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Hudspeth AJ, Jülicher F, Martin P. A critique of the critical cochlea:
Hopf—a bifurcation—is better than none. J Neurophysiol 104: 1219–1229,
2010. First published June 10, 2010; doi:10.1152/jn.00437.2010. The sense
of hearing achieves its striking sensitivity, frequency selectivity, and
dynamic range through an active process mediated by the inner ear’s
mechanoreceptive hair cells. Although the active process renders
hearing highly nonlinear and produces a wealth of complex behaviors,
these various characteristics may be understood as consequences of a
simple phenomenon: the Hopf bifurcation. Any critical oscillator
operating near this dynamic instability manifests the properties dem-
onstrated for hearing: amplification with a specific form of compres-
sive nonlinearity and frequency tuning whose sharpness depends on
the degree of amplification. Critical oscillation also explains sponta-
neous otoacoustic emissions as well as the spectrum and level depen-
dence of the ear’s distortion products. Although this has not been
realized, several valuable theories of cochlear function have achieved
their success by incorporating critical oscillators.

The technical specifications of the human ear are remarkable.
We can hear sounds that evoke mechanical vibrations of
magnitudes comparable to those produced by thermal noise (de
Vries 1948; Sivian and White 1933). Hearing is so sharply
tuned to specific frequencies that trained musicians can distin-
guish tones differing in frequency by only 0.1% (Spiegel and
Watson 1984). Finally, our ears can process sounds over a
range of amplitudes encompassing six orders of magnitude,
which corresponds to a trillionfold range in stimulus power
(Knudsen 1923).

These striking characteristics of our hearing emerge because
the ear is not a passive sensory receptor, but possesses an
active process that augments audition in three ways (reviewed
in Hudspeth 2008; Manley 2000, 2001). First, amplification
renders hearing several hundred times as sensitive as would be
expected for a passive system. The active process next exhibits
tuning that sharpens our frequency discrimination. Finally, a
compressive nonlinearity ensures that inputs spanning an enor-
mous range of sound-pressure levels are systematically en-
coded by a modest range of mechanical vibrations and in turn
of receptor potentials and nerve-fiber firing rates. The active
process additionally exhibits the striking epiphenomenon of
spontaneous otoacoustic emission, the production of sound by
an ear in the absence of external stimulation. Although con-
siderable attention has been devoted to these properties in
mammalian and especially human hearing, the four defining
features of the active process are equally characteristic of
nonmammalian tetrapods (reviewed in Manley 2001).

The biophysical basis of the active process is the object of
active research—and substantial controversy—at present. It is
clear that the active process stems from the action of hair cells,
the ear’s sensory receptors. In nonmammalian tetrapods, the
features of the active process emerge from active motility of
the hair cell’s mechanoreceptive organelle, the hair bundle
(reviewed in Hudspeth 2008; Hudspeth et al. 2000; Martin
2008). Each hair bundle is a cluster of 20–300 actin-filled rods
standing erect on a hair cell’s apical surface. Deflection of the
hair bundle along a particular morphological axis opens trans-
duction channels and thus elicits a depolarizing receptor po-
tential (reviewed in Hudspeth 1989). This response is assisted
by active hair-bundle motility, which provides the energy
required for amplification (Martin and Hudspeth 1999), imple-
ments frequency tuning and compressive nonlinearity (Martin
and Hudspeth 2001), and even powers the spontaneous hair-
bundle oscillations thought to underlie spontaneous otoacous-
tic emissions (Martin et al. 2001, 2003).

Active hair-bundle motility contributes to the active process
in mammals as well (Chan and Hudspeth 2005a,b; Kennedy et
al. 2005, 2006). In addition, these animals display the phenom-
enon of membrane-based electromotility (reviewed in Ash-
more 2008; Dallos et al. 2006; Fettiplace and Hackney 2006).
The plasmalemma of each columnar outer hair cell in the
mammalian cochlea is packed with the protein prestin (Zheng
et al. 2000), a divergent member of the anion-transporter
family (Franchini and Elgoyhen 2006). Cellular depolarization
causes prestin to undergo a molecular rearrangement such that
the membrane’s area decreases and the hair cell shortens,
whereas hyperpolarization causes lengthening (Ashmore 1987;
Brownell et al. 1985). The outer hair cell thus behaves as a
piezoelectric actuator whose movements account for electri-
cally evoked otoacoustic emissions (Mellado Lagarde et al.
2008).

Electromotility operates so swiftly that it seems likely to
play an important role in the active process (Frank et al. 1999;
Gale and Ashmore 1997); moreover, the absence of prestin or
severe modification of its range of voltage sensitivity abrogates
the active process (Cheatham et al. 2004; Dallos et al. 2008;
Gao et al. 2007; Liberman et al. 2002). Electromotility is
nearly linear over the physiological range of receptor poten-
tials, however, and displays no frequency tuning; it thus seems
unable by itself to account for the properties of the active
process. Theoretical studies suggest that electromotility pro-
vides amplification of basilar-membrane vibrations by interact-
ing with the micromechanical environment (Nobili et al. 1998;
Reichenbach and Hudspeth 2010). Because the proper inter-
play between electromotility and the mechanical constituents
of the cochlear partition relies on assumptions of unproven
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validity, however, no model has been accepted as definitive
and the mechanism for cochlear amplification remains elusive.
It is most probable that active hair-bundle motility and mem-
brane-based electromotility somehow collude to augment hear-
ing in mammals (reviewed in Hudspeth 2008).

The key features of the active process have been recognized
as signatures of a particular instability of dynamical systems:
the Hopf bifurcation (Camalet et al. 2000; Choe et al. 1998;
Eguíluz et al. 2000; reviewed in Duke and Jülicher 2008). A
Hopf bifurcation represents an oscillatory instability that oc-
curs abruptly as a quantity describing some component of the
system—the control parameter—is varied continuously (re-
viewed in Strogatz 1994). Because the control parameter at-
tains its critical value at the bifurcation, we may term an active
system poised near that point a critical oscillator. Any process
whose workings are characterized by a Hopf bifurcation must
display certain generic properties—properties that are also
characteristic of mammalian hearing. Here we provide an
introduction to the Hopf bifurcation, review the features of
mammalian hearing suggesting that the cochlear active process
is based on critical oscillators, and indicate how the ensuing
behavior accounts for the ear’s extraordinary performance.

The Hopf bifurcation

Consider an active system characterized by a time-depen-
dent observable variable X(t). If the system exhibits a Hopf
bifurcation, its behavior abruptly changes from quiescence to
spontaneous oscillation as the value of a control parameter C
changes. If the control parameter is poised at or near the critical
value CC, the system is a critical oscillator whose generic
behavior is described by a dynamic equation, called the normal
form, of a complex variable Z

Ż � �(C � CC � i�C)Z � b�Z|2Z �
F

�
(1)

Here the overdot denotes a temporal derivative. If X � Re (Z)
describes the displacement of a mechanical system and F
represents a stimulus force, � has the units of a friction
coefficient. Note that there is no quadratic nonlinearity in the
normal form and that the nonlinearity, with a complex coeffi-
cient b, is cubic in the variable Z.

The spontaneous behavior of the system can be appreciated
by setting F � 0. For C � CC, the variable Z displays an
exponentially damped oscillation at an angular frequency �C

until it reaches the stable, quiescent state Z � 0 (Fig. 1A). In
this case, the nonlinear term plays no important role. For C �
CC, however, the state Z � 0 is unstable: a small perturbation
results in an oscillation that grows in magnitude until it reaches
a constant value indicative of a limit cycle: Z � X0ei�0t. The
amplitude X0 of this oscillation is stabilized by the nonlinear
term in the normal form. Except precisely at the bifurcation,
the frequency of oscillation �0 differs from �C. Because of the
nonlinear nature of the system, the oscillation also contains
higher harmonics that are not described by the normal form.

