generic. In recent years, coarse-grained descriptions
have been proposed in very different contexts [5,6]. How-
ever, since they are largely based on symmetries, they all
share a similar structure. The values of coefficients de-
scribing system properties can however differ in their or-
ders of magnitude for specific realizations.

Within this framework, we have developed a hydrody-
namic gel theory of the cell cytoskeleton in references [7,8].
In this theory, we consider in particular the acto-myosin
cytoskeleton as an active gel of rigid filaments with a
polar order parameter which describes the average orien-
tation of actin filaments within a volume element. These
filaments are rod-like objects with a vectorial symmetry.

a e-mail: jean-francois.joanny@curie.fr

An energy flux is provided to the system by the action of
myosin molecular motors walking on the actin filaments,
and also by the polymerization-depolymerization process
of actin. These motors transduce, into mechanical work,
the chemical energy of the hydrolysis of Adenosine
Triphosphate (ATP), which is the motors fuel. In the
hydrodynamic limit, the activity of motor molecules
gives rise to active stresses characterized by the new
phenomenological material coefficient ζ. This macroscopic
description is independent of many microscopic details
and therefore does not provide a relationship between
the activity coefficient ζ and the microscopic properties
of molecular motors and active filaments. Such a rela-
tionship can only be obtained from theories which are
based on a microscopic description of the components on
the molecular scale. From such microscopic descriptions,
the hydrodynamic limit can in principle be obtained
by systematic coarse-graining [9–12]. Recent mesoscopic
descriptions of the actin-myosin cytoskeleton which
are based on specific molecular processes can provide
estimates of the macroscopic transport coefficients used
in the hydrodynamic theory. The hydrodynamic theory
of active gels has recently been used to describe some
dynamic cellular processes such as as lamellipodium
motion [13] or instabilities of the cortical actin layer [14].

Active polar gels have been shown to have unusual flow
properties: in many instances a spontaneous flow appears
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even in the absence of any external pressure or external
forces, due to the inherent activity [15]. As a consequence,
an active macroscopic gel often does not have static steady
states: a homogeneous thin film of active gel becomes un-
stable at a finite thickness with respect to more complex
dynamic states.

The description of active polar gels has been developed
as a mean-field theory to describe average behaviors of
the system. Cells are highly fluctuating systems and many
processes are strongly influenced by fluctuations. Noise in
cells has two origins: At short time scales, fluctuations
can be linked to degrees of freedom that are equilibrated
at a temperature T and are thus thermal in nature. At
time scales of cellular processes mediated by conforma-
tional changes of proteins which are driven by chemical
reactions, the stochastic nature of these processes is the
source of non-equilibrium fluctuations [16,17]. In particu-
lar, the polymerization kinetics of the actin filaments and
the associated treadmilling are stochastic phenomena with
an intrinsic noise not associated with thermal fluctuations.
Similarly the motion of molecular motors and the produc-
tion of forces and active stresses in the cytoskeleton are
associated to transitions between different states of motor
proteins which also have an intrinsic noise. It is therefore
important to include noise in the description of active gels
in order to have an accurate description of the mechanical
properties of the cytoskeleton.

From more formal point of view, a cell in general and
the cytoskeleton are non-equilibrium systems. A strong
test to decide whether a system is at thermodynamic
equilibrium is the violation of the fluctuation-dissipation
theorem. The violation of the theorem has been recently
tested experimentally by Mizuno et al. [18]. The valid-
ity of the fluctuation-dissipation theorem is important to
study within the framework of the hydrodynamic theory
of active gels.

The aim of this paper is to build a fluctuating hydro-
dynamic description of the actin cytoskeleton. By starting
close to equilibrium, we first characterize thermal noise
and then discuss how effects of non-thermal noise can be
introduced in the framework of our hydrodynamic theory
of active gels.

An important issue when considering noise is the
fluctuation-dissipation theorem [19]. In a system at ther-
mal equilibrium, the fluctuation-dissipation theorem re-
lates the noise directly to the linear response of the sys-
tem to external fields. The violation of this theorem is a
criterion to determine whether a system is out of equilib-
rium and thus active. Cells and the actin cytoskeleton are
expected to be non-equilibrium systems which are driven
out of equilibrium by the ATP field and thus do not satisfy
a fluctuation-dissipation theorem.

In order to clarify the underlying concepts and charac-
terize thermal noise, we first discuss in Section 2 fluctua-
tions in a physical gel described by the Maxwell model of
viscoelasticity [20]. Our description of active gels is based
on this model. Considering thermal noise, we show that
the two possible thermodynamic ensembles at constant
external stress or constant velocity gradient lead to the

same stochastic equations. In Section 3, we use the same
approach to discuss thermal fluctuations in active gels. We
show that the correlations of the various noise terms only
depend on the dissipative transport coefficients such as
the viscosities and therefore that they cannot be affected
by the geometrical non-linearities that we introduce in the
theory. Section 4 is devoted to the discussion of the viola-
tion of the fluctuation-dissipation theorem. We show that
this violation is due to the existence of finite external fields
such as the ATP source and that it occurs at second order
in these fields. In Section 5 we discuss general features of
fluctuations of an active gel far from equilibrium resulting
from the intrinsic stochasticity of molecular motors. Fi-
nally, in Section 6, we calculate the density correlations in
a compressible active polar gel and we show that the gel
can become unstable. This result is consistent with earlier
results of Voituriez et al. [21]. The last section presents a
discussion of our results and some concluding remarks.

2 Fluctuating Maxwell model

Fluctuating hydrodynamic theories are well established
for simple fluids [22]. The introduction of noise terms in
the constitutive equations of active gels requires a partic-
ular care when viscoelasticity is considered. As a simple
example, we therefore discuss first thermal noise in the
special case of the Maxwell model of viscoelastic mate-
rials. The Maxwell model for a simple viscoelastic fluid
is defined by constitutive equations which relate the me-
chanical stress to the local velocity gradient, the cross-over
between elastic and viscous behavior involving a single re-
laxation time τ . We discuss here how noise terms can be
added in such a way that that the fluctuation-dissipation
theorem is satisfied. We obtain results similar to those of
reference [23].

2.1 Maxwell model

We consider for simplicity an incompressible fluid with a
shear viscosity denoted by η. The constitutive relations of
the Maxwell model then read

(

1 + τ
D

Dt

)

σαβ = 2ηvαβ , (1)

where vαβ = ∂tuαβ = (∂αvβ + ∂βvα)/2 denotes the strain
rate tensor which is the time derivative of the deformation
tensor uαβ , and σαβ is the symmetric part of the total
stress tensor. In the most general version of the Maxwell
model, the time derivative in the constitutive equation is
a convected corotational derivative of a tensor [20]

D

Dt
σαβ =

∂

∂t
σαβ + vγ∂γσαβ + [ωαγσγβ + ωβγσγα], (2)

where ωαβ = 1
2 (∂αvβ − ∂βvα) is the vorticity of the flow.

