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INTRODUCTION
Sperm cells are propelled in a liquid by regular bending waves of
a whip-like cell appendage called the flagellum (Gray, 1955).
Flagellar propulsion results in complex trajectories of sperm cells.
On short time scales, the sperm head undergoes a wiggling motion
with the same frequency as the flagellar beat. This wiggling of the
sperm head is a consequence of balancing the forces and torques
generated by the beating flagellum and characterizes the ‘fine
structure’ of sperm swimming. On a time scale longer than the period
of the flagellar beat, sperm cells of many species swim along circular
or helical paths (Rikmenspoel et al., 1960; Goldstein, 1977; Brokaw,
1979; Crenshaw, 1996; Corkidi et al., 2008). The non-zero curvature
of their paths is a consequence of asymmetric flagellar waves, and
plays a vital role in sperm chemotaxis (Miller, 1985; Kaupp et al.,
2008; Friedrich and Jülicher, 2007).

How the observed complex swimming paths of sperm cells and
other microswimmers emerge from their swimming strokes is an
important question of long-standing interest (Gray and Hancock,
1955; Rikmenspoel, 1965; Brokaw, 1970; Yundt et al., 1975; Smith
et al., 2009). In pioneering work, Taylor demonstrated that self-
propulsion is possible due to purely viscous forces (Taylor, 1951).
Gray and Hancock introduced a local hydrodynamic theory of
flagellar propulsion that neglects long-range hydrodynamic
interactions and focuses on anisotropic local hydrodynamic friction
between the sperm surface and the adjacent fluid (Gray and
Hancock, 1955). This theory is commonly known as resistive force
theory. The net swimming speed predicted by this theory depends

strongly on the anisotropy ratio of flagellar friction coefficients. The
precise value of this key parameter has been subject to debate (Gray
and Hancock, 1955; Brokaw, 1970; Cox, 1970; Shack et al., 1974;
Lighthill, 1976; Brennen and Winet, 1977; Johnson and Brokaw,
1979). The theory of Gray and Hannock was later refined by
Lighthill using slender-body approximations for the thin flagellum
to include long-range hydrodynamic interactions (Lighthill, 1976).
Other groups proposed even more advanced hydrodynamic
simulation schemes (Dresdner and Katz, 1981; Elgeti and Gompper,
2008; Smith et al., 2009). For swimming in the vicinity of a solid
surface, resistive force theory provides a simple and concise
theoretical approach to flagellar propulsion. It has been used in
several studies to account for experimental data (Gray and Hancock,
1955; Rikmenspoel et al., 1960; Brokaw, 1970; Yundt et al., 1975;
Keller and Rubinow, 1976).

In the present work, we used theory and experiment to address
how the swimming path of a sperm cell is determined by the shape
of its flagellar bending waves. To test the resistive force theory
of flagellar propulsion, we accurately measured the fine structure
of the oscillatory movements of the sperm head. This approach
is novel and depends crucially on the precision of the tracking
data [see Yundt et al. for an early attempt (Yundt et al., 1975)].
To facilitate sperm tracking, we made use of the fact that sperm
cells become hydrodynamically trapped near a planar boundary
surface (Woolley, 2003): there they swim in a plane parallel to
the surface with an approximately planar flagellar beat, allowing
one to confine the analysis to two spatial dimensions. Using
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SUMMARY
The shape of the flagellar beat determines the path along which a sperm cell swims. If the flagellum bends periodically about a
curved mean shape then the sperm will follow a path with non-zero curvature. To test a simple hydrodynamic theory of flagellar
propulsion known as resistive force theory, we conducted high-precision measurements of the head and flagellum motions during
circular swimming of bull spermatozoa near a surface. We found that the fine structure of sperm swimming represented by the
rapid wiggling of the sperm head around an averaged path is, to high accuracy, accounted for by resistive force theory and
results from balancing forces and torques generated by the beating flagellum. We determined the anisotropy ratio between the
normal and tangential hydrodynamic friction coefficients of the flagellum to be 1.81±0.07 (mean±s.d.). On time scales longer than
the flagellar beat cycle, sperm cells followed circular paths of non-zero curvature. Our data show that path curvature is
approximately equal to twice the average curvature of the flagellum, consistent with quantitative predictions of resistive force
theory. Hence, this theory accurately predicts the complex trajectories of sperm cells from the detailed shape of their flagellar beat
across different time scales.
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tracked flagellar beat patterns, we could accurately reconstruct
instantaneous velocities of sperm swimming using resistive force
theory. From our analysis, we determined the drag anisotropy
ratio.

On time scales longer than the period of the flagellar beat, sperm
trajectories near a boundary surface are circular (Rikmenspoel et
al., 1960; Goldstein, 1977; Brokaw, 1979; Woolley, 2003; Kaupp
et al., 2008; Riedel-Kruse et al., 2007). The non-zero curvature of
these swimming paths was shown to correlate with an asymmetry
of the flagellar beat pattern in its plane of beating (Rikmenspoel et
al., 1960; Goldstein, 1977; Brokaw, 1979). We re-investigated the
relationship between mean flagellar curvature (characterizing
flagellar beat asymmetry) and the resulting curvature of the sperm
swimming path and found a linear dependence between the two
curvatures, with a factor of proportionality significantly larger than
one. We demonstrate that this counter-intuitive result is due to the
non-linear nature of flagellar propulsion and can be understood in
the framework of resistive force theory as a result of the finite
amplitude of the flagellar bending waves and the hydrodynamic
friction of the sperm head.

