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Abstract. Biological systems such as single cells must function in the presence
of fluctuations. It has been shown in a two-dimensional experimental setup
that sea urchin sperm cells move toward a source of chemoattractant along
planar trochoidal swimming paths, i.e. drifting circles. In these experiments,
a pronounced variability of the swimming paths is observed. We present a
theoretical description of sperm chemotaxis in two dimensions which takes
fluctuations into account. We derive a coarse-grained theory of stochastic sperm
swimming paths in a concentration field of chemoattractant. Fluctuations enter
as multiplicative noise in the equations for the sperm swimming path. We
discuss the stochastic properties of sperm swimming and predict a concentration-
dependence of the effective diffusion constant of sperm swimming which could
be tested in experiments.
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1. Introduction

Sperm chemotaxis plays an important role for fertilization. Sperm cells steer up a gradient of
chemoattractant, which is released by the egg, a process called chemotaxis. Sperm chemotaxis
is well established in marine invertebrates with external fertilization (e.g. sea urchins [1]) and
has been demonstrated in mammals (e.g. humans [2]).

Sperm cells possess a single eukaryotic flagellum of about 50µm length. Dynein motors
within this flagellum drive a regular beat of the flagellum which propels the sperm cell
in a liquid [3]. Chemotaxis is mediated by a signaling system, which is located within
the flagellum [1]. Specific receptors in the flagellar membrane are activated upon binding
chemoattractant molecules and trigger a chain of signaling events which ultimately change the
intra-flagellar calcium concentration [1, 4, 5]. The calcium concentration apparently regulates
the activity of the flagellar dynein motors and results in a swimming response [6]. Interestingly,
sperm cells can respond to chemotactic stimuli of subpicomolar concentration [4, 5, 7].

Here, we will focus on the chemotaxis of sea urchin sperm because of the large amount of
experimental data available for this system. Chemotaxis of sea urchin sperm is usually observed
under experimental conditions where sperm cells swim in a shallow observation chamber under
the microscope [1, 4], [8]–[11]. In this situation, sperm cells become localized near the surfaces
of the chamber where they swim along planar paths. In the absence of chemoattractant, the
swimming paths are circular. The curvature of their swimming paths is a direct consequence
of an asymmetry of the flagellar beat [4]. The rotational sense of circular swimming is mostly
counterclockwise (when viewed in a direction parallel to the inward normal of the boundary
surface).

In a concentration gradient of chemoattractant, the circular swimming paths drift
toward regions of higher chemoattractant concentration; the swimming paths thus resemble
trochoids [1, 8, 9]. Experiments indicate that both the intra-flagellar calcium concentration
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and the curvature of the swimming path exhibit characteristic periodic modulations with the
frequency of circular swimming when a sperm cell swims in a chemoattractant concentration
gradient [1].

The mechanism of sperm chemotaxis can be formalized as follows [12]: while swimming
along an approximately circular path in a concentration gradient of chemoattractant, a sperm cell
traces a concentration stimulus from the concentration field, which is periodically modulated
with the frequency of circular swimming. As a result, the chemotactic signaling system shows
a periodic modulation of activity and causes a periodic modulation of the curvature of the
swimming path. A periodic modulation of the curvature gives rise to a swimming path which
is a drifting circle, or (prolate) trochoid. The relative direction of the drift with respect to
the concentration gradient depends crucially on the phase shift between the stimulus and the
curvature oscillations.

Experiments on sea urchin sperm chemotaxis reveal a pronounced variability of the
observed sperm swimming paths. We argue that sperm chemotaxis is subject to fluctuations of
various sources: the chemotactic stimulus, which the sperm cells receives exhibits fluctuations
since the binding of chemoattractant molecules to their respective receptors is a discrete process.
Additionally, intrinsic fluctuations of the chemotactic signaling system and fluctuations in the
activity of the motor ensemble which drive the flagellar beat are present.

In this paper, we develop a framework to systematically account for fluctuations affecting
sperm chemotaxis. Note that sperm swimming is an active process which is characterized by
non-equilibrium fluctuations. Starting from a physical description of sperm chemotaxis, we
derive an effective stochastic equation for the centerline of sperm swimming paths which
follows stochastic trochoids. Different sources of fluctuations enter as multiplicative noise in
this description. Our effective description characterizes sperm chemotaxis by a superposition of
a chemotactic drift and effective diffusion. We show that the chemotaxis mechanism is robust in
the presence of fluctuations and we discuss chemotactic success of sperm cells toward a single
source of chemoattractant. We calculate a concentration-dependence of the diffusion constant
of sperm swimming circles which could be tested in future experiments.

2. Stochastic description of sperm chemotaxis in two dimensions

2.1. Dynamic equations of sperm motion

We study sperm chemotaxis in two dimensions for sperm cells swimming near a surface. We
define the swimming path as the trajectory of the sperm head averaged over one cycle of the
flagellar beat. This average eliminates rapid periodic movements of the head with the frequency
of the flagellar beat. The planar swimming path is parameterized by time-dependent x- and
y-coordinates which we denote by r1(t) and r2(t), respectively. Throughout this paper, we will
represent points in the plane (r1, r2) as complex numbers r = r1 + i r2; an analogous convention
applies for planar vectors. This notation will simplify the calculations.

The velocity of the swimming path r(t) is characterized by the speed v = |ṙ| and the tangent
t = ṙ/v, where dots denote time derivatives. The normal vector is defined as n = i t. The Frenet–
Serret equations in two dimensions can now be written as complex-valued differential equations

ṙ = v t, ṫ = v κ n, ṅ = −v κ t, (2.1)
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where κ = ṫ n∗/v is the (signed) curvature of the swimming path and the star denotes the
complex conjugate. The absolute value of the (signed) curvature satisfies the familiar relation
|κ| = |ṫ|/v. From equation (2.1), we find for the time evolution of the argument ϕ of the tangent
t = eiϕ

ϕ̇ = v κ. (2.2)

For constant curvature κ(t)= κ0 > 0, the swimming path r(t) is a circle with radius
r0 = 1/κ0. The angular frequency of circular swimming is ω0 = v0κ0 if speed v(t)= v0 is
constant. In the following, we consider the case where sperm cells swim in a counterclockwise
sense along their circular swimming paths r(t) such that κ0 > 0. Our results also apply for
swimming in a clockwise sense, however, r0 and ω0 attain negative values in this case. Note
that a change of sign κ0 → −κ0 corresponds to using the complex-conjugate path r → r∗.

We consider a sperm swimming path in a concentration field c(x)= c(x + iy) of
chemoattractant. Due to the motion of the sperm cell, the local concentration c(r(t)) at the
position r(t) of the sperm cell changes with time t . Chemoattractant molecules bind to specific
receptors on the flagellar membrane with a total rate q(t) which is defined by an ensemble
average and which we assume to be proportional to the local concentration

q(t)= λ c(r(t)). (2.3)

We introduce the chemoattractant stimulus s(t)=
∑
δ(t − t j) which counts binding events of

single chemoattractant molecules to the receptors which occur at times t j . Since binding events
are stochastic, the stimulus s(t) is a stochastic flux with expectation value

〈s(t)〉 = q(t). (2.4)

This stimulus s(t) triggers a response of the chemotactic signaling network. In general the
signaling network is a dynamic system which generates a time-dependent output which depends
on the history of the stimulus. We characterize this response by a dimensionless output variable
a(t) with a = 1 for a constant stimulus in the absence of fluctuations. This output variable
a(t) affects the curvature κ(t) of the swimming path by modulating the activity of the flagellar
motors. In our simple description [12], we write

κ(t)= κ0 + κ1(a(t)− 1)+ ξm. (2.5)

Here, we include a noise term ξm with zero mean in (2.5) to account for fluctuations of the
flagellar beat due to fluctuations in the activity of the motor ensemble. For simplicity, we assume
that the swimming speed v(t)= v0 is constant, unaffected by chemotactic signaling.

