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Summary

Background: Coupled biological oscillators can tick with the
same period. How this collective period is established is
a key question in understanding biological clocks. We explore
this question in the segmentation clock, a population of
coupled cellular oscillators in the vertebrate embryo that
sets the rhythm of somitogenesis, the morphological segmen-
tation of the body axis. The oscillating cells of the zebrafish
segmentation clock are thought to possess noisy autonomous
periods, which are synchronized by intercellular coupling
through the Delta-Notch pathway. Here we ask whether
Delta-Notch coupling additionally influences the collective
period of the segmentation clock.
Results: Using multiple-embryo time-lapse microscopy, we
show that disruption of Delta-Notch intercellular coupling
increases the period of zebrafish somitogenesis. Embryonic
segment length and the spatial wavelength of oscillating
gene expression also increase correspondingly, indicating an
increase in the segmentation clock’s period. Using a theory
based on phase oscillators in which the collective period
self-organizes because of time delays in coupling, we estimate
the cell-autonomous period, the coupling strength, and the
coupling delay from our data. Further supporting the role of
coupling delays in the clock, we predict and experimentally
confirm an instability resulting from decreased coupling delay
time.
Conclusions: Synchronization of cells by Delta-Notch
coupling regulates the collective period of the segmentation
clock. Our identification of the first segmentation clock period
mutants is a critical step toward a molecular understanding of
temporal control in this system. We propose that collective
control of period via delayed couplingmay be a general feature
of biological clocks.

Introduction

Many biological clocks are composed of coupled autonomous
oscillators [1]. Generally, a population of oscillators with
differing autonomous periods can synchronize through
coupling, choosing a collective period that is the average of
the autonomous periods of individual oscillators [2]
(Figure 1A). Examples are coupled chemical systems [3],
chirping crickets [4], and flashing fireflies [5]. However, if
a significant delay occurs in the coupling, the dynamic effects
*Correspondence: oates@mpi-cbg.de
of the delays may result in novel and complex synchronization
phenomena [6, 7]. In particular, the collective period can differ
significantly from the average period of autonomous oscilla-
tions (Figure 1A). Although this has been studied in mathemat-
ical models, and in engineered systems of coupled lasers [8],
examples of this scenario have not been identified in biological
systems.
The zebrafish segmentation clock may provide an example

of such a system. This clock is a population of coupled cellular
genetic oscillators in the embryo that drives the sequential
subdivision of the presomitic mesoderm (PSM) into multicel-
lular blocks termed somites, with a period of approximately
25 min [9–14]. Upon dissociation, individual PSM cells behave
as noisy autonomous oscillators with a range of different
periods [11], but within the PSM, neighboring cellular oscilla-
tors are synchronized by coupling through the Delta-Notch
signal transduction pathway [10, 13, 15, 16] (Figure 2A).
Reduction of Delta-Notch coupling results in the gradual
decay of segmentation clock synchrony, eventually causing
somite boundary defects at a position along the embryonic
axis that depends on the remaining strength of the coupling
[10, 13, 15]. Given that delays in the coupling on the order of
the period are expected from synthesis, trafficking, and trans-
duction of Delta coupling signals [17, 18], it is possible that
Delta-Notch coupling causes a collective period in the zebra-
fish segmentation clock that differs from the average of the
autonomous oscillators, in agreement with numerical simula-
tion of gene network models of the zebrafish segmentation
clock for several cells [9, 19].
Together with these temporal properties, the segmentation

clock also has a spatial aspect. Oscillating gene expression
waves propagate through the PSM, forming striped patterns
[12]. These patterns of gene expression are consistent with
a gradual slowing of autonomous oscillator frequency as cells
approach an arrest front in the anterior PSM, a situation that
can be described by oscillators with a position-dependent
frequency along the PSM [12, 17, 20–25]. We recently intro-
duced a general framework building on previous efforts
[13, 17, 21, 22] that combines the spatial and temporal aspects
of the segmentation clock and adds delayed coupling between
neighboring oscillators [20] (Figure 1B). This delayed coupling
theory describes the collective spatiotemporal behavior of the
tissue arising from properties of individual cells, which are
modeled as phase oscillators. Because the delayed coupling
theory has a relatively small number of parameters, most of
which can be measured from the developing embryo, it is
well suited to fit experimental data. The oscillating gene
expression patterns described by the theory are in good quan-
titative agreement with experimental data from wild-type
embryos [17, 20]. Importantly, this approach permits the quan-
titative experimental analysis of changes to the pattern’s
wavelength induced by altered collective period or frequency
profile [20].
According to this theoretical work, if significant time delays

exist in Delta-Notch coupling, then reduction of this coupling
will change the collective period of the segmentation clock.
This is expected to give rise to three defining phenotypes in
the embryo: (1) an altered somitogenesis period [9, 19, 20],
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Figure 1. Theoretical Description of Collective and Spatial Properties of Oscillators in the Segmentation Clock