The hydrodynamic equations follow from the constitutive
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relations by taking into account conservation laws for mo-
mentum and mass. Momentum conservation implies the
force balance

∂βσαβ − ∂αP = 0, (3)

where P denotes hydrostatic pressure.
Decomposing the stress into a dissipative part σd and

a reactive part σr as σαβ = σd
αβ + σr

αβ , the constitutive
equations of the Maxwell model can be written as

(

1 − τ2 D2

Dt2

)

σd
αβ = 2ηvαβ ,

σr
αβ = −τ

D

Dt
σd

αβ . (4)

We add a noise term ξαβ by first considering the lin-
earized constitutive equation. This can be done most con-
veniently in the frequency representation where

(1 − iωτ)σαβ = 2ηvαβ + ξαβ , (5)

with the convention of the Fourier transform σ(ω) =
∫

dtσ(t)eiωt. Stress fluctuations can then be described by
rewriting this equation as

σαβ =
2η

1 − iωτ
vαβ + sαβ . (6)

Here, the stress in linear response is determined as a func-
tion of a given shear rate and the stress fluctuations are
given by sαβ = ξαβ/(1 − iωτ). In order to determine the
structure of the noise, we now make use of the fluctuation-
dissipation theorem.

2.2 Fluctuation-dissipation theorem

The noise correlations can be determined from the
fluctuation-dissipation theorem as follows: Consider a set
of variables φi and their thermodynamically conjugated
forces fi such that the entropy production rate is T Ṡ =
∑

i φ̇ifi and φi and fi have the same signature under time-
reversal. The Fourier modes at angular frequency ω obey
the linear response relation

φi(ω) = χij(ω)fj(ω). (7)

The linear response function can be decomposed into real
and imaginary parts as χij = χ′

ij + iχ′′
ij . The correlation

functions

〈φi(ω)φj(ω
′)〉 = 2πCij(ω)δ(ω + ω′) (8)

and the linear response functions must obey the
fluctuation-dissipation relation

Cij(ω) =
2kBT

ω
χ′′

ij(ω). (9)

Therefore, the Langevin equation can be written in the
frequency representation as

φi = χij(ω)fj + ξi , (10)

with a noise term that has zero average and

〈ξi(ω)ξj(ω
′)〉 = 2π

2kBTχ′′
ij(ω)

ω
δ(ω + ω′). (11)

2.3 Fluctuating stresses

We consider the ensemble where the stress tensor fluctu-
ates and the deformation is imposed. The entropy produc-
tion is then

∫

dtσαβ∂tuαβ = −
∫

dt(∂tσαβ)uαβ , such that
we identify the negative stress σαβ with the fields φi and
the deformations uαβ with the forces fi. In this case, the
linear response −σαβ = χαβγδuγδ with vαβ = −iωuαβ is,
according to equation (6), given by

χαβγδ = (δαγδβδ + δαδδβγ)
iωη

1 − iωτ
. (12)

The appropriate noise fluctuations which ensure that the
FDT is satisfied are

〈sαβ(ω,x)sγδ(ω
′,x′)〉 = 2π

2kBTη

1 + ω2τ2
(δαγδβδ + δαδδβγ)

×δ(ω + ω′)δ(x − x′). (13)

Note that the Maxwell model is purely elastic for short
times. As a consequence, the noise strength in (13) van-
ishes for large ω. In a real system the large-frequency limit
is determined by the solvent viscosity which is neglected
in the Maxwell model.

By transforming back to the time representation, we
note that the convective and corotational non-linearities
in equation (1) cannot affect the noise which is only linked
to dissipative terms. Therefore, the constitutive equations
of the fluctuating Maxwell model can be written as

(

1 + τ
D

Dt

)

σαβ = 2ηvαβ + ξαβ , (14)

where the noise correlation is given by

〈ξαβ(t,x)ξγδ(t
′,x′)〉 = 2kBTη(δαγδβδ + δαδδβγ)

×δ(t − t′)δ(x − x′). (15)

The same result is obtained if we use the conjugate en-
semble where the deformation tensor fluctuates. This is
explicitly shown in Appendix A.

3 Fluctuations of active gels

Starting from the constitutive material equations for vis-
coelastic active and polar gels, which have been derived
elsewhere, we can systematically add noise terms such that
the FDT is obeyed by correlation and response functions.
This leads to a description of fluctuations in such systems
in the vicinity of a thermodynamic equilibrium.

The constitutive equations are expressed in terms of
conjugate thermodynamic fluxes and forces. In addition
to the pair σαβ and vαβ , we consider the rate of change
of the orientation field Dpα/Dt and its thermodynamic
conjugate hα = −δF/δpα which derives from a free en-
ergy F . We furthermore take into account the local rate
r of the consumption of ATP molecules per unit volume
which plays the role of a fuel. The conjugate variable to r
is the chemical potential difference Δμ between fuel and
reaction products.
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In order to discuss shear and compression separately
for a compressible system, we write the total stress tensor
as σtot

αβ = σαβ+σa
αβ−Pδαβ , where σαβ is symmetric and P

is the thermodynamic pressure. The antisymmetric part
of the stress tensor is given by σa

αβ = 1
2 (pαhβ − pβhα).

We further decompose the symmetric stress σαβ = σ̃αβ +
1
3σγγδαβ in the traceless part σ̃αβ and the trace −p =
1
3σγγ . We thus have

σtot
αβ = σ̃αβ +

1

2
(pαhβ − pβhα) − (P + p)δαβ . (16)

Similarly, we write ∂αvβ = ṽαβ +ωαβ + 1
3vγγδαβ , where

the traceless symmetric part of the velocity gradient ten-
sor is given by ṽαβ = vαβ−

1
3vγγδαβ . We have again defined

vαβ = 1
2 (∂αvβ + ∂βvα) and ωαβ = 1

2 (∂αvβ − ∂βvα).
The constitutive equations of an active polar gel can

be expressed separately for the reactive and for the dis-
sipative parts of the fluxes. We introduce the traceless
quadrupolar tensor

qαβ =

(

pαpβ −
1

3
pγpγ

)

δαβ (17)

describing the anisotropy of the orientation field. The con-
stitutive relations for the reactive fluxes then read

σ̃r
αβ = −τ

D

Dt
σ̃d

αβ + ζΔμ qαβ

+
ν1

2

(

pαhβ + pβhα −
2

3
pγhγδαβ

)

, (18)

−pr = −τ
D

Dt
pd + ζ̄Δμ + ν̄1pγhγ , (19)

D

Dt
pr

α = τ
D

Dt

(

1

γ0
δαβ +

1

γa
qαβ

)

hβ

−ν1pβ ṽαβ − pαvββ , (20)

rr = ζqαβ ṽαβ + ζ̄vαα . (21)

Note that these reactive constitutive equations do not
contribute to the noise and therefore no noise terms are
added. The constitutive relations for the dissipative fluxes
are given by

(

1 − τ2 D2

Dt2

)

σ̃d
αβ = 2ηṽαβ + ξ

(σ)
αβ , (22)

−

(

1 − τ2 D2

Dt2

)

pd = η̄vγγ + ξ, (23)

D

Dt
pd

α =

(

1

γ0
δαβ +

1

γa
qαβ

)

hβ

+λ1pαΔμ + ξ(p)
α , (24)

rd = λ1pαhα + ΛΔμ + ξ(r) . (25)

Here, we have added the noise terms ξ
(σ)
αβ , ξ, ξ

(p)
α and ξ(r).

