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Nonlinear dynamics of cilia and flagella
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Cilia and flagella are hairlike extensions of eukaryotic cells which generate oscillatory beat patterns that can
propel micro-organisms and create fluid flows near cellular surfaces. The evolutionary highly conserved core of
cilia and flagella consists of a cylindrical arrangement of nine microtubule doublets, called the axoneme. The
axoneme is an actively bending structure whose motility results from the action of dynein motor proteins
cross-linking microtubule doublets and generating stresses that induce bending deformations. The periodic beat
patterns are the result of a mechanical feedback that leads to self-organized bending waves along the axoneme.
Using a theoretical framework to describe planar beating motion, we derive a nonlinear wave equation that
describes the fundamental Fourier mode of the axonemal beat. We study the role of nonlinearities and inves-
tigate how the amplitude of oscillations increases in the vicinity of an oscillatory instability. We furthermore
present numerical solutions of the nonlinear wave equation for different boundary conditions. We find that the
nonlinear waves are well approximated by the linearly unstable modes for amplitudes of beat patterns similar

to those observed experimentally.
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I. INTRODUCTION

Cilia and flagella are hairlike appendages of eukaryotic
cells exhibiting regular wavelike oscillations [1]. Their abil-
ity to generate regular beat patterns plays an important role
in many systems where motion on a cellular level is required
[2]. Examples range from the propulsion of single cells, such
as the swimming of sperm, to the transport of fluid along
ciliated surfaces, such as the flow of mucus in the trachea.
Ciliary and flagellar beat patterns are generated by an active
structure called the axoneme which consists of nine micro-
tubule doublets arranged in a cylindrical geometry [1,3,4]. A
large number of dynein motor proteins are arranged between
adjacent microtubule doublets and generate internal stresses
within the axoneme that induce relative filament sliding and
as a consequence axonemal bending [5-10].

Axonemal beat patterns have been the subject of several
theoretical analyses trying to elucidate the mechanisms un-
derlying the generation of regular beat patterns [11-24]. Re-
cent evidence suggests that the interplay of collectively op-
erating motors together with the elastic microtubules
constitutes a mechanical feedback that leads to oscillating
instabilities [13,19,25]. The resulting traveling wave bending
patterns can account for the experimentally observed beat
patterns in bull sperm [23].

In the present paper, we discuss the properties of self-
organized beating patterns, extending previous work in
which the linearly unstable modes near an oscillatory insta-
bility were studied [19,23]. We present a nonlinear wave
equation that describes the fundamental Fourier mode of pla-
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nar axonemal beat patterns and derive analytically how the
nonlinearities determine the amplitude of the beat beyond the
bifurcation point. Furthermore, we present numerical solu-
tions of the nonlinear wave equation subject to three differ-
ent boundary conditions.

II. DYNAMIC EQUATIONS OF MOTION

Motivated by the observation that the flagellar beat pat-
terns of many sperm are approximately planar we discuss the
dynamics of the axoneme in a plane. Such planar beat pat-
terns can be described by an effective two-dimensional de-
scription of the three-dimensional axonemal structure, in
which the axoneme is represented by two elastic rods sepa-
rated by a fixed distance a, corresponding to the axonemal
diameter of 185 nm [19,23]. These rods are linked by elastic
structural elements and by active force generators, corre-
sponding to the dynein motor proteins. To describe the rela-
tive motion of the two rods, we introduce the local sliding
displacement A and the local shear force density f exerted by
passive elastic and active elements, as illustrated in Fig. 1.
We denote by r(s,7) the two-dimensional space curve param-
etrized by its arc length s describing the shape of the center
line of the axoneme of length L at time ¢. As illustrated in

f(8)

FIG. 1. Schematic representation of the effective two-
dimensional mechanics of planar beats with two elastic rods sliding
relative to each other due to the shear forces generated by active
elements. Illustrated are the tangential shear forces f(s) and the
local sliding displacement A(s). Elastic structural elements are in-
dicated as springs.
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FIG. 2. Geometry of the flagellar deformation in the x,y plane.
The shape at a given time is described by the local tangent angle
#(s) as a function of the arc length s along the flagellum.

