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SUMMARY

Planar cell polarity (PCP) proteins form polarized
cortical domains that govern polarity of external
structures such as hairs and cilia in both vertebrate
and invertebrate epithelia. The mechanisms that
globally orient planar polarity are not understood,
and are investigated here in the Drosophila wing
using a combination of experiment and theory.
Planar polarity arises during growth and PCP
domains are initially oriented toward thewell-charac-
terized organizer regions that control growth and
patterning. At pupal stages, the wing hinge con-
tracts, subjecting wing-blade epithelial cells to
anisotropic tension in the proximal-distal axis. This
results in precise patterns of oriented cell elongation,
cell rearrangement and cell division that elongate the
blade proximo-distally and realign planar polarity
with the proximal-distal axis. Mutation of the atypical
Cadherin Dachsous perturbs the global polarity
pattern by altering epithelial dynamics. This mecha-
nism utilizes the cellular movements that sculpt
tissues to align planar polarity with tissue shape.

INTRODUCTION

The PCPpathway coordinates tissue planar polarity in vertebrate

and invertebrate epithelia (Simons and Mlodzik, 2008; Vladar

et al., 2009). PCP proteins localize to apical junctions and form

intracellularly polarized domains with different compositions.

In the Drosophila wing, these domains link proximal and distal

cell boundaries and orient wing hair outgrowth distally. Distal

complexes containing Flamingo (Fmi), a.k.a. Starry night (Stan),

Frizzled (Fz), Dishevelled (Dsh) and Diego (Dgo) interact across

cell boundaries with proximal complexes containing Fmi, Stra-

bismus (Stbm), a.k.a. Van Gogh (Vang) and Prickle (Pk). In the

absence of any single PCP protein, the others do not polarize

well and hair outgrowth is misoriented (Seifert and Mlodzik,

2007; Strutt and Strutt, 2005; Uemura and Shimada, 2003).
Feedback loops arising from interactions of PCP proteins within

and between cells may be sufficient for the local alignment of

PCP complexes between small groups of cells (Amonlirdviman

et al., 2005; Tree et al., 2002a; Tree et al., 2002b). Proposed

cellular mechanisms underlying local feedback loops include

preferential interactions between Fmi/Fz and Fmi/Stbm com-

plexes across cell boundaries, and the decreased susceptibility

of these complexes to endocytosis (Chen et al., 2008; Strutt

and Strutt, 2008; Wu and Mlodzik, 2008). Also, alignment of

microtubules may bias the delivery of Fz to the distal side of

the cell (Shimada et al., 2006).

While thesemechanisms can polarize PCP domains intracellu-

larly and align them locally, less is understood about mecha-

nisms that specify global alignment of PCP domains with the

proximal-distal (PD) axis of the wing. The atypical Cadherins

Fat (Ft) and Dachsous (Ds), and a regulatory golgi kinase Four-

jointed (Fj) influence global orientation of PCP domains by

a mechanism that is unclear (Adler et al., 1998; Ma et al., 2003;

Matakatsu and Blair, 2004; Strutt and Strutt, 2002; Zeidler

et al., 2000). The Fat ligand Ds is expressed highly in proximal

regions that give rise to the hinge, but at lower levels in the

more distal wing blade, during both larval and pupal stages

(Cho and Irvine, 2004; Clark et al., 1995; Ma et al., 2003; Mata-

katsu and Blair, 2004; Strutt and Strutt, 2002). Fj, which regulates

their activity (Ishikawa et al., 2008) is expressed with an opposite

pattern (Villano and Katz, 1995; Zeidler et al., 2000). These

opposing patterns have been proposed to cause intracellular

asymmetries that directly bias accumulation of core PCP

proteins in wing cells (Ma et al., 2008, 2003; Strutt and Strutt,

2002; Tree et al., 2002a). However this is not the case in the

abdomen where Ft/Ds and PCP proteins act independently to

control trichome polarity (Casal et al., 2006). Even in the wing,

Ft and Ds do not act at the time that PCP domains actually align

with the PD axis, but much earlier (during larval or prepupal

stages), to influence the global PCP pattern (Matakatsu and

Blair, 2004; Strutt and Strutt, 2002). Ft and Ds regulate both

the amount and orientation of proliferation in the larval wing

epithelium (Baena-Lopez et al., 2005; Bryant et al., 1988; Clark

et al., 1995; Garoia et al., 2005, 2000). It is not yet clear whether

this activity is relevant to the PD alignment of PCP proteins

during pupal stages.
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Figure 1. Time Evolution of Planar Polarity

(A and B) The magnitude and axis of average nematic order (yellow bars) overlaid on Stbm:YFP-expressing wings, at 15 hAPF (A) and 30 hAPF (B). Red dots

indicate Fz:YFP domain polarity. Green ellipses indicate the anterior crossvein.

(C–E) Stbm:YFP at the indicated times between veins L1 and L3. Yellow bars show the PCP nematic for each cell.

(F) Magnitude (arbitrary units) and axis of average nematic order (left) and cell elongation (right) as a function of time (indicated on the y axis and by color) derived

from the wing shown in (C–E).

In all figures, anterior is top and proximal is left.

See also Figure S1.
Our previous experiments suggested that PCP domain

polarity does not develop de novo during pupal stages; PCP

domains are polarized in both larval wing discs and prepupal

wings, but polarity is not aligned with the PD axis. At early pupal

stages, the PCP axis is oriented at an angle to the PD axis

(Classen et al., 2005). Later, by the time wing hairs form, PCP

domains are oriented along the PD axis of the wing. Alignment

with the PD axis occurs during a phase in which wing epithelial

cells are exchanging their cell contacts (Classen et al., 2005).

One consequence of remodelling is an increase in hexagonal

order of the wing epithelium. Theoretical analysis suggested

that different types of fluctuations could guide epithelial cells

initially disordered by proliferation toward a hexagonal state

(Farhadifar et al., 2007). Here, we investigate the relationship

between these cell rearrangements and the temporal evolution

of PCP orientation patterns. We quantitatively analyze time-

lapses of pupal wing epithelia and combine these data with theo-
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retical analysis to extract key mechanisms that couple cell rear-

rangements to PCP reorientation.