We can capture the essential properties of the chemotactic signaling system, namely its
ability to adapt and its relaxation dynamics, by a simple dynamical system [12]–[14]

σ ȧ = p(sb + s)− a + ξa,

µ ṗ = p(1 − a).
(2.6)

Here, p(t) is an internal variable which governs adaptation and represents a dynamic sensitivity.
This sensitivity p is reduced whenever the output a of the signaling system exceeds the value
1, and correspondingly is increased if a falls below this value. In the absence of any stimulus,
s(t)= 0, the sensitivity p remains bounded with 〈p〉 = 1/sb. The parameter sb has units of a
rate and corresponds to a detection limit for low stimuli which could for example result from
a background activity of the chemoattractant receptors. The time constants σ and µ set the
response timescale and the timescale of adaptation, respectively. The intrinsic fluctuations of

New Journal of Physics 10 (2008) 123025 (http://www.njp.org/)

http://www.njp.org/


5

the molecular network underlying chemotactic signaling are included in a generic fashion by
the noise term ξa with zero mean. For a time independent stimulus s(t)= s0, the stochastic
system (2.6) reaches a stationary state with 〈a〉 ≈ 1 and 〈p〉 ≈ 1/(sb + s0). The system is adaptive
since the expectation value (and also the full statistics) of the steady-state output is independent
of the stimulus level s0.

In the noise-free case, ξa = 0, ξm = 0, small periodic variations of the stimulus s(t)=

s0 + s1cosω0t evoke a periodic response of the curvature κ(t)= κ0 + ρκs1 cos(ω0t +ϕκ)+O(s2
1)

with amplitude gain ρκ and phase shift ϕκ . The linear response coefficient χ̃κ(ω0)= ρκeiϕκ is
obtained from the response function

χ̃κ(ω)=
κ1

sb + s0

iωµ

1 + iωµ− σµω2
(2.7)

of the signaling system described by equation (2.6), evaluated at the circling frequency ω0.
Note that the phase-shift ϕκ is independent of the stimulus strength s0. The amplitude gain ρκ is
a function of the stimulus level s0 and can be written as

ρκ = ρ̄κ/(sb + s0) (2.8)

with a constant ρ̄κ that represents an amplification strength of the chemotactic signaling system.

2.2. Characterization of noise terms

2.2.1. Stochastic chemoattractant stimulus. Sperm cells ‘measure’ the local chemoattractant
concentration c = c(r(t)) by ‘reading out’ the number of their activated chemoattractant
receptors. A chemoattractant receptor becomes activated upon binding a chemoattractant mole-
cule and deactivates again on a timescale of 300 ms [7]. Activation and deactivation of receptors
is subsumed together with downstream signaling in the generic signaling system (2.6) whose
input s(t) is the stochastic flux of binding events of individual chemoattractant molecules. Let
us discuss first a homogeneous concentration field of chemoattractant c(x)= c0. We consider
the case where the binding events of individual chemoattractant molecules to the receptors
are independent and the series of binding events is therefore a Poissonian spike train s(t)=∑

j δ(t − t j)with expectation value equal to the rate q0 = λc0 of binding events. Here, t j denotes
the time of the j th binding event.

In an inhomogeneous concentration field, the local chemoattractant concentration c(r(t))
changes with time; thus q(t) changes as well. We describe the statistics of the event times t j

by a non-homogeneous Poisson process, i.e. by a renewal process with conditional probability
density

P(t j+1|t j)= q(t j+1) exp

(
−

∫ t j+1

t j

dt q(t)

)
. (2.9)

This choice gives 〈s(t)〉 = q(t) and a Poissonian statistics of binding times for slowly varying
q(t).

The generic signaling module (2.6) serves as a low-pass filter which averages the incoming
stimulus over the relaxation time σ of the signaling module (2.6). Thus the relevant timescale
to which the rate q of binding events should be compared is the relaxation time σ . When the
rate q is large compared to σ−1 and q(t) changes on a timescale slow compared to the mean
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inter-event-interval 1/q, then we can replace s(t) by a coarse-grained version known as the
diffusion limit

s(t)≈ q(t)+
√

q(t) ξs(t), (2.10)

where ξs(t) is Gaussian white noise with 〈ξs(t1)ξs(t2)〉 = δ(t1 − t2). In this limit, the parameter
η = (qσ)−1/2 which characterizes the relative noise strength of s(t) is small. Here, the relative
noise strength of s(t) averaged over a time τ is defined as

〈δs〉2
τ/〈s〉

2
τ = (qτ)−1 (2.11)

with δs = s − 〈s〉, where 〈·〉τ denotes an average over a time interval τ . Hence, η2 equals the
relative noise strength of s for an averaging time τ = σ .

2.2.2. Intrinsic noise of chemotactic signaling. Chemotactic signaling of sperm cells refers
to the chain of events within the sperm’s flagellum relating the activation of chemoattractant
receptors to a motor response which changes the swimming path of the sperm cell. Early steps
of the signaling cascade are likely to involve only low numbers of the messenger molecules
cGMP [11]. Thus we expect, that the chemotactic signaling system is a source of fluctuations as
well. We describe these fluctuations effectively by a noise term ξa with power spectrum S̃a(ω).
The power spectrum S̃(ω) of a process ξ(t) is defined by 〈ξ̃ (ω1)ξ̃

∗(ω2)〉 = 2π δ(ω1 −ω2) S̃(ω1)

with ξ̃ (ω)=
∫

∞

−∞
dt ξ(t)e−iωt being the Fourier transform of ξ(t). Note

∫
∞

−∞
dω S̃(ω)= 2π〈ξ 2

〉.

2.2.3. Fluctuations of flagellar propulsion. Sperm cells are propelled in a liquid by the
periodic beat of their flagellum, which is driven by an ensemble of dynein motors. We expect
fluctuations in the propulsion generated by the flagellar beat due to noise in the activity of
the motor ensemble. This noise causes fluctuations ξm, in the curvature of the swimming path
r(t), which we characterize by the power spectrum S̃m(ω) of ξm. In general, fluctuations in the
activity of the motor ensemble will cause also fluctuations of the swimming speed v(t). For
simplicity, we neglect speed fluctuations here. Including speed fluctuations in our description is
straightforward and does not change results significantly.

2.2.4. Hydrodynamic flows. In the open sea, complex hydrodynamic flows convect the sperm
cell and perturb the concentration field of chemoattractant. Here, we do not take these effects
into account.