Fig. 2, this shape can be characterized by the local tangent
angle #(s,t) such that

r(s) =r(0) + JS [cos (s"),sin yl(s")]ds’, (1)
0

where we have dropped the time dependence for notational
convenience. In this two-dimensional geometry, the local
sliding displacement and the local tangent angle are then
related by

A(s) =g+ aly(s) - p(0)], (2)

where A, denotes the relative sliding displacement at the
base [10,23,26]. For simplicity, we ignore hydrodynamic in-
teractions and describe the local hydrodynamic friction by
introducing drag coefficients per unit length & and &, for
movements in directions parallel and perpendicular to the
axonemal axis, respectively. The dynamics of the axoneme
with a bending rigidity « and an internal shear force density
f(s,¢) is then described by the following set of coupled non-
linear equations [19]:

a= é(— kW +af + 7+ )
1

+ éﬂ[wzw-aﬂw% Wl )
" j—'wf’)zﬁ a(f & + ) = k()4 ]
1
Ny @
£

where the primes denote derivatives with respect to the arc
length s, i.e., ' =d,. The tension 7{(s,7) ensures that the
filament satisfies the local inextensibility constraint (r’)?>=1.
Note that these equations can be derived from a full three-
dimensional dynamic description of the axonemal cylinder,
restricted to deformations in a plane and do not require the
introduction of the effective two-dimensional axoneme
shown in Fig. 1 [24,27].

III. BOUNDARY CONDITIONS

The dynamic equations [Egs. (3) and (4)] are comple-
mented by boundary conditions. While the distal end (s=L)
is typically free to move without external constraints, the
basal end (s=0) is subjected to external forces and torques.
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TABLE 1. Boundary conditions of sperm with fixed head posi-
tion and free tail. We consider specifically the clamped head corre-
sponding to the limit of large k, and the freely pivoting head limit
with k=0 and v,=0.

At s=0 At s=L
K¢’+aféf(s)ds—kp1//— Yp0ith=0 ' =0
k" —af— ' =0 kyY'—af=0
Ky Y —afy' +7'=0 7=0

Matching the internal and external torques and forces at the
ends determines the boundary conditions for the tangent
angle i(s,7) and the tension 7{(s,7) [19]. Different experi-
mental conditions imply different boundary conditions at the
basal end s=0. Motivated by experiments in which the center
of the sperm head is held at a fixed position but potentially
free to pivot [23], we describe the dynamics of the head
angle #(0,7) by introducing an angular spring constant k,
and an angular friction coefficient y,. The set of general
boundary conditions is summarized in Table I. In this paper
we will discuss the cases of (i) a clamped head correspond-
ing to the limit of large k, and (ii) a freely pivoting head
corresponding to k,=0 and ,=0.

In order to complete the description of the basal dynam-
ics, it is necessary to specify the mechanical properties of the
basal connection which determine the relative sliding be-
tween microtubules at the base [10,26]. Recently, it has been
shown that such basal sliding can have an important effect on
the shape of the flagellar beat [23]. Following this previous
work we characterize the viscoelastic coupling between mi-
crotubule doublets at the basal end by a basal elasticity k;
and a basal friction 7y,. The basal sliding displacement A(z)
then obeys [23]

L
’YS&ZAO == ksAO - J f(S)dS, (5)
0

and in the limit for large k, and v, basal sliding is sup-
pressed.

IV. OSCILLATORY DYNAMICS
A. Fourier representation

Time periodic beat patterns can be represented by the
temporal Fourier modes #,(s) of the tangent angle,

Ps.0)= 2 hs)e™. (6)

n=—%

The Fourier modes f,,(s), &n(s), and 7,(s) of the local shear
force density f(s,f), the local sliding displacement A(s,?),
and the tension 7{(s,7) are defined identically.

The motor proteins in the axoneme generate time depen-
dent shear forces which induce dynamic sliding displace-
ments A(s,7). The relation between sliding speed and force is
a collective property of the motors together with passive el-
ements cross linking the axoneme. This effective mechanical
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property of active and passive elements can be represented as
a nonlinear relation in terms of the temporal Fourier modes
[19,25],

fi=ald, + BA AP+ 0L, (7)

where « and B are complex coefficients. A necessary condi-
tion for the emergence of spontaneous oscillations are nega-
tive real and imaginary parts of the linear response function
a, resulting from the collective properties of many molecular
motors coupled to an elastic element [19,25,28-30]. The col-
lective effects arise from the dependence of motor transition
rates on the state of the system as, for example, introduced
by a load dependence of the motor detachment rate [19,23].