RESULTS

Planar Polarity Points Initially toward the Wing Margin
and Reorients Distally
To investigate how PCP order evolves during pupal develop-

ment, we imaged wings expressing Stbm:YFP between 15 and

34 hr after puparium formation (hAPF). We developed a method

to quantify planar polarity based on the cell perimeter intensity of

Stbm:YFP. This method quantifies the axis and magnitude of

polarity, but not its vector orientation (Supplemental Theoretical

Procedures, 1.1 and Figures S1A–S1E available online). We

started by quantifying the axis of PCP at 15 hAPF (Figure 1A);

we also determined the polarity vectors in these wings by

creating Fz:YFP-expressing clones (Figures S1F–S1H). As



suggested previously (Classen et al., 2005), PCP at early stages

is correlated over long distances (Figure S1M) and is oriented

such that Fz:YFP domains face the wing margin (Figures 1A

and 1C and Figures S1F–S1I). Starting at about 18 hAPF, the

magnitude of the average alignment of groups of cells (local

nematic order, see Supplemental Theoretical Procedures, 1.2)

begins to decrease (Figures 1D and 1F and Figure S1J), and

the average axis of alignment begins to rotate toward the PD

axis (Figure 1F and Figures S1J and S1K). Reduced alignment

reflects both reduced polarity of individual cells and reduced

polarity correlation over distance (Figures S1L and S1M). After

reaching a minimum about 20 hAPF, the magnitude of average

nematic order increases; by 26 hAPF nematic order is again

maximal and aligned parallel to the PD axis (Figures 1B, 1E,

and 1F, Figures S1J and S1K, and Movie S1). Where we have

determined the direction of polarity, we quantify average polar

order by a measure ranging from zero to one (one corresponding

to perfect alignment) (Supplemental Theoretical Procedures,

1.3). At 15 hAPF, polar order averaged over the whole wing blade

is only 0.60, because polarity is oriented differently in anterior

and posterior wing regions (Figure 1A). By 32 hAPF average polar

order reaches 0.98 (Figure 1B). Thus, PCP domains do not

develop polarity de novo during pupal stages, but rather reorient

pre-existing polarity.

Polarity reorientation is reflected in the influence of fz mutant

clones on the polarity of adjacent wild-type tissue. At 15 hAPF,

fz clones perturb polarity of tissue lying between the clone and

the wing margin (Figures S1N and S1O) consistent with the early

polarity pattern. After reorientation, polarity is disturbed in wild-

type tissue lying distal to the clone (Vinson and Adler, 1987).

We noted that reorientation of PCP correlated with a transient

cell shape deformation that elongates cells in the PD axis

(Figure 1F). Quantifying elongation (Supplemental Theoretical

Procedures, 2) reveals that average polarity shrinks inmagnitude

and reorients toward the PD axis as cells elongate. The magni-

tude of average polarity along the PD axis then increases as

cell elongation decreases (Figure 1F). The precise temporal

correlation of these events suggests that they are controlled by

the same underlying mechanisms.

Dramatic Morphogenetic Movements Reshape theWing
during Pupal Development
To explore global changes occurring in the wing as cells change

shape and PCP reorients, we imaged ECadherin:GFP-express-

ing wings at low magnification from 15 to 32 hAPF. Dramatic

morphogenetic movements reshape the wing during this time

(Figures 2A–2C and Movie S2). At 15–16 hAPF, the hinge and

blade regions are roughly equal in size and the shape of the hinge

is not yet recognizable (Figure 2A). Between 15 and 24 hAPF, the

hinge undergoes patterned contractions that halve its area

and shape the allula and costa (Figures 2A–2C, Movie S2, and

Movie S3A). While wing-blade area remains constant during

this time, wing shape changes – elongating in the PD axis and

narrowing in the AP axis (Figures 2A–2C and Movie S2).

To quantify tissue movements underlying this shape change,

we tracked different regions and calculated local velocity vectors

(Supplemental Theoretical Procedures, 3). As the hinge con-

tracts, wing-blade cells flow proximally toward the hinge at
different velocities (Figures 2D–2F, Movie S3B). Between 15

and 18 hAPF, velocities have both inward and proximal compo-

nents (Figure 2D). Later, flow is proximally oriented and fastest in

the middle of the wing blade (Figure 2E). These inhomogeneous

velocities define local compression, shear and rotation as cells

move with respect to each other (Supplemental Theoretical

Procedures, 4). The shear axis in a particular region can be

thought of as the local axis of tissue deformation. In the

wing, local shear axes are oriented in a fan-like pattern that is

roughly symmetric about the third wing vein (Figures 2G–2I,

Figures S2J and S2K, and Movie S3C). Although the wing as

a whole does not rotate, local rotation does occur and is mainly

clockwise anterior to the third wing vein and anti-clockwise

posterior to it (Figures 2J–2L, Figure S2L, andMovie S3D). These

patterns of shear and rotation lengthen the wing blade in the

PD axis and narrow it in the anterior-posterior (AP) axis. Strik-

ingly, the observed antisymmetric rotation pattern would shift

early margin-oriented polarity toward the distal direction.

To investigate whether the tissue flows that reshape the wing

blade were driven by hinge contraction, we completely severed

the hinge from the blade before contraction occurred (Figure 3A).

After severing, wing-blade tissue flows distally rather than prox-

imally (Figure 3C andMovie S4A). Shear is reduced and is mainly

perpendicular to the PD axis (Figure 3D and Movie S4B), rather

than forming a fan-like pattern. Rotation is also reduced, and

its orientation is reversed compared to unperturbed wings

(compare Figure 3E with Figure 2K, and Movie S4C with Movie

S3D). As a result, the wing blade undergoes opposite shape

changes to those that normally occur. Nevertheless, wing hairs

(not shown) and longitudinal veins (Figure 3B) form normally.

These data suggest that hinge contraction exerts mechanical

stresses that contribute to the observed cell flow patterns that

change the shape of the wing blade.

Cell Boundary Tension Is Elevated along the PD Axis
during Hinge Contraction
To ask how cell boundary tension changes during hinge contrac-

tion, we used a pulsed UV laser to sever cell boundaries lying at

different angles to the PD axis, and monitored the movements

of adjacent vertices. The initial velocity with which vertices move

apart is ameasure of cell boundary tension.Before hinge contrac-

tion, tension is similar on all cell boundaries. When the hinge

contracts, tension increases specifically on those cell boundaries

lying at angles close to that of the PD axis (Figures S3A and S3B).

This suggests that hinge contraction exerts forces on the blade

that direct cellular flows via an anisotropic stress profile.

Tissue Flow in the Wing Blade Results from Oriented
Cell Divisions, Cell Elongation, and Neighbor Exchanges
To investigate the cellular events underlying tissue flow,

shear, and rotation, we tracked groups of cells between veins 3

and 4, starting 15 hAPF. This revealed that local tissue shape

change occurs in two distinct phases. The first is dominated by

oriented cell division and PD cell elongation, and the second by

oriented cell rearrangements (Figure 4 and Movie S5A).