We next consider the case C � CC, in which the system is
either nonoscillatory or situated at the bifurcation. Although
the response of the nonlinear system includes components at
the integer harmonics of the stimulus frequency, we shall
consider only the dominant terms associated with the fre-
quency of stimulation. Indeed, when operating at the bifurca-
tion a critical oscillator displays negligible harmonic distor-
tion in response to small stimuli. If the system is subjected
to a sinusoidal stimulus F � F

�
ei�t at frequency �, the

normal form imposes a steady-state response Z � X
�

ei�t in
which the amplitude X

�
displays a nonlinear relation to the

stimulus amplitude F
�
F� � AX� � B|X�|2X� (2)

The linear component of the response is described by the
impedance A � �[(C � CC) � i(� � �C)] and the nonlinear
term by the coefficient B � �b. In the limit of weak stimula-
tion, the system displays a linear sensitivity � � |X

�
/F

�
|�1/|A|.

The sensitivity displays a resonance when the critical oscillator
is stimulated at its characteristic frequency � � �C. The width
of the resonance in the linear regime is ��lin � |C � CC|.

At the bifurcation, C � CC and the critical oscillator displays
a striking behavior that cannot occur in a passive system: if the
system is stimulated at its characteristic frequency � � �C, the
linear coefficient A vanishes. As a consequence, the response is
governed by the nonlinearity. For an increasing amplitude of
stimulation, the amplitude X

�
displays a compressive growth

described by the power law |X
�

| 	 |F
�

|1/3 (Fig. 1B). The sensi-
tivity � therefore varies as 1/|F

�
|2/3, which formally diverges for

small stimuli. For a critical oscillator at resonance, there is no
stimulus weak enough to elicit a linear response. In that sense,
a critical oscillator displays an essential nonlinearity. In con-
trast, a passive system always displays linear behavior in
response to weak sinusoidal stimuli: |X

�
passive| 	 |F

�
|. This

property arises because frictional forces can never disappear

B   Sensitivity to stimulus amplitude

100X

10X1X

C-CC = -10
A   Effect of criticality

C-CC = 100 C-CC = 10 C-CC = 1
FIG. 1. The behavior of a critical oscillator. A: an oscillator

whose response is described by Eq. 1 produces sinusoidal
responses (top traces) when driven at its characteristic fre-
quency with pulses of sinusoidal stimuli (bottom traces). As the
difference between the value of the control parameter and the
critical value, C � CC, declines from 100 to 10 and then to 1,
the response to identical stimuli grows substantially. Finally,
when C � CC � �10, the system becomes unstable and
undergoes limit-cycle oscillation in the absence of stimulation.
B: when the oscillator operates near criticality, here with C �
CC � 0.1 in each panel, its response exhibits compressive
nonlinearity. As the stimulus grows by successive factors of 10,
the responses increase by factors of only 101/3 or about 2.2.
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unless internal sources of energy can be mobilized to produce
negative damping. By compensating for the frictional forces, a
critical oscillator acts as an active amplifier.

We can define the gain G of the amplificatory process by
comparing, for the same stimulus, the response of a critical
oscillator to that of an identical system in which the active
process is absent: G � |X

�
/X

�
passive| 	 1/|F

�
|2/3. This relation

demonstrates that the amplifier is nonlinear and preferentially
boosts weak signals. In addition, the sensitivity of a critical
oscillator displays nonlinear frequency tuning. When plotted
against stimulus frequency at a given force amplitude, the
sensitivity displays a peak centered at �C and of a width given
by ��active 	 |F

�
|2/3 (Fig. 2). Tuning thus becomes increasingly

sharp at low levels of stimulation. Note that the peak width and
the sensitivity are inversely related; for faint stimuli, the
product ��active|X

�
|/|F

�
| is constant. Weak stimuli are therefore

detected at resonance both with high sensitivity and with sharp
frequency selectivity.

A critical oscillator is ideally suited for the detection of
sinusoidal stimuli. By amplifying preferentially weak inputs,
this active system naturally displays compressive nonlinearity
and provides a large dynamic range of responsiveness. Because
nonlinear amplification is strongest at frequencies near the
characteristic frequency of the critical oscillator, the system
additionally manifests nonlinear frequency tuning. Each criti-
cal oscillator is tuned to a specific frequency, so the analysis of
complex sound stimuli calls for the operation of an assembly of
oscillators with distributed characteristic frequencies.

Psychophysical and physiological characteristics of
mammalian hearing

Two experimental approaches have provided most of our
insights into the active process of the mammalian inner ear.
First, the discipline of auditory psychophysics has character-

ized the relation between the physical characteristics of acous-
tic stimuli and the resultant sensory experience. Because psy-
chophysical testing is not invasive, this approach has been
widely used on human subjects. The second approach, which
has been applied most extensively in guinea pigs, chinchillas,
gerbils, mice, and cats, involves various types of neurophysi-
ological recording. Laser interferometry has quantified the
mechanical responses of the basilar membrane to acoustic
stimulation. Extracellular recordings of cochlear microphonic
signals and intracellular measurements of receptor potentials
have characterized the responses of hair cells. Finally, record-
ings of the spiking activity of individual cochlear nerve fibers
have provided insight into the signals forwarded to the auditory
centers of the brain stem. We shall examine how specific
results obtained through these approaches relate to the expec-
tations of the critical-oscillator hypothesis.

Power-law scaling of auditory responses

The vibration of the basilar membrane at its characteristic
frequency follows a power-law relation to sound-pressure level
in several mammalian species, especially the chinchilla (re-
viewed in Robles and Ruggero 2001). Although the slopes of
the intensity–displacement relations vary, many are near the
value of 1/3 anticipated for an active oscillator near a Hopf
bifurcation (Ruggero et al. 1997). One should note that the
predicted power law pertains at the peak of the basilar mem-
brane’s response (Duke and Jülicher 2003), which may shift
with changes in stimulus intensity from the usual observation
point at the round window. Such a shift, which would be
expected to alter the power law measured at that particular
position, may account for the fact that some data sets display
power-law slopes even below 1/3. Hypercompressive behav-
iors also emerge in the presence of noise when an oscillator
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FIG. 2. Characteristics of amplification by a critical oscillator. A: a doubly logarithmic plot portrays the magnitude of the oscillator’s response as a function
of stimulus frequency for a range of stimulus amplitudes. The stimuli vary in 10-dB steps from 0 dB, corresponding to the lowest curve, to 80 dB, the highest.
The weakest stimuli produce significant responses only at the characteristic frequency of 5 kHz. As the stimulation becomes stronger, responses become apparent
over a wider range of frequencies. The shaded area corresponds to the noise level for hair cells, about 0.3 nm; only responses larger than this elicit neural activity.
B: plotting the magnitude of the response against the stimulus amplitude demonstrates the compressive nonlinearity of a critical oscillator. The 7 relations
correspond to the frequencies marked by the corresponding colored lines in A. At the characteristic frequency, the relation (red) displays the slope of 1/3
characteristic of a critical oscillator. At frequencies distant from the characteristic frequency the responses are linear. C: the oscillator’s sensitivity is determined
by dividing its output by its input at each frequency and for each level of stimulation. The sensitivity peaks for the lowest level of stimulation and declines
progressively as the forcing becomes stronger. D: at the characteristic frequency, a double-logarithmic plot of the sensitivity (red) as a function of the stimulus
amplitude shows the characteristic slope of �2/3. The flat relations observed at other frequencies indicate linear responsiveness.
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departs from criticality to operate on the oscillatory side of a
Hopf bifurcation (Lindner et al. 2009).

In contrast to a deterministic oscillator that operates exactly
at a Hopf bifurcation, the basilar membrane’s vibration be-
comes linear for the weakest of stimuli (Robles and Ruggero
2001). A comparable phenomenon is also observed for indi-
vidual hair bundles in the frog’s sacculus whose mechanical
responsiveness varies as the 1/3 power of the stimulus ampli-
tude over a tenfold range of stimulus magnitudes, but ap-
proaches linearity for nanometer-scale stimuli (Martin and
Hudspeth 2001). Both the basilar membrane and the hair
bundle are subjected to noise of a magnitude comparable to
that of threshold stimuli. By limiting the phase coherence that
an active oscillator can achieve, noise imposes a linear regime
of responsiveness to faint external signals. The dynamic be-
havior of a noisy oscillator can still be described by a normal
form (Eq. 2) but with an effective contribution to the linear
coefficient A that remains finite at the characteristic frequency
(Jülicher et al. 2009; Lindner et al. 2009). A noisy oscillator
thus provides amplification with a gain that reaches a maximal
value for low stimuli. This maximal gain is inversely related to
noise intensity.