MATERIALS AND METHODS
Tangent angle representation of planar flagellar beat patterns
For sperm cells swimming close to a planar boundary surface, almost
planar beat patterns were observed with a plane of flagellar beating
approximately parallel to the boundary surface. In our analysis, we
neglected any out-of-plane component of the flagellar beat, and
considered the two-dimensional projection of the flagellar shape on
the plane of swimming. We describe the (projected) shape of the
bent flagellum at a given time t by the position vector r(s,t) of points
along the centreline of the flagellum, where s is the arc length along
the centreline (Fig.1). We express r(s,t) with respect to the material
frame of the sperm head: let r(t) be the position vector of the centre
of the sperm head and e1(t) a unit vector parallel to the long axis
of the sperm head. Additionally, we define a second unit vector
e2(t), which is obtained by rotating e1 in the swimming plane by an
angle of /2 in a counter-clockwise fashion. With this notation,
r+r1e1 corresponds to the proximal tip of the sperm head while r–r1e1

corresponds to the proximal end of the flagellum; here 2r1�10m
is the length of the head along its long axis e1. The shape of the
flagellar centreline r(s,t) at time t is characterized by a tangent angle
(s,t) for each arc length position s, 0≤s≤L, where L is the length
of the flagellum. The tangent angle measures the angle enclosed by
the vector e1(t) and the tangent vector to the flagellar centreline at
r(s,t) (see Fig.1). Note that the derivative of (s,t) with respect to
arc length s is the local curvature of the flagellar centreline. For a
regular flagellar beat pattern, the tangent angle (s,t) is a periodic
function of t with period T2/, where  is the angular frequency
of the flagellar beat. From the tangent angle (s,t), the position r(t)
of the sperm head and its material frame defined by e1(t) and e2(t),
we can reconstruct the full flagellar beat pattern as:

In our experiments with bull sperm, the tangent angle of the flagellar
wave was well described by its zeroth and the first Fourier mode
(Riedel-Kruse et al., 2007):

where ̃*1 denotes the complex conjugate of ̃1. Higher modes
contribute less than 5% to the power spectrum of the tangent angle
at all arc-length positions s. The zeroth mode ̃0 characterizes a

r(s,t) = r(t) − r1e1(t) − ducosψ (u,t)e1(t) + sinψ (u,t)e2 (t) 
0

s

∫ . (1)

ψ (s,t) ≈ �ψ 0 (s) + �ψ1(s)eiωt + �ψ1
*(s)e–iωt , (2)

time-averaged mean shape of the flagellum; whereas, the amplitude
of the first mode, �̃1�, gives the amplitude of the principal bending
wave of the flagellum.

Fig.2 shows the zeroth and first Fourier mode as a function of
arc length s along the flagellum for two representative sperm cells
(observed at different fluid viscosities). From the Fourier
decomposition, we obtain three parameters that characterize key
features of the shape of the flagellar beat. First, the mean flagellar
curvature K0 is defined by fitting a line K0s to the zeroth mode
̃0(s); K0 provides a simple measure for the asymmetry of the
mean shape of the flagellum. Note that the ideal case ̃0(s)K0s
corresponds to a mean shape of the flagellum that is curved in a
perfect arc with constant curvature K0. Second, the amplitude
parameter A0 is defined by fitting the line A0s to the absolute value
of the first mode �̃1(s)�. The ideal case �̃1�A0s corresponds to
a bending amplitude that increases linearly along the flagellum.
Third, the wavelength  of the principal flagellar bending wave
is defined by fitting the line 2s/ to the phase angle
(s)–arg̃1(s) of the (complex) first Fourier mode. The ideal case
(s)2s/ corresponds to a travelling wave with uniform
wavelength  and wave speed /(2).

Instantaneous versus effective swimming speeds
Instantaneous velocities

For planar swimming, the head of a sperm cell can move parallel
and perpendicular to its long axis, as well as rotate around an axis
normal to the plane of swimming. Thus, planar sperm swimming
is characterized by three degrees of freedom. We characterize the
translational motion of the sperm head with respect to the head’s
material frame introduced in Fig.1 by time-dependent velocity
components v1(t) and v2(t) such that:

r(t)  v1(t)e1(t) + v2(t)e2(t) . (3)

Here dots denote time derivatives. Rotation of the sperm head is
characterized by an instantaneous angular speed (t) such that:

e1(t)  (t)e2(t) , 

e2(t)  –(t)e1(t) . (4)

Effective net speeds
In experiments with bull sperm cells, the centre of the sperm head
moved along a complex trajectory r(t) that wiggled around an
averaged path r(t) (Gray, 1955; Rikmenspoel, 1965) (Fig.3). The
averaged path r(t) describes the effective net motion of the whole

e2(t)

10 μm
r(s,t)

ψ(s,t)

s

e1(t)

r(t)

Fig.1. Snapshot of a beating bull sperm (at a time t). We chose a material
frame for the sperm head with orthonormal vectors e1(t) and e2(t) such that
e1(t) is parallel to the long axis of the head. The shape of the flagellum is
characterized by the tangent angle (s,t) as a function of arc length s:
(s,t) is the angle enclosed by the long axis of the sperm head and the
local tangent of the flagellar centreline at position r(s,t).
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sperm cell on a coarse-grained time scale, which averages over
several beat cycles. This effective motion is characterized by
effective translational and rotational speeds, vs/t and �/t,
respectively. Here the time interval tnT comprises several beat
cycles, whereas s measures the distance travelled along the path
r and  is the net rotation of the sperm head. It should be
emphasized that v is not simply the time average of the instantaneous
parallel velocity v1(t), but has to be determined from the averaged
swimming path r(t). The curvature of the averaged path r is given
by 1/r0�/v where r0 is the radius of the circular path r. In the
literature, v|r| is sometimes referred to as curvilinear velocity (VCL)
and v|r· | as velocity along the averaged path (VAP).