During phase I (about 15–24 hAPF), cell elongation increases

in the PD axis (Figures 4A–4C and 4G). Cell boundary loss

exceeds new boundary formation (Figure 4G), as confirmed by
Cell 142, 773–786, September 3, 2010 ª2010 Elsevier Inc. 775
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Figure 2. Tissue Shape Changes during Hinge Contraction
(A–C) Wing images from amovie spanning roughly 15-33 hAPF. The hinge (blue) contracts, the wing blade (red) elongates. Allula (arrowhead) and costa (asterisk)

are indicated. The area of thewing hinge is 1023 103 mm2 in (A) and 503 103 mm2 in (C). The area of the wing blade is 1213 103 mm2 in (A) and 1273 103mm2 in (C).

(D–L) Locally averaged features of the cellular flow field at indicated times.

(D–F) Flow velocity vectors. Speed corresponds to arrow length as indicated.

(G–I) Rate and axis of pure shear. Bar length indicates shear rate.

(J–L) Local rotation rate (indicated by circle size) in radians per hour.

L3 indicates the third longitudinal vein.

Results shown are representative of five separate experiments.

See also Figure S2.
the decrease in average neighbor number (Figure 4F). These new

cell boundaries have no preferred direction during phase I

(Figure 4I). Cells undergo between one and two rounds of

oriented cell division that reduce cell size. Between veins 3

and 4, these divisions are on average oriented 20� to the PD

axis (Figure 4H). As phase I ends, cell elongation peaks (Fig-

ure 4G) and cell division stops (Figure 4F). At the end of this

phase, tracked tissue patches have deformed in a way that

can be accounted for by the combination of cell elongation

and oriented cell division. During phase II (about 24–32 hAPF),

cells assemble new contacts parallel to the PD axis (Figures

4G and 4I). These oriented neighbor exchanges relieve cell elon-
776 Cell 142, 773–786, September 3, 2010 ª2010 Elsevier Inc.
gation (Figure 4G) and stabilize the tissue shape change caused

by cell elongation during phase I (Figures 4C–4E). They also

increase average neighbor number and the fraction of hexago-

nally packed cells (Figure 4F).

Severing the Hinge from the Wing Blade Blocks PD
Elongation and Misorients Cell Divisions and Neighbor
Exchanges
To investigate the cellular basis of altered shear and rotation in

severed wing blades, we quantified cell elongation and the

orientation of neighbor exchanges and cell divisions after

severing from the hinge (Figures S3C–S3G and Movie S5B).
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Figure 3. Tissue Shape Changes in Severed Wings

(A and B) Images taken at the indicated times from a movie

spanning 15–32 hAPF. The hinge was severed from the blade

along the line indicated.

(C–E) Locally averaged features of the cellular flow field at

22h300 APF.
(C) Flow velocity vectors. Speed corresponds to arrow length

as indicated.

(D) Rate and axis of pure shear. Shear rate corresponds to bar

length as indicated.

(E) Local rotation rate (indicated by circle size) in radians

per hour.

(F) Magnitude and axis of average nematic order (yellow bars)

overlaid on a severed Stbm:YFP-expressing wing at 32 hAPF.

Green ellipse = anterior crossvein. L3, third longitudinal vein.

Results shown are representative of four separate experi-

ments.
Cell divisions are strongly oriented in unperturbed wings. When

the hinge is severed from the blade, cell division continues

(Figure S3H), but the angle of cell division is more disperse

(Figure S3J). In addition, these cells do not elongate further along

the PD axis (Figure S3I), becoming instead more isotropic. While

neighbor exchanges still occur, their axis is shifted with respect

to unwoundedwings, lying at ±45 degrees with respect to the PD

axis (compare Figure S3K to Figure 4I). Finally, wing severing

reduces the final number of hexagonally packed cells

(62.44% ± 3.5% in wounded wings [n = 3] versus 77% ± 4.8%

in unperturbed wings [n = 5]). Thus, severing the wing dramati-

cally changes the observed patterns of cell elongation, cell divi-

sion, and rearrangements. This suggests that anisotropic stress

caused by hinge contraction has a key role in guiding the tissue

flow that reshapes the wing blade. It also suggests that cell flow

increases hexagonal packing, similar to the annealing effect of

cell boundary fluctuations (Farhadifar et al., 2007).
Severing the Hinge Alters the Global Pattern
of Planar Polarity
Reorientation of planar polarity in the intact wing occurs at the

same time that the wing blade is reshaped by hinge contraction,

suggesting that these events depend on one another. The

observed pattern of clockwise and anti-clockwise tissue rotation

tends to reorient early margin-directed polarity toward the PD

axis. In addition, the shear pattern presages the final orientation

of planar polarity (Figure 2H). To ask whether tissue movements

induced by hinge contraction guided polarity reorientation, we

examined the distribution of Stbm:YFP in wing blades that had

been severed from the hinge before contraction. In severed

wings, the global PCP pattern differs from that of the intact

wing (compare Figure 1Bwith Figure 3F), suggesting that polarity
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is altered by the changed patterns of cell rearrange-

ments, cell division, and cell elongation. This

implies that cell flows guide reorientation of PCP.

Oriented Cell Boundary Assembly Increases
the Visibility of Planar Polarity
While the majority of polarity reorientation occurs

during phase I, average PCP order increases in
magnitude during phase II, as cells extend new contacts mostly

parallel to the PD axis and develop hexagonal packing geometry

(Figure 1F and Figures 4F and 4I). Could the increase in polar

order be related to these processes? To investigate this, we

imaged PCP protein localization as new cell boundaries formed

(Figures 5A–5F and Movie S5C). We noted that Stbm:YFP had

a clustered rather than a uniform distribution on cell boundaries

throughout pupal development. Even at early stages, these clus-

ters contain both Stbm:YFP and Fz:CFP, suggesting that they

constitute PCP protein complexes (Figures S4A–S4C). Consis-

tent with this, Stbm:YFP clustering is reduced in fzmutant tissue

(Figures S4D and S4E). Individual clusters are persistent and can

be tracked for several hours. However, proteins within them turn

overmore rapidly (Figures S4G–S4I). Clusters do not form rapidly

on new cell boundaries derived either from cell division or

neighbor exchange (Figure 5 and Movie S5C). During phase II,

new cell boundaries, expanding parallel to the PD axis within

minutes, typically remain devoid of these clusters for hours

(Figures 5A–5H). Consequently, Stbm:YFP clusters become

restricted mainly to older cell interfaces on the proximal and

distal sides of the cell. Thus, oriented cell boundary expansion

and the concomitant increase in hexagonal packing order ensure

that PCP clusters become well separated within cells and better

aligned between cells; even though PCP has already reoriented

during phase I, oriented cell boundary expansion during phase II

tends to increase the average nematic order (compare

Figure S4F with Figures S1A—S1E).