We have introduced two dissipative coefficients for the dy-
namics of the orientation field: the isotropic coefficient γ0

and the coefficient describing γa anisotropic dissipation.

Note that in equations (22) and (23) we have ignored, for
simplicity, anisotropic dissipative terms in the viscosity.

Combining the reactive and dissipative fluxes, we ob-
tain the full constitutive equations with noise. In the fol-
lowing, we consider the simpler case where the modulus
of the orientation field does not fluctuate and is pγpγ = 1.
In this case,

(

1 + τ
D

Dt

){

σ̃αβ + ζΔμ qαβ +
ν1

2

×

(

pαhβ + pβhα−
2

3
pγhγδαβ

)}

=2ηṽαβ + ξ
(σ)
αβ , (26)

(

1 + τ
D

Dt

)

{−p + ζ̄Δμ + ν̄1pγhγ} = η̄vγγ + ξ, (27)

D

Dt
pα =

(

1 + τ
D

Dt

)

1

γ1
h⊥

α

−ν1(δαβ − pαpβ)pγ ṽβγ + ξ⊥α , (28)

r = λ1pαhα + ΛΔμ + ζqαβ ṽαβ + ζ̄vαα + ξ(r) , (29)

where 1/γ1 = 1/γ0 − 1/(3γa). Note that in this case
there is no longitudinal equation for the polarization.
The transverse parts of the field hα and of the orienta-

tion noise ξ
(p)
α are given by h⊥ = (δαβ − pαpβ)hβ and

ξ⊥α = (δαβ − pαpβ)ξ
(p)
β .

We study here a one-component active gel within the
framework of a linear theory. The equations that we obtain
only on symmetry grounds do not contain any polar term
and would be identical for a system with nematic order-
ing. Note that the constitutive equations of references [11,
12] obtained from microscopic considerations contain real
polar terms in the constitutive equation for the polariza-
tion. We consider these terms here as non-linear terms
and we ignore them. Polar terms also arise in the general-
ization of the theory to multicomponent systems done in
reference [24].

Using the linear response functions which follow from
these constitutive equations, we can determine the noise
correlations such that the FDT is satisfied. The response
functions are given in Appendix B. The noise correlations
are thus given by

〈ξ
(σ)
αβ (t,x)ξ

(σ)
γδ (t′,x′)〉=2kBTη

[

(δαγδβδ + δαδδβγ)

−
2

3
δαβδγδ

]

δ(t − t′)δ(x − x′), (30)

〈ξ⊥α (t,x)ξ⊥β (t′,x′)〉=2
kBT

γ1
[δαβ−pαpβ ]δ(t−t′)δ(x−x′),

(31)

〈ξ(r)(t,x)ξ(r)(t′,x′)〉=2kBTΛδ(t − t′)δ(x − x′), (32)

〈ξ(t,x)ξ(t′,x′)〉=2kBT η̄δ(t − t′)δ(x − x′). (33)

All the cross-correlations between the various noise terms
vanish.

For the simplifications used so far, namely ignoring the
anisotropy of the friction η as well as neglecting longitu-
dinal fluctuations of pα, all friction terms are indepen-
dent of the state variables. In this case, the corresponding
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noises which obey the fluctuation-dissipation theorem are
additive with constant noise strength. If the anisotropy of
friction is taken into account or if both transverse and lon-
gitudinal fluctuations of pα are discussed, friction becomes
state dependent. The fluctuation-dissipation theorem then
imposes noise amplitudes which are also state dependent.
Such multiplicative noise requires a more careful treat-
ment. The consequences of state-dependent dissipation are
discussed in Appendix D.3.

4 Breaking of the fluctuation-dissipation

theorem

The fluctuation-dissipation theorem is a consequence of
causality, microscopic reversibility and thermodynamics
close to equilibrium. If the system is driven by thermody-
namic forces further away from equilibrium, the FDT (9)
breaks down and the noise correlations are no longer fixed
by thermodynamic arguments. This can be discussed in a
general context using the symmetry of the noisy equations
with respect to time-reversal.

We consider the simple case where the linear response
relations (7) can be written in time domain as a first-order
differential equation

φ̇i = Aijfj + ξi . (34)

Note that the thermodynamic forces in general derive from
a potential F , fi = −∂F/∂φi + f ext

i , where f ext
i denote

externally applied forces.
The probability of a trajectory φi(t) of the dynamics

then is of the form [25]

P [φi(t)] ∼ exp{−S[φi(t)]} (35)

with the action

S[φi(t)] =
1

4

∑

ik

∫

dt

⎛

⎝φ̇i −
∑

j

Aijfj

⎞

⎠

×Bik

(

φ̇k −
∑

l

Aklfl

)

, (36)

see Appendix C. The weight exp(−S[φi(t)]) forms the ba-
sis of a Path Integral representation of the stochastic pro-
cess. Here, the symmetric matrix Bij = Bji describes noise
correlations

〈ξi(t)ξj(t
′)〉 = 2(Bij)

−1δ(t − t′). (37)

Decomposing the matrix Aij = As
ij + Aa

ij symmetric and
antisymmetric parts As

ij and Aa
ij , thermodynamics im-

poses that As
ijBjk = βδik, where β = 1/(kBT ). The ma-

trix Bij = 0 if the time-reversal signatures ǫi and ǫj of
variables φi and φj differ. Furthermore, Aij = Ajiǫiǫj ,
has antisymetric and symmetric parts, depending on the
time-reversal signature of the variables. This implies that
Bij and Aij have the block representations given in equa-
tions (C.5) and (C.7).

At thermodynamic equilibrium, the time-reversal in-
variance of the dynamics P [φi(t)] = P [ǫiφi(−t)] implies
that the action is invariant under time-reversal S[φi(t)] =
S[ǫiφi(−t)]. If the system is driven away from equilibrium,
time-reversal invariance is broken

S[φi(t)] − S[ǫiφi(−t)] = −βWdiss , (38)

where

Wdiss = F (φi(t0)) − F (φi(tmax)) +

∫ tmax

t0

∑

i

φ̇if
ext
i dt

(39)
is the dissipated work performed on the system. From this
property of the action under time-reversal follows the fluc-
tuation theorem [26–28]

P [φi(t)]

P [ǫiφi(−t)]
= exp{βWdiss}. (40)

In the limit of vanishing Wdiss, the fluctuation theo-
rem (40) reduces to the FDT [29,30]. Further away from
equilibrium, the FDT is broken, see Appendix C.