Reconstructing instantaneous velocities from flagellar beat
patterns

The swimming of sperm cells is characterized by low Reynolds
numbers implying that inertial forces are negligible (Purcell, 1977;
Landau and Lifshitz, 1987). We compute instantaneous swimming
velocities from recorded flagellar beat patterns in the limit of zero
Reynolds number using the resistive force theory introduced by Gray
and Hancock (Gray and Hancock, 1955). This local hydrodynamic
theory neglects long-range hydrodynamic interactions and assumes
that the hydrodynamic drag force density f(s) that acts on a
cylindrical portion of the filament at arc length s is linear in the
local velocity components v�(s,t)[r(s,t)�t(s,t)]t(s,t) and v�(s,t)
r(s,t)–v�(s,t) parallel and perpendicular to the filament centreline,
respectively:

f(s,t)  �v�(s,t) + �v�(s,t) . (5)

Here the dot denotes differentiation with respect to time t and t(s,t)
is the tangent vector of the flagellar centreline at position r(s,t).
Note that the proximal tip of the flagellum r(s0,t) moves in
synchrony with the head centre, i.e. v�(s0,t)v1(t)e1(t) and
v�(s0,t)[v2(t)+r2(t)]e2(t), as the sperm head is assumed to be
rigid. One can envisage the approach of resistive force theory by
approximating the bent filament as a sequence of straight rods
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connected at their ends and then computing the drag force density
for the individual rods.

Force and torque balance
Since no external forces are acting on a freely swimming sperm
cell (Gray and Hancock, 1955; Jülicher and Prost, 2009), the total
hydrodynamic drag force F acting on the swimming sperm cell at
time t must vanish:

F(t) = Fhead (t) + dsf
0

L

∫ (s,t) = 0 . (6)
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Fig.2. Fourier representation of the flagellar beat of a swimming
bull sperm cell. (A–C) Different Fourier modes of the tangent
angle (s) for the case of normal viscosity 0.7mPas (solid
circles) or increased viscosity 10mPas (open circles): panel A
shows the zeroth Fourier mode ̃0(s) which characterizes the
asymmetry of the mean shape of the flagellum; panel B shows
the absolute value �̃1(s)� of the first Fourier mode which
characterizes the amplitude of the principal flagellar bending
wave; and finally panel C shows the phase angle f(s)–arg̃1(s)
of the first Fourier mode which characterizes the wave speed of
the principal flagellar wave. By fitting straight lines to these
experimental data, we derive three parameters which
characterize the shape of the flagellar beat; these parameters are
mean flagellar curvature K0 (A), the amplitude rise A0 of the
principal flagellar wave (B), and the wavelength  of this wave
(C). The linear fits are shown as solid and dashed red lines for
the case of normal and increased viscosity, respectively.
(D)Shown in red are flagellar shapes reconstructed from the
zeroth and first Fourier component of the tangent angle (s,t) for
the case of normal viscosity at subsequent times 4ms apart. For
comparison, the experimentally observed flagellar shape is
shown in black for eight subsequent frames (also 4ms apart).

BA

20 μm 2 μm

e1(t)

r(t)
r–(t)

r–(t)

r(t)

Fig.3. Trajectory r(t) of the centre of the head of a swimming bull sperm
cell (black) and averaged swimming path r(t) (red); see also supplementary
material Movie1. (A)The motion of the head is the superposition of a
uniform motion and a periodic movement with the frequency  of the
flagellar beat. Averaging over the period of the flagellar beat yields the
averaged swimming path. In the present case, the averaged swimming
path is a circular trajectory. For comparison, a schematic drawing of a
sperm cell is shown to scale in grey. (B)Magnified view of the rectangular
portion of panel A. Black dots indicate the measured positions of the sperm
head; the black line interpolates between the data points. Grey arrows
indicate the vector e1 parallel to the long axis of the head. The sampling
rate was 250framess–1.
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Here Fhead is the hydrodynamic drag force of the head. Similarly,
the total torque M acting on the sperm cell must be zero as well:

where Mhead is the hydrodynamic torque acting on the pivoting head.
For planar swimming in a plane spanned by the vectors e1(t) and
e2(t), we obtain three independent scalar equations F(t)�e1(t)0,
F(t)�e2(t)0 and M(t)�[e1(t)�e2(t)]0. Using these three equations,
we can compute the three instantaneous velocities v1(t), v2(t) and
(t) of the sperm head at any instance t in time provided the tangent
angle (s,t) and its time derivative . (s,t) are known. These predicted
velocities will then be compared with directly measured
instantaneous velocities (Fig.4).

Drag force of the head
To describe sperm swimming accurately, the hydrodynamic drag
force Fhead and the torque Mhead of the moving head must be
considered (Johnson and Brokaw, 1979). In our numeric calculations,
we approximate the shape of the sperm head as a spheroid and use
Perrin’s formulas to express the hydrodynamic drag force and torque
as Fhead1v1e1+2v2e2 and Mheadrote1�e2 (Perrin, 1934). We use
2r110m for the length of the head along the long axis e1 and 5m
for the length along the short axis e2 and obtain 1�40.3pNsmm–1,

=M(t) Mhead (t) + dsf
0

L

∫ (s,t) × r(s,t) = 0 , (7)

2�46.1pNsmm–1 and rot�0.84pNms. These friction coefficients
correspond to motion far from any boundary surface and thus only
serve as a reference. For the case studied here, the proximity of the
boundary surface is likely to increase the friction coefficients. Note
that within the framework of resistive force theory only the ratios
of friction coefficients play a role in determining swimming
velocities.