A Theoretical Analysis of Polarity Reorientation
While local tissue rotation clearly implies local rotation of the

polarity axis, it is less simple to understand how tissue shear

affects the axis of planar polarity. Tissue shear is caused by
73–786, September 3, 2010 ª2010 Elsevier Inc. 777
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Figure 4. Cell Elongation, Division, and Rearrangement

(A–E) A group of cells anterior to the posterior crossvein was tracked between 15h and 31h300 APF. Cell boundaries are color-coded depending on their fate:

red boundaries persist indefinitely, yellow boundaries disappear, green boundaries form during the movie as a result of neighbor exchange, and blue boundaries

form between daughter cells upon division.

(F and G) Quantification of cellular changes in the patch of tissue tracked in (A–E). Fraction of maximal cell number (dark blue), average neighbor number (light

blue, averaged over five frames), fraction of hexagonal cells (brown, averaged over five frames), PD cell elongation (magenta, average maximum value = 0.388 ±

0.053, n = 5), fraction of boundaries that will disappear (yellow), and the fraction of newly formed boundaries from neighbor exchange (green).

(H and I) Angular distribution of cell divisions (blue) (H) and new cell boundaries (green) (I) at the end of phase I and phase II. Yellow and magenta bars indicate

average angle of nematic order of cell division (yellow) and new cell boundary formation (magenta) (see Supplemental Theoretical Procedures). Bar length indi-

cates the degree of focus (magnitude of average nematic order, ranging from 0 to 1, see Supplemental Theoretical Procedures, 1.2). The outer circles in (H) and (I)

correspond to magnitude = 0.4. Average magnitude of phase I cell division order is 0.44+/�0.12, n = 4. Average magnitude of new boundary formation order in

phase II = 0.35+/�0.04, n = 4.

Data are presented as mean ± SD.

See also Figure S3.
oriented cell divisions, cell elongation, and oriented cell rear-

rangements. Because microtubules have been shown to align

with the axis of cell elongation (Cortes et al., 2006; Daga and

Nurse, 2008; Haase and Lew, 2007; Strauss et al., 2006), cell

shape may directly influence the distribution of PCP within the

cell. Indeed, microtubules in wing epithelial cells align with the
778 Cell 142, 773–786, September 3, 2010 ª2010 Elsevier Inc.
PD axis at this time (Shimada et al., 2006). We turned to theoret-

ical analysis to explore how each of these processesmight affect

the axis of planar polarity. Previously, we used a vertex model to

study the effects of proliferation on cell packing geometry

(Farhadifar et al., 2007). Here, we add to this model a simplified

description of the dynamics of PCP order.
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Figure 5. Cell Rearrangements Increase the Visibility of PCP

(A–F) Images from a 21–29 hAPFmovie of a Stbm:YFP-expressing wing. In (A),

(C), and (E), cell identity is indicated by numbers and cell boundaries are

colored according to their fate as in Figure 4. (B), (D), and (F) show PCP

nematics for each cell (yellow).

(G and H) Angular distribution of newly formed (green, [G]) and permanent

boundaries (red, [H]).

(I) Each kymograph line depicts the linearized perimeter of a selected cell at

time t.

(J–O) Perimeter intensity kymographs for two cells of the movie (frame rate =

60, movie length = 8 hr) shown in (A–F). In (L) and (M), each boundary is

identified by a random color. Colors in (N) and (O) indicate boundary fate
A Physical Description of PCP in the Vertex Model
Cell shape, as defined by the network of adherens junctions, can

be described as force-balanced configurations in a vertex

model, in which an arrangement of cells is represented by a

set of cell bonds. This model takes into account cell mechanics,

cell adhesion and cell division (Farhadifar et al., 2007). Our

description of PCP order is based on attractive interactions

between proximal and distal PCP domains across cell bound-

aries and repulsive interactions within cells. This differs from

previous approaches (Amonlirdviman et al., 2005; Le Garrec

et al., 2006), in that we do not attempt to describe all details of

interactions between PCP proteins, but rather consider effective

interactions between proximal and distal domains. Each cell

bond i, separating cells a and b, is assigned two variables, sai
and s

b
i , which describe the level of PCP proteins on either side

of this bond (Figure 6A). The variables sai can take continuously

varying values; sai = 1 corresponds to a high level of proximal

proteins (blue), while sai = � 1 corresponds to a high level of

distal proteins (red).We introduce a potential function for interac-

tions of PCP domains:

E = J1
X

i

sa
i s

b
i � J2

X

fi;jg
sa
i s

a
j � J3

X

a

3a$Qa; (1)

where J1 and J2 are PCP interaction parameters and J3
describes coupling of PCP to cell elongation (for J3 = 0, PCP
does not couple to cell elongation). For J1>0 the potential favors

interactions between proximal and distal proteins across cell

bonds. For J2>0, accumulation of proximal and distal proteins

on neighboring bonds within a given cell is disfavored. For

J3>0, alignment of PCP with the long axis of the cell is favored:

this is motivated by the idea that aligned microtubules bias the

transport of PCP proteins (Shimada et al., 2006). The first sum

is over all bonds i, the second sum is over all pairs i; jgf of adja-

cent bonds in the network, and the third sum is over all cells a.

The cell shape and PCP nematic order are described by the

tensors 3a and Qa, respectively (Supplemental Theoretical

Procedures, 5). We introduce a time evolution of PCP level on

cell bonds: dsai =dt = � gvE=vsai , where t is time and g is a kinetic

coefficient that determines the PCP relaxation time t = 1=ðgJ1Þ.
We solve these dynamic equations numerically, imposing two

constraints: (1) in each cell, amounts of proximal and distal

proteins are equal and (2) these amounts do not change with

time (Supplemental Theoretical Procedures, 5).

Global Polar Order Generated by Network Growth
To examine how different types of shear reorient polarity, we

must start from a cellular configuration in the vertex model with
(see Figure 4). Permanent boundaries (red in [N] and [O]) carry PCP clusters

that persist for 8 hr. New boundaries (green in [N] and [O]) remain devoid of

Stbm:YFP clusters.

(P-U) Kymographs of a nondividing cell (P), (R), and (T) or a dividing cell (Q), (S),

and (U) between 20-21 hAPF (300 frame rate). In (R) and (S), each boundary is

identified by a random color. Colors in (T) and (U) indicate boundary fate (see

Figure 4). After cell division (Q), (S), and (U) depicts the joint perimeter of the

two daughter cells and the boundary created by cell division (blue in [U])

separately.

See also Figure S4.
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Figure 6. Theoretical Analysis of Shear and

Rotation on the Reorientation of Planar

Polarity

(A) Schematic representation of PCP in the vertex

model. The variables, sai and s
b
i , represent the level

and type of PCP domains on bond i shared by cells

a and b.