B. Nonlinear waves

The self-organized nonlinear dynamics of the axoneme
can then be expressed by coupled differential equations for
the discrete Fourier modes of the tangent angle and the ten-
sion. The experimentally observed beat patterns of sperm are
dominated by their fundamental temporal Fourier mode, with
higher harmonics contributing to less than 5% of the wave
pattern [23]. In the following, we thus neglect higher har-
monics of ¢(z).

To simplify the notation in the following, we drop the
tilde when referring to temporal Fourier amplitudes, defining

P(s) = ¢ (s), To=To(s), and 7, = T,(s). We also introduce di-

mensionless parameters @, @, 3 and A, as defined in Appen-
dix A. Taking into account nonlinearities self-consistently up
to cubic terms, Egs. (3), (4), and (7) lead to the following set
of coupled nonlinear equations for the dominant modes ¢, 7,
and 7, as rescaled in Appendix A,

i@y=— g+ @+ BEL(Y+ Do — Y0)) ¢+ Ay — (0)]*]
+%ﬁ¢+@$ﬂ+%ﬂ%mww—zmw+&r¢m»
X| % = @ (" + Ay = (0) i + Ty + 957
570 =2 Re{add (y+ Dy — (0) T - a2(|4f?)
. 25—104’42 Re{@) - Re[y/ ).

&

aﬁ&ﬁ—ww.

(8)

527, = add (Y+ Ry — pl0)) /] — o) +

Here the dots denote derivatives with respect to the rescaled
arc length s=s/L and complex conjugates are denoted by
asterisks. In Eq. (8) we have also introduced the dimension-
less linear contribution to the fundamental Fourier mode of
the basal sliding displacement [23],
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FIG. 3. Schematic diagram of the complex plane of motor im-
pedance a,. For a given dimensionless frequency @, there exists a
critical value a,. describing an oscillatory instability. The line «,
parametrized by @, is shown in black. In the dashed region to the
right of the line the system is quiescent, whereas to the left of a, it
oscillates. The phase theta describes the orientation of a displace-
ment da away from a bifurcation point in the complex plane such
that dav=|dale’®.

- 1
—_ o o
Ay= —_(w(()) - f l//(S)dS) :
iy, +ki+a 0
The corresponding boundary conditions complementing Eq.
(8) are summarized in Appendix A.

V. WAVE AMPLITUDES

The above system exhibits an oscillatory instability or
Hopf bifurcation, at which the unstable modes are described
by a linearized wave equation [19,23]. In the oscillatory re-
gime close to the bifurcation, finite amplitude solutions of
the full nonlinear wave equation [Eq. (8)] are similar to the
linearly unstable modes. The growth of the amplitude and the
changes in the shape of the beating mode with increasing
distance from the bifurcation are determined by the nonlinear
terms of Eq. (8). In the following we study the effects of
nonlinearities near the bifurcation using a systematic expan-
sion.

Linearizing the nonlinear wave equation [Eq. (8)] in the
limit of small amplitudes, the linearly unstable modes de-
noted by u(5) satisfy [19,23]

Luo(5) =0, )

subjected to appropriate boundary conditions [19,23], where
we have defined the linear operator

L(@,®)=id+ 6t — ac-. (10)

Note that the amplitude of the linear mode u, is not de-
termined by the linear Eq. (9). For convenience, we normal-
ize uy such that [|uy(5)|ds=1. Equation (9), together with
the appropriate boundary conditions [19,23], constitutes a
boundary value problem. Nontrivial solutions exist only for
pairs of critical values of the dimensionless frequency and
response coefficient (a.,®,) [19,27]. In the following we
will denote £.=L(a,,®.), where @, and @, are the values of
a and o at the bifurcation point. In Fig. 3, the line of critical
values is indicated by the solid line representing «, as a
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function of @.. Note that there exists a discrete spectrum of
such critical lines [19].

We can express solutions of the full nonlinear problem for
parameters a=a,.+ oa and w=w.+ 6w in the vicinity of the
bifurcation point by an expansion of the following forms:

P(3) = euy(3) + €uy(5) + O(€),
7(5) = €v(3) + O(€"),

() = €w(s) + O(€"). (11)

Here € is a small dimensionless number that characterizes
the distance from the bifurcation point by

da=pe'’e and OSw=ué, (12)

where we have introduced the real coefficients p and w as
well as the phase 6.