In the frog’s sacculus, amplification by active oscillation of
a single hair bundle is seriously limited by noise (Nadrowski et
al. 2004). It is noteworthy, however, that mechanical coupling
between hair bundles, such as occurs through accessory struc-
tures such as tectorial and otolithic membranes (Strimbu et al.
2009), increases the phase coherence of spontaneous hair-
bundle oscillations, extends the range of the compressive
nonlinearity to smaller stimuli, sharpens the frequency selec-
tivity, and enhances the amplification that a noisy oscillator can
provide (Barral et al. 2010; Dierkes et al. 2008).

Distortion products

As first noted in the eighteenth century (Tartini 1754, 1767),
a person listening to two pure tones can hear not only those
frequencies and their integer harmonics, but also other tones
originally called terzi suoni, or third sounds, and now variously
termed distortion products, combination tones, difference
tones, or phantom tones. For simultaneous stimulation with a
lower frequency �1 and a higher frequency �2, quadratic
distortion products occur at the frequencies �2 
 �1 and cubic
products at 2·�2 
 �1 and 2·�1 
 �2. Additional, higher-
order distortion products are also present but fainter. When the
ratio �2/�1 � 1.1, the most prominent difference tone 2·�1 �
�2 is only 15 dB weaker than the primary tones �1 and �2
(Goldstein 1967; Hall 1972). As a consequence, distortion
products have actually been used in musical compositions
(Campbell and Greated 2002)! Two-tone distortions have been
measured in vivo on the basilar membrane of the mammalian
cochlea (Robles et al. 1997). In particular, the distortion
product 2·�1 � �2 displays properties that resemble those
measured in human psychoacoustics, which suggests that per-
ceived distortions originate from mechanical nonlinearities of
the cochlear partition.

When stimulated strongly enough, almost any mechanical
device evidences nonlinearity. In particular, a saturating non-
linearity often occurs when the stimulus becomes so intense
that the response can no longer grow proportionally. Nonlin-
earities of this kind lead to distortions such as the tinny buzzing

of an overdriven loudspeaker. In hair cells, the relation be-
tween hair-bundle deflection and receptor potential is sigmoi-
dal. Mechanoelectrical transduction thus provides a saturating
nonlinearity that would be expected to distort sound-evoked
electromotile movements of mammalian outer hair cells (No-
bili and Mammano 1996).

Because the gating of transduction channels is directly
coupled to tip-link tension, the hair bundle also acts as a
nonlinear spring: the displacement–force relation of a hair
bundle displays a nonlinear region of reduced slope over the
restricted range of deflections that elicit significant receptor
currents (Howard and Hudspeth 1988; Martin et al. 2000). As
the result of this nonlinear gating compliance, the hair bundle
evinces distortion products in response to a stimulus that
contains two frequency components (Jaramillo et al. 1993).
Because the resting position of the hair bundle lies within the
nonlinear region of the force–displacement relation, these
distortions are produced at relatively low levels of stimulation.
In addition, hair bundles have been shown to contribute sig-
nificantly to the impedance of the organ of Corti (Chan and
Hudspeth 2005b). Nonlinear hair-bundle mechanics thus par-
ticipates in the production of distortion products that have been
measured in vivo, even in prestin-knockout animals lacking
electromotility (Liberman et al. 2004).

Any passive device behaves linearly when driven by weak
sinusoidal stimuli because frictional forces can never vanish.
Even if the relation between the input and output is curved, a
sufficiently small input samples a segment of this relation so
narrow that it is effectively straight. Distortions thus become
negligible for weak stimuli; the response to a stimulus contain-
ing multiple frequencies reflects the primary frequencies with
high fidelity. Conversely, the higher the intensity F

�
of the

primaries, the more prominent the distortions should become.
For instance, the relative strength X2 · �1��2

/F
�

of the cubic
distortion product at frequency 2·�1 � �2 is expected to
increase as F

�
2 until saturation affords no further increase of the

distortion amplitude X2 · �1��2
(Goldstein 1967).

The nonlinearity underlying cochlear distortion products is
extraordinary. First, the cubic distortion product at frequency
2·�1 � �2 persists even for very weak stimuli. For this reason,
the nonlinearity has been termed “essential” (Goldstein 1967).
Second, the relation between the perceived cubic distortion
product and the intensity of the primary tones is nearly inde-
pendent of the level of stimulation: as the stimuli become
stronger, the distortion product increases at about the same rate
so that the relative strength X2 · �1��2

/F
�

remains almost con-
stant. This behavior is in striking contrast with that expected
from a passive nonlinear system but accords with that of an
oscillator operating near a Hopf bifurcation (Duke and Jülicher
2008; Jülicher et al. 2001).

As noted earlier, an energy-transducing mechanism allows
the impedance of a critical oscillator to become very small for
stimulation near the oscillator’s characteristic frequency. When
stimulated near resonance, a critical oscillator displays a com-
pressive nonlinearity and produces distortion products even in
response to vanishingly small stimuli. Within the framework of
critical oscillation, prominent distortions appear as an inevita-
ble price to be paid for exquisite sensitivity and sharp fre-
quency selectivity. In agreement with experimental observa-
tions (Robles et al. 1997), the spectrum of these distortions
displays an exponential hierarchy (Jülicher et al. 2001). The
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essential nonlinearity of a critical oscillator holds only near the
condition of resonance �1 � �2 � �C and thus if the frequency
separation �� � |�2 � �1| is small enough. When stimulated
off-resonance at both frequencies, the active oscillator instead
behaves like any passive nonlinear system and distortion prod-
ucts plummet for weak inputs. A critical oscillator thus pro-
duces distortions whose intensities are inherently dependent on
the separation between the primary frequencies.

Critical oscillators and the cochlear traveling wave

An elegant feature of the mammalian ear is the presence of
traveling waves on the cochlear partition. Early experimenta-
tion on cadavers emphasized the passive contribution of the
basilar membrane’s mechanical characteristics in determining
the shape of the traveling wave and the frequency-dependent
characteristic place at which the wave peaks along the cochlea
(reviewed in von Békésy 1960). In healthy cochleae, however,
it has long been apparent that basilar-membrane responses to
sound display tuning properties that cannot be explained by
passive mechanical models (de Boer 1983, 1995; Gold 1948;
Kim et al. 1980; Lighthill 1991; Shera 2007; Zweig 1991). It
has been proposed that the traveling wave is amplified by an
active process that pumps energy into the wave as it travels
toward the characteristic place. In an attempt to combine wave
propagation and the active process, researchers have developed
a variety of theoretical models of varying dimensionality and
complexity. Although many approaches have focused on a
linear limit of cochlear mechanics that may be achieved near
threshold, linear descriptions are clearly insufficient to describe
the compressive nonlinearity that is essential to cochlear me-
chanics.

Models in which frequency selectivity emerges from passive
resonance of the cochlear partition face an important problem.
In these models, the natural frequency �0 of each segment is
set by the relation �0 � (	/m)1/2, in which 	 is the stiffness and
m is the mass of that segment. The measured range of stiff-
nesses and masses along the cochlea, however, is such that
their ratio spans substantially less than the six orders of
magnitude required to account for the 1,000-fold frequency
range of hearing in humans and certain other mammals (de La
Rochefoucauld and Olson 2007; Naidu and Mountain 1998;
but see Emadi et al. 2004).

As detailed in APPENDIX A, the hypothesis of critical oscilla-
tion simplifies modeling of the traveling wave. Within this
framework, each section of the cochlear partition is considered
to operate as a critical oscillator tuned to a specific, tonotopi-
cally distributed frequency (Duke and Jülicher 2003; Kern and
Stoop 2003; Magnasco 2003). Longitudinal coupling of the
oscillators by the cochlear fluids results in an active, nonlinear
traveling wave. Each oscillator responds to the local pressure
difference across the cochlea according to the generic nonlin-
ear relation (Eq. 2). Analyses of basilar-membrane vibration in
vivo suggest that the cochlea is locally active and pumps
energy into the wave over part of its length (de Boer 1983,
1995; Shera 2007; Zweig 1991). As a consequence of the
functional form of their impedance, critical oscillators auto-
matically provide negative damping in the restricted region of
the partition where the frequency of the pressure wave is lower
than the characteristic frequency of each oscillator (Duke and
Jülicher 2008). The oscillators thus pump energy into the wave

as it travels from the cochear base toward the apex (Fig. 3).
Near the place of resonance, where the wave’s frequency
matches that of the oscillators, the damping becomes positive,
wave energy is dissipated, and the magnitude of basilar-
membrane vibration plunges.