(B) Cell packing with PCP order generated by

simulated proliferation in the vertex model with

PCP dynamics, starting from 36 randomly polar-

ized cells with kdt = 0.01, J2/J1 = 0.5 and J3 = 0.

Arrows in (B)–(D) show the direction of polarity.

(C and D) Reorientation of polar order by shear due

to external forces (C) or oriented cell division (D).

Starting from the network (B), and simulating shear

along the horizontal axis, leads to the networks

shown. Parameter values for (C) are kdt = 0.01

and J3/J1 = 0.05. For (D), kdt = 0.01, J3 = 0 and

�3 rounds of cell division were simulated. The

shear generated corresponds to an aspect ratio

of 4 in (C) and 1.5 in (D).

(E and F) Calculations of polarity reorientation

based on Equation 2 and measured patterns of

shear and rotation. Starting with the observed

early polarity (E), the time evolution described by

Equation 2 with n= � 3 generates a final PD

pattern (F). The wing is the same as that shown

in Figures 2D–2L.

(G andH) same procedure as in (E and F) applied to

the wounded wing shown in Figure 3 with n= 2. We

start with an initial pattern mimicking the early

polarity (G).

See also Figure S5.
globally aligned PCP variables. To generate such a configuration

without an external bias is nontrivial (Burak and Shraiman, 2009).

Surprisingly, a simple and general way to generate large

networks with long-range polarity is to start from a small group

of cells with an initially random PCP configuration (random

values of sai , Supplemental Theoretical Procedures, 6). This

network is then expanded by simulating stochastic cell divisions

at a rate kd. Simultaneously, the dynamic equations for the PCP

variables are solved. Interactions of PCP variables generate

local order, which aligns over the whole network when it is

still small. Order is maintained during growth and leads to glob-

ally aligned polarity in the resulting large networks if the PCP

relaxation time t is sufficiently fast (kdt<1, Figures 6B, Fig-
780 Cell 142, 773–786, September 3, 2010 ª2010 Elsevier Inc.
ure S5A, and Movie S6A). This is consis-

tent with the observation of global PCP

patterns in the growing wing disc

(Classen et al., 2005), and suggests that

these patterns arise early during

development.

Shear Reorients the Polarity Axis in
the Vertex Model
Starting with a globally polarized

network, we used the vertex model to

examine how different types of shear

could influence the average polarity
orientation of groups of cells. We first studied the effects of

shear caused by cell elongation and oriented cell rearrange-

ments. In our simulations, we induced pure shear at a rate ks
by forcing the network to elongate along one axis at constant

total area (Supplemental Theoretical Procedures, 6). We

oriented the initial axis of average polarity at an angle of 45

degrees to this shear axis (Figure 6B). As the network is

deformed, cells elongate and undergo T1 transitions that are

oriented along the stretch axis. We find that shear reorients

polarity either parallel or perpendicular to the shear axis, de-

pending on the value of kst and on the strength J3 of the

coupling of cell shape to PCP distribution (Figures 6C, Figures

S5B–S5D, and Movies S6B—S6C). Reorientation occurs during



a characteristic time 1=j2nksj, where n is a dimensionless coef-

ficient. We define n to be negative if polarity aligns with the

shear axis, and positive if it aligns perpendicular to this axis.

Positive values of J3 promote the alignment of the polarity

vector with the shear axis, as do faster relaxation times t of

PCP (Figures S5B–S5D). Network configurations generated by

this process are irregular and cells are stretched. We relaxed

these networks by introducing fluctuations of cell bond tension

(Supplemental Theoretical Procedures, 6). This reduced cell

stretch and increased both the fraction of hexagons and the

magnitude of average polar order, similar to what is observed

during phase II in vivo (Figures 4F and 4G, and Figure S5E).

We next studiedwhether shear generated by oriented cell divi-

sions reorients polarity. We imposed cell divisions in the vertex

model at rate kd oriented at an angle of about 45 degrees to

the initial polarity axis (Supplemental Theoretical Procedures,

6). Oriented cell division generates shear parallel to the cell divi-

sion axis (defined as the line connecting the centers of the two

daughter cells) at a rate ks =mkd, where m depends on network

mechanics. We find again that polarity is reoriented either

parallel or perpendicular to the shear axis and that the dynamics

of reorientation can be characterized by the coefficient n defined

above (Figure 6D, Figure S5F, and Movie S6D). Again, faster

relaxation times t of PCP promote alignment of the polarity

vector with the shear axis (Figure S5F).
An Effective Description of Large-Scale Polarity
Reorientation by Flow
The reorientation of average polarity by shear flow that we

observe in the vertex model is well known in complex fluids

such as liquid crystals. In these systems, polarity reorientation

is determined by local rotation and shear rates of the flow field

and can be described by the following equation (de Gennes

and Prost, 1993; Joanny et al., 2007)

vq

vt
= nkssin2q+u: (2)

Here, u is the local rotation rate, and ks is the rate of pure shear

(Supplemental Theoretical Procedures, 7). The orientation of

polarity is described by the angle q, relative to the axis of pure

shear. The coefficient n describes how pure shear influences

reorientation of polarity. In the absence of rotation, u= 0, pure

shear aligns polarity either with the shear axis ðq= 0Þ or perpen-
dicular to it ðq=p=2Þ depending on the sign of n. In liquid crystals,

the value of n depends on molecular geometries and intermolec-

ular interactions (de Gennes and Prost, 1993). In the absence of

pure shear, ks = 0, local tissue rotations reorient polarity as

vq=vt =u.

Equation 2 for u= 0 describes the main features of polarity

reorientation by pure shear in the vertex model described above.

The coefficient n that characterizes how shear affects reorienta-

tion in the vertex model is the same as the parameter n in Equa-

tion 2. We can thus use Equation 2 to determine quantitatively

how the observed patterns of rotation and shear reorient the

global pattern of planar polarity in the wing.

Starting with the observed polarity pattern at 15 hAPF, we

locally applied Equation 2, with n being the only free parameter,
to calculate the corresponding time-dependent reorientation of

polar order. Local rates of rotation and shear were obtained

from the experimentally determined flow field between 15 and

32 hAPF. To ask to what extent local rotation alone could repro-

duce the observed polarity reorientation, we first considered

n= 0, i.e., shear does not influence reorientation. In this case

polarity realigns toward the PD axis, however, the final average

polar order achieved is only 0.76 (77% of the experimental value

at 32 hAPF). Thus, local rotation can account for only part of the

observed reorientation of the polarity axis.

If n is nonzero, shear also influences reorientation. Repeating

this calculation for different values of n shows that the final

average polar order is largest for nz� 3, reaching a value of

0.90 (92% of the experimental value, Figures S5G–S5J). For n

within the range �10<n<� 1 the polarity field reorients robustly

to reach an average polar order of at least 0.85 (Figure S5K,

6E,F and Movie S6E), tolerating small deviations from the exper-

imentally determined pattern of initial conditions (Figure S5K).