We can use this framework to describe fluctuations and
FDT breaking in the active gel by generalizing these argu-
ments to a linear dynamics with memory kernels, see Ap-
pendix C.3. We identify the variables φ̇i with σαβ , ∂pα/∂t
and r, respectively. With this choice, the fi are uαβ , hα

and Δμ. The time-reversal signatures are ǫσ = −1, ǫṗ = 1
and ǫr = 1.

5 Fluctuations away from thermal equilibrium

If the system is driven away from thermodynamic equi-
librium, the fluctuation-dissipation theorem breaks down
and the form and amplitude of noise correlations are no
longer fixed by the requirement that the FDT must be
satisfied.

In this case, we can estimate the form and strength
of noise terms using physical arguments as already done
in reference [31] in a different context for hair cells of the
inner ear. In active gels, active stresses are generated for
example by motor proteins which are driven by the hy-
drolysis of a fuel ATP. The chemical energy transduced
per ATP molecule under physiological conditions is about
Δμ ≃ 20kBT . Because this significantly exceeds kBT , we
expect that athermal noise that violates the FDT can be-
come relevant in realistic cellular situations. We can esti-
mate the strength of non-equilibrium fluctuations of the
stress that result from fluctuations of the force generation
of motor proteins. In the simple case of an isotropic gel,
such active stress fluctuations can be described by a noise

ξ̄
(σ)
αβ with zero average and [31]

〈ξ̄
(σ)
αβ (t,x)ξ̄

(σ)
γδ (t′,x′)〉 = p(1 − p)cmf2

0 a2e−|t−t′|/τm

× cos(ω0t)

[

(δαγδβδ+δαδδβγ)−
2

3
δαβδγδ

]

δ(x−x′). (41)
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Here, a denotes the mesh size of the gel, cm is the con-
centration of independently acting force generators (these
could be individual motors or small aggregates of motors)
and f0 is the stall force of such force generators. Force gen-
eration is associated with a characteristic time scale τm.
The probability for a force generator to be active and gen-
erate a force is p. The force fluctuation of a force generator
is of order f2

0 and it is correlated over a time τm. In gen-
eral, groups of motors can generate noisy oscillations of
frequency ω0 [32] which leads to the oscillations in the
relaxation. The force generators being independent, the
stress correlation is proportional to their density. The av-
erage active stress can be expressed in these quantities as
ζΔμ ≃ cmaf0p. For ω0 = 0, the noise fluctuations can be
approximated on long time scales as

〈ξ̄
(σ)
αβ (t,x)ξ̄

(σ)
γδ (t′,x′)〉 ≃ p(1 − p)cmf2

0 a2τm

×

[

(δαγδβδ+δαδδβγ)−
2

3
δαβδγδ

]

δ(t − t′)δ(x − x′). (42)

By comparing these noise strengths to the thermal noise
equation (33), we can define the effective temperatures for
active shear noise

kBTeff ≃ p(1 − p)
cmf2a2τm

2η
. (43)

An alternative way to obtain fluctuation correlations far
from equilibirum which is followed in reference [33] would
be to introduce the dependence of the activity coefficient
ζ as a function of the local density and to retain the as-
sociated non-linear terms. This will be the subject of a
future publication

6 Density fluctuations

As an illustration of the general equations for noisy active
gels presented in the previous sections, we now discuss the
correlation function of density fluctuations in a compress-
ible active polar gel. Note that, as in the whole paper,
we consider here the gel as a one-component compress-
ible system and that we therefore ignore any permeation
of the solvent with respect to the gel. Our analysis could
also be valid for an incompressible active gel film treated
as a two-dimensional system, the thickness fluctuations of
the film are then equivalent to fluctuations in the two-
dimensional density. The relaxation modes of an active
film have been calculated in reference [21] using the same
hydrodynamic approach and give the singularities of the
density correlation function. The gel has an average den-
sity ρ0 and we only consider small fluctuations around this
density with a local density ρ0 + ρ. We consider the case
where the polarization pα has a unit modulus and a uni-
formly polarized system where the average polarization is
oriented along the z-direction. The free energy of the ac-
tive gel depends on the density fluctuation ρ and on the
local polarization pα. We write it as

F =

∫

dx

[

K

2
(∇pα)2 −

1

2
h‖p

2 + αρ∇ · p +
χ

2
ρ2

]

. (44)

We use here an approximation where the three Franck
constants describing the rotational elasticity of the po-
larization are equal. The field h‖ is a Lagrange multi-
plier insuring the normalization of the polarization. The
compressibility of the gel, at constant polarization field
configuration, is 1/(χρ0). For a polar system there is a
coupling between the density fluctuations and the diver-
gence of the polarization characterized by the parame-
ter α. From this free energy, one can calculate the ori-

entational field hα = − δF
δpα

= K∇2pα + α∂αρ and the

pressure field P = χρ + α∂αpα.
We decompose all quantities in Fourier components

both in space and in time ρ(x) =
∫

dω
2π

dq
(2π)3 ρ̃(q, ω)

exp(iqx−ωt) and similarly for the components of the ve-
locity and the polarization. The calculation of the density
correlation function is straightforward although lengthy.
The density correlation function is defined as S(x, t) =
〈ρ(x, t)ρ(0, 0)〉. We first calculate its Fourier transform

S̃(q, ω) = 〈ρ̃(q, ω)ρ̃∗(q, ω)〉 where ∗ denotes a complex
conjugate.

The calculation of the dynamic correlation function re-
quires the solution of dynamic equations for the variables
ρ̃, p̃α and ṽz. The equations for the velocity are obtained
by inserting the constitutive equation (6) in the force bal-
ance equation ∂α(σαβ − Pδαβ) = 0. The density is re-
lated to the velocity by the mass conservation equation
∂tρ + ∂α(vαρ) = 0. We obtain a set of equations linear in
ρ̃, p̃α and ṽz, with source terms provided by the noises ξ,

ξ
(σ)
αβ , ξ⊥α . The expression for ρ̃ reads

ρ̃(q, ω) =
1

Δ

[(

Kq2

γ̃1
+

ζΔμ

η̃
− iω +

iαqz

η̃

)

×(iqαqβξ
(σ)
αβ + iqαqαξ)

−(((ν1Kq2 + 2ζΔμ)qz) + iαq2)

×

[

1

η
(iqβξ

(σ)
zβ + iqzξ) + iqαξ⊥α

]]

, (45)

with

Δ =

[(

χq2 + i

(

η̄ +
4

3
η

)

ωq2 − iν1qzq
2
⊥α

)

×

(

ω −
αqz

η̃
+ i

(

Kq2

γ̃1
+

ζΔμ

η̃

)

+((ν1Kq2 + 2ζΔμ)qz) + iαq2

)

×

(

qzω

(

ν1+1

2
+

η̄+ 4
3η

η̃

)

−
αq2

⊥

γ̃1
−i

χqz

η̃

)]

, (46)

1

η̃
=

((ν1 − 1)q2
⊥ − (ν1 + 1)q2

z)

2ηq2
=

((ν1 − 1) cos2 θ − (ν1 + 1) sin2 θ)

2η
, (47)

1

γ̃1
=

1

γ1
+

1

η̃

(ν1 − 1)

2
, (48)

where qz

q = sin θ and q⊥
q = cos θ. For simplicity we have

chosen units where ρ0 = 1.
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For any finite ζΔμ, there is always a scale at which
the system becomes unstable. The instability arises when
Δ(q, ω) = 0, i.e. when both the real and the imaginary
parts of Δ vanish.