The passive physical properties of the cochlear partition help
to distribute sound energy along its length. However, the
waveform of the traveling wave—and especially the shape of
its peak—is determined primarily by the characteristics of the
local active process. Each oscillator is expected to recruit up to
several tens of neighboring outer hair cells that are mechani-
cally coupled by the tectorial membrane (Barral et al. 2010).
The position at which the traveling wave peaks is set by the
intrinsic frequency of the critical oscillators that actively res-
onate at the frequency of the wave. Although this frequency is
doubtlessly influenced by the passive stiffness of the cochlear
partition, the relation may be steeper than that resulting from a
passive spring-mass system, perhaps approximating a linear
dependence (Fig. A1). The range of frequencies to which the
cochlea can be tuned is therefore broader than would be
expected on the basis of passive mechanical properties alone
(Duke and Jülicher 2003).

The shapes of tuning curves for mammalian eighth-nerve
fibers provide additional support for the idea that tuning by
means of the traveling-wave mechanism is supplemented by
critical oscillators. At least at high frequencies, each of these
relations displays two distinct components, a broadly tuned
curve reflecting coarse tonotopy on which is superimposed a
sharp notch of much higher sensitivity (Liberman 1978; Tem-
chin et al. 2008). Moreover, the sensitive component repre-
senting the contribution of the active process may peak at a
frequency below, equal to, or above that of the coarse compo-
nent reflecting passive mechanical tuning. It appears that crit-
ical oscillators accept the sound energy separated crudely by
the passive traveling wave and greatly accentuate movement of
the cochlear partition at the specific frequencies to which they
are responsive.

Spontaneous otoacoustic emissions

Among the most remarkable characteristics of tetrapod ears
is their emanation of pure tones in a quiet environment and in

0

+

–

Energy
pumping

100 Hz

1,000 Hz

10,000 Hz

FIG. 3. Locus of energy pumping on the basilar membrane. Each of the 3
diagrams portrays the instantaneous position of the basilar membrane during
the propagation of a traveling wave of the indicated frequency. The color scale
portrays the extent of energy pumping. The active process grows progressively
stronger as the wave approaches the characteristic place, then declines rapidly
just before the resonant position associated with the stimulus frequency. If the
traveling wave were capable of propagating farther apically than the resonant
position, the active process would withdraw energy from it. Note that the
amplitude of the traveling wave has been exaggerated about 105-fold with
respect to the length of the basilar membrane.
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the absence of stimulation (reviewed in Probst 1990). Although
some spontaneous otoacoustic emissions are clearly patholog-
ical, the fact that 70% of human ears emit sounds in a quiet
environment indicates that the active phenomenon is generally
associated with normal hearing (Zhang and Penner 1998). The
statistical features of each spontaneous emission match those
of an active oscillator but not those of a sharply tuned, passive
filter of noise (Bialek and Wit 1984).

Spontaneous otoacoustic emissions of high intensity have
sometimes been related to audiometric anomalies (Ruggero et
al. 1984; Zurek 1981). These emissions may reflect the fact that
the active process is subject to gain control. As noted earlier,
any system subject to a Hopf bifurcation becomes unstable
when the control parameter C falls below its critical value CC.
Under normal circumstances, a self-tuning mechanism is ex-
pected to maintain criticality to ensure optimal performance
and thus to prevent oscillations from growing significantly
(Camalet et al. 2000). When perturbed by mechanical or
physiological defects within the cochlea, however, this control
mechanism may fail, allowing the production of large oscilla-
tions.

Active hair-bundle motility probably powers spontaneous
otoacoustic emissions in the hearing organs of nonmammalian
tetrapods. The hair bundles of reptiles and amphibians exhibit
robust spontaneous oscillations in vitro (Crawford and Fetti-
place 1985; Howard and Hudspeth 1987; Martin et al. 2003)
and the bimodal probability distribution of hair-bundle position
(Martin et al. 2001) resembles that observed for sound pressure
at the frequency of a spontaneous emission (Bialek and Wit
1984). Although the energy content of spontaneous otoacoustic
emissions is so small that only a few hair cells could in
principle produce measurable signals (Manley and Gallo
1997), it is probable that larger ensembles participate in the
production of robust emissions. In the gecko’s ear, for exam-
ple, clusters of adjacent hair bundles are evidently entrained to
oscillate at a common frequency by elastic or viscous coupling;
the emission spectrum depends on the number of clusters that
can form for a given coupling strength and on the range of
characteristic frequencies (Gelfand et al. 2010; Vilfan and
Duke 2008). In an intact ear, active hair-bundle oscillations
would be expected to direct energy through a tectorial mem-
brane or other accessory structure to the apparatus of the
middle ear, culminating in the broadcasting of sound by the
tympanum.

Although outer hair cells are thought to drive spontaneous
otoacoustic emissions from the mammalian cochlea, uncer-
tainty remains concerning the relative contributions of active
hair-bundle motility and prestin-based electromotility, both of
which occur in these cells (Chan and Hudspeth 2005a,b;
Kennedy et al. 2006). Activation of prestin by an externally
imposed voltage can displace the cochlear partition enough to
cause electrically evoked otoacoustic emissions (Mellado
Lagarde et al. 2008). However, there is no evidence to date that
electromotility can by itself display either a Hopf bifurcation or
limit-cycle oscillation, so the spontaneous otoacoustic emis-
sions of mammals may require collusion between the two
motile processes.

The spontaneous otoacoustic emissions of the mammalian
cochlea are not necessarily generated by instabilities of local
oscillators, such as those arising from small perturbations in
their control parameters. Remarkably, longitudinal coupling to

neighbors integrates individual oscillators in a collective mode
of basilar-membrane vibration, the active traveling wave. Even
though it arises from the coupling of critical oscillators, this
wave is a stable phenomenon. Emissions may nevertheless
arise globally through the pumping of energy into particular
modes of basilar-membrane vibration (Shera 2003). Mechani-
cal fluctuations of the organ of Corti initiate backward- and
forward-traveling waves that undergo multiple internal reflec-
tions between the stapes and the characteristic place. At some
frequencies, these waves interfere constructively, resulting in
an active standing wave of sufficiently large magnitude to
manifest itself as an emission in the ear canal. This mechanism
has been likened to the activity of a laser, in which the
dimensions of a resonant cavity select the mode of oscillation
in a nonlinear gain medium. It is plausible that an array of
critical oscillators—hair cells poised at a Hopf bifurcation—
constitutes the mammalian cochlea’s gain medium.

Spontaneous activity and phase-locking of nerve fibers

The auditory nerve fibers in the eighth cranial nerve manifest
unusually high rates of spontaneous firing in the absence of
stimulation. Spontaneous firing, which stems from the release
of neurotransmitter by hair cells, has been shown in several
nonmammalian species to display preferred interspike intervals
that are inversely correlated to the characteristic frequency
(Manley 1979). Rhythmic firing can readily be explained by
the spontaneous oscillations of membrane potential that have
been measured in the hair cells of amphibians and reptiles,
including birds, as the result of active hair-bundle motility
(Crawford and Fettiplace 1985; Martin et al. 2003) or of
electrical resonance in the hair-cell somata (reviewed in Fetti-
place and Fuchs 1999). In accordance with the behavior of a
critical oscillator, nerve fibers evincing preferred interspike
intervals are endowed with sharper tuning and higher sensitiv-
ity to external sinusoidal stimuli than fibers with random
spiking activity (Klinke et al. 1994).