Note that the effects of local shear on polarity orientation depend

on PCP domain interactions and dynamics, as captured in the

vertex model. In the calculations using Equation 2, these effects

are represented via the value of the parameter n. However, in

writing Equation 2 we choose to neglect interactions of average

polar order between neighboring patches of tissue to highlight

the role of shear and rotation. We expect such additional interac-

tions could account for the remaining deviation between the

solution to Equation 2 and the observed final polarity. Note

also that positive values of n produce a final polarity pattern

with lower polar order than rotation alone (n= 0) (Figure S5K).

This analysis suggests that shear caused by the combination

of oriented cell divisions, cell elongation and cell rearrangement

plays an important role in aligning polarity parallel to the shear

axis by a process that is characterized by a negative value of n.

The close agreement between the polarity pattern generated

by Equation 2 (Figure 6F) and experimental observations

(Figure 1B) provides strong evidence that tissue remodelling is

responsible for reorienting the axis of planar polarity.

To ask whether Equation 2 could describe the polarity defects

observed when the hinge and wing blade are severed, we used it

to calculate polarity reorientation given the shear and rotation

patterns measured for these wings. For wounded wings, we

find that Equation 2 describes the main features of polarity reor-

ientation provided that n is positive (Figures 6G and 6H, Figures

S5L and S5N, and Movie S6F). This implies that, in wounded

wings, shear tends to align polarity perpendicular to the shear

axis, rather than parallel to it, as it does in unperturbed wings.

Why should shear affect polarity differently in wounded wings?

In simulations of the vertexmodel, we observed that shear gener-

ated by oriented cell divisions and by external stresses reorients

polaritywith different characteristics (FiguresS5B–S5DandS5F).

The value of n thus depends on the types of cell shape changes

and rearrangements occurring during shear. In wounded wings,

where mechanical boundary conditions are perturbed, the re-

modeling processes that dominate shear differ from those in

unperturbed wings (compare Figures S3C–S3K with Figure 4).

In early pupal wings, fz clones nonautonomously reorient

polarity of adjacent wild-type tissue lying between the clone

and the wingmargin (Figure S1N and S1O). But after remodeling,
Cell 142, 773–786, September 3, 2010 ª2010 Elsevier Inc. 781



the location of affected wild-type tissue is distal to the fz clone

(Vinson and Adler, 1987). We wondered whether the shear and

rotation observed during remodeling could account for reposi-

tioning of affected wild-type tissue. To investigate this, we first

simulated growth in the vertex model mimicking the situation

of a fzmutant clone. Starting with a network of 36 cells, we chose

a single cell and set sai = 1 on all its bonds (corresponding to loss

of Fz domains). We then simulated growth of the network while

simultaneously solving the dynamic equation of the PCP network

(Supplemental Theoretical Procedures, 5), keeping sai = 1 in the

simulated clone (indicated in blue). In these simulations, the

polarity pattern becomes distorted on one side of the clone as

domains with sai <0 (red) are positioned to face the clone

(compare Figure S5O with S5Q). These simulations generate

PCP patterns that mimic domineering nonautonomy observed

in vivo for fz and stbm mutant clones. Such patterns suggest

the interesting possibility that domineering nonautonomy may

arise during growth of the wing and may explain why the polarity

of wild-type tissue is already reoriented by fz clones at 15 hAPF.

We use these patterns as initial conditions to study reorientation

during shear.

To investigate the effects of shear and rotation on the per-

turbed PCP polarity patterns, we solve Equation 2 with n= � 3

for both networks with and without simulated clones, and an

initial average polarity axis lying 45� to the horizontal (mimicking

margin-oriented polarity). We impose shear and rotation at

constant rate, with the shear axis oriented horizontally (corre-

sponding to the PD axis of the wing) (Supplemental Theoretical

Procedures, 8). This reorients the global polarity of both net-

works and shifts the perturbed region toward the ‘‘distal’’ side

of the clone (compare Figure S5P and R) consistent with exper-

iments (Vinson and Adler, 1987).

Ds Guides Global Planar Cell Polarity by Influencing
Epithelial Dynamics
Perturbing the Ft/Ds pathway misaligns PCP domains, but the

underlying mechanism is controversial (Axelrod, 2009; Casal

et al., 2006; Lawrence et al., 2007; Ma et al., 2003; Tree et al.,

2002a). These mutations also cause shorter, broader wings –

at least in part by perturbing oriented cell divisions in larval discs

(Baena-Lopez et al., 2005). To investigate whether Ds also influ-

enced pupal epithelial remodelling, we analyzed time-lapses of

ds pupal wings expressing ECadherin:GFP. At 15 hAPF, ds

wings are already misproportioned; the hinge is overgrown and

the wing blade is short and broad (Figure 7A), consistent with

altered larval growth. Nevertheless, the hinge contracts as it

does in wild-type, reducing its area about twofold (Figures 7A

and 7B). Thus, Ds is not required for hinge contraction. Calcu-

lating shear and rotation over the whole blade is difficult in ds

mutants because the epithelium folds; in regions that can be

quantified, rotation rates are smaller than in wild-type (Figures

S2G–S2I0 and S2L and Movie S7A). However, differences in

the shear patterns could not be resolved (Figures S2D–S2F0).
A clearer picture emerged from analyzing ds mutants at the

cellular level (Figures 7D–7H and Movie S5D). PD cell elongation

is reduced in ds wings (compare Figure 4G and Figure 7J), and

the axis of cell division is less focused than in wild-type (compare

Figures 4H and 7K). Thus Ds is required to tightly focus cell divi-
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sion orientation in both larval and pupal wings. Simulations

suggest that both cell elongation and oriented cell divisions

can reorient polarity (Figures 6C and 6D). Interestingly, both

are perturbed in ds mutants.

Ds influences both larval and pupal epithelial dynamics—so

which is most important for development of PD polarity? To

investigate this, we altered Ds levels in the posterior compart-

ment of the wing either throughout development or only during

larval growth or after pupariation. Overexpressing Ds throughout

wing development causes strong polarity defects in both poste-

rior and anterior compartments (Figure S6A). Overexpressing Ds

during larval or pupal development alone causes much milder

polarity defects (Figures S6A–S6C). We obtain complementary

results by lowering Ds levels. Inducing RNAi against Ds in the

posterior compartment throughout development perturbs

polarity strongly in both anterior and posterior compartments

(Figure S6D). Ds knock-down during larval or pupal development

alone causes milder polarity defects (Figures S6E and S6F).