High-speed videoscopy of swimming bull sperm
Sperm cells were obtained as frozen samples (IFN Schönow,
Germany) and prepared as described previously (Riedel-Kruse et
al., 2007). Swimming of sperm cells was studied in aqueous
solution of viscosity �0.7mPas at 36°C in a shallow observation
chamber of 1mm depth using phase-contrast microscopy (Axiovert
200M, Zeiss, Jena, Germany). Sperm swimming paths were
recorded with a high-speed camera (FastCam, Photron, San Diego,
CA, USA) at a rate of 250framess–1 for a duration of 4s in each
case. Movies were analysed using custom-made Matlab routines
(The MathWorks, Inc., Natick, MA, USA). For each frame, the
position and orientation of the sperm head, as well as the tangent
angle (s,t) at each tail point (relative to the orientation of the
head) were computed. The precision of the automated tracking of
the flagellum was of the order of 0.1pixels, corresponding to
70nm. The position of the elongated sperm head could be
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Fig.4. Measured instantaneous velocities of the head of a bull sperm cell swimming in a plane close to a boundary surface (black). Planar motion of the
rigid sperm head is characterized by three velocities: translational velocities v1 and v2 parallel and perpendicular to the long axis of the sperm head, and a
rotational velocity  describing rotations in the plane of swimming. All swimming velocities oscillate with the frequency  of the flagellar beat as reflected by
corresponding power spectra S on the right (blue graphs). We used the recorded beat pattern to predict the swimming velocities using resistive force theory
as specified in the main text (‘Reconstructing instantaneous velocities from flagellar beat patterns’) (red curves). We find good agreement between the time
series of directly measured velocities and the corresponding time series of velocities reconstructed from the flagellar beat pattern. The tangential and normal
friction coefficients � and � used for reconstructing swimming velocities were obtained by a global fit (see ‘Determining friction coefficients by comparing
instantaneous velocities’ above). The experimental errors in determining instantaneous velocities are of the order of 150ms–1, 30ms–1 and 15rads–1 for
v1, v2 and , respectively.
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determined in the direction parallel to its long axis with a precision
of the order of 0.5pixels, corresponding to 350nm (Riedel-Kruse
et al., 2007). In a final step of data processing, the tracking data
for the individual frames were smoothly interpolated in time; see
the black trajectory in Fig.3B.

In a second series of experiments, we studied sperm swimming
at an increased viscosity of �10mPas in an aqueous solution of
Ficoll 400 (Sigma, #F-4375; St Louis, MO, USA). Viscosities were
measured with a viscometer (Brookfield, Model DV-I +; Lorch,
Germany) at a temperature of 36°C. Aqueous solutions of the highly
branched polymer Ficoll 400 approximately behave as Newtonian
fluids (Hunt et al., 1994).

Determining friction coefficients by comparing instantaneous
velocities

Using high-precision tracking data for the position and orientation
of the sperm head of swimming bull sperm cells, the instantaneous
translational and rotational velocity components v1(t), v2(t) and (t)
as defined in Eqns3 and 4 were measured. An example of the
resulting time series of instantaneous velocities is shown in Fig.4.
In the same experiments, the flagellar beat pattern was recorded.
We used these data to reconstruct the instantaneous velocities using
a simple local hydrodynamics theory as specified above
(‘Reconstructing instantaneous velocities from flagellar beat
patterns’). By a global least-squares fit of directly measured and
reconstructed time series, we were able to determine the normal
and the tangential friction coefficients of the flagellum, � and �,
respectively. The results are summarized in Table1; the means ±
s.d. are �0.69±0.62fNsm–2 and �/�1.81±0.07.

Within the framework of resistive force theory, only the ratios
of friction coefficients play a role in determining velocities.
Therefore, the absolute values for � presented in Table1 are
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determined relative to the friction coefficients 1 and 2 of the head
only, estimated above (‘Reconstructing instantaneous velocities from
flagellar beat patterns’). The boundary surface increases the
hydrodynamic friction of the sperm head, the increase being larger
the closer the head is to the surface. Because we neglected the
boundary in estimating the friction coefficients for the head, we are
underestimating the friction coefficients of the flagellum. It has been
reported that the distances between sperm cells swimming near a
boundary surface and the surface itself are broadly distributed (with
mean and standard deviation of the order of 10m) (Rothschild,
1963; Winet et al., 1984). Such a variable distance to the surface
could account for the observed variability in the fit results for the
coefficients of the flagellum.

Swimming at increased viscosity
In the case of high viscosity, �10mPas, we observed flagellar beat
patterns that were different from the case of normal viscosity
�0.7mPas studied above. Both the frequency of the flagellar beat
and the wavelength of the flagellar bending waves were reduced,
resulting in lower values for the net speed v of translational motion
(see Table2). Qualitatively similar results had been obtained earlier
for invertebrate spermatozoa (Brokaw, 1966). Additionally, we report
on the mean flagellar curvature K0 as well as the net angular speed
� and find that these quantities are also reduced in the case of high
viscosity.

Instantaneous velocities were reduced by a factor of about 10 in
the case of high viscosity compared with the case of normal
viscosity. This resulted in larger relative errors of the velocity data,
and data quality was not sufficient to reliably compare time series
of instantaneous velocities and determine friction coefficients. In
the limit of zero Reynolds number, theory predicts that all friction
coefficients scale linearly with viscosity.

Table 1. Experimentally determined friction coefficients and net swimming speeds

Experiment/theory

Sperm no. � (fNsm–2) �/� v (ms–1) � (rads–1) v �

1 1.93±0.08 1.79±0.04 149±3 1.9±0.4 5% 35%
2 0.45±0.06 1.76±0.04 124±8 3.4±0.3 3% 18%
3 0.36±0.03 1.79±0.03 97±3 3.3±0.4 5% 14%
(4) (0.86±0.04) (1.43±0.05) (111±5) (3.7±0.5) (18%) (24%)
5 0.38±0.04 1.89±0.02 105±8 4.1±0.4 6% 5%
6 0.31±0.04 1.87±0.04 94±8 3.3±0.5 3% 22%
7 0.73±0.14 1.72±0.06 141±11 2.2±0.3 8% 23%
ø 0.69±0.62 1.81±0.07 118±23 3.0±0.9 6% 19%