Equations (2.1)–(2.6) describe stochastic sperm swimming paths in a concentration field
of chemoattractant. The equations can be solved numerically; figure 1(B) shows an example of
a stochastic swimming path r(t) in a linear concentration field of chemoattractant.

3. Statistical properties of sperm swimming paths

We first discuss in section 3.1 statistical properties of sperm swimming paths for circular
swimming with fluctuating curvature. We relate the effective diffusion coefficient of sperm
swimming circles to the fluctuation spectrum of the curvature. We then discuss diffusion
and drift of swimming paths in a weak concentration gradient. We focus on two limit cases:
(i) low chemoattractant concentration (section 3.2), and (ii) high chemoattractant concentration
(section 3.3). We find analytical expressions for the effective diffusion coefficient for
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Figure 1. (A) Schematic depiction of a noisy circular swimming path r(t) (black)
and its moving center R(t) (red). The centerline R(t) is defined as R = r + r0it in
terms of the path r(t) and its tangent t = ṙ/v0, see equation (3.2). (B) Swimming
path r(t) (black) in a linear concentration field of chemoattractant. The direction
of the concentration gradient is indicated by a blue arrow. The swimming path is
a drifting circle. The drift of the circle can be described by the motion of its center
R(t) (red). The path shown is a numerical solution to equations (2.1)–(2.6) with
parameters κ0 = 0.025µm−1, κ1 = −2κ0, v0 = 100µm s−1, σ = µ= 200 ms,
sb = 10 s−1, λ= 10 pM−1 s−1, S̃a = 3 × 10−3 s and S̃m = 0. These parameter
values are consistent with experimental findings, see the discussion. The
linear concentration field is given by c(x + iy)= c0 + c1x with c0 = 10 pM,
c1 = 0.1 c0/r0. Integration time was tend = 100 s. The initial conditions were
a(0)= 1, p(0)= 1/(sb + λc0), r(0)= −r0ieiϕ0 , and ϕ0 ∈ [0, 2π) drawn randomly
from a uniform distribution. For the noise term ξa, Gaussian white noise with
〈ξa(t1)ξa(t2)〉 = S̃aδ(t1 − t2) was chosen. (C) Endpoints R(tend) of centerlines of
swimming paths in a linear concentration field for n = 104 different realizations
(black dots). All centerlines (not shown) start at the origin. The same parameters
as for panel (B) were used. Also shown is the contour plot of a histogram of
the centerline endpoints (red contour lines). The contour lines enclose regions
which contain 10, 50 and 90% of the endpoints, respectively. The histogram
was computed from n = 106 realizations. The expectation value 〈R(tend)〉 is
indicated by a red dot. (D) Contour plot of the spatial distribution function of
the endpoints R̂(tend) of the coarse-grained centerline R̂(t) determined by the
effective equation of motion (4.1) (black contour lines). As in panel (C), the
contour lines enclose regions, which contain 10, 50 and 90% of the endpoints,
respectively. The distribution function of R̂(tend) was obtained by numerically
integrating the Fokker–Planck equation associated with (4.1). The expectation
value 〈R̂(tend)〉 is indicated by a black dot. For comparison, the contour plot from
panel (C) is shown again (red contour lines).

New Journal of Physics 10 (2008) 123025 (http://www.njp.org/)

http://www.njp.org/


8

20

40

0

100 10210110–2 10–1

60

c   (pM)

D
 (µ

m
2  s

–1
)

80

100

Figure 2. Diffusion constant D of sperm swimming circles as a function of
concentration c0 for a homogeneous concentration field of chemoattractant.
Shown are simulation results (symbols) and our analytical result (solid line),
see equations (3.9) and (3.25). Error bars are of the size of the symbols. The
dotted line represents the analytic value for the diffusion constant in the absence
of chemoattractant, D(0)

= (r0v0)
2 S̃(0)κ (ω0)/4. The same parameter set as for

figure 1 was used; these parameters are consistent with experimental findings.

cases (i) and (ii), which also describe very well numerical results for the diffusion coefficient at
intermediate concentrations, see figure 2.

3.1. Circular swimming with fluctuating curvature

As an introductory example, we study planar sperm swimming paths r(t) in the absence of a
concentration gradient of chemoattractant: sperm cells then swim along circles of radius r0 with
a curvature κ(t) that fluctuates around its mean κ0 = 1/r0

κ(t)= κ0 + ξκ(t). (3.1)

Here, ξκ is a stationary stochastic process with mean zero and power spectrum S̃κ(ω) which
represents the curvature fluctuations.

These curvature fluctuations result in an effective diffusion of the center R(t) of the
swimming circle. In the following, we characterize the diffusion of R(t) in the limit of weak
curvature fluctuations with the limit parameter ε small, where ε2

= r 2
0 〈ξ

2
κ 〉. We require the higher

moments of ξκ to be of the order of at least ε3, i.e. r n
0 〈ξ n

κ 〉6O(ε3), n > 3.
We introduce the moving center R(t) of the swimming path r(t), see figure 1(A)

R = r + r0n = r + r0 i t. (3.2)

In the noise-free case, ε = 0, this definition yields the centerpoint R of the perfect circle r(t).
By differentiation, we obtain the following stochastic differential equations for R(t) and ϕ(t)

ϕ̇ = v0κ0 + v0ξκ,

Ṙ = −r0v0 ξκ eiϕ.
(3.3)
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Note that the second equation contains multiplicative noise. These equations also hold for the
case where ξκ is Gaussian white noise provided the Stratonovich interpretation is used. We
assume that the argument ϕ0 of the tangent t(0)= eiϕ0 at time t = 0 is uniformly distributed in
[0, 2π). Without loss of generality, we choose R(0)= 0. Then the rotational symmetry of the
problem implies

〈R〉 = 0. (3.4)

The expectation value 〈·〉 averages over an ensemble of stochastic paths with R(0)= 0 and
random ϕ0 (uniformly distributed). In the following, we compute the variance matrix Ckl =

〈Rk Rl〉 where k, l = 1, 2 and R = R1 + iR2. The trace of the variance matrix Ckk = 〈|R|
2
〉 is

computed as a double integral

〈|R(t)|2〉 =

∫ t

0
dt1

∫ t

0
dt2 〈Ṙ(t1)Ṙ(t2)

∗
〉

= (r0v0)
2

∫ t

0
dt1

∫ t

0
dt2 Sκ(t2 − t1)eiω0(t1−t2) +O(ε3). (3.5)

Here, the autocorrelation function Sκ(t1 − t2)= 〈ξκ(t1)ξκ(t2)〉 is the Fourier transform of S̃κ(ω).
For times t much larger than the correlation time of ξκ , we can approximate 〈|R|

2
〉 as

〈|R(t)|2〉 ≈ (r0v0)
2

∫ t

0
dt1

∫
∞

−∞

dτ Sκ(τ )e−iω0τ = (r0v0)
2 S̃κ(ω0)t. (3.6)

Note that the variance 〈|R|
2
〉 grows linearly in time as is typical for a diffusion process. The

complex number 〈R2
〉 characterizes an anisotropy of the diffusion process

〈R2
〉 = 〈R2

1〉 − 〈R2
2〉 + 2i〈R1 R2〉. (3.7)