Inserting the ansatz [Eq. (11)] into the wave equation [Eq.
(8)], we can solve this equation systematically order by order
near a given bifurcation point. First, the linearly unstable
mode uy(5) is determined. Then with uy(5) known, we can
determine the static and dynamic tension profiles v(5) and
w(5) in terms of uy(s) as detailed in Appendix B.

Matching terms to third order in € then leads to an equa-
tion for the nonlinear correction u,(5) to the wave form

Leuy = pe'’Fug — iputg - Nu), (13)
where the nonlinear terms AN{(u,) are given by

Maug) = B (ug + AY — ug(0))ug + AL — ug(0)[*]
+ vty + wiig) + %[ag(wowo)

—2a(ug+ AY — ug(0))|iig|> — @ (uy + AL — u5(0))
X (1ig)? + Vi + Wig ], (14)

and EBC) is the basal sliding term evaluated at the bifurcation
point, as defined by Eq. (B3) in Appendix B.

Using Eq. (13) we can obtain a relation between the co-
efficients p, u, and @ without calculating the nonlinear cor-
rection u;. This is achieved by introducing a function ug
adjunct to the linear mode u, which has the property £.ug
=0 and obeys f(l)ugﬁcu 1=Z. The constant Z depends on
0,p,n and is derived explicitly in Appendix C for three dif-
ferent mechanical conditions imposed at the basal end. Mul-
tiplication of Eq. (13) with u{ and subsequent integration
lead to

1 1 1
- pe’pf g Fougds + i,uf uguods + f ug N ug|*uo)ds + Z
0 0 0

=0. (15)

We can now discuss the emergence of the unstable mode
#(5) and its frequency @ when starting at a bifurcation point
at a=a; as illustrated in Fig. 3: moving from &, in a direc-
tion given by an angle 6, Eq. (15) describes the beating mode
in the oscillatory region of the state diagram characterized by
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a=a,+|dale'. For a chosen value of 6, the values of p and
M can be uniquely determined from the complex equation
[Eq. (15)]. Equation (12) then describes the increase in the

amplitude as
Sa 12
€= <u> , (16)
p

while the frequency changes at the same time by
so="1sa. (17)
p

Note that these behaviors depend on the angle @ chosen.
Two special situations are of interest. There exists in general

a specific choice  for which u=0, i.e., in this case the fre-
quency does not change when moving in the corresponding
direction away from the bifurcation line. Examples for such
lines in the complex plane along which the frequency of the
unstable modes remains the same as at the bifurcation point
o, are displayed in Fig. 4. A second special choice 6=6, is
the direction tangential to the bifurcation line @ (@,). For
this choice, Eq. (15) becomes singular with p— o and p/u
=|da,/d@,|. In this case the amplitude € remains zero, but
the frequency changes along the bifurcation line [19]. Note
also that the shape and frequency of the beating mode at a
point @ do not depend on the reference bifurcation point
from which it is reached.

The above method permits us to calculate the amplitude
and frequency of beating modes close to the bifurcation line.
In order to study the influence of nonlinearities on the shapes
of these modes, we make use of the above analytical result to
solve the nonlinear equations numerically.

VI. NUMERICAL SOLUTIONS TO THE NONLINEAR
WAVE EQUATIONS

Periodic and planar beating patterns are solutions to the
nonlinear wave equation [Eq. (8)] together with the boundary
conditions given in Table III which constitute a boundary
value problem, which can be solved numerically by a shoot-
ing and matching procedure [31]. Note that the wave equa-
tion is invariant with respect to changes in the overall phase
of (5). To remove this degeneracy we impose an arbitrary

condition for the phase of ¢(5) at the base 5=0.

In order to obtain numerical solutions that satisfy the
wave equation with given boundary conditions, we first de-
termine approximate solutions /(5) = eu(s), 7,(5) = €’v(5),
and 7,(5) = €w(5) close to a bifurcation point @, @, making
use of the method discussed in Sec. V. This allows us to
determine the amplitude € and the functions v(s),w(s) for a
solution close to the bifurcation point a,, .. This approxi-
mate solution is used as seed for the shooting and matching
procedure to solve Eq. (8).