Time series of instantaneous velocity components recorded from seven different bull sperm cells were compared with corresponding time series reconstructed
from the flagellar beat pattern tracked in the same experiment to determine the normal and parallel friction coefficients of the flagellum, � and �,
respectively. Errors denote standard deviation (N8, time series of duration 0.5s per sperm cell). Additionally, we compared net speeds v and � of
progression along an averaged swimming path with corresponding values vtheory and �theory predicted from the flagellar beat pattern using the friction
coefficients determined by the global fit. Displayed are the directly measured speeds v and � as well as the root-mean-squared deviations v and �
between measured and reconstructed speeds with v2�(vtheory/v–1)2�. For �, an analogous definition is used. When fitting the friction coefficients for sperm
no. 4, the residual sum of squares was 50–100% larger than for the other cases; we therefore excluded sperm no. 4 in the further analysis. Data from sperm
no. 5 were used to prepare Figs2, 3 and 4 as well as supplementary material Movie1.

Table 2. Flagellar beat patterns change with fluid viscosity

Viscosity  (mPas) T (ms) K0 (radmm–1) A0 (radmm–1)  (m) v (ms–1) � (rads–1) N

0.7 (water at 36°C) 32±2 13.1±4.8 14.6±1.2 66±8 117±22 3.1±0.8 7
10 54±13 6.6±3.2 12.0±1.0 39±3 43±13 0.6±0.3 6

Displayed are parameters characterizing the flagellar beat pattern of bull sperm cells swimming close to a planar boundary surface for two values of fluid
viscosity. 

Discription of parameters: T, period of flagellar beat; A0, amplitude rise of flagellar bending wave; , wavelength of flagellar bending wave; K0, mean flagellar
curvature; N, number of sperm cells analysed. Additionally, net speeds of translational and rotational motion, v and �, are shown.
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RESULTS
Instantaneous swimming velocities oscillate with the

frequency of the flagellar beat
Our tracking experiments with bull sperm cells swimming near a
planar boundary surface reveal the fine structure of their swimming:
the centre of the sperm head followed an intricate trajectory r(t)
that wiggles around an averaged path r(t) (see Fig.3). With respect
to its own material frame, the motion of the sperm head is
characterized by three time-dependent velocities: translational
velocities v1 and v2 parallel and perpendicular to the long axis of
the sperm head, and a rotational velocity  describing rotations in the
plane of swimming. Fig.4 shows these (instantaneous) swimming
velocities for the motion of the sperm head (black curves). All three
swimming velocities oscillate with the frequency  of the flagellar
beat as is reflected by the corresponding power spectra on the right
of Fig.4 (blue graphs).

Theory predicts a fundamental difference between the velocity
component v1 and the other two components v2 and , as only the
last two change their sign when the flagellar beat pattern is reflected
along the long axis e1 of the sperm head. Based on this symmetry
argument, we infer that in the limit of small tangent angles, v1 should
be a superposition of a non-zero average value and oscillatory modes
with frequencies  and 2 (see Eqn A3 in the Appendix). Note that
the occurrence of oscillations with twice the flagellar frequency is
a result of the non-linear nature of flagellar propulsion and is not
due to higher modes of the flagellar oscillations for the case
considered here. We find confirmation of these theoretical
predictions in our experimental data: in Fig.4, v1 indeed varies
around a non-zero average value. Also, in the power spectrum Sv1
of v1, the power of the Fourier peak at frequency 2 amounts to a
considerable fraction v1�15% of the power of the Fourier peak at
frequency : oscillations with the beat frequency and twice the beat
frequency superimpose. This feature was even more pronounced in
the case of increased fluid viscosity with v1107±54% (mean±s.d.,
N6) compared with the case of normal viscosity with v122±29%
(N7). Analogously defined power ratios for the velocity
components v2 and  amount only to a few per cent.

Experimental determination of the drag anisotropy ratio
We used the recorded beat pattern to predict instantaneous swimming
velocities using a simple local hydrodynamics theory (resistive force
theory) as detailed above (‘Reconstructing instantaneous velocities
from flagellar beat patterns’). By adjusting the ratio between the
normal and the tangential flagellar friction coefficient, � and �, we
obtained good agreement between the predicted velocities and the
measured ones (compare black and red curves in Fig.4, and see
Table1). Remarkably, for 6 out of 7 sperm trajectories analysed, the
drag anisotropy ratio �/� determined by the fit fell into a rather
narrow range �/��1.81±0.07 (mean±s.d., N6).

The success of resistive force theory in predicting instantaneous
swimming velocities is impressive, taking into account the fact that
this theory neglects long-range hydrodynamic interactions between
different parts of the moving flagellum. In our experiments, the long-
range hydrodynamic interactions are partially screened by the
proximity of the boundary surface of the observation chamber, which
is much less than the wavelength of flagellar bending waves
(Rothschild, 1963; Winet et al., 1984). Therefore, it is still possible
that long-range hydrodynamic interactions play a significant role in
determining sperm swimming paths in open water far from surfaces.
Note also, that more sophisticated hydrodynamic theories are needed
to explain why sperm cells become trapped near boundary surfaces
in the first place (Elgeti and Gompper, 2008; Smith et al., 2009).

The precise value of the drag anisotropy ratio has been subject to
debate (Gray and Hancock, 1955; Brokaw, 1970; Cox, 1970; Shack
et al., 1974; Lighthill, 1976; Brennen and Winet, 1977; Johnson and
Brokaw, 1979). In their original work, Gray and Hancock used the
value �/�2, which is valid for a flagellum far from any boundary
surface in the limit of a vanishing diameter of the flagellum. A drag
anisotropy ratio of 2 also applies for a slender cylinder of finite
thickness that moves parallel to a surface (Hunt et al., 1994). For
flagella of finite thickness far from a surface, various approximations
provided values of the drag anisotropy ratio in the range
�/�1.5–1.8 (Cox, 1970; Shack et al., 1974; Lighthill, 1976;
Brennen and Winet, 1977); when applied to the flagellar parameters
of bull sperm cells, the most accurate approximations (Shack et al.,
1974; Lighthill, 1976) give �/�1.77. An early attempt to
experimentally determine the drag anisotropy ratio from the net
angular speed � for swimming near a boundary surface yielded
�/��1.8 (no error bars given) (Brokaw, 1970). Using a t-test, we
calculate the 95% confidence interval from our six measurements
of the anisotropy ratio to be [1.73,1.88]. Thus, our result is consistent
with the earlier experimental value and also close to the value of
1.77 estimated previously for swimming far from surfaces.