To leading order in ε,

〈R(t)2〉 ≈ (r0v0)
2

∫ t

0
dt1 〈e2iω0t1+2iϕ0〉 S̃κ(ω0)= 0 (3.8)

for a uniform distribution of ϕ0. Indeed, the rotational symmetry of the problem already implies
〈R(t)2〉 = 0. We conclude, that curvature fluctuations result in effective isotropic diffusion of the
center R(t) of the swimming circles with an effective diffusion constant D that is proportional
to the power spectrum of the curvature fluctuations evaluated at the circle frequency ω0 = v0κ0

4D ≈ (v0r0)
2 S̃κ(ω0). (3.9)

The approximation (3.9) is valid up to terms of order O(ε3). Note that the diffusion coefficient
is proportional to the power spectrum S̃κ of the curvature fluctuations evaluated at the
frequency ω0, see [15] for a related result in a different context. For the particular model given
in (2.1)–(2.6), the power spectrum S̃κ(ω) has contributions from (i) the stochastic stimulus,
(ii) the intrinsic fluctuations of the chemotactic signaling system and (iii) from the fluctuations
in the activity of the motor ensemble. Below we give an approximation for S̃κ in the limit of
weak noise, see equation (3.25). In general, S̃κ and D are functions of the concentration c0

of a homogeneous concentration field of chemoattractant. Figure 2 displays the concentration
dependence of D; a pronounced maximum of D can be observed close to c∗

= sb/λ. Using the
same reasoning as above, one can derive an exact expression for the diffusion constant D

4D = v2
0C̃κ(ω0). (3.10)
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Here, C̃κ(ω) is the Fourier transform of the characteristic function Cκ(t)= 〈exp iv08κ(t)〉
of 8κ(t)=

∫ t
0 dτ ξκ(τ ). Expanding (3.10) in powers of ε reproduces (3.9) as leading order

contribution. The special case where the curvature fluctuations ξκ are described by Gaussian
white noise with 〈ξκ(t1) ξκ(t2)〉 = 2Dκδ(t1 − t2), has been discussed in [16] and gives Cκ(t)=

exp(−v2
0 Dκ |t |) and 4D = 2Dκv

4
0/(ω

2
0 + D2

κv
4
0).

3.2. Chemoattractant gradient with low concentration

There are strong indications, that sperm cells can detect single chemoattractant molecules, when
chemoattractant concentration is subpicomolar [4, 7]. To characterize sperm chemotaxis at very
low chemoattractant concentrations, we study the set of equations (2.1)–(2.6) in the limit of
a low chemoattractant concentration with a chemoattractant molecule binding rate q small
compared with σ−1, where σ is the relaxation timescale of the signaling system in (2.6). For
simplicity, we neglect the intrinsic noise of chemotactic signaling and the fluctuations in the
activity of the motor ensemble, i.e. ξa = 0 and ξm = 0.

3.2.1. The swimming response. For qσ � 1, every binding event evokes a stereotypic
swimming response, which can be effectively described as a translation of the center R of
the swimming circle r(t) by a vector 1R. The curvature response to a single stimulus spike
s(t)= δ(t) is given by

κ(t)= κ0 +χκ(t). (3.11)

Here, χκ(t)= (2π)−1
∫

∞

−∞
dωχ̃κ(ω) eiωt is the time-domain linear response function of the

chemotactic signaling system (2.6). The tangent t = ṙ/v0 integrates as

t(t)= exp(iω0t + iϕ0) exp
(

iv0

∫ t

−∞

dt0 χκ(t0)

)
. (3.12)

We may assume R(t)= 0 before the stimulus spike occurred; hence r(t)= −ir0 exp(iω0 + iϕ0)

for t < 0. For times long after the stimulus spike, t � σ , the swimming path resumes a perfect
circular trajectory again

r(t)= u eiϕ0 − ir0 exp(iω0t + iϕ0 + iϕu) (3.13)

with a phase shift ϕu = v0χ̃κ(0) and a translation vector 1R = u eiϕ0 . By integrating
equation (3.12), we find u ≈ −r0v0χ̃

∗

κ (ω0) to leading order in v0|χκ |. Here χ̃κ(ω0)= ρκeiϕκ is
the linear response coefficient at the circling frequency ω0 of the generic signaling module
given in (2.6), see (2.7). For an adapting signaling system such as (2.6), we have ϕu = 0.

3.2.2. Statistics of sperm swimming paths. We study the stochastic equations of motion
(2.1)–(2.6) of sperm swimming paths for a linear concentration field of chemoattractant,

c(x)= c(x + iy)= c0 + c1x, (3.14)

where we assume for simplicity that the gradient is parallel to the x-axis. We consider the limit
of (i) a shallow concentration gradient with ν = c1r0/c0 � 1, and (ii) a binding rate q(t) of
chemoattractant molecules low compared with σ−1. Between two binding events, t j � t < t j+1,
the swimming path is circular once the j th swimming response relaxes

r(t)= R(t)− ir0 eiω0t+iϕ0 . (3.15)
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This results in a periodic modulation of the binding rate

q(t)= λ c(r(t))= λ c(R(t))+ λ c1r0 sin(ω0t +ϕ0). (3.16)

For q σ � 1, we can treat individual binding events independently and find for the center R of
the circular swimming path r for t > 0

R(t)= u
∑

0<t j<t

eiϕ j . (3.17)

Here, the t j denotes the times of the individual binding events and ϕ j = ϕ(t j). From the
periodic modulation of the binding rate (3.16), we determine the probability density P(ϕ) of the
angles ϕ j

2π P(ϕ)= 1 + ν sinϕ +O(ν2). (3.18)

The number n of binding events in the time interval 0< t j < t satisfies 〈n〉 = 〈δn2
〉 = λc0 t +

O(ν), where δn = n − 〈n〉. Thus we find using (3.17) and (3.18)

〈R(t)〉 = uλc0t
∫ 2π

0
dϕP(ϕ)eiϕ +O(ν2)

= uλc0t iν/2 +O(ν2), and (3.19)

〈|δR(t)|2〉 = |u|
2λc0t +O(ν2).

with δR = R − 〈R〉. Thus, the circle center R is both (i) drifting with drift speed vd =

ρκλc1r 2
0v0/2 in a direction which encloses an angle α = 3π/2 −ϕκ with the concentration

gradient and (ii) diffusing in both space dimensions with an effective diffusion coefficient D =

〈|δR|
2
〉/(4t)= (r0v0)

2ρ2
κλc0/4 +O(ν2). The average drift of the circle center given by (3.19) is

the same as the one obtained for a deterministic description of sperm chemotaxis [12]. Thus the
deterministic approach is providing a mean-field description. Diffusion is essentially isotropic;
the quantity 〈δR2

〉 = 〈δR2
1〉 − 〈δR2

2〉 + 2i〈δR1 δR2〉, which characterizes anisotropy of diffusion
vanishes to linear order in ν, 〈δR2

〉 = 0 +O(ν2). The relative strength of the chemotactic
drift compared to the undirected diffusive motion of the center of the swimming circle is
characterized by a dimensionless Peclet number

Pe =
vdr0

4D
=

sb + λc

2ρ̄κω0

|∇c|

c
+O(ν2). (3.20)

This expression for the Peclet number only holds if intrinsic fluctuations of chemotactic
signaling and noise in the activity of the flagellar motor ensemble can be neglected. In the
next section, we derive an expression for the effective diffusion coefficient D where these noise
sources have been included, see equations (3.25) and (3.26). With these noise sources, we find
that the Peclet number is proportional to the relative concentration gradient |∇c|/c for high
concentrations c.