With this procedure, we generate a sequence of numerical
solutions starting from the bifurcation line and moving in a
direction in which the frequency @ remains constant. Ex-
amples of these solutions to Eq. (8) are displayed in Fig. 4
for different boundary conditions and starting from different
bifurcation points.
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FIG. 4. Examples of beating modes, which are solutions to the wave equation [Eq. (8)] for different boundary conditions. The location
of these solutions is indicated in the complex plane of values of the linear response function of motors @. The chosen examples correspond
to a situation where starting from a Hopf bifurcation the amplitude of the unstable mode increases when moving along a path in the @ plane
for which the oscillation frequency is constant. (a) Solutions for clamped head with basal sliding with frequency w/27=26 Hz in the @
plane (gray line). Depicted is the second brach of unstable modes. The parameters k, and y, were chosen as determined in [23] such that the
beat patterns shown in (b) resemble experimentally observed ones. The amplitude A as a function of |Sa] is displayed in the inset. (b) Real
and imaginary parts of the wave form ¢ as a function of dimensionless arc length 5 for different points along the gray line in (a). (C) and
(D) same as (A) and (B) but for the clamped head boundary conditions without basal sliding and frequency of =28 Hz. Here we choose the
bifurcation on the first branch of unstable modes. (E) and (F) same as (C) and (D) but for a freely pivoting head without basal sliding and

frequency of =5 Hz.

Parameter values used in these calculations are &, =3.4
X107 Nsm™, §=§,/2, «=17%x102! Nm? and L
=58.3 um as estimated for bull sperm flagella [23,32]. The

value of B has not been measured. We choose B=42 for
which the bifurcation is supercritical.

The region of stability of the nonoscillating state is indi-
cated in Figs. 4(A), 4(C), and 4(E). The oscillatory instability
occurs along the solid black line. The real and imaginary
parts of ¢ for these solutions are displayed in Figs. 4(B),
4(D), and 4(F) as a function of the dimensionless arc length
5 for distinct values of «, located along the gray line shown
in Figs. 4(A), 4(C), and 4(E). As indicated by the insets, the
amplitude A= [{|¢(5)|d5 of the modes grows continuously

with increasing distance from the instability. In the limit of
small amplitudes, it obeys Eq. (16) with e=A.

In contrast to the amplitude, the shape of the beat patterns
changes only weakly as illustrated in Fig. 5. Solutions to the
linearized equations therefore provide good approximations
to the full nonlinear problem in the range of examined pa-
rameters.

VII. CONCLUSIONS AND OUTLOOK

The beating of cilia and flagella in viscous media is the
result of the cooperative action of many dynein motors inter-
acting with the elastic microtubules within the axoneme. The
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solutions to the linearized dynamic equations [19] have been
shown to be good approximations for experimentally ob-
served planar beat patterns of bull sperm [23]. However, the-
flagellar beat is a fundamentally nonlinear problem and can-
not be satisfactorily described by a linear theory.

Here, we have presented a theory of flagellar beat patterns
taking into account the leading nonlinearity. We derived the
nonlinear wave equations for the fundamental modes of the
beat shape and the lateral tension [Eq. (8)]. Furthermore, by
solving the nonlinear wave equation numerically we ex-
plored how the shape of beat patterns changes as the beat
amplitude increases. We found that for the parameter values
and amplitude range examined here, the shape of the beat
patterns of finite amplitude remains qualitatively similar to
the linear wave forms obtained near the instability in the
limit of infinitesimally small amplitudes. Experimentally ob-
served wave forms of beating sperm can therefore be ap-
proximated by linear modes of ad hoc amplitude [23]. Exist-
ing nonlinear discussions of slender rod dynamics in the
viscous regime have focused on the dynamics of passive rods
[33-35] or described actively beating filaments subject to
predescribed internal force distributions [36]. Our analytical
results provide the framework to discuss the lowest order
nonlinear effects of self-organized axonemal beat patterns
allowing us to bridge the gap between the linear and nonlin-
ear regimes without having to resort to a full simulation of
the system.