The small-q limit is particularly simple to discuss and
turns out to be the only case relevant to the small-ζΔμ
regime we consider here. One obtains for angles θ suf-
ficiently different from π

4 an activity threshold at finite
wave vector given by

ζΔμc = −

(

η̃

γ̃1
− ν1 cos2 θ

)

(K − α2 cos2 θ
χ )

cos 2θ
q2 , (49)

with a characteristic frequency

ωc = −
αq

χ

(

1

η̃
−

2

γ̃1

)

sin θ cos2 θζΔμc . (50)

The instability is a convective instability occuring at a fi-
nite frequency in which the perturbation travels with an
amplitude growing as it travels. The ultimate behavior
of the system depends on non-linear terms and on the
boundary conditions. For a gel slab of thickness L with
its polarization orthogonal to the lateral surfaces, θ = π

2 ,
q⊥ = 0, qz = π

L , one recovers the threshold derived in [15]
and ωc = 0: the system becomes unstable with respect to
a steady state in which both a shear and a polarization
gradient set in. Note that, at threshold, no density hetero-
geneity appears. For a gel slab with a polarization parallel
to the lateral surfaces, a similar instability is obtained. In
that case the density couples linearly at threshold to the
polarization field deformation and to the shear.

For θ close to π
4 , more precisely |χ cos 2θ

η̃ | <

|α
2q2 sin2 θ cos2 θ

χ ( 1
η̃ − 2

γ̃1

)((ν1 cos2 θ +
η̄+ 4

3
η

η̃ ))|, the activity

threshold ζΔμc takes a value which is independent of the
wave vector q. Since the threshold in this case has no rea-
son to remain small, it will typically be outside the validity
range of the small ζ-Δμ regime discussed here.

The correlation function S̃(q, ω) can be calculated in
a straightforward way using equation (45) and the noise
correlations (30, 33). Its expression is somewhat lengthy.
Power counting arguments show that the equal-time cor-
relation function S(q, t = 0) is finite for any q, ζΔμ
values such that the instability threshold is not reached.
Upon approaching the threshold, S(q, t = 0) diverges like

1
ζ∆µ−ζ∆µc

upon varying activity or like 1
q−qc

as a function

of q vectors. In the limit where qz = 0, α = 0, the activity
does not play any role and S(q, t = 0) is given by the
thermodynamic result S(q, t = 0) = kT/χ. This result
implies that the prefactor of the diverging term goes to
zero in that limit. It can be checked explicitly that it is
proportional to α2.

Although they are related, the instability that we find
is is different from that obtained by Simha et al. [5] who
predict a divergence at low wave vectors as S(q, t = 0) ∼
1/q2. This is due to the different dynamics of the density
field. We consider here a one-component system where
the variation of the density is driven by the velocity field
whereas they implicitly consider a two-component system
where the change in density is driven by diffusion.

7 Concluding remarks

The aim of this paper is to propose a generalized hydro-
dynamic theory of polar active gels including fluctuations
to describe active properties of the cytoskeleton on meso-
scopic scales. This theory has been constructed by intro-
ducing noise terms in the hydrodynamic equations pro-
posed in references [7,8].

As a first step we considered only thermal noise. Ther-
mal noise can be introduced in a systematic way by impos-
ing that close to thermal equilibrium the system satisfies
the fluctuation-dissipation theorem. All dissipative kinetic
coefficients are then directly linked to fluctuation ampli-
tudes by a generalized Einstein relation. In the simpler
case where the polarization has a fixed modulus and only
the orientation fluctuates, all the noise correlations are
local in time and in space and depend only on the dissi-
pative transport coefficients such as the translational and
rotational viscosities.

The systematic and very general analysis of Section 3
shows that the fluctuation-dissipation theorem is violated
at second order in Δμ. Only in the absence of external
driving is time-reversal invariance obeyed. In the limit of
small Δμ, we have calculated the density fluctuations in
the gel. They diverge at a contractility threshold ζΔμc

which goes to zero like wave vector squared. This diver-
gence signals an instability in general towards traveling
waves and towards sheared steady states for θ = 0 and π

2 .
The equal-time correlation function reflects these diver-
gences, the 1

ζ∆µ−ζ∆µc
or 1

q−qc
diverging terms being pro-

portional to the square of the coupling constant α. There-
fore, an active polar gel is always unstable in the thermo-
dynamic limit. Only a finite system in which the critical
wavelength is supressed can be stable. This is consistent
with our previous results obtained in references [15,21].

When the system is driven far from thermal equilib-
rium, fluctuations on large scales have a noticeable contri-
bution coming from the stochasticity of active processes
such as the action of motor molecules. In this case, there
is no general principle which imposes conditions on the
correlation functions of the stress fluctuations. However,
typical features of the fluctuations can be estimated from
microscopic pictures for the active processes in the gel.
The simple scaling arguments given in Section 5 estimate
the noise strength based on the motor density, the gel
density and the characteristic times of motor action. In
general on the mesoscopic scale oscillations could occur
which are reflected in a general correlation function by a
frequency ω0. For the non-oscillating case or for long times
we can define, from these estimates, an effective temper-
ature for the shear correlations which is larger than the
ambient temperature if active noise dominates. This im-
plies the existence of larger fluctuations as compared to
thermodynamic equilibrium as observed by [18].

The stochastic differential equations for the hydrody-
namic fluctuations presented here are simple as long as
kinetic coefficients remain independent of the state vari-
ables themselves. In such a linear response case, noise is
additive. In a general hydrodynamic theory which is ob-
tained by a systematic expansion in terms of thermody-
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namic forces and fields, kinetic coefficients can become
state-dependent. In active gels this is the case because
viscosity is anisotropic in oriented gels and the friction
of the orientation field is itself anisotropic. Furthermore,
reactive coefficients also become state-dependent such as
those which describe anisotropic active stresses. State-
dependent friction induces state-dependent or multiplica-
tive noise and in addition generates new drift terms in
the dynamic equations. Similarly, state-dependent reac-
tive terms also induce additional drift but do not con-
tribute to fluctuations.