3.3. Chemoattractant gradient with high concentration

To gain further insight into the stochastic description of sperm chemotaxis, we study the set of
equations (2.1)–(2.6) in the weak noise limit for a linear concentration field of chemoattractant
c(x + iy)= c0 + c1x . More precisely, we consider the limit of (i) a shallow concentration
gradient with ν = c1r0/c0 � 1, and (ii) a high chemoattractant concentration c0 with a binding
rate q(t)= λc(r(t)) of chemoattractant molecules much higher than σ−1, where σ sets the
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relaxation timescale of the chemotactic signaling system in (2.6). In this limit, the parameter
η = (qσ)−1/2 is small; η characterizes the relative noise strength of s(t). For simplicity, we first
neglect the intrinsic noise of chemotactic signaling and the fluctuations in the activity of the
motor ensemble, i.e. ξa = 0 and ξm = 0. The general case will be studied in equation (3.25).
We develop a systematic perturbation theory for the statistics of centerlines R(t) of stochastic
swimming paths for the small limit parameters ν and η. In a systematic expansion of 〈R〉, 〈|δR|

2
〉

and 〈δR2
〉 in powers of ν and η, many terms vanish due to the symmetries of the problem; to

leading order we find

〈R(t)〉 ∼ ν t + O(νη2, ν3),

〈|δR(t)|2〉 ∼ η2 t + O(ν2η2, η3), (3.21)

〈δR(t)2〉 = 0 + O(ν2η2).

The expansion of 〈R〉 in powers of ν can only contain odd powers of ν since reversing the
direction of the gradient changes the sign of both ν and 〈R〉. Likewise the expansions of both
〈|R|

2
〉 and 〈R2

〉 contain only even powers of ν. Terms proportional to η yield zero in the noise-
average. Since 〈δR2

〉 measures anisotropy, this expression must vanish in the case ν = 0 when
the rotational symmetry is not broken. For the leading order coefficients of 〈R〉 and 〈|R|

2
〉 we

recover essentially the results obtained for the case of low concentration

〈R(t)〉 = −i vd e−iϕκ t +O(νη2, ν3), (3.22)

〈|δR(t)|2〉 = (r0v0)
2 S̃κ(ω0) t +O(ν2η2, η3) (3.23)

with chemotactic drift speed

vd = ρκλc1r
2
0v0/2 (3.24)

and S̃κ(ω0)= ρ2
κλc0. The derivation of (3.22), (3.23) is similar to the calculations in sections 3.1

and 3.2.
So far, we have neglected the intrinsic noise of chemotactic signaling and the fluctuations

in the activity of the motor ensemble. Now we include these noise terms and consider the
limit of weak noise with η� 1, 〈ξ 2

a 〉. η2 and r 2
0 〈ξ

2
m〉. η2. We also assume that the higher

order moments of ξa and ξm are of the order of at least O(η3). In this limit, S̃κ(ω) is a sum of
contributions from the different noise sources

S̃κ(ω0)= ρ2
κλc0 + ρ̄2

κ S̃a(ω0)+ S̃m(ω0)+O(ν2, η3), (3.25)

where ρκ = ρ̄κ/(sb + λc0) is the amplitude gain of the chemotactic signaling system (2.6).
The second summand of the right-hand side of equation (3.25) describes a contribution to
S̃κ stemming from the intrinsic noise of chemotactic signaling; whereas the third summand
describes a contribution due to fluctuations in the activity of the motor ensemble. We define the
concentration independent part of S̃κ(ω0) as S̃κ(ω0)

(0)
= ρ̄2

κ S̃a(ω0)+ S̃m(ω0). We can thus write
S̃κ(ω0) as the sum of a concentration independent part S̃κ(ω0)

(0) and a concentration-dependent
part S̃κ(ω0)

(c)
= ρ2

κλc0. From ρκ = ρ̄κ/(sb + λc0), we see that S̃κ(ω0)
(c) scales like c0/(sb + λc0)

2.
As a consequence, S̃κ(ω0) is a non-monotonic function of concentration c0 with a maximum at
c∗

= sb/λ. Hence, also the effective diffusion constant

D = 〈|δR|
2
〉/(4t)= (r0v0)

2 S̃κ(ω0)/4 +O(ν2η2, η3) (3.26)

depends on concentration c0 via S̃κ(ω0), see figure 2. Note that in the absence of a concentration
gradient, equation (3.26) corresponds to the earlier result (3.9) from section 3.1. Our estimate
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for the fluctuation spectrum of the curvature given in equation (3.25) also describes the
regime of low chemoattractant concentration2. Interestingly, our numerical simulations show
that equation (3.25) also provides a good approximation in the regime of intermediate
concentrations, see figure 2.

4. Effective equation for the centerline

We derive an effective equation of motion for a coarse-grained centerline R̂(t) in a linear
concentration field (3.14). We restrict ourselves to the limit case of weak noise with η� 1
as specified in the previous section 3.3. Additionally, we assume that the concentration gradient
is shallow with ν = c1r0/c0 � 1. On short timescales t < T = 2π/ω0, the centerline R(t) is
a stochastic trajectory that depends on the particular shape of the spectra S̃a and S̃m and
therefore has non-generic properties. For longer time intervals 1t = nT , however, we find
simple, general expressions for the drift 〈R(1t)− R(0)〉 and for the variance 〈|R(1t)|2〉, see
equations (3.22)–(3.23).

In order to derive a genuine coarse-grained description, we introduce a discrete centerline
R̂(tk), which is defined at the discrete times tk = k1t , k = 0, 1, 2, . . ., and which reproduces
(to leading order) the second-order statistics of R(t) at the discrete times tk , see appendix A for
details. We then perform a continuum limit to find a continuous-time coarse-grained centerline
R̂(t) which obeys

d

dt
R̂(t)= vd eiα

∇c/|∇c| + ξ . (4.1)

Here ξ = ξ1 + i ξ2 is a complex random variable whose components ξ j are uncorrelated Gaussian
random variables with 〈ξk(t1)ξl(t2)〉 = 2D δ(t1 − t2) δkl for k, l = 1, 2. The concentration
gradient ∇c is the complex number ∇c(x + iy)= ∂xc(x + iy)+ i ∂yc(x + iy). The time-evolution
of the coarse-grained centerline R̂ described by equation (4.1) is the superposition of (i) a
deterministic drift with drift velocity vd in a direction that encloses an angle of α =

3
2π −ϕκ

with the concentration gradient, and (ii) pure diffusion with an effective diffusion coefficient of
D. Since the diffusion coefficient D depends on concentration, the noise term in equation (4.1)
is effectively multiplicative. Equation (4.1) is defined by using the Itō interpretation; see [17, 18]
for a discussion of Itō and Stratonovich stochastic differential equations. Note that the Itō and the
Stratonovich version of (4.1) differ by a noise-induced drift term which is of the order of ∼ νη2.
We can generalize (4.1) for a nonlinear concentration field c(x), provided the nonlinearities of
the concentration field are small on the length scale r0, i.e. |∇