These data suggest that Ds is needed both during growth and

subsequent epithelial remodelling to ensure proper alignment

of PCP with the PD axis. Ds loss or overexpression throughout

development causes cumulative defects stronger than those

caused by stage-specific perturbation.

Loss of Ds during pupal stages may perturb PD polarity by

reducing cell elongation or misorienting cell divisions during

remodelling. How could loss of Ds during larval growth affect

evolution of PD polarity? One possibility is that Ds-dependent

oriented cell divisions in the wing disc guide development of

early margin-oriented polarity; complex global PCP patterns

are as already seen in the third instar, and prepupal wings

show a pattern consistent with margin-oriented polarity (Classen

et al., 2005). To test this, we quantified the Stbm:YFP pattern in

ds wings at 15 hAPF. The pattern of average nematic order in ds

wings deviates from that of wild-type over large regions,

although PCP domains are well aligned locally, (compare

Figure 7C and Figure 1A). These observations together with

simulations suggest that the larval pattern of oriented cell divi-

sions contributes to development of margin directed polarity.

Loss of Ds may perturb the early polarity pattern indirectly by

misaligning larval cell divisions.

To ask whether abnormal early polarity in combination with the

altered flow pattern could in principle produce normal PD

polarity, we started with the altered polarity observed in early

ds wings and applied the mutant velocity field using Equation

2. For all values of n, polarity fails to orient as it does in wild-

type (average polar order < 0.67, compare Figure S5M with

S5K). Taken together, these studies indicate that development

of PD polarity depends both on correct initial polarity and on

tissue rotation and shear produced during hinge contraction.

Although Ds is expressed at high levels in the hinge and at low

levels in thewing blade, this discontinuity along the PD axis is not

required to direct PD orientation of PCP domains. Uniform Ds

expression rescues polarity in a ds mutant background (Mata-

katsu and Blair, 2004 and Figure S6G-I). Furthermore, lowering

Ds levels in the wing blade perturbs polarity more than knock-

down in the hinge (Figure S6K,L). In contrast, discontinuities in

Ds levels along the AP axis do perturb polarity at a distance;

overexpression or loss of Ds in the posterior compartment
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Figure 7. Early Polarity, Cell Elongation, Division, and Rearrangement Are Perturbed in ds05142 Wings

(A and B) A ds05142, ubi-ECad:GFP wing at 15h300 and 30 hAPF. The hinge is colored blue and the blade red. Numbers indicate blade and hinge areas in mm2.

(C) Average nematic order in a ds05142,act-stbm:YFP/ ds05142 wing at 15 hAPF (compare to Figure 1A).

(D–H) A group of cells anterior to the posterior crossvein in a ds05142, ubi-ECad:GFP wing was tracked between 15h450 and 31 hAPF. Cell boundaries are color-

coded as in Figure 4A.

(I and J) Quantification of cellular changes in the patch of tissue tracked in (D–H). Fraction ofmaximal cell number (dark blue), average neighbor number (light blue,

averaged over 8 frames), fraction of hexagonal cells (brown, averaged over 8 frames), PD cell elongation (magenta, average maximum values = 0.243, n = 2

(0.2245, 0.261), fraction of boundaries that will disappear (yellow), and fraction of new boundaries resulting from neighbor exchange (green).

(K and L) Angular distribution of cell divisions (blue) (K) and new boundaries (green) (L) at the end of Phase I and Phase II. Yellow and magenta bars indicate

average angle of nematic order of cell division (yellow) and new cell boundaries (magenta) (see Supplemental Theoretical Procedures and Figure 4). Average

magnitude of phase I cell division order is 0.145 (0.180, 0.109 n = 2). Average magnitude of new boundary formation order in phase II = 0.338 (0.278, 0.398;

n = 2).

See also Figure S6.
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nonautonomously perturbs polarity anteriorly (Figures S6A–

S6F). Altering Ds levels changes the response of wing epithelial

cells to hinge-dependent pulling forces (Figure 7). We therefore

considered the possibility that local changes in cell rearrange-

ment and elongation could alter large-scale cellular flows and

thus the patterns of shear and rotation in wild-type regions.

Indeed, Ds overexpression in the posterior compartment nonau-

tonomously reverses local tissue rotation in anterior cells near

the compartment boundary (compare Figures S6M–S6O, Fig-

ures 2J–2L, and Movie S7B). These observations suggest that,

to generate normal flow patterns in response to hinge contrac-

tion, cells in the anterior and posterior compartments must react

similarly to mechanical stress.

DISCUSSION

The mechanisms that couple tissue shape to the planar polarity

of constituent cells are not well understood. Here, we describe

a novel morphogenetic event that both shapes the wing of

Drosophila, and orients global planar polarity of wing cells. We

show that the hinge region contracts shortly after the prepupal

to pupal transition. This contraction not only shapes the wing

hinge, but also exerts anisotropic tension on the adjacent

wing-blade region, causing it to elongate and narrow. Reshaping

of the wing blade occurs as constituent cells flow proximally with

different velocities, generating reproducible patterns of flow,

shear and rotation. These patterns result from a combination of

oriented cell division, cell elongation and neighbor exchanges

that are guided by the anisotropic stresses.

This scenario, where externally generated forces have an

important role in epithelial remodeling differs from other con-

vergent-extension events where autonomous cell move-

ments actively drive tissue shape changes (Bertet et al., 2004;

Blankenship et al., 2006; Keller et al., 2008; Rauzi et al., 2008;

Zallen and Wieschaus, 2004). Externally induced epithelial

stretching has been proposed to provoke stress-relieving rear-

rangements during Drosophila germband extension (Butler

et al., 2009), and in the amphibian ectoderm (Keller et al.,

1992, 2008). But in these cases movements of the underlying

mesoderm, rather than contraction of adjacent epithelial cells,

provides the external force. The Drosophila pupal wing will

be a powerful system for uncovering molecular mechanisms

underlying stress-induced epithelial remodelling.

The mechanisms specifying global PCP domain alignment

have been elusive and controversial (Axelrod, 2009; Casal

et al., 2006; Lawrence et al., 2007; Ma et al., 2003; Tree et al.,

2002a). It had been thought that PCP proteins in the Drosophila

wing are initially randomly distributed, but become intracellularly

polarized along the PD axis starting approximately 10 hr before

hair formation (Strutt and Strutt, 2005; Vladar et al., 2009; Wu

and Mlodzik, 2009; Zallen, 2007). This led to the search for

a global polarizing signal that operated at this time. Here, we

show that PD orientation of PCP complexes does not arise

from a random distribution; rather it evolves from a different

global polarity pattern present at the prepupal-pupal transition.