For rhythmic firing to reflect critical oscillation, the system
must operate on the oscillatory side of the Hopf bifurcation,
near the critical point. A self-tuning mechanism based on
feedback between the magnitude of spontaneous oscillation
and the control parameter C would ensure criticality by main-
taining the hair cell in a regime of weak spontaneous oscilla-
tion (Camalet et al. 2000). The feedback might be mediated by
Ca2�, which has been shown to modulate the frequency and
amplitude of spontaneous otoacoustic emissions in vivo (Man-
ley et al. 2004) and of hair-bundle oscillations in vitro (Martin
et al. 2003; Tinevez et al. 2007), possibly through cAMP-
dependent protein phosphorylation (Martin et al. 2003). Al-
though preferred interspike intervals have not been observed in
mammals under resting conditions, rhythmic firing of auditory
nerve fibers can be evoked by stimulation with noise (Klinke et
al. 1994). This observation suggests that the hair cell provides
a filter, as expected of a critical oscillator operating on the
stable side of the bifurcation.

Depending on its orientation with respect to the hair bun-
dle’s axis of sensitivity, a mechanical stimulus can modulate
the firing rate in either direction. In birds and mammals, weak
sinusoidal inputs do not increase the firing rate of afferent
fibers from its resting level. Instead, they partially entrain
afferent firing at the frequency of stimulation, resulting in more
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regular firing (Johnson 1980; Köppl 1997). Only when stimuli
exceed the threshold by 15–20 dB and the neural response has
become completely phase-locked does the firing rate increase
significantly. The mechanoelectrical-transduction process of an
individual hair cell exhibits similar behavior: a threshold stim-
ulus causes noisy spontaneous hair-bundle oscillations to
phase-lock to the input, whereas the amplitude of oscillation
grows only after the stimulus has increased tenfold (Martin and
Hudspeth 2001). When fluctuations are taken into account, the
hypothesis of critical oscillation recapitulates the phase-lock-
ing behavior of both oscillatory hair bundles and auditory
nerve fibers in response to weak stimuli (Camalet et al. 2000).

Relation to alternative models

Because of the technical difficulty in conducting experi-
ments on the mammalian cochlea, theoretical studies have
proven especially fruitful in providing insight into the opera-
tion of the traveling-wave mechanism and active process.
Contributions of this type quantitatively reproduce many of the
characteristics of hearing discussed earlier, yet bear no obvious
relation to critical oscillators or the Hopf bifurcation. It is
revealing to analyze how certain of the well-known models
achieve their success.

One valuable model produces realistic responses by con-
structing an active process that provides negative damping
(Mammano and Nobili 1993; Nobili and Mammano 1996). In
particular, the authors invoke mechanical resonance of the
tectorial membrane to introduce a phase change between basi-
lar-membrane oscillation and hair-bundle deflection. When the
action of electromotility is appropriately timed (Markin and
Hudspeth 1995), the process adds energy to the basilar mem-
brane’s oscillation and thereby enhances sensitivity.

The approach of Mammano and Nobili provides an example
of an active model that captures many features of the experi-
mentally observed cochlear response, including robust ampli-
fication, sharp frequency selectivity, and compressive nonlin-
earity. This success stems from combining wave propagation
by harmonic oscillators interacting through the cochlear fluids
with electromotile feedback that generates negative damping
for small stimuli and nonlinear damping for large ones. As
demonstrated in APPENDIX B, however, the model in fact rep-
resents a specific example of a system operating near a Hopf
bifurcation. The generic properties of this unrecognized bifur-
cation generate the hallmarks of the cochlear amplifier noted
by the authors.

An alternative approach to cochlear mechanics is to deduce
the local impedance of the organ of Corti from measurements
of basilar-membrane vibrations near threshold (de Boer 1983,
1995; Shera 2007; Zweig 1991). Such inverse methods, which
do not require a precise a priori knowledge of the interplay
between the mechanical constituents of the cochlear partition,
have provided strong evidence for negative damping at loca-
tions basal to the characteristic place and thus for the operation
of a local active process in the cochlea. Zweig (1991) has
interpreted the impedance of the organ of Corti as that of a
harmonic oscillator with a negative friction coefficient that is
combined with a delayed force proportional to velocity. In this
formulation, the positions in the complex plane of the zeros of
the frequency-dependent impedance control the dynamic re-
sponsiveness of the organ of Corti to external stimulation.

Although the impedance displays an infinite number of zeros,
only the zeros that lie nearest the imaginary axis of the
complex plane matter for the long-time response. Notably, it
was found that two zeros occur very close to the imaginary
axis. Because crossing the imaginary axis constitutes a Hopf
bifurcation, this analysis indicates that the relevant segment of
the organ of Corti hovers on the brink of criticality.

Conclusions

Despite the power of critical oscillation to explain many
cochlear phenomena, the idea has provoked some skepticism in
the decade since its introduction. The principal objections seem
to stem from consideration of engineering principles. The
design of electrical circuits customarily emphasizes linearity:
for the reproduction of music and other sounds, as well as in
the amplification, transmission, and storage of time sequences
in general, every effort is made to minimize distortions arising
from nonlinearity of the apparatus. Although the proposal of
critical oscillation inevitably introduces nonlinearity into our
understanding of the ear’s operation, that choice is thrust on us:
mammalian hearing is highly nonlinear, so much so that
attention has been directed specifically to the sense’s essential
nonlinearity.

A second common goal of engineering is stability: whenever
possible, it is desirable that apparatus be immune from spon-
taneous oscillation and other instabilities. The ear’s behavior
offers us little choice but to accept the presence of oscillators
within the cochlea, given that spontaneous otoacoustic emis-
sions are ubiquitous. Even though these oscillators operate
individually at the brink of instability, however, the mamma-
lian cochlea as a whole is generally stable and reliable. Evo-
lution plays by rules different from those of the best engineers:
the least sliver of selective advantage trumps the esthetic and
practical considerations of circuit design. The evidence dis-
cussed throughout this review suggests that the positive qual-
ities of a critical oscillator–including amplification, frequency
tuning, and compressive nonlinearity–have led to the selection
of an active process operating at a Hopf bifurcation.

A P P E N D I X A : E N E R G Y P U M P I N G I N T H E

C O C H L E A R T R A V E L I N G W A V E

Using generic properties, we explain here how a one-dimensional
array of critical oscillators immersed in fluid gives rise to an active
traveling wave with characteristics that accord with observations on
the basilar membrane. Each section of the cochlear partition is
described by a critical oscillator whose characteristic frequency �C(x)
varies tonotopically with its position x on the longitudinal axis of the
cochlea. In the limit of a weak sinusoidal stimulus F(t, x) � F

�
ei�t at

a frequency � that differs sufficiently from �C(x), the relation be-
tween the Fourier component X

�
of the response X(t, x) � (1/2
)

� X
�

(�, x)ei�td� and that of the stimulus is dominated by its linear part
(Eq. 2). The real part of F may be interpreted as the cross-sectional
pressure that sets the partition into motion at position x.

The functional form of the complex impedance A(�, x) � F
�

/X
�

must
comply with three constraints. First, because both X and the cross-
sectional pressure are real, the complex conjugate A*(�, x) � A(��,
x). Decomposing A into real and imaginary parts, A � A= � iA
, one
finds that A= is an even function of �, whereas A
 is odd. Second,
criticality requires that A vanish at � � �C(x): for � near �C, A � �[� �
�C(x)], in which � is a complex coefficient. Finally, at high frequen-
cies inertia and passive friction must dominate respectively the real
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and imaginary parts of the impedance: for � �� �C(x), A= � �m�2

� 0 and A
 � h� � 0, in which m and h represent respectively a mass
and a friction coefficient.

Assuming that each oscillator is characterized by a single frequency
�C(x) of spontaneous oscillation, the relation A(�) displays only one
zero and A
(�) crosses the abscissa at � � �C(x) with a positive slope
(Fig. A1). This property ensures that a critical oscillator provides
negative damping (A
 � 0) when stimulated at a frequency lower than
its characteristic frequency but positive damping beyond. Moreover,
because A
(�) � 0 for � � 0, the relation A
(�) must be nonmono-
tonic and thus exhibit a frequency at which negative damping is
maximal. In contrast, on increasing frequency, A=(�) decreases from
a positive maximal value K(x) at � � 0, which represents the passive
stiffness of the cochlear partition, to become negative for � � �C(x).