How curved swimming paths arise from asymmetric beat
patterns

The recorded flagellar beat pattern of bull sperm cells exhibits a
pronounced asymmetry in the plane of beating, with a mean shape
of the flagellum that has non-zero curvature (see Fig. 2A). To
characterize flagellar asymmetry, we consider the mean flagellar
curvature K0, which is computed by fitting a line K0s to the zeroth
Fourier mode ̃0(0) of the tangent angle (s,t) (see ‘Tangent angle
representation of planar flagellar beat patterns’ above).

As a consequence of the asymmetric flagellar beat, the resulting
averaged swimming path r is not straight, but has non-zero curvature
. Fig.5 displays experimental data correlating mean flagellar
curvature K0 and path curvature  for 13 bull sperm cells swimming
close to a boundary surface in normal and high viscosity solutions.
We find that path curvature  scales approximately linearly with
mean flagellar curvature K0, with a proportionality factor of 2.2.
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Fig.5. A curved mean shape of the flagellum results in curved sperm
swimming paths. Shown is path curvature  versus mean flagellar
curvature K0 for 13 different bull sperm cells swimming close to a planar
boundary surface. Experiments were performed either at normal viscosity
�0.7mPas (solid circles, numbers correspond to Table1) or at an
increased viscosity �10mPas (open circles). Approximately, we find that
path curvature  scales linearly with mean flagellar curvature K0 with a
proportionality factor of about 2.2.
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The linear dependence accords with theoretical predictions in the
limit of small tangent angles (see Appendix). The fact that we find
a factor of proportionality different from one reflects the non-linear
character of flagellar self-propulsion at low Reynolds numbers:
numerical simulations suggest that a ratio /K0 significantly larger
than one is a result of a finite amplitude of the flagellar beat as well
as the presence of the hydrodynamic drag of the sperm head.
Assuming a simplified beat pattern with tangent angle given by:

(s,t)  K0s + 2A0scos(t – 2s/) , (8)

we numerically find an approximately linear dependence between
mean flagellar curvature K0 and path curvature  provided the other
parameters are held fixed (Fig.6A). We find that the factor of
proportionality between K0 and  depends on the amplitude parameter
A0 (see Fig.6B). Increasing the friction coefficients of the sperm head
also increased this factor. In the range of experimentally observed
amplitude parameters A0�10–16radmm–1, we obtain proportionality
factors in the range d/dK0�1.9–2.4 consistent with the value
/K0�2.2 found by fitting experimental data. The proportionality
factor is accounted for by the observed beat amplitude and thus
eventually by the intrinsic non-linearity of the propulsion mechanism.

Flagellar curvature is an emergent property generated by
active processes

We recorded planar flagellar beat patterns of bull sperm cells
swimming at two different fluid viscosities, �0.7mPas and
�10mPas. Surprisingly, the mean flagellar curvature K0 was
reduced by a factor of two in the case of increased viscosity (see
Table2). This observation suggests that the mean shape of the
flagellum is not solely determined by the asymmetric architecture
of the passive flagellar components, which are not expected to
change when the external viscosity is increased. Rather, the
dependence of mean flagellar curvature on fluid viscosity suggests
that flagellar asymmetry is an emergent property that depends on
active processes within the flagellum.

DISCUSSION
In this paper, we used high-speed videoscopy and quantitative image
analysis to obtain high-precision tracking data with sub-micrometre
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resolution for bull sperm cells swimming close to a planar boundary
surface. From these tracking data, we computed the time series of
instantaneous velocities of the sperm head which reveal insights
into the fine structure of sperm swimming. The instantaneous
velocities can be accurately reconstructed from the shape of the
flagellar beat using resistive force theory. Furthermore, resistive
force theory also accounts for the relationship between path
curvature and mean flagellar curvature, which is characterized by
a non-unitary factor of proportionality. Thus, this theory accounts
for the swimming behaviour of sperm cells near a boundary surface,
both at the sub-micrometre scale of wiggling head movements and
also on a coarse-grained length scale on which sperm cells follow
circular paths. The theory accounts for the non-linear nature of
flagellar propulsion that is evident on all length scales. On the small
scale, we observe, for example, a peculiar spectral feature of one
of the instantaneous velocities (an enhanced second Fourier mode),
which was predicted by our theoretical considerations. On the large
scale, we accounted quantitatively for the relationship between path
curvature and mean flagellar curvature.