Our results are independent of the specific molecular
mechanisms underlying the collective action of motors.
However, our theory does therefore not allow us to predict
the influence of experimentally controlled parameters such as
concentration of adenosine triphosphate (ATP) or tempera-
ture on the beat shape. To understand the influence of such
parameters on the beat, more specific models of motor action
are required. The oscillation frequency of the system is se-
lected via the self-organization of dynein motors and micro-
tubules. This frequency selection involves the full frequency
dependent impedance of motors and thus also depends on
details of the underlying mechanisms [19]. A key open chal-
lenge for the understanding of flagellar dynamics is therefore
to understand the parameters which govern frequency selec-
tion based on the properties of dynein motors in the system.
Also, there exist several branches in parameter space along
which linear instabilities occur. Which of these branches be-
comes unstable first and governs the behavior of the flagellar
beat also depends on molecular details and will be an impor-
tant challenge for future work.
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APPENDIX A: DIMENSIONLESS PARAMETERS
AND BOUNDARY CONDITIONS

Table II provides the definitions of dimensionless param-
eters used in this work. The mechanical conditions at the
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TABLE II. Summary of the relations between the physical pa-
rameters and the dimensionless quantities.

X —_ oL* —_d? S_d'l? — s
Ag=Ap/a 0=""&, a=“ra p=7P 5=
— = L2 = _aL = a’ 7 _L = a
7-1'(3):;71'(3) kA':TkS S=L3§L’YJ kpzzkp 7p=L3§ b3y

boundary (see Table I) impose boundary conditions for the
fundamental modes ¥A(5), 7,(5), and 7,(5) as summarized in
Table III, Swhere we have introduced the nonlinear contribu-
tion to the dimensionless basal sliding displacement,

B =5,-—E£
oY, +k+a

1
X j |(5) = (0) + Ao ((35) — (0) + Ag)ds.
0

Note that for the limiting cases under consideration in the
main text, the boundary conditions simplify as follows.
In the general clamped head case we have #(0)=0; in the

absence of basal sliding we furthermore have A,=0 and
58‘”:0. For a freely pivoting head without basal sliding,
k,=0, %,=0, A,=0, and AJ"=0.

APPENDIX B: NONLINEAR PERTURBATION
CALCULATION TO SECOND ORDER

Formally expanding the linear operator £ close to the
bifurcation point, we write

L(@,®) = L, - dad:+i6o. (B1)
Substituting the ansatz of Egs. (11) and (12) into the nonlin-
ear wave equation [Eq. (8)] reproduces to linear order the
equation describing the linearly unstable modes [Eq. (9)]
supplemented by the appropriate boundary conditions (ex-
plicitly described in [27]).

Matching terms to second order in € then leads to

(5) = 2 Re{@ a5l (ug + A — uy(0))iig ]} — 62(Jtig|?)

. 2i(|'4'0|2 Ref{a,} — Refiigiio}),

&1

TABLE III. The boundary conditions for the fundamental modes
(5), 7(5), and 7(5).

(kp+i@7,) (0) = /(0) + @[ [ (3) + B — 4(0) Jds™

+ B o[ 4(3) + Ao~ YA O)P(4A3) + By (0)) Jd5
P(0)=@yA0) + 0) 7 (0) + §*(0) 7(0) + B2I Ao 2410) + (B)247(0))
B =0 |H0) ) +2 Re{@h, g (0)}
%|§=0=—¢(0)¢(0)+a5012’(0)
(1)=0
1) =a(W(1)+ A5 +3(0)+ BlyA1) +Bo— (0) P((1) + By (0))
7(1)=0
7(1)=0

051918-6



NONLINEAR DYNAMICS OF CILIA AND FLAGELLA

W(F) = @0 (ug + A — ug(0))iig] — d:(iigi)
+§ i)~ igi), (B2)

where

_ 1

—— f uo(5)ds (B3)
+ 0

is the amplitude of basal sliding to linear order. The above

system of equations, together with the appropriate boundary

conditions [27], allows us to obtain v(s),w(s) for given so-

lutions u(s) of the linear problem.