A cochlear partition equipped with critical oscillators is automati-
cally endowed with generic properties that have been observed ex-
perimentally. The traveling wave originates at the cochlear base,
where it first encounters critical oscillators whose characteristic fre-
quencies exceed the frequency of stimulation. Because A
(�, x) � 0
at these locations, the oscillators pump energy into the wave and thus
amplify the vibration of the cochlear partition. This active pumping
can oppose or even overcome the effects of viscous dissipation in the
moving fluid. The oscillators thus maintain or enhance the mechanical
energy carried by the wave. As the wave progresses toward the apex,
the frequency mismatch � � �C(x) declines. The real part A=(�) of the
impedance, which controls the speed of propagation of the wave c(x)
	 A=(x) and the local wave vector q(x) � �/c(x), decreases corre-
spondingly. As a consequence, the wave slows and its wavelength
declines. Because the energy flux is conserved or even enhanced by
energy pumping, the wave also grows in magnitude.

As the wave approaches the place where the stimulus frequency
matches the characteristic frequency of the local oscillators, energy
pumping into the wave diminishes and velocity gradients in the fluid
sharpen. In addition, the impedance of the oscillators becomes so
small that the nonlinear part of the response, which provides positive

damping, asserts itself (Eq. 2). Together with the fluid, the oscillators
absorb energy from the wave and the magnitude of vibration drops
abruptly. The remaining energy of the wave is reflected in a backward
traveling wave. At the position x � xC, where � � �C(xC), A=(�) and
A
(�) change sign. Beyond this characteristic place, the wave vector
becomes imaginary, indicating that the wave stops propagating. For
weak stimuli, the traveling wave peaks at a position only slightly basal
to the position of resonance. As the stimulus intensity increases, the
crossover between the linear and nonlinear regimes of the oscillator’s
response occurs at a larger frequency mismatch � � �C(x) and the
peak of the response accordingly shifts toward more basal positions.

A P P E N D I X B : T H E M O D E L O F M A M M A N O A N D

N O B I L I

In a discrete representation of the model of Mammano and Nobili,
the basilar membrane is divided into local oscillators n � 1, 2, . . . , N
whose characteristic frequencies are exponentially distributed along
the tonotopic axis of the cochlea (Nobili et al. 1998). The membrane’s
local displacement Xn obeys the dynamic equation of a harmonic
oscillator

mnẌn � hnẊn � knXn � Fn (B1)

For the nth local oscillator, mn is the mass, hn is the friction coeffi-
cient, and kn is the stiffness; the overdots denote temporal derivatives.

The force Fn acting on each local oscillator includes contributions
from the motion of the stapes and from hydrodynamic couplings to all
the other oscillators, both of which propagate through the fluid. The
hydrodynamic interactions are described with Green’s functions, an
approach that is physically identical to a wave description in a
one-dimensional transmission-line model (Shera et al. 2004). The
authors also include a shear-resistance term that couples neighboring
oscillators; we neglect this term for the sake of simplicity.

To describe the cochlear amplifier, Mammano and Nobili invoke
the force �Un generated by electromotility and acting on each
element of the basilar membrane in response to changes in the
receptor potentials of the outer hair cells. They further assume that the
coupling between the reticular lamina and the basilar membrane is
viscoelastic and thus provides a high-pass filter to the electromotile
force. Under such circumstances, low-pass filtering of the receptor
potentials by hair-cell membranes can in principle be cancelled,
yielding an electromotile force that is proportional to the local hair-
bundle deflection Yn. In a fully nonlinear model, the function Un(Yn)
is sigmoidal; its strongly nonlinear shape reflects the behavior of the
transduction current as a function of hair-bundle deflection.

In the simplest version of the model, hair-bundle deflection is
directly proportional to basilar-membrane displacement: Yn 	 Xn.
However, this situation fails to produce negative damping and thus to
compensate for the viscous friction that impedes movements of the
basilar membrane. To overcome this problem, the authors invoke
harmonic resonance of the tectorial membrane to induce a phase shift
between the basilar-membrane motion Xn and the stereociliary deflec-
tion Yn. If the characteristic frequency of the oscillator falls near that
of the tectorial-membrane resonance, the hair-bundle deflection be-
haves as

Yn � �
Cn

h�n

Ẋn (B2)

in which Cn, with units of mass, represents the coupling between
basilar-membrane and hair-bundle movements and h�n is the friction
coefficient associated with tectorial-membrane movement.

As a consequence of the phase shift between Xn and Yn, the
electromotile feedback generates negative damping. Each element of
the basilar membrane thus behaves as a nonlinear oscillator charac-
terized by the relation

Impedance

Frequency

A′(ω)

A″(ω)

ωCωC

FIG. A1. Schematic representation of the impedance A(�) � A=(�) �
iA
(�) of a critical oscillator as a function of the stimulus frequency �. In the
linear limit of cochlear mechanics, the local impedance A of the cochlear
partition is defined as the ratio of the Fourier component of the cross-sectional
pressure to the Fourier component of the basilar-membrane vibration at the
frequency of stimulation. This impedance is a complex number with units of
stiffness per unit area. The real or reactive part A= is an even function of �,
whereas the imaginary or dissipative part A
 is odd. Criticality requires that the
impedance vanish at � � 
�C, in which �C is the characteristic frequency of
the oscillator. At low frequencies, as A
 approaches zero, A= � 0 describes the
local stiffness of the cochlear partition. At high frequencies, A= � 0 is instead
dominated by inertia, whereas A
 � 0 reflects dissipation by hydrodynamic
friction. These generic constraints ensure that a critical oscillator provides net
negative damping (A
 � 0)—corresponding to the active pumping of energy
into the traveling wave—when stimulated below its characteristic frequency,
but that it dissipates energy (A
 � 0) when stimulated above that frequency.
Note that energy pumping peaks at a frequency below �C. In principle, an
active oscillator may also achieve criticality by opposing damping so that A
 �
0 at all frequencies (APPENDIX B). This is the case for the van der Pol oscillator,
a standard model for the generation of spontaneous oscillations (Strogatz
1994). However, this singular realization of a critical oscillator does not
produce energy pumping.
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mnẌn � hnẊn � knXn � U�n(Ẋn) � Fn (B3)

in which U
�

n(Ẋn) � Un(�CnẊn/h�n). We can expand the nonlinear
function U

�
n(Ẋn) as a Taylor series in Ẋn

U�n(Ẋn) � �h=nẊn � �nẊn
2 � 
nẊn

3 (B4)

The first term on the right produces negative damping with a coeffi-
cient �h=n � dU

�
n/dẊn � 0. This procedure reveals that each local

oscillator experiences a Hopf bifurcation when the electromotile
feedback satisfies the condition hn � h=n. Because of the nonlinear
terms described by the coefficients �n and 
n, each local oscillator
exhibits all the hallmarks of a critical oscillator if poised near the Hopf
bifurcation. In particular, the dynamic equation describing this non-
linear oscillator in response to sinusoidal forcing can be brought into
the generic form described by Eq. 2 with

A � kn � mn�2 � i(hn � h=n)� and

B � (4�n
2�4) ⁄ [kn � 4mn�2 � 2i(hn � h=n)�] � 3i
n�3 (B5)

At the bifurcation, the basilar membrane displays a compressive
nonlinearity that behaves as Xn 	 Fn

1/3 during stimulation at the
characteristic frequency �C � (kn/mn)1/2. The quadratic nonlinear
terms described by the coefficients �n generate second harmonics in
the response. Because the nonlinearity stemming from the force
production by the outer hair cells is sigmoidal, the system behaves
linearly for large forces that saturate the transduction channels.

In this specific realization of a critical oscillator, the passive
damping acting on a section of the cochear partition is canceled
precisely by undamping from the electromotile process (hn � h=n). At
the critical point, the imaginary part A
 of the impedance is null for all
stimulus frequencies. As shown in APPENDIX A, this situation is
singular. Both the real and the imaginary parts of a critical oscillator
usually remain finite except at the characteristic frequency. Moreover,
contrary to the available evidence (Shera 2007), the active process
proposed by Mammano and Nobili does not provide net negative
damping within a restricted region of the partition. Although electro-
motile feedback exactly compensates hydrodynamic friction on the
cochlear partition at the critical point, no energy is pumped into the
traveling wave.

A C K N O W L E D G M E N T S

We thank the members of our research groups for critical comments on the
manuscript.