Like the bull sperm cells studied here, sperm cells from many
other species also swim along circular paths near surfaces
(Rikmenspoel et al., 1960; Goldstein, 1977; Brokaw, 1979;
Woolley, 2003; Kaupp et al., 2008; Riedel-Kruse et al., 2007), or
even move along helical paths in three-dimensional space far from
any boundary surface (Crenshaw, 1996; Corkidi et al., 2008). For
sea urchin sperm cells, which have to find their eggs in open water,
curved swimming paths are at the core of a chemotaxis mechanism
that guides these sperm cells to the egg [see Kaupp et al. and
Friedrich and Jülicher, and references therein (Kaupp et al., 2008;
Friedrich and Jülicher, 2007)]. The observed curved swimming
paths are a consequence of chiral propulsion by asymmetric
flagellar bending waves. The asymmetry of the bending waves is
in turn rooted in the chiral architecture of the sperm flagellum
(Lindemann, 1994; Hilfinger and Jülicher, 2008), which possesses
a defined handedness (Afzelius, 1999). Much progress has been
made in recent years to theoretically explain the symmetric part
of flagellar bending waves (Riedel-Kruse et al., 2007; Brokaw,
2008). However, why these planar flagellar waves are asymmetric
is not fully understood. A steady-state activity of the molecular
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corresponding to the black, red and blue solid curve, respectively (numeric results assuming the simple flagellar beat pattern given in Eqn8). Dashed lines
correspond to a perturbation calculation valid to linear order in K0. The inset shows example beat patterns corresponding to the data points marked by a
symbol. (B)The factor of proportionality between mean flagellar curvature K0 and path curvature  depends on the amplitude A0 of the flagellar beat (red
curve). (The proportionality factor is computed as d/dK0/K00, which corresponds to the slope of the dashed curves in A.) For comparison, we also show the
case of a headless sperm (black) and a case where the dimensions of the head have been doubled (blue). The grey region indicates the range of
experimentally observed beat amplitudes. We used parameters in accordance with experimental data (see Table1): �/�1.81 (unless otherwise stated),
�0.69fNsmm–2, flagellar wavelength L. The lower/upper dashed red curve corresponds to alternative values for the drag anisotropy ratio �/�1.81±0.07.
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motors in the flagellum will generate pre-twist of the flagellum
(Hilfinger and Jülicher, 2008), which may be at the origin of the
observed asymmetry. Interestingly, we find here that the mean
curvature of the flagellum depends on fluid viscosity. Additionally,
previous work has shown that the intraflagellar calcium
concentration is a key player in regulating the asymmetry of the
flagellar beat (Brokaw, 1979; Cook et al., 1994; Böhmer et al.,
2005; Wood et al., 2005). All these findings suggest that the mean
curvature of the flagellum depends on active processes within the
flagellum.

In this manuscript, we obtained the shape of the flagellar beat
directly from the experiments and related these beat patterns
quantitatively to the complex swimming paths of sperm cells. As
such, our study contributes to explaining cell motility from basic
swimming movements, which in turn are determined by the
molecular architecture of the flagellar swimming apparatus.

APPENDIX
Flagellar propulsion in the limit of small tangent angles

For any periodic flagellar beat pattern with angular frequency ,
the instantaneous velocities v1(t), v2(t) and (t) are periodic functions
in time of period T2/. We consider the most general beat pattern
for which the tangent angle is characterized by its zeroth and first
Fourier mode:

(s,t)  0̃0(s) + 1̃1(s)exp(it) + cc , (A1)

where cc denotes the complex conjugate. Here ̃0(s) and ̃1(s) are
arbitrary functions of the arc length s, which describe the mean shape
of the flagellum and the complex amplitude of the flagellar wave,
repectively. The dimensionless scaling factors 0 and 1 allow
adjustment of the mean flagellar curvature K0 and the amplitude
parameter A0; they conveniently play the role of small parameters
in the perturbation calculation given below. For the simple
flagellar beat given by Eqn8, we would have ̃0(s)s/L,
̃1(s)s/Lexp(–2is/) as well as 0K0L, 1A0L. We can expand
the instantaneous swimming velocities in the asymmetry factor 0

and the amplitude factor 1 as follows:

Under a reflection of the beat pattern, r–, the velocity component
v1(t) remains unchanged, whereas v2(t) and (t) change their sign.
Thus, all terms in the expansion for v1(t) for which k+l is odd must
vanish by symmetry; likewise, all terms in the expansions for v2(t)
and (t) with even k+l are zero. Moreover, for any non-zero term
in the expansions, the mode number |m| is always smaller than the
amplitude number l and has the same parity. Thus, to leading order,
the above expansions read:

Averaging over one beat cycle, we find for the net speed of flagellar
propulsion:

ν1(t) = ε0
k

k ,l ,m
∑ ε1

l Xk ,l ,m(ψ 0 ,ψ1)exp(imω t) ,

ν2 (t) = ε0
k

k ,l ,m
∑ ε1

lYk ,l ,m(ψ 0 ,ψ1)exp(imω t) ,

Ω1(t) = ε0
k

k ,l ,m
∑ ε1

l Zk ,l ,m(ψ 0 ,ψ1)exp(imω t) . (A2)

ν1(t) = ε1
2 ( X0,2,0 + X0,2,2 exp 2iω t + cc) +

ε0ε1 ( X1,1,1 exp iω t + cc) + O(ε0
3ε1 ,ε0

2ε1
2 ,ε0ε1

3,ε1
4 ) , 

ν2 (t) = ε1 (Y0,1,1 exp iω t + cc) + O(ε0ε1
2 ,ε1

3) ,

Ω(t) = ε1 (Z0,1,1 exp iω t + cc) + O(ε0ε1
2 ,ε1

3) . (A3)

v̄ = ε1
2[ X0,2,0 + 2 Im Y0,1,1Z0,1,1 / ω ] + O(ε0

2ε1
2 ,ε1

4 ) , (A4)*

The net rotational velocity is given by a higher order coefficient:

Note that the translational and rotational speed scale with the square
of the beat amplitude 1

2, whereas the instantaneous speeds v2(t) and
(t) scale linearly with 1. This scaling behaviour is a hallmark of
self-propulsion at low Reynolds numbers (Shapere and Wilczek,
1987; Lauga, 2007). Using force and torque balance Eqns6 and 7,
the coefficients Xk,l,m, Yk,l,m and Zk,l,m can be expressed as a linear
combination of (products of) integrals involving ̃0 and ̃1. For the
leading order coefficients, we find:

where we have introduced the dimensionless integrals:

For the sake of illustration, we study as an example the simple
flagellar beat pattern whose tangent angle is given by Eqn8. For
simplicity, we neglect the hydrodynamic drag force of the sperm
head, i.e. 120, rot0. We also assume that the wave number n
is an integer. Then the coefficients relevant for the net translational
and rotational speed, v and �, respectively, are given by:

and Y0,1,12L2(9+in)/(2n)3, Z0,1,112L(3+in)/(2n)3, X1,1,10.
The prefactors v, 

(k) depend on the wave number n and read
v(2/3)–2–92, 

(0)(3/5)–(9/2)2–2163, 
(1)–(2/3)+2+92,


(–1)(1/15)–6+(3/2)2+4323, where we have used the short-hand

notation 1/(n)2.
We remark on some properties of the EqnsA4, A5 and A7 for

the net velocities v and �: the direction of forward propulsion is
opposite to the propagation direction of the flagellar travelling wave,
provided �>� (Brennen and Winet, 1977). In the case of isotropic
drag coefficients ��, the translational speed v vanishes [see Becker
et al. for a general proof of this fact (Becker et al., 2003)]. The sperm
cell will swim along a circular swimming path with a curvature �/v

Ω̄ = ε0ε1
2Z O1,2,0 + (ε0ε1

4 ε0
3, ε1

2 ) . (A5)

   

Y0,1,1

Z0,1,1

⎛

⎝⎜
⎞

⎠⎟
= iω

ξ2 / ξ⊥ + L,            − L2 / 2

       L2 / 2,ξrot / ξ⊥ − L3 / 3

⎛

⎝⎜
⎞

⎠⎟

−1

. 
L2[J0,1,1

(0) − J0,1,1
(1) ]

L3[J0,1,1
(1) − J0,1,1

(2) ] / 2

⎛

⎝
⎜

⎞

⎠
⎟ ,

(ξ1 + Lξ� ) X0,2,0 = 2(ξ⊥ − ξ� )LRe[iω LI0,2,0 + J 0,1,1
(0) Y0,1,1

* − LJ 0,1,1
(0) Z0,1,1] ,

−2ξ�L2Re[(J0,1,1
(0) − J0,1,1

(1) )C0,1,1
* ] ,

(ξ1 + Lξ� ) X1,1,1 = (ξ⊥ − ξ� )L[−iω LI1,1,1 + J1,0,0
(0) Y0,1,1 − LJ1,0,0

(1) Z0,1,1]

−ξ�L2[(J1,0,0
(0) − J1,0,0

(1) )Z0,1,1 + iωJ1,1,1
(0) − J1,1,1

(1) )] , (A6)

1,0,0
(k ) = ds

0

L

∫ sk �ψ 0 (s) / Lk+1 ,J

0,1,0
(k ) = ds

0

L

∫ sk �ψ1(s) / Lk+1 ,J

1,1,1
(k ) = ds

0

L

∫ sk �ψ 0 (s) �ψ1(s) / Lk+1  ,J

I0,2,0 = ds
0

L

∫ �ψ1(s)   du
0

s

∫ �ψ*
1(u) / L2 ,

    
 I1,1,1 = ds

0

L

∫ �ψ0 (s) du
0

s

∫ �ψ1(u) / L2 ,

X0,2,0 = Θv
ξ⊥

ξ�
− 1
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⎞
⎠⎟

L

nT
− 2 Im Y0,1,1Z0,1,1
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(0) + ΘΩ
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⎤

⎦
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1

nT
 , (A7)
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that is proportional to the curvature K0 of the mean shape of the
flagellum. A similar result was found by Keller and Rubinow (Keller
and Rubinow, 1976). Even for a symmetric beat pattern with K00,
the instantaneous rotational speed (t) oscillates with the frequency
 of the flagellar beat. Of course, the averaged rotational speed �
vanishes in this case, �0, as is required by symmetry. The case of
a symmetric flagellar beat with K00 was first addressed by Taylor,
and Gray and Hancock (Taylor, 1952; Gray and Hancock, 1955) and
re-examined by Shack and colleagues (Shack et al., 1974). Note that
Taylor, and Gray and Hancock (implicitly) imposed the constraint
(t)0 for their calculation (Taylor, 1952; Gray and Hancock, 1955).
With this constraint, the expressions for the translational speeds vj(t)
look different. If we had imposed the constraint (t)0 in our
calculation, we would find a different prefactor v(2/3)–/2 for
the net translational speed. These differences in the expression for
v highlight the role of constraints in microswimming problems.

LIST OF SYMBOLS AND ABBREVIATIONS
Shape of the flagellar beat
A0 amplitude parameter of flagellar bending wave – defined as

slope of ̃1(s)
K0 mean flagellar curvature – defined as slope of ̃0(s)
r(s,t) centreline of sperm flagellum as function of arc length s and

time t
 wavelength of (principal) flagellar bending wave
(s,t) tangent angle characterizing flagellar shape
̃0(s) zeroth Fourier mode of  (characterizing time-averaged shape 

of flagellum)
̃1(s) first Fourier mode of  (characterizing symmetric part of flagellar

waves)
, T2/ angular frequency and period of the flagellar beat

Dynamics of sperm swimming
e1(t), e2(t) unit vectors parallel and perpendicular to the long axis of the

sperm head
r(t) position of the center of the sperm head as function of time t
r(t) coarse-grained sperm swimming path that averages over sub-

cycle motion
v1(t), v2(t) instantaneous speed of sperm head for motion in the direction

e1, e2, respectively
v, � net translational and angular speed along the path r
 curvature of coarse-grained swimming path r
(t) instantaneous angular speed of the sperm head (in the plane of

swimming)

Hydrodynamic drag
f(s,t) hydrodynamic drag force density along the flagellar length
�, � effective hydrodynamic drag coefficients of the sperm

flagellum for motion parallel and perpendicular to its
centreline, respectively
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