At this stage, PCP domains are organized such that Fz-contain-

ing domains face the wing margin rather than distally. Our

previous work identified a similar global polarity pattern in
784 Cell 142, 773–786, September 3, 2010 ª2010 Elsevier Inc.
prepupal wings, and showed that even larval wing discs show

a global pattern of PCP (Classen et al., 2005). Thus PCP domains

are always polarized, but their global orientation evolves dynam-

ically during development.

What causes global reorientation of PCP during phase I, and

the subsequent increase in the magnitude of polar order during

phase II of wing-blade remodeling? During phase I, margin-

orientedpolarity is reorientedby specific patterns of local rotation

and shear due to cell flows caused by hinge contraction. Local

tissue rotation and shear reorient PCP domains by simple phys-

ical rules (see Equation [2] and Figure S7) similar to those that re-

orient molecular order in liquid crystal hydrodynamics. A signifi-

cant fraction of PCP reorientation is produced by local tissue

rotation alone. However, tissue shear also helps rotate polarity

toward the shear axis. Simulations suggest that shear caused

byorientedcell divisions, cell rearrangements andPDcell elonga-

tion can all contribute to polarity reorientation. One mechanism

that may underlie the effect of cell elongation on PCP is the

tendency of microtubules to align with the long axis of the cell.

Indeedmicrotubulesarealignedwith thePDaxisofwingepithelial

cells and are essential for delivery of PCP proteins to the cortex

(Shimada et al., 2006). Significantly, under conditions where

normal PD polarity does not develop (e.g., in ds mutant wings

or in severed wings), oriented cell division, cell rearrangements

and cell elongation are disturbed. During phase II, oriented cell

boundary rearrangements increase hexagonal packing geometry

and improve PCP order. Simulations suggest this may occur via

an annealing process that relaxes irregular cell packing to a

more ordered hexagonal lattice with improved PCP order.

The atypical Cadherins Ft and Ds are needed to evolve the

global PD polarity pattern. Exactly how they influence the global

pattern has been controversial (Axelrod, 2009; Lawrence et al.,

2007). It was proposed that this pathway provides a PD polarity

cue that depends on higher relative levels of Ds expression in the

hinge. This inhomogeneity was thought to generate intracellular

asymmetry of Ft/Ds heterodimers throughout the wing, directly

generating a small bias in Fz activity within each cell that could

then be amplified to produce strong and stable alignment of

PCP domains with the PD axis (Ma et al., 2003; Tree et al.,

2002a). But the fact that uniform Ds expression suffices to

rescue polarity in ds wings argues against this view (Matakatsu

and Blair, 2004) (Figures S6G–S6I). Furthermore, Ft and Ds do

not appear to act directly on core PCP proteins in the Drosophila

abdomen (Casal et al., 2006). We propose that the Ft/Ds

pathway influences the global PCP pattern, not by generating

intracellular asymmetries that directly regulate PCP signaling,

but indirectly through its effects on epithelial dynamics during

both larval and pupal stages. Time-controlled loss of Ds shows

that it is required throughout development for evolution of PD

polarity (Figures S6D–S6F) (see also (Matakatsu and Blair,

2004)). During larval stages, Ds may guide the development of

early margin-oriented polarity through its influence on oriented

growth; our simulations suggest that oriented cell division

strongly influences the global axis of planar polarity. Later, during

hinge contraction and wing-blade remodeling, Ds is required

for the oriented cell division and cell elongation that occur in

response to anisotropic stresses. Both processes influence the

polarity axis in vertex model simulations.



In future, it will be interesting to examine the roles of aniso-

tropic growth and local morphogen signaling in establishing

the global PCP pattern as wing discs grow. Our theoretical anal-

ysis shows that large scale planar polarity can be stably main-

tained during growth even in the absence of global polarizing

signals. This is possible because polarity easily aligns over

a few cell diameters without orientation defects, and subsequent

cell rearrangements due to cell division do not destroy this order

during growth. Thus, polarity that was initially established when

the tissue was small can be expanded during growth, and any

anterior-posterior or dorsal-ventral boundary-derived signal

would not need to act directly over long distances.

The coupling of planar polarity to epithelial dynamics is

a robust and flexible mechanism for coordinating tissue shape

with planar polarity of constituent cells and may generalize to

other systems. Indeed, mutations in the Wnt pathway perturb

both convergent extension and the planar orientation of sensory

hair cells in the mouse cochlea (Wang et al., 2005). Furthermore,

the planar polarity of sensory hair cells in the lateral line organ of

zebrafish is oriented by the direction of cell migration rather than

long-range secreted cues (Lopez-Schier et al., 2004). Our theo-

retical analysis suggests that shear caused by stretch-induced

rearrangements or by oriented cell divisions can reorient polarity

either perpendicular or parallel to the shear axis, depending on

the relative rates of shear and PCP turnover. Thus, this process

is also highly versatile, and could be a fundamental principle of

tissue organization.
EXPERIMENTAL PROCEDURES

Imaging

Pupae were prepared for imaging as described (Classen et al., 2008). Images

were acquired with a Leica TCS-SP2 or an Olympus FV-1000 microscope.

203 and 403 oil immersion objectives were used to follow cell flows and

global morphological changes occurring in the wing. A 633 oil immersion

objective was used to image pupal wings with cellular resolution. Imaging

was performed at 25� ± 2�C, or at 29�C using a Bachhoffer chamber.
Wing Wounding

Wings were wounded by gently scratching the pupal cuticule in the hinge

region of the wing using forceps just before imaging (at around 15 hAPF).
Image Analysis and Figures

Z projections were created with ImageJ. For image analysis, we developed

‘‘packing analyzer v2.0’’, which measures cell areas, perimeter, packing, elon-

gation, polarity, cell divisions and tracks the cells and their boundaries. Briefly,

images are segmented using the watershed algorithm (Vincent and Soille,

1991). Each watershed catchment’s basin is defined as a cell. Vertices are

defined as pixels shared between three or more cells. Cell boundaries are

identified as pixels shared by exactly two cells. Cell boundaries smaller than

three pixels are reclassified as vertices. The polygon class is determined by

counting cell vertices. Cell area is defined as the number of pixels in each

cell. Cell perimeter is defined as the sum of the distance between all the pixels

surrounding a cell. To track cells, we assign a unique identity to each in the first

movie frame. Cells are then re-identified in the next images based on their

positions and neighborhoods. Boundaries are defined by the two cells that

share them. Division orientation is defined by a line connecting the centers

of the two daughter cells, and the angle it makes with the PD axis (which is

plotted as horizontal).

Movies created using our software were compressed using FFmpeg or

Quicktime Pro. Graphs were created using Microsoft Excel, Gnuplot and
Grace. Images were vectorized using Batik. Figures were composed with

Adobe Illustrator.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures,
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