G R A N T S

This research was supported by National Institute on Deafness and Other
Communication Disorders Grant DC-000241 and the Laboratoire Européen
Associé “Active Cellular Structures” of the Centre National de la Recherche
Scientifique. A. J. Hudspeth is an Investigator of the Howard Hughes Medical
Institute.

D I S C L O S U R E S

No conflicts of interest, financial or otherwise, are declared by the author(s).

R E F E R E N C E S

Ashmore J. Cochlear outer hair cell motility. Physiol Rev 88: 173–210, 2008.
Ashmore JF. A fast motile response in guinea-pig outer hair cells: the cellular

basis of the cochlear amplifier. J Physiol 388: 323–347, 1987.
Barral J, Dierkes K, Lindner B, Jülicher F, Martin P. Coupling a sensory

hair-cell bundle to cyber clones enhances nonlinear amplification. Proc Natl
Acad Sci USA 107: 8079–8084, 2010.

Bialek W, Wit HP. Quantum limits to oscillator stability: theory and exper-
iments on acoustic emissions from the human ear. Phys Lett 104A: 173–178,
1984.

Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y. Evoked mechan-
ical responses of isolated cochlear outer hair cells. Science 227: 194–196,
1985.

Camalet S, Duke T, Jülicher F, Prost J. Auditory sensitivity provided by
self-tuned critical oscillations of hair cells. Proc Natl Acad Sci USA 97:
3183–3188, 2000.

Campbell M, Greated C. The Musician’s Guide to Acoustics. Oxford, UK:
Oxford Univ. Press, 2002, p. 64–67.

Chan DK, Hudspeth AJ. Ca2� current-driven nonlinear amplification by the
mammalian cochlea in vitro. Nat Neurosci 8: 149–155, 2005a.

Chan DK, Hudspeth AJ. Mechanical responses of the organ of Corti to
acoustic and electrical stimulation in vitro. Biophys J 89: 4382–4395,
2005b.

Cheatham MA, Huynh KH, Gao J, Zuo J, Dallos P. Cochlear function in
Prestin knockout mice. J Physiol 560: 821–830, 2004.

Choe Y, Magnasco MO, Hudspeth AJ. A model for amplification of
hair-bundle motion by cyclical binding of Ca2� to mechanoelectrical trans-
duction channels. Proc Natl Acad Sci USA 95: 15321–15326, 1998.

Crawford AC, Fettiplace R. The mechanical properties of ciliary bundles of
turtle cochlear hair cells. J Physiol 364: 359–379, 1985.

Dallos P, Wu X, Cheatham MA, Gao J, Zheng J, Anderson CT, Jia S,
Wang X, Cheng HY, Sengupta S, He DZ, Zuo J. Prestin-based outer hair
cell motility is necessary for mammalian cochlear amplification. Neuron 58:
333–339, 2008.

Dallos P, Zheng J, Cheatham MA. Prestin and the cochlear amplifier. J
Physiol 576: 37–42, 2006.

de Boer E. No sharpening? A challenge for cochlear mechanics. J Acoust Soc
Am 73: 567–573, 1983.

de Boer E. The “inverse problem” solved for a three-dimensional model of the
cochlea. II. Application to experimental data sets. J Acoust Soc Am 98:
904–910, 1995.

de La Rochefoucauld O, Olson ES. The role of organ of Corti mass in passive
cochlear tuning. Biophys J 93: 3434–3450, 2007.

de Vries H. Brownian movement and hearing. Physica 14: 48–60, 1948.
Dierkes K, Lindner B, Jülicher F. Enhancement of sensitivity gain and

frequency tuning by coupling of active hair bundles. Proc Natl Acad Sci
USA 105: 18669–18674, 2008.

Duke T, Jülicher F. Active traveling wave in the cochlea. Phys Rev Lett 90:
158101, 2003.

Duke TAJ, Jülicher F. Critical oscillators as active elements in hearing. In:
Active Processes and Otoacoustic Emissions in Hearing, edited by Manley
GA, Fay RR, Popper AN. New York: Springer Science and Business Media,
2008, p. 63–92.

Emadi G, Richter C-P, Dallos P. Stiffness of the gerbil basilar membrane:
radial and longitudinal variations. J Neurophysiol 91: 474–488, 2004.

Eguíluz VM, Ospeck M, Choe Y, Hudspeth AJ, Magnasco MO. Essential
nonlinearities in hearing. Phys Rev Lett 84: 5232–5235, 2000.

Fettiplace R, Fuchs PA. Mechanisms of hair cell tuning. Annu Rev Physiol
61: 809–834, 1999.

Fettiplace R, Hackney CM. The sensory and motor roles of auditory hair
cells. Nat Rev Neurosci 7: 19–29, 2006.

Franchini LF, Elgoyhen AB. Adaptive evolution in mammalian proteins
involved in cochlear outer hair cell electromotility. Mol Phylogenet Evol 41:
622–635, 2006.

Frank G, Hemmert W, Gummer AW. Limiting dynamics of high-frequency
electromechanical transduction of outer hair cells. Proc Natl Acad Sci USA
96: 4420–4425, 1999.

Gale JE, Ashmore JF. An intrinsic frequency limit to the cochlear amplifier.
Nature 389: 63–66, 1997.

Gao J, Wang X, Wu X, Aguinaga S, Huynh K, Jia S, Matsuda K, Patel M,
Zheng J, Cheatham M, He DZ, Dallos P, Zuo J. Presin-based outer hair
cell electromotility in knockin mice does not appear to adjust the operating
point of a cilia-based amplifier. Proc Natl Acad Sci USA 104: 12542–12547,
2007.

Gelfand M, Piro O, Magnasco MO, Hudspeth AJ. Interactions between hair
cells shape spontaneous otoacoustic emissions in a model of the Tokay
gecko’s cochlea. PLoS ONE 5: e11116, 2010.

Gold T. Hearing. II. The physical basis of the action of the cochlea. Proc R Soc
Lond B Biol Sci 135: 492–498, 1948.

Goldstein JL. Auditory nonlinearity. J Acoust Soc Am 41: 676–689, 1967.
Hall JL. Auditory distortion products f2 � f1 and 2f1 � f2. J Acoust Soc Am

51: 1863–1871, 1972.

Review

1227THE CRITICAL COCHLEA

J Neurophysiol • VOL 104 • SEPTEMBER 2010 • www.jn.org

 on S
eptem

ber 15, 2010 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


Howard J, Hudspeth AJ. Mechanical relaxation of the hair bundle mediates
adaptation in mechanoelectrical transduction by the bullfrog’s saccular hair
cell. Proc Natl Acad Sci USA 84: 3064–3068, 1987.

Howard J, Hudspeth AJ. Compliance of the hair bundle associated with
gating of mechanoelectrical transduction channels in the bullfrog’s saccular
hair cell. Neuron 1: 189–199, 1988.

Hudspeth AJ. How the ear’s works work. Nature 341: 397–404, 1989.
Hudspeth AJ. Making an effort to listen: mechanical amplification in the ear.

Neuron 59: 530–545, 2008.
Hudspeth AJ, Choe Y, Mehta AD, Martin P. Putting ion channels to work:

mechanoelectrical transduction, adaptation, and amplification by hair cells.
Proc Natl Acad Sci USA 97: 11765–11772, 2000.

Jaramillo F, Markin VS, Hudspeth AJ. Auditory illusions and the single hair
cell. Nature 364: 527–529, 1993.

Johnson DH. The relationship between spike rate and synchrony in responses
to auditory-nerve fibers to single tones. J Acoust Soc Am 68: 1115–1122,
1980.

Jülicher F, Andor D, Duke T. Physical basis of two-tone interference in
hearing. Proc Natl Acad Sci USA 98: 9080–9085, 2001.

Jülicher F, Dierkes K, Lindner B, Prost J, Martin P. Spontaneous move-
ments and linear response of a noisy oscillator. Eur Phys J E Soft Matter 29:
449–460, 2009.

Kennedy HJ, Crawford AC, Fettiplace R. Force generation by mammalian
hair bundles supports a role in cochlear amplification. Nature 435: 880–883,
2005.

Kennedy HJ, Evans MG, Crawford AC, Fettiplace R. Depolarization of
cochlear outer hair cells evokes active hair bundle motion by two mecha-
nisms. J Neurosci 26: 2757–2766, 2006.