2c| � |∇c|/r0.
Figure 1(D) compares (i) the distribution of endpoints R(tend) of centerlines R(t) of

stochastic swimming paths r(t) obtained from the full dynamic equations of stochastic sperm
motion (2.1)–(2.6), and (ii) the distribution of endpoints R̂(tend) of coarse-grained centerlines
R̂(t) obtained from the effective equation of motion (4.1). We find good agreement between
both endpoint distributions. In particular, both endpoint distributions are anisotropic. This is
remarkable, since the distribution of endpoints R̂(tend) of coarse-grained centerlines is obtained
from simulating equation (4.1), which has an isotropic noise term. The apparent anisotropy is a
consequence of the position dependence of the drift speed vd(R). Note that in the special case

2 Equations (3.22), (3.23) and (3.25) also hold in the case of weak output noise with 〈δa2
〉 � 1, where δa =

a − 〈a〉. In this limit, the noise strength is given by η2
= q/[(sb + q)2σ ]. Note that 〈δa2

〉 ≈ η2/2, if only fluctuations
of the chemotactic stimulus are considered.
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α = 0, the stochastic equation of motion (4.1) of the coarse-grained centerline R̂ describes the
trajectory of a particle diffusing in an effective potential E =2∇ ln(sb + λc) which satisfies
−∇E(R)= vd ∇c/|∇c|. Here 2= ρ̄κr 2

0v0/2 is a constant.

5. Example: radial concentration field

We discuss the case of a radial concentration field c(x)= C(|x|), which arises if chemoattractant
diffuses away from a single source such as an egg. The chemotactic drift speed vd and the
effective diffusion coefficient D of sperm swimming circles depend on the concentration c, see
equations (3.24) and (3.26). In a radial concentration field, these quantities become functions
vd = vd(R) and D = D(R) of the distance R = |R| from the source. We introduce polar
coordinates (R, ψ) such that R = R eiψ . From (4.1) and the rules of stochastic calculus [17],
we find a stochastic differential equation for R and ψ in the Itō interpretation, see appendix B

Ṙ = vd sinϕκ + ξ1 + D/R,

ψ̇ = (vd cosϕκ + ξ2)/R,
(5.1)

where ξ1 and ξ2 are uncorrelated Gaussian white noise terms with zero mean and 〈ξk(t1) ξl(t2)〉 =

2D δ(t1 − t2) δkl . The expression for Ṙ in equation (5.1) contains a noise-induced drift term
D/R, which results from the nonlinearity of the coordinate transformation R = R eiψ

7→

(R, ψ). We introduce the probability density S(R, t) such that S dA is the probability to
find a sperm cell in the area element dA at time t . The total number of sperm cells in
the system equals

∫
dA S(R, t). It is useful to introduce also the radial probability density

P(R, t)= R
∫ 2π

0 dψ S(Reiψ, t). Note that P dR is the probability to find a sperm cell in a thin
annulus of radius R and width dR. In our effective equation of motion (5.1), the dynamics of
R decouples from ψ reflecting the symmetries of the problem. Therefore, the radial probability
P(R, t) obeys a Fokker–Planck equation which reads [19]

∂

∂t
P = L P (5.2)

with a Fokker–Planck operator L given by

L=
∂

∂R

[
− (vd(R) sinϕκ + D(R)/R)+

∂

∂R
D(R)

]
. (5.3)

For completeness, we mention that the equation for the probability density S(R, t)= S(Reiψ, t)

has the form R ∂

∂t S = L(RS)+ ∂

∂ψ

(
−vd cosϕκRS + ∂

∂ψ
DS
)

.

We are interested in the rate at which sperm cells reach the egg and study in the following an
idealized scenario, where (i) we neglect the concentration dependence of the effective diffusion
coefficient D(R)= D0, (ii) the sensitivity threshold of chemotactic signaling vanishes, sb = 0,
and (iii) the radial chemoattractant concentration field decays as a power-law c(x)∼ 1/|x|

β

with exponent β. Note that the steady-state concentration field established by diffusion in
three-dimensional space from a spherical chemoattractant source with constant release rate of
chemoattractant corresponds to β = 1. For adaptive chemotactic signaling (without sensitivity
threshold), the relevant input quantity is the relative concentration gradient |∇c|/c, which
for our choice of concentration field scales inversely with distance as |∇c|/c = β/R. Hence,
the drift speed in the radial direction reads vd sinϕκ = −00/R where 00 = −βρ̄κr 2

0 v0 sinϕκ
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is a constant. Likewise, the drift speed in the azimuthal direction is given by vd cosϕκ =

−00 cotϕκ/R.
To mimic the egg, we consider a disk-shaped target of radius Rtarget located at the origin

of the concentration field which absorbs any sperm cell hitting its boundary. The absorbing
target gives rise to a boundary condition P(Rtarget)= 0. We study the steady-state solution of
equation (5.2) subject to this boundary condition and the condition P0(R)≈ 2πR S∞ for large
R where S∞ is the sperm concentration far from the target. For positive chemotaxis with 00 > 0,
the stationary probability density reads S0(R)= P0(R)/(2πR)

S0(R)= S∞

[
1 −

(
Rtarget

|R|

)00/D0
]
. (5.4)

In steady-state, sperm cells arrive at the target with a constant rate k0 = 2π S∞ 00. The
stationary state is characterized by a net flux in the azimuthal direction Jψ = vd cosϕκ S0(R),
i.e. kψ = Jψ dR is the rate by which sperm cells pass through a section of length dR on a ray
emanating from the origin. Thus there is a net circular current whirling around the origin. Such
an azimuthal flux has been already discussed previously [20]. Note that if chemotaxis is absent
or negative with 00 6 0, then there exists no steady-state probability distribution S0(R) for fixed
concentration S∞ at infinity. If we start in this case with a homogenous distribution of sperm
cells S(R, 0)= S∞ at time t = 0, a growing region around the target becomes depleted of sperm
cells and the time-dependent rate k(t) of sperm cells arriving at the target vanishes in the limit
of long times. We thus find that the system undergoes a dynamic second-order phase transition
as a function of chemotactic strength 00 where k0 = limt→∞ k(t) plays the role of an order
parameter.

6. Discussion

In most experimental studies of sperm swimming in a chemoattractant field, sperm cells become
localized near a boundary surface and swim in a plane [1], [4]–[11]. Observed swimming paths
exhibit a large variability. Here, we presented a description of sperm chemotaxis in a plane
which takes into account sources of fluctuations such as (i) a finite precision of the cell’s
measurement of the local chemoattractant concentration, (ii) intrinsic noise of chemotactic
signaling, and (iii) fluctuations in the activity of the propulsion mechanism. In the absence of
such fluctuations, sperm swimming paths are trochoids, or drifting circles [12]. In the presence
of fluctuations, the paths can be described as noisy trochoids, resulting from the superposition of
a chemotactic drift and unbiased random motion. We find expressions for the chemotactic drift
velocity and the effective diffusion coefficient in the limit of a weak concentration gradient.
Note that the assumption of a weak concentration gradient is satisfied in most experimental
conditions, except perhaps in the close vicinity of a chemoattractant source such as an egg or a
micropipette releasing chemoattractant.