APPENDIX C: NONLINEAR PERTURBATION
CALCULATION TO THIRD ORDER

We define a function u adjunct to u, such that the inte-
gral

1 1
. o -
f uglouy = j up(idouy + iy — alip)

0 0

1
= f u(ioul + iy — aiig) + [ugi, — tigii,
0

... — . = — . s=1
+ (i — @)y — (iig — agig)uy Iy

is independent of u;. In order to eliminate u,(5) from the
bulk term in the above expression we require that £.uf(s)
=0, implying that u(5) satisfies the same differential equa-
tion as the linear modes u,(5). The condition that terms de-
pending on u; vanish at the boundaries =0 and s=1 then
defines the boundary conditions for u. The so-defined func-
tion uf then leads to [ugL.u;=Z, where the complex con-
stant Z=Z(p, u, 6) does not depend on the unknown correc-
tion function u;. This complex constant characterizes the
behavior of the system away from the bifurcation in the di-
rection of # and can be determined from the linearly unstable
mode u, and its adjunct function u only. In the following we
state explicitly the boundary conditions specifying the ad-
junct function and determine the constant Z for the various
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mechanical conditions of interest (clamped head without
basal sliding, clamped head with basal sliding, and freely
pivoting head without basal sliding). These results were ob-
tained by matching terms of O(e)—O(€’) of the perturbation
ansatz [Eq. (11)] substituted into the nonlinear wave equation

[Eq. (8)].

1. Clamped head without basal sliding

The boundary conditions for the conjugate linear solu-
tions u((5) are given by

i50)=0, d3(0)=0, ui(1)=0, if(1)=0, (CI)

which leads to
1

f ugLouy =—ui(0)A —uf(1)B=Z,
0

where we have introduced

A = pe'?ii(0) + v(0)1io(0) + w(0)iig(0),
B= Peiguo(l) + B|”0(1)|2”0(1)-

2. Clamped head with basal sliding

The boundary conditions for the conjugate linear solu-
tions u((5) are given by

a2

15(0)=0, @5(0)=0, uh(l)=—=

(0 &y, +k, + @,

i5(1) =0, (C2)

tig(1),

which leads to Z of the same form as Eq. (C2) but with a
more complicated expression for A and B which are now
given by
A= pe'’i(0) + BRIATPig(0) + (A7) i5(0))
+0(0)io(0) +w(0)i(0),

T ‘ ‘ T 0
021 oo"..... _]
A -o'... ’
..
01F  o°°
.. 7
= ..
L]
(1] =3 | . | .
0 5 10 15
|0

FIG. 5. Examples of the shape of the nonlinear solutions as they grow from the linearly unstable modes, corresponding to the 26 Hz
solution of the second branch of unstable modes in the case of clamped head boundary conditions with basal sliding. Shown are the real and
imaginary parts of the rescaled nonlinear solutions with the lighter curves corresponding to larger amplitudes. The amplitudes A (in rad) of
the selected modes are indicated by black dots in the diagram that shows how the amplitude grows as a function of the distance |da] to the

bifurcation.
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_(c) =2 1
; _ — _ MAY 17} 1 0. _ N
B = pe'(ug(1) + AY) + Blug(1) + AP Pug(1) - —>a. + < :(pe %ig(0) — A + f N(|“0(S)|2MO(S))dS)
W iD Y, + kg + @, 19c 0
1 _ ‘ _ _ 1 _ _
+ —_(Aé”(pe”(iac Y, + k) — ipy,a.) - Ba, f Ju(3) + AF A (ug(3) + Aﬁf))df) :
iy, +k+ o, 0

with N as defined in Eq. (14).

3. Freely pivoting head without basal sliding

The boundary conditions for the conjugate linear solu-
tions u;(s) are given by

iE0)=0, i5(1)=0, wui(1)+ i%ug(m =0,

1i(0) — a (115 (0) + iig(0) — 1ig (1)) =0, (C3)
which leads to
1
f WLty = — A<ug(0) + iﬁu‘g(m) — Bii(1) - Ciit(0) = Z,
0 W

(C4)
where we have introduced

A = pe'?ii(0) +v(0)1io(0) + w(0)iig(0),

i0 2
pe” . 1 B,. ,

= —iig(1) + = = liig(1) Piig(1),
aC |aC| C(C

peif o
=—1y(0) - ,BJ [[140(3) = 1o (0)[*(up(3) — up(0))1ds
ac 0

+ .a% {pe"%«)) + iM(“o(O) - aiuo(()))

C

1
+f N(|”0|2Mo)ds_} .
0

APPENDIX D: SHAPE CHANGES OF THE NONLINEAR
SOLUTIONS

For more information, see Fig. 5.
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