The results given in this paper provide a framework to
study the fluctuations of the cytoskeleton in cells and in
in vitro acto-myosin systems on mesoscopic scales where
many motors and filaments cooperate. Recent experiments
have, for example studied in great details the motion of
beads in an actin gel containing myosin motors [18]. We
are presently using this generalized hydrodynamic theory
to describe fluctuations observed in such experiments.

We thank S. Ramaswamy for discussions. Some of us (J.P and
J.F) thank the Indo-French Centre for Promotion of Advanced
Research for partial financial support through a grant 3504-2.
AB thanks SERC (DST, India) for partial financial support
through a Fast Track Project SR/FTP/PS-17/2006.

Appendix A. Maxwell model in the

fluctuating velocity ensemble

In the ensemble where the shear deformations fluctuate,
we identify the stress σαβ with forces fi and the deforma-
tion tensor uαβ , where duαβ/dt = vαβ (or −iωuαβ = vαβ),
with the conjugate variables φi. Writing

vαβ =
1 − iωτ

2η
σαβ + ξ̄αβ , (A.1)

where ξ̄αβ = (1 − iωτ)ξαβ/(2η). The response function
∂uαβ/∂σγδ is given by

χ̄αβγδ = (δαγδβδ + δαδδβγ)
−1 + iωτ

4ηiω
. (A.2)

The FDT implies that

〈uαβ(ω,x)uγδ(ω
′,x′)〉 = 2π

kBT

2ηω2

×(δαγδβδ + δαδδβγ)δ(ω + ω′)δ(x − x′). (A.3)

From this, we deduce that

〈ξ̄αβ(ω,x)ξ̄γδ(ω
′,x′)〉 = 2π

kBT

2η

×(δαγδβδ + δαδδβγ)δ(ω + ω′)δ(x − x′), (A.4)

which is equivalent to equation (15).

Appendix B. Linear response functions of

active polar gels in frequency domain

The imaginary parts of the linear response functions de-
termine the noise correlations required such that FDT is
obeyed. For an active polar gel, the response functions
have the following form. The linear response between σαβ

and uαβ in frequency domain is given by

χσu
αβγδ =

iωη

1 + iωτ

[

(δαγδβδ + δαδδβγ) −
2

3
δαβδβγ

]

. (B.1)

The cross terms on the linear response

χσh
αβγ = −

ν1

2

(

pαδβγ + pβδαγ −
2

3
pγδαβ

)

(B.2)

and χσδµ are both real. Furthermore, we have

χp⊥h
αβ =

1 − iωτ

−iωγ1
δαβ (B.3)

and χp⊥∆µ
α = 0, while χpu is real. Finally, χr∆µ = iΛ/ω

and χrh = iλ1pα/ω, while χru is real.

Appendix C. Breaking of time-reversal

invariance

Appendix C.1. Time-reversal symmetry

We consider the behavior of the system under time-
reversal transformations

φi(t) → φ′
i(t) = ǫiφi(−t), (C.1)

where ǫi = ±1 describes the time-reversal signature of
the variable φi. For example, a displacement varliable has
ǫ = 1, while for a velocity ǫ = −1. The probability of the
time-reversed path is described by the action

S[ǫiφi(−t)]=
1

4

∫

dt

⎡

⎣

∑

ij

ǫiǫjBij φ̇iφ̇j +
∑

ijk

ǫiǫk(BijAjk

+BjiAjk)φ̇ifk +
∑

ijkl

ǫjǫlAijBikAklfjfl

⎤

⎦ , (C.2)

where we have used that φ̇′
i(t) = −ǫiφ̇i(−t) and the forces

transform as f ′
i(t) = ǫifi(−t) with the same time-reversal

signatures as the corresponding fields. We first discuss the
case where external forces are absent, f ext

i = 0. If the sys-
tem is at thermodynamic equilibrium, the reversibility of
microscopic processes becomes manifest at mesosocopic
and macroscopic scales and the process becomes invari-
ant with respect to time-reversal. This implies that if the
variables φi return to their initial values, φi(t0) = φA

i and
φi(tmax) = φA

i , the probability of the forward and back-
ward trajectories are the same: P [φi(t)] = P [ǫiφi(−t)].
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This implies that the action is invariant under time-
reversal: S[φi(t)] = S[ǫiφi(−t)].

This invariance of the action under time-reversal im-
poses conditions on the matrices Bij and Aij which we can
determine by comparing the action of the time-reversed
path S[ǫiφi(−t)] with

S[φi]=
1

4

∫

dt

⎡

⎣

∑

ij

Bij φ̇iφ̇j−
∑

ijk

(BijAjk+BjiAjk)φ̇ifk

+
∑

ijkl

AijBikAklfjfl

⎤

⎦ . (C.3)

Time-reversal symmetry first requires that

Bij = Bijǫiǫj . (C.4)

This implies that Bij = 0 if ǫiǫj = −1. The matrix Bij

thus only links those variables φi with the same time-
reversal signature ǫi.

If the variables φi are grouped such that φα with α =
1, . . . , p and φµ with μ = p + 1, . . . , N , such that ǫα = 1
and ǫµ = −1, the matrix B has the block representation

Bij =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B11 B21 . . . Bp1 0 . . . 0
B21 B22 . . . Bp2 0 . . . 0

...
...

. . .
...

...
...

Bp1 Bp2 . . . Bpp 0 . . . 0
0 0 . . . 0 Bp+1,p+1 . . . BN,p+1

...
...

...
...

. . .
...

0 0 . . . 0 BN,p+1 . . . BN,N

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (C.5)

Since Bij is symmetric and since each block can be in-
verted independently, the inverse (Bij)

−1 has the same
block structure. From this argument it follows that time-
reversal symmetry requires that only noise variables with
the same time signature can be correlated.

While the matrix Bij is symmetric, Aij is considered
to be a general matrix without specific symmetry require-
ments. It is convenient to decompose Aij = As

ij + Aa
ij

in a symmetric and antisymmetric part, As
ij = As

ji and
Aa

ij = −Aa
ji. In addition to equation (C.4), two further

conditions have to be imposed on the matrix Aij for time-
reversal symmetry to be satisfied. We first state these con-
ditions and then demonstrate that these conditions gener-
ically lead to a time-reversal invariant theory.

The first condition on Aij can be written as

Aij = Ajiǫiǫj . (C.6)

Condition (C.6) implies that Aij is symmetric if ǫi = ǫj

and antisymmetric if ǫi 	= ǫj . Aij thus has the block

structure

Aij =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

As
11 As

21 . . . As
p1 −Aa

p+1,1 . . . −Aa
N,1

As
21 As

22 . . . As
p2 −Aa

p+1,2 . . . −Aa
N,2

...
...

. . .
...

...
...