(A) Delayed coupling can alter collective period. Uncoupled oscillators with random phase and unimodal symmetric distribution of autonomous periods TA1,

TA2, . (blue line) with average period TA. Synchronization by instantaneous weak coupling (green arrows) results in a collective period TC = TA. Synchro-

nization by delayed coupling (red arrows) can result in TC different to TA. Shortening or lengthening of TC relative to TA is possible depending on the value of

the delay.

(B) The delayed coupling theory describes the segmentation clock as an array of coupled phase oscillators [20]. The key features are (1) a posterior front

describing embryonic elongation with velocity v, comoving with a front that arrests oscillations on the anterior side of the PSM; (2) local coupling of oscil-

lators, with strength 3, accounting for Delta-Notch intercellular coupling; (3) a time delay t in coupling, due to synthesis and trafficking of molecules;

(4) a frequency profile ui(t) across the PSM accounting for the slowing of cellular oscillators as they approach the arrest front, characterized by decay

length r and the period of the fastest autonomous oscillators TA, located in the posterior PSM.

(C) Snapshot fromMovie S1 generated with the analytical solution to the delayed coupling theory continuum approximation with experimentally determined

parameters from this work, predicting that loss of coupling results in increased segment length and wavelength of the oscillatory pattern.
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(2) a correspondingly altered segment length due to the
change in period [12, 17, 20–22, 26–28], and (3) corresponding
changes to the expression pattern wavelength of oscillating
genes in the PSM [20] (Figure 1C; Movie S1, available online).
In addition, the delayed coupling theory predicts that there
are values of the coupling delay for which a dynamic instability
occurs [20], destabilizing the spatial patterns of gene expres-
sion. In this work we experimentally confirm these predictions
and use the delayed coupling theory to estimate from our data
the period of the autonomous oscillations, the coupling
strength, and the time delay in the coupling. Together, these
findings show that the segmentation clock’s collective period
is regulated by the Delta-Notch pathway and support a role for
delayed coupling in setting the collective period of biological
clocks.

Results

Somitogenesis Period Is Increased by Reduction

of Delta-Notch Coupling
An altered segmentation clock period is expected to alter the
period of somitogenesis. To test whether reduced Delta-Notch
couplingalters theperiodof somitogenesis,weanalyzedcondi-
tions affecting this signaling pathway. These were mutants for
the Delta ligands after eight (aei/deltaD) and beamter (bea/
deltaC), the Notch receptor deadly seven (des/notch1a), and
the E3 ubiquitin ligase mind bomb (mib) involved in Delta traf-
ficking, as well as embryos treated with DAPT, a g-secretase
inhibitor that attenuates Notch receptor function [10, 13]
(Figure 2A, Experimental Procedures). Somitogenesis period
wasmeasured in live embryos viaour high-precision time-lapse
microscopy protocol [14, 29]. Somitogenesis period was
increased to 119% 6 2% (mean 6 95% confidence interval
[CI]) in mib (Figures 2B–2E; Movies S2 and S3), to 123% 6 4%
in aei/deltaD, and to 107% 6 3% in des/notch1a embryos
(Figure2E)ascompared to theirwild-typesiblings.The increase
was constant until, as the result of a loss of synchrony, intact
somite boundaries no longer formed (Figure 2C) [13, 15]. Block-
ing Notch signaling with saturating DAPT concentrations (R40
mM) [13] increased somitogenesis period to 118% 6 1% of
control (Figure 2E), indicating that the smaller change in des/-
notch1a is probably due to Notch receptor redundancy [13].
The morphology of the forming anterior somite boundaries

in bea/deltaC embryos is less regular than with DAPT treat-
ment and in the other Delta-Notch mutants [30, 31], and this
prevented precise measurement of somitogenesis period in
our assay. Although bea/deltaC and DAPT treatment yield
the same desynchronization phenotype, indicating an
equivalent quantitative contribution to coupling within the
clock [13, 32, 33], the combined observations on anterior
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Figure 2. Somitogenesis Period Increases after Reduc-

tion in Delta-Notch Coupling

(A) Delta-Notch coupling between two oscillating PSM

cells. Delta is the ligand for the Notch receptor, which

can be inhibited via the small molecule DAPT. Mib is

a ubiquitin ligase required for Delta trafficking and activa-

tion.