Kern A, Stoop R. Essential role of couplings between hearing nonlinearities.
Phys Rev Lett 91: 128101, 2003.

Kim DO, Neely ST, Molnar CE, Mathhews JW. An active cochlear model
with negative damping in the partition: comparison with Rhode’s ante- and
post-mortem observations. In: Psychophysical, Physiological and Behav-
ioral Studies in Hearing, edited by van den Brink G, Bilsen FA. Delft: The
Netherlands: Delft Univ. Press, 1980, p. 7–14.

Klinke R, Muller M, Richter CP, Smolders J. Preferred intervals in birds
and mammals: a filter response to noise? Hear Res 74: 238–246, 1994.

Knudsen VO. The sensibility of the ear to small differences of intensity and
frequency. Phys Rev 21: 84–102, 1923.

Köppl C. Phase locking to high frequencies in the auditory nerve and cochlear
nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17: 3312–
3321, 1997.

Liberman MC. Auditory-nerve response from cats raised in a low-noise
chamber. J Acoust Soc Am 63: 442–455, 1978.

Liberman MC, Gao J, He DZ, Wu X, Jia S, Zuo J. Prestin is required for
electromotility of the outer hair cell and for the cochlear amplifier. Nature
419: 300–304, 2002.

Liberman MC, Zuo J, Guinan JJ Jr. Otoacoustic emissions without somatic
motility: can stereocilia mechanics drive the mammalian cochlea? J Acoust
Soc Am 116: 1649–1655, 2004.

Lighthill J. Biomechanics of hearing sensitivity. J Vib Acoust 113: 1–13,
1991.

Lindner B, Dierkes K, Jülicher F. Local exponents of nonlinear com-
pression in periodically driven noisy oscillators. Phys Rev Lett 103:
250601, 2009.

Magnasco MO. A wave traveling over a Hopf instability shapes the cochlear
tuning curve. Phys Rev Lett 90: 058101, 2003.

Mammano F, Nobili R. Biophysics of the cochlea: linear approximation. J
Acoust Soc Am 93: 3320–3332, 1993.

Manley GA. Preferred intervals in the spontaneous activity of primary audi-
tory neurons. Naturwissenschaften 66: 582–584, 1979.

Manley GA. Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl
Acad Sci USA 97: 11736–11743, 2000.

Manley GA. Evidence for an active process and a cochlear amplifier in
nonmammals. J Neurophysiol 86: 541–549, 2001.

Manley GA, Gallo L. Otoacoustic emissions, hair cells, and myosin motors.
J Acoust Soc Am 102: 1049–1055, 1997.

Manley GA, Sienknecht U, Köppl C. Calcium modulates the frequency and
amplitude of spontaneous otoacoustic emissions in the bobtail skink. J
Neurophysiol 92: 2685–2693, 2004.

Markin VS, Hudspeth AJ. Modeling the active process of the cochlea: phase
relations, amplification, and spontaneous oscillation. Biophys J 69: 138–
147, 1995.

Martin P. Active hair-bundle motility of the hair cells of vestibular and
auditory organs. In: Active Processes and Otoacoustic Emissions in Hear-
ing, edited by Manley GA, Fay RR, Popper AN. New York: Springer
Science and Business Media, 2008, p. 93–143.

Martin P, Bozovic D, Choe Y, Hudspeth AJ. Spontaneous oscillation by hair
bundles of the bullfrog’s sacculus. J Neurosci 23: 4533–4548, 2003.

Martin P, Hudspeth AJ. Active hair-bundle movements can amplify a hair
cell’s response to oscillatory mechanical stimuli. Proc Natl Acad Sci USA
96: 14306–14311, 1999.

Martin P, Hudspeth AJ. Compressive nonlinearity in the hair bundle’s
active response to mechanical stimulation. Proc Natl Acad Sci USA 98:
14386 –14391, 2001.

Martin P, Hudspeth AJ, Jülicher F. Comparison of a hair bundle’s sponta-
neous oscillations with its response to mechanical stimulation reveals the
underlying active process. Proc Natl Acad Sci USA 98: 14380–14385, 2001.

Martin P, Mehta AD, Hudspeth AJ. Negative stiffness betrays a mechanism
for mechanical amplification by the hair cell. Proc Natl Acad Sci USA 97:
12026–12031, 2000.

Mellado Lagarde MM, Drexl M, Lukashkina VA, Lukashkin AN, Russell
IJ. Outer hair cell somatic, not hair bundle, motility is the basis of the
cochlear amplifier. Nat Neurosci 11: 746–748, 2008.

Nadrowski B, Martin P, Jülicher F. Active hair-bundle motility harnesses
noise to operate near an optimum of mechanosensitivity. Proc Natl Acad Sci
USA 101: 12195–12200, 2004.

Naidu RC, Mountain DC. Measurements of the stiffness map challenge a
basic tenet of cochlear theories. Hear Res 124: 124–131, 1998.

Nobili R, Mammano F. Biophysics of the cochlea. II: Stationary nonlinear
phenomenology. J Acoust Soc Am 99: 2244–2255, 1996.

Nobili R, Mammano F, Ashmore J. How well do we understand the cochlea?
Trends Neurosci 21: 159–167, 1998.

Probst R. Otoacoustic emissions: an overview. In: New Aspects of Cochlear
Mechanics and Inner Ear Pathophysiology, edited by Pfaltz CR. Basel:
Karger, 1990, p. 1–91.

Reichenbach T, Hudspeth AJ. A ratchet mechanism for amplification in
low-frequency mammalian hearing. Proc Natl Acad Sci USA 107: 4973–
4978, 2010.

Robles L, Ruggero MA. Mechanics of the mammalian cochlea. Physiol Rev
81: 1305–1352, 2001.

Robles L, Ruggero MA, Rich NC. Two-tone distortion on the basilar
membrane of the chinchilla cochlea. J Neurophysiol 77: 2385–2399, 1997.

Ruggero MA, Kramek B, Rich NC. Spontaneous otoacoustic emissions in a
dog. Hear Res 13: 293–296, 1984.

Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L. Basilar-membrane
responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am
101: 2151–2163, 1997.

Shera CA. Mammalian spontaneous otoacoustic emissions are amplitude-
stabilized cochlear standing waves. J Acoust Soc Am 114: 244 –262,
2003.

Shera CA. Laser amplification with a twist: traveling-wave propagation and
gain functions from throughout the cochlea. J Acoust Soc Am 122: 2738–
2758, 2007.

Shera CA, Tubis A, Talmadge CL. Do forward- and backward-traveling
waves occur within the cochlea? Countering the critique of Nobili et al. J
Assoc Res Otolaryngol 5: 349–359, 2004.

Sivian LJ, White SD. On minimum audible sound fields. J Acoust Soc Am 4:
288–321, 1933.

Spiegel MF, Watson CS. Performance on frequency-discrimination tasks by
musicians and nonmusicians. J Acoust Soc Am 76: 1690–1695, 1984.

Strimbu CE, Ramunno-Johnson D, Fredrickson L, Arisaka K, Bozovic D.
Correlated movement of hair bundles coupled to the otolithic membrane in
the bullfrog sacculus. Hear Res 256: 58–63, 2009.

Strogatz SH. Nonlinear Dynamics and Chaos. Reading, MA: Addison–
Wesley, 1994.

Tartini G. Trattato di Musica secondo la vera scienza dell’armonia. Padua,
Italy: Univ. of Padua, 1754.

Tartini G. de’Principi dell’Armonia Musicale contenuta nel Diatonico Ge-
nere. Padua, Italy: Univ. of Padua, 1767.

Temchin AN, Rich NC, Ruggero MA. Threshold tuning curves of chinchilla
auditory-nerve fibers. I. Dependence on characteristic frequency and relation
to the magnitudes of cochlear vibrations. J Neurophysiol 100: 2889–2898,
2008.

Tinevez J-Y, Jülicher F, Martin P. Unifying the various incarnations of
active hair-bundle motility by the vertebrate hair cell. Biophys J 93:
4053–4067, 2007.

Review

1228 A. J. HUDSPETH, F. JÜLICHER, AND P. MARTIN
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