We can estimate parameters relevant for our stochastic description of sperm chemotaxis.
In experiments on sea urchin sperm, typical values observed for the swimming speed and
radius of swimming circles are v0 ≈ 100–200µm s−1, r0 ≈ 20–40µm, respectively [1, 21].
For comparison, the radius of the egg is Regg ≈ 100µm [22]. From the drift speed vd ≈

25–50µm s−1 of swimming circles in a concentration gradient with |∇c|/c ∼ 1/100µm
reported in [1], we can estimate the amplification strength of the chemotactic signaling system as
ρ̄κ ≈ 2vd/(r 2

0v0|∇c|/c)≈ 0.05µm−1. The drift angle α was found to peak around α ≈ 0 [1, 10].
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From stopped-flow experiments, it is known that chemotactic signaling operates on timescales
0.1–0.5 s [5], we thus expect the intrinsic relaxation times of the chemotactic signaling
system (2.6) σ , µ to fall in that range. Sperm cells probably respond to single chemoattractant
molecules [4, 7], we therefore expect sb . 1/σ . Chemoattractant molecules bind to receptors
on the sperm flagellum at a rate q(t), proportional to concentration q(t)= λc(r(t)). where
λ≈ 20 pM−1 s has been estimated [1]. In an experiment with sea urchin sperm in a shallow
observation chamber in the absence of chemoattractant, sperm cells were observed to swim
along circular paths r(t) with radius r0 = 40µm and a swimming speed v0 = 100µm s−1.
For long time, the center R(t) of the swimming circle diffused with an effective diffusion
constant D = 9 ± 2µm2 s−1 [23]. Using equation (3.26), we find that the swimming noise
stemming from the intrinsic fluctuations of chemotactic signaling and the fluctuations in the
activity of the flagellar motor ensemble is characterized by S̃(0)κ (ω0)= ρ̄2

κ S̃a(ω0)+ S̃m(ω0)≈

2.5 × 10−6 sµm−2.
In a homogeneous concentration field of chemoattractant, our theory predicts a diffusion

coefficient of the center of the swimming circle which depends on concentration in a non-
monotonic way with a maximum at a finite concentration c∗

= sb/λ, see figure 2. This
concentration dependence of the diffusion constant results from the fact that fluctuations of
the chemotactic stimulus elicit a stochastic chemotactic response and contribute to the effective
diffusion constant. For low concentrations c0 � c∗, the chemotactic stimulus and its fluctuations
are small, producing only a negligible contribution to the effective diffusion constant. For high
concentrations c0 � c∗, the chemotactic signaling system adapts its sensitivity to an averaged
stimulus and thus generates an output with small fluctuations. The concentration dependence of
the effective diffusion constant of sperm swimming paths could be tested in future experiments.
With the parameter estimates given above, we find a value for c∗ in the subpicomolar range,
c∗

= 0.1–1 pM.
The motion of sperm cells in a concentration gradient is characterized by a Peclet number

which compares drift speed and the effective diffusion coefficient on the scale sperm swimming
circles. For fixed relative strength |∇c|/c of the concentration gradient, this Peclet number
increases with concentration c and saturates for high concentrations c � c∗. For a concentration
gradient with |∇c|/c = 1/100µm as employed in [1], we estimate Pe ≈ 1 at c ≈ c∗ and
Pe ≈ 10–100 for c � c∗.

In the absence of fluctuations, chemotaxis of sea urchin sperm cells relies on a robust
mechanism which depends only on a few generic properties of the signaling system and does not
require fine-tuning of parameters [12]: the swimming circles of sperm cells drift toward regions
of higher chemoattractant concentration whenever −π < ϕκ < 0, where ϕκ is the phaseshift
between a periodic stimulus and the output generated by the chemotactic signaling system.
The equation (2.6) used in this work to describe the signaling system differs slightly from the
one employed in [12]. In particular, the timescale of adaptation is independent of the stimulus
level for the signaling system used here. It has been shown in stopped-flow experiments that
the timescales of the chemotactic response change only marginally when stimulus strength is
varied from picomolar to micromolar concentrations [1]. Additionally, the phase-shift ϕκ does
not depend on the stimulus level for the modified signaling system (2.6). We expect that for
the chemotactic signaling system of sea urchin sperm this phase-shift is largely independent of
chemoattractant concentration to ensure successful chemotaxis at different concentrations.

The chemotactic strategy of sea urchin sperm cells differs fundamentally from the
mechanism employed by bacteria such as Escherichia coli [24, 25]. These bacteria perform
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a biased random walk switching stochastically between a running mode with net motion and
a tumbling mode during which the cell is randomly reoriented. Chemotaxis in a concentration
gradient of chemoattractant is achieved by adjusting the rate of tumbling events in a way that
depends on the history of the chemotactic stimulus. Thus bacterial chemotaxis is intrinsically
stochastic and cannot be understood without considering noise. The mechanism of sperm
chemotaxis, on the other hand, does not require noise. As we show here, this mechanism
nevertheless also shows a high degree of robustness in the presence of fluctuations.

So far, we have discussed planar swimming paths of sperm cells close to a surface. Far from
boundary surfaces, sea urchin sperm cells swim along helical paths [26, 27] as a consequence
of the chirality of their flagellar beat [7, 28, 29]. When swimming in a concentration gradient of
chemoattractant, the helical swimming path tends to align with the gradient direction [26, 30].
Theory predicts that the rate of alignment depends on the strength of the concentration gradient.
The speed of net displacement along the helix centerline, however, is almost unaffected by
the concentration gradient [12]. Hence, a sperm cell swimming along a helical path will directly
head for a target releasing chemoattractant once the helix axis has aligned with the concentration
gradient. This behavior is quite different from the case of planar chemotaxis along a circular
path where the drift speed of sperm swimming circles toward a target is always proportional to
the strength of the gradient. Thus sperm chemotaxis in three-dimensional space along helical
paths is more efficient than along circular paths in a plane close to a boundary surface. In
a forthcoming publication, we will extend the stochastic description of sperm chemotaxis
presented here for planar swimming paths to the case of helical swimming paths in three-
dimensional space.

In summary, we conclude that the circular and helical swimming paths of sea urchin
sperm cells provide an effective means of sampling the local chemoattractant concentration
field and detecting a concentration gradient. Whether noise can enhance sperm–egg encounter
rates remains an interesting but nontrivial question [31, 32].
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Appendix A. Coarse-grained description for the centerline

We derive a coarse-grained description of the centerline of stochastic swimming paths. We
restrict ourselves to the limit case of weak noise as specified in section 3.3. We introduce a
discrete centerline R̂(tk) which is defined for the discrete times tk = k1t , k = 0, 1, 2, . . ., and
which has the same drift and variance as R(tk) to leading order in η and ν. The stochastic process
generating R̂(tk) is defined by the following stochastic difference equation:

R̂(tk+1)= R̂(tk)− i vd e−ϕκ 1t +4k. (A.1)

Here 4k is a complex random variable with mean zero. In view of (3.21) and (3.23), the second
moments of 4k are given by

〈|4k|
2
〉 = 4D1t and 〈42

k〉 = 0. (A.2)

New Journal of Physics 10 (2008) 123025 (http://www.njp.org/)

http://www.njp.org/


18

Note that vd = vd(c) and D = D(c) depend on concentration and should be evaluated with
c = c(R(tk)) for the kth time step. If we choose 1t = nT longer than the correlation time of
total curvature fluctuations ξκ(t), we may treat the stochastic increments 4k in equation (A.1)
for different k as mutually independent. Now equation (A.1) describes an Euler scheme for
the numerical integration of a stochastic differential equation in the Itō interpretation. We can
perform the continuum limit of (A.1) and obtain the stochastic differential equation (4.1) for the
continuous-time stochastic path R̂(t).