(B) Time-lapse movies of wild-type (wt) and mib

embryos. Bars indicate formed somite boundaries;

arrowheads indicate forming boundaries. Dorsal view is

anterior to top. The scale bar represents 50 mm.

(C) Time versus somite number plot for (B). Linear fits of

data (R2 [wt and mib] = 0.999) yield somitogenesis

periods of 20.5 min (wt) and 25.0 min (mib).

(D) Distribution of somitogenesis periods in the experi-

ment from which (B) and (C) were taken (n [wt] = 12,

n [mib] = 11). Blue bars indicate mean somitogenesis

period. Temperature = 28.2 6 0.1�C.
(E) Box-and-whisker plots of somitogenesis period:

n R 37 total embryos, more than six independent trials

per experimental condition, except ace/fgf8, mbl/axin1,

and nof/raldh2, for which nR 16 total embryos, two inde-

pendent trials per experimental condition. het denotes

heterozygote. **p < 0.001, Student’s t test. Figures S1

and S2 show that general developmental rate is unaf-

fected in the conditions with slower period. The central

box covers the interquartile range with the mean indi-

cated by the small square and the median by the line

within the box. The whiskers extend to the 5th and 95th

percentiles, and small bars depict the most extreme

values.
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somite boundary morphology suggest an additional, g-secre-
tase inhibitor-insensitive role for bea/deltaC in somite
boundary formation downstream of the segmentation clock.

We detected no change in general developmental rate and
tissue differentiation (Figure S1) or in embryonic axial elonga-
tion rate (Figure S2) in the Delta-Notchmutant or DAPT-treated
embryos, consistentwith previous studies [31, 34]. This argues
against general slowing of development as an explanation for
increased somitogenesis period. Fibroblast growth factor
(FGF), Wnt, and retinoic acid (RA) signaling are required for
aspects of vertebrate somitogenesis but are not implicated
in coupling, as reviewed in [35]. We measured somitogenesis
period in acerebellar (ace/fgf8), masterblind (mbl/axin1), and
no fin (nof/raldh2) mutants, which affect the
FGF, Wnt, and RA pathways, respectively,
and detected no change (Figure 2E). Although
not excluding roles for these pathways in
period setting, these results indicate that
increased somitogenesis period is not
a general consequence of defective intercel-
lular PSM signaling pathways. We conclude
that Delta-Notch coupling regulates somito-
genesis period.

Segment Length Is Increased by Reduction

of Delta-Notch Coupling
Segment length in the elongating embryo is
thought to be determined by interaction of
the segmentation clock and a posteriorly
moving wavefront of rapid cell change that
arrests oscillations at the anterior end of the
PSM [26, 27, 35]. In this Clock and Wavefront
model, if the segmentation clock’s rhythm is
translated directly into spatial periodicity, then the resulting
segment length is given by S = vTC, with segment length S,
arrest front velocity v, and the segmentation clock’s collective
period TC [12, 17, 20–22, 26–28]. Embryonic axial elongation
rate and the posterior border of the mespb gene expression
domain, which we use to define the arrest front location within
the PSM [36], were not significantly different between control
and Delta-Notch impaired embryos throughout the time of
interest (Figure S3, Movies S4 and S5), showing that arrest
front velocity was unchanged. Consequently, with an
increased segmentation clock period, we expect longer
segments. Anterior-posterior length of somites 2–5 was
increased in live mib, aei/deltaD, and DAPT-treated embryos
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Figure 3. Segment Length Increases after Reduction in

Delta-Notch Coupling

(A) Somites of six-somite-stage live embryos. Bars indi-

cate formed somite boundaries; arrowheads indicate

forming boundaries. Dorsal view is anterior to top. The

scale bar represents 25 mm.

(B) Somite lengths (mean 6 95% CI), n R 40 total

embryos per experimental condition, except n = 14 for

somite five in aei/deltaD, six independent trials per

experimental condition. For control population, the

largest CI detected is displayed.

(C) In situ hybridization of mespb (arrowheads) and isl1

(interneurons, Rohon-Beard neurons, n). The scale bar

represents 50 mm.

(D) Box-and-whisker plots of segment length, n R 40

total embryos, more than three independent trials per

experimental condition. *p < 0.01, **p < 0.001, Student’s

t test. Figure S3 shows that the position of the arrest front

in the PSM is unchanged in the conditions with increased

segment length. The central box covers the interquartile

range with the mean indicated by the small square and

the median by the line within the box. The whiskers

extend to the 5th and 95th percentiles, and small bars

depict the most extreme values.
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versus wild-type siblings (Figures 3A and 3B), but in des/
notch1a embryos, which had the smallest period change, we
detected no alteration of somite length (Figure 3B). Assaying
the distance between mespb expression stripes, which we
use to mark segment length at the arrest front before somite
formation [36], revealed an increase in segment length in
mib, aei/deltaD, des/notch1a, and DAPT-treated embryos
(Figures 3C and 3D). We conclude that Delta-Notch coupling
has an effect on segment length.