As
p1 As

p2 . . . As
pp −Aa

p+1,p . . . −Aa
N,p

Aa
p+1,1 Aa

p+1,2 . . . Aa
p+1,p As

p+1,p+1 . . . As
N,p+1

...
...

...
...

. . .
...

Aa
N,1 Aa

N,2 . . . Aa
N,p As

N,p+1 . . . As
N,N

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(C.7)
The second condition is

∑

j

BijA
s
jk = βδik , (C.8)

where β is an arbitrary parameter. Time translation in-
variance requires that all terms in the action are invariant.
For the last term in (C.3) this implies

∑

ijkl

AijBikAklfjfl =
∑

ijkl

ǫjǫlAijBikAklfjfj . (C.9)

This relation indeed follows from the three condi-
tion (C.4, C.6) and (C.8).

The remaining second term in (C.3) consists of
two parts which we discuss separately. With condi-
tions (C.4, C.6) and (C.8), we find
∫ tmax

t0

dt
∑

ijk

BijA
s
jkφ̇i∂kF = β(F (φi(tmax)) − F (φi(t0)))

(C.10)
and

−

∫ tmax

t0

dt
∑

ijk

ǫiǫkBijA
s
jkφ̇i∂kF =

−β(F (φi(tmax)) − F (φi(t0))). (C.11)

In addition, the equivalent term involving the antisymmet-
ric part of Aij automatically satisfied time-reversal invari-
ance because only terms with ǫiǫk = −1 contribute

∑

ijk

ǫiǫkBijA
a
jkφ̇ifk = −

∑

ijk

BijA
a
jkφ̇ifk . (C.12)

From (C.10) and (C.11), we see that time-reversal in-
variance P [φi(t)] = P [ǫiφi(−t)] is ensured if the initial and
final states are identical, φi(tmax) = φi(t0). The structure
of the kinetic coefficients given by (C.7) reflects the On-
sager symmetry relations. Dissipative couplings (with ǫi =
ǫj) are symmetric (As

ij = As
ji) and contribute to the noise

(B−1
ij = As

ijβ
−1), while reactive coupling are antisymmet-

ric (Aa
ij = −Aa

ji) and do not contribute to the noise.

Appendix C.2. Time-reversibility and fluctuation
theorems

We have shown that if equations (C.4, C.6) and (C.8)
are satisfied, the action is invariant with respect to time-
reversal S[φi(t)] = S[ǫiφi(−t)] in the absence of external
forces. This corresponds to thermodynamic equilibrium.
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Using the results from the previous section, we can
generalize this in out-of-equilibrium situations. If external
forces are applied and paths end at different points in
phase space as they start,

S[φi(t)] − S[ǫiφi(−t)] = −βWdiss , (C.13)

where the dissipated work is given by

Wdiss = F (φi(t0)) − F (φi(tmax)) +

∫ tmax

t0

∑

i

φ̇if
ext
i dt.

(C.14)
This implies furthermore

P [φi(t)]

P [ǫiφi(−t)]
= exp{βWdiss}. (C.15)

This is a simple form of a general fluctuation theorem
(FT) which we have thus derived [26–28]. In the limit of
small perturbations from equilibrium, the FT becomes the
FDT which fixes the parameter β.

At equilibrium, we have the distribution P0[φi(t)]
which obeys P0[φi(t)] = P0[ǫiφi(−t)]. Close to equilib-
rium, we write P [φi(t)] = P0[φi] + δP [φi(t)]. For small
dissipative work (small forces f ext

i ), we can expand both
sides of the fluctuation theorem (assuming for simplicity
φi(t0) = φi(tmax)) to linear order in δP and Wdiss

δP [φi(t)]−δP [ǫiφi(−t)]≃βP0[φi(t)]

∫ tmax

t0

dt′
∑

i

φ̇if
ext
i .

(C.16)
We define the linear response function at equilibrium

〈δφi(t)〉 =

∫

Dφi . . .DφN φi(t)δP [φi]

≃

∫ tmax

t0

dt′
∑

j

χij(t − t′)f ext
j (t′) (C.17)

and the linear response of the time-reversed action

〈δφ̄i(t)〉 =

∫

Dφ1 . . .DφN φi(t)δP [ǫkφk(−t)]

≃

∫ tmax

t0

dt′
∑

j

ǫiǫjχij(−t + t′)f ext
j (t′). (C.18)

With the definition Cij(t) = 〈φi(t + τ)φj(τ)〉, with
Cij(t) = Cji(−t), the FT, equation (C.15) implies

χij(t) − ǫiǫjχij(−t) ≃ −β
d

dt
Cij(t). (C.19)

This is equivalent to the FDT

kBTχij(t) = −θ(t)
d

dt
Cij(t) (C.20)

if β = (kBT )−1, where θ(t) denotes the Heavyside func-
tion. This equivalence follows using the time-reversal sym-
metry of Cij(t) = ǫiǫjCij(−t).

Thus, the FDT is broken by the quadratic terms in
the force in the FT equation (C.15). The FT, however, is
valid also for large forces f ext

i and thus far beyond linear
response.

Appendix C.3. Generalization to time-dependent
linear response

We now consider the generalized Langevin equation

φ̇i =

∫ t

−∞

dtAij(t − t′)fj(t
′) + ξi , (C.21)

with noise correlation

〈ξi(t + τ)ξj(τ)〉 = 2(Bij)
−1(t) (C.22)

and probability

P [ξi(t)]=P0 exp

⎧

⎨

⎩

−
1

2

∑

ij

∫

dt′dt′′ξi(t
′)Bij(t

′−t′′)ξj(t
′′)

⎫

⎬

⎭

,

(C.23)
where Bij(t) = Bji(−t).

It is most convenient to use a frequency representation

P [ξi(ω)] = P0 exp

⎧

⎨

⎩

−
1

4π

∑

ij

∫

dωξi(ω)Bij(ω)ξ∗j (ω)

⎫

⎬

⎭

,

(C.24)
with Hermitian matrix Bij(ω) = B∗

ji(ω) and Bij(ω) =
B∗

ij(−ω). We can now employ the same arguments as
above using

P [φi(ω)] = P0J exp {−S[φi(ω)]} , (C.25)

where J is a Jacobian and

S[φi(ω)]=
1

4π

∑

ik

∫

dω(−iωφi−Aijfj)Bik(ω)(iωφk−A∗
klf

∗
l ).