Appendix B. Equation of motion in a radial concentration field

In this appendix, we derive the Itō stochastic differential equation (5.1) which describes coarse-
grained sperm swimming paths in a radial concentration field of chemoattractant. Recall
that the rules of the Itō stochastic calculus differ from the usual rules of ordinary calculus:
suppose that xk(t), k = 1, . . . , n, is a solution to the set of Itō stochastic differential equations
ẋk = hk + gklξl where ξl is Gaussian white noise with 〈ξk(t1) ξl(t2)〉 = δkl δ(t1 − t2) and we use
Einstein summation convention. If y = y(xk) is a function of the xk , then the Itō chain rule
holds [17]

ẏ =
∂y

∂x j
ẋ j +

1

2

∂2 y

∂xk∂xl
gkmgml . (B.1)

Equation (4.1) describes the stochastic dynamics of R1 and R2 with R = R1 + iR2. For the
dynamics of R =

√
R2

1 + R2
2 and ψ = arctan(R2/R1), we find using the Itō chain rule (B.1)

Ṙ = −vd cosα + ξ1 cosψ + ξ2 sinψ + D/R,
ψ̇ = (−vd sinα− ξ1 sinψ + ξ2 cosψ)/R.

(B.2)

The equation for Ṙ contains a noise-induced drift term D/R due to the rules of Itō stochastic
calculus. We introduce ξ ′

1 = ξ1 cosψ + ξ2 sinψ and ξ ′

2 = −ξ1 sinψ + ξ2 cosψ . Since ξ j and ψ
are independent in the Itō calculus, we conclude that ξ ′

j are again Gaussian white noise
terms with 〈ξ ′

k(t1)ξ
′

2(t2)〉 = 2D δklδ(t1 − t2). Hence, the stochastic dynamics of R and ψ can
equivalently be described by equation (5.1).
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Casademunt J, Sancho J M and Sagués F 2000 Brownian motion of spiral waves driven by spatiotemporal
structured noise Phys. Rev. Lett. 84 2734–7

[16] van Teeffelen S and Löwen H 2008 Dynamics of a Brownian circle swimmer Phys. Rev. E 78 020101
[17] Øksendal B 2000 Stochastic Differential Equations (Berlin: Springer)
[18] Lau A W C and Lubensky T C 2007 State-dependent diffusion: thermodynamic consistency and its path

integral formulation Phys. Rev. E 76 011123
[19] Risken H 1996 The Fokker–Planck Equation (Berlin: Springer)
[20] Alt W and Schaaf R 1985 Chemotaxis of gametes: a diffusion approximation IMA J. Math. Appl. Med. Biol.

2 109–29
[21] Riedel-Kruse I H, Hilfinger A, Howard J and Jülicher F 2007 How molecular motors shape the flagellar beat

HFSP 1 192–208
[22] Farley G S and Levitan D R 2001 The role of jelly coats in sperm–egg encounters, fertilization success, and

selection on egg size in broadcast spawners Am. Naturalist 157 626–36
[23] Riedel I H, Kruse K and Howard J 2005 A self-organized vortex array of hydrodynamically entrained sperm

cells Science 300–3
[24] Berg H C and Brown D A 1972 Chemotaxis in Escherichia coli analysed by three-dimensional tracking

Nature 239 500–4
[25] Segall J E, Block S M and Berg H C 1986 Temporal comparisons in bacterial chemotaxis Proc. Natl. Acad.

Sci. USA 83 8987–91
[26] Crenshaw H C 1996 A new look at locomotion in microorganisms: rotating and translating Am. Zool.

36 608–18
[27] Corkidi G, Taboada B, Wood C D, Guerrero A and Darszon A 2008 Tracking sperm in three-dimensions

Biochem. Biophys. Res. Commun. 373 125–9
[28] Hilfinger A and Jülicher F 2008 The chirality of ciliary beats Phys. Biol. 5 016003
[29] Elgeti J and Gompper G 2008 Hydrodynamics of active mesoscopic systems NIC Symp. 2008 vol 39

ed G Münster, D Wolf and M Kremer (Jülich: John von Neumann Institute for Computing) pp 53–62
[30] Brokaw C J 1958 Chemotaxis of bracken spermatozoids J. Exp. Biol. 35 197–212
[31] Friedrich B M 2008 Search along persistent random walks Phys. Biol. 5 026007
[32] Riffell J A and Zimmer R K 2007 Sex and flow: the consequences of fluid shear for sperm–egg interactions

J. Exp. Biol. 210 3644–60

New Journal of Physics 10 (2008) 123025 (http://www.njp.org/)

http://dx.doi.org/10.1146/annurev.physiol.70.113006.100654
http://dx.doi.org/10.1146/annurev.physiol.70.113006.100654
http://dx.doi.org/10.1073/pnas.0135565100
http://dx.doi.org/10.1083/jcb.200411001
http://dx.doi.org/10.1002/jcp.20669
http://dx.doi.org/10.1073/pnas.0703530104
http://dx.doi.org/10.1038/43199
http://dx.doi.org/10.1038/16483
http://dx.doi.org/10.1103/PhysRevLett.84.2734
http://dx.doi.org/10.1103/PhysRevE.78.020101
http://dx.doi.org/10.1103/PhysRevE.76.011123
http://dx.doi.org/10.1093/imammb/2.2.109
http://dx.doi.org/10.2976/1.2773861
http://dx.doi.org/10.1086/320619
http://dx.doi.org/10.1126/science.1110329
http://dx.doi.org/10.1038/239500a0
http://dx.doi.org/10.1073/pnas.83.23.8987
http://dx.doi.org/10.1016/j.bbrc.2008.05.189
http://dx.doi.org/10.1088/1478-3975/5/1/016003
http://dx.doi.org/10.1088/1478-3975/5/2/026007
http://dx.doi.org/10.1242/jeb.008516
http://www.njp.org/

	1. Introduction
	2. Stochastic description of sperm chemotaxis in two dimensions
	2.1. Dynamic equations of sperm motion
	2.2. Characterization of noise terms

	3. Statistical properties of sperm swimming paths
	3.1. Circular swimming with fluctuating curvature 
	3.2. Chemoattractant gradient with low concentration
	3.3. Chemoattractant gradient with high concentration

	4. Effective equation for the centerline
	5. Example: radial concentration field
	6. Discussion
	Acknowledgments
	Appendix A.  Coarse-grained description for the centerline 
	Appendix B.  Equation of motion in a radial concentration field 
	References