(C.26)
Now the equilibrium conditions become Bij(ω) =
ǫiǫjBij(−ω) and Aij(ω) = ǫiǫjAij(−ω). From this it fol-
lows that Bij(ω) can be brought in the block representa-
tion such that Bij = Bji is real if ǫi = ǫj and Bij = −Bji

if ǫi 	= ǫj . Similarly, Aij(ω) = Ah
ij(ω) + Aa

ij(ω) can be

decomposed in Hermitian dissipative parts Ah
ij and anti-

Hermitian reactive parts Aa
ij . We then have

Bij(ω)Ah
jk(−ω) = βδik . (C.27)

Appendix D. State-dependent friction

Appendix D.1. Anisotropic friction

In the presence of an orientation field pα, the system is
anisotropic and the Maxwell model needs to be gener-
alized. The constitutive equations (26) and (27) for the
stresses become

(

1 + τ
D

Dt

){

σ̃αβ + ζΔμ qαβ +
ν1

2

(

pαhβ + pβhα

−
2

3
pγhγδαβ

)}

= 2η̃αβγν ṽγν + 2ηαβvγγ + ξ
(σ)
αβ ,

(

1+τ
D

Dt

)

{−p+ζ̄Δμ+ν̄1pγhγ}= η̄vγγ +η̄αβ ṽαβ+ξ.

(D.1)
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Here, the viscosity tensors reflects the symmetries of the
system and friction differs in longitudinal and transverse
directions. We have ηαβ = η1qαβ , η̄αβ = η̄1qαβ , and

η̃αβγν = η2

(

δαγδβν + δανδβγ −
2

3
δγνδαβ

)

+η3

(

qαγδβν + δαγqβν + qανδβγ + δανqβγ

−
2

3
(qγνδαβ + δγνqαβ)

)

+η4

(

qαγqβν −
1

3
qδγqδνδαβ

)

. (D.2)

Using this anisotropic viscosity, the fluctuation-dissipation
theorem requires that the noise becomes state-dependent.
Similarly, the anisotropic dissipation of the orientation
field described by the coefficients γ and γa in equa-
tions (20) and (24) requires state-dependent noise if lon-
gitudinal fluctuations are not neglected.

Appendix D.2. Langevin equation and
fluctuation-dissipation theorem

We discuss here the fluctuation-dissipation theorem for
state-dependent friction following the lines of refer-
ence [34]. We consider the case without memory, τ = 0
for which the dynamic equations can be written as first-
order Langevin equations (34). For state-dependent fric-
tion, the mobility matrix Aij depends on the state vari-
ables φi which also requires state-dependent noise [34]

φ̇i = Aij(φ1, . . . , φn)f̄j + gij(φ1, . . . , φn)ηj(t). (D.3)

Here, we have anticipated that for state-dependent fric-
tion the drift terms f̄i can differ from the thermodynamic
forces fi in (34) and the noises ηj are Gaussian variables
with zero average and

〈ηi(t)ηj(t
′)〉 = δijδ(t − t′). (D.4)

The fluctuation-dissipation theorem then imposes specific
forms for the noise amplitudes gij . Note, however, that
the stochastic differential equation (D.3) is only uniquely
defined if an integration convention is specified which de-
scribes how integrals can be calculated by discretization
and a continuum limit. We use the α-convention [34] which
implies in the limit of small time interval Δt

∫ t+∆t

t

dt′gij(φk(t))ηj(t) = gij(αφk(t + Δt)

+(1 − α)φk(t))

∫ t+∆t

t

dt′ηj . (D.5)

The solutions to (D.3) depend on the parameter α. The
Ito interpretation of the Langevin equation corresponds to
α = 0, while the Stratonovich interpretation is obtained
for α = 1/2.

The fluctuation-dissipation theorem ensures that the
system relaxes to a thermodynamic equilibrium with a
probability distribution P eq(φ1, . . . , φn)∼exp{−F/kBT},
which is independent of the mobility matrix Aij . Here
F (φ1, . . . , φn) is the free energy and fi = −∂F/∂φi are
the thermodynamic forces. This equilibruim condition re-
quires that the Fokker-Planck equation for the distribu-
tion function P (φ1, . . . , φn) is of the form

∂P

∂t
= −

∂Ji

∂φi
, (D.6)

with currents

Ji = As
ij

(

fjP − kBT
∂P

∂φj

)

+ Aa
ijfjP. (D.7)

Note that the diffusion matrix kBTAs
ij is symmetric while

the mobility matrix Aij can have antisymetric parts. Here,
we have decomposed the matrix Aij = As

ij + Aa
ij in

symmetric and an antisymmetric parts which are of the
form (C.7). Furthermore, we neglect a possible state de-
pendence of reactive coefficients, ∂Aa

ij/∂φj = 0. In this
case, the reactive currents which can exist at thermody-
namic equilibrium Jeq

i = Aa
ijfjP

eq have vanishing diver-

gence as required, ∂Jeq
i /∂φi = 0. The consequences of

state-dependent reactive terms are discussed below.
For the stochastic differential equation (D.3) with in-

terpretation α, the corresponding Fokker-Planck equation
has the current [34]

Ji =

(

Aij f̄i + α
∂gil

∂φk
gkl −

1

2

∂

∂φj

(gilgjl)

)

P −
1

2
gilgjl

∂P

∂φj

.

(D.8)
By comparing (D.7) and (D.8), we obtain the generalized
Einstein relation

gilgjl = 2As
ijkBT. (D.9)

Choosing the matrix gij = gji symmetric, this relation
uniquely specifies the noise strengths gij as functions of
the state variables φi.

With these functions gij , the drifts f̄ can now be de-
termined from

Aijfj = Aij f̄j + α
∂gil

∂φk
gkl −

1

2

∂

∂φj

(gilgjl). (D.10)

Using the symmetric matrix Bij = 2(gilgjl)
−1 which

obeys (C.8), we find

f̄i = fi − kBT

(

αBim
∂gml

∂φk
gkl +

1

2
Bim

∂

∂φj
(gmlgjl)

)

.

(D.11)
Note that all correction terms to fi in the drift are propor-
tional to kBT because they are generated by fluctuations.
With these expressions for f̄i and gij , the drift and noise
terms are specified which have to be used in the stochastic
differential equation (D.3) with state dependent friction,
where Aij is the mobility matrix and fj the thermody-
namic forces discussed in the main text.



160 The European Physical Journal E

Appendix D.3. State-dependent reactive terms

If both dissipative and reactive terms, As
ij and Aa

ij depend
on the state variables φi, the Fokker-Planck current takes
the form [35]

Ji = As
ij

(

fjP − kBT
∂P

∂φj

)

+

(

Aa
ijfj − kBT

∂Aa
ij

∂φj

)

P.

(D.12)
The reactive correction term −kBTP∂Aa

ij/∂φj on the

right-hand side ensures that the probabiliy density is
stationary at equilibrium, ∂Jeq

i /∂φi = 0. While state-
dependent reactive terms do not affect the noise strength
gij , an additional term appears in the drift:

f̄i = fi − kBT

(

αBim
∂gml

∂φk
gkl +

1

2
Bim

∂

∂φj
(gmlgjl)

+Bim

∂Aa
mj

∂φj

)

. (D.13)
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7. K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, K. Sekimoto,

Phys. Rev. Lett. 92, 078101 (2004).
8. K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, K. Sekimoto,
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