Spatial Patterns of Oscillating Cells Are Altered in mind

bomb Mutants
If the changes we observed in somitogenesis period are
produced by an altered collective period TC of the segmenta-
tion clock, then we should find corresponding changes to
the gene expression patterns in the PSM. These changes
can be quantified [20] and should provide an independent,
gene-expression-based estimate for the period change
measured in our time-lapse experiments. To test this predic-
tion, we quantified stripe wavelength in mib mutant embryos,
finding a systematic increase in wavelength for a given posi-
tion as compared to wild-type siblings (Figures 4A and 4B).
Fitting the delayed coupling theory to the data (Figure 4B;
Experimental Procedures) indicated an increase in normalized
segment length s of 116%6 1% inmib embryos while leaving
the frequency profile unchanged (Figure 4C). Because arrest
front velocity is not altered in the mutant, S = vTC indicates
a change to collective period similar to that obtained from so-
mitogenesis period measurement (119% 6 2%, Figure 2).

In summary, we have shown that conditions reducing Delta-
Notch signaling lead to corresponding changes in (1)
somitogenesis period and (2) segment length,
without changes to arrest front velocity. In
addition, (3) we find changes to oscillating
gene expression patterns in the PSM consis-
tent with changes in collective period (Table
1). Combined, our findings indicate a change
in the segmentation clock’s collective period
as a result of reduced Delta-Notch coupling.
This is as expected if significant delays exist in the coupling.
The magnitude of these changes, w10%–20% of the wild-
type period, is similar to those resulting from single genemuta-
tions in the circadian clock [37–40].

Estimation of Autonomous Period, Coupling Strength,

and Coupling Delay from the Data
In order to understand these collective period changes in
terms of the strength and delay in coupling between PSMcells,
we again use the delayed coupling theory [20]. The collective
period TC is related to the period TA of uncoupled autonomous
oscillators in the posterior PSM, a positive coupling strength 3,
and a coupling delay t by

2p

TC

=
2p

TA

2 3 sin

�
2p

TC

t

�
: (1)

Note that the coupling strength 3 and coupling delay t are
effective parameters of a tissue-level theory. Therefore, their
values are not necessarily related in simple ways to molecular
quantities such as the number of molecules involved in
coupling or duration of a molecular signaling event. Neverthe-
less, their values depend on underlying molecular processes,
and changes to these processes cause corresponding
changes to the effective parameters (Experimental Proce-
dures). The effects of delayed coupling on collective period
in Equation 1 are illustrated with the following gedankenexper-
iment: if two uncoupled oscillators cycling at the same pace
with equal phases are suddenly coupled with a delay, they
will receive information about the phase of the other oscillator
from an earlier time point. The oscillators will change period as
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Figure 4. Determination of Segmentation Clock Collective Period from Oscillating Gene Expression Patterns

(A) In situ hybridization: deltaC and isl1 (interneurons and Rohon-Beard neurons, n) in representative wild-type andmib embryos. The scale bar represents

50 mm.

(B) Measurements of normalized gene expression wavelength l and position x; wild-type is black and mib is pink. Data points: n (wt) = 65, 28 embryos,

n (mib) = 70, 28 embryos, two independent trials. Curves indicate fit of Equation 3 to data (Experimental Procedures).

(C) Values of frequency profile decay length r, and normalized segment length s parameters from the fit to the data. Error bars show 95%CI from bootstrap

analysis (Supplemental Experimental Procedures 2.2.5). **p < 0.001, Student’s t test.
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they try to synchronize to the apparent (delayed) phase of their
neighbor. Depending on the relative value of the delay and the
autonomous period, this could result in slowing or speeding of
the oscillators. As this process occurs across a population,
a collective period self-organizes.

Equation 1 predicts a continuous variation of collective
period, and therefore somitogenesis period, with coupling
strength. We tested this prediction by determining the
response of somitogenesis period to varying DAPT concentra-
tions and found a variation up to saturation consistent with
a smooth change of the collective period (Figure 5A).

For a given autonomous period TA, the collective period TC

described by Equation 1 depends on coupling strength 3 and
coupling delay t in a complex way (Figure 5B), analogous to
that described in models of gene regulatory networks with
delay in the coupling [41]. As the time delay is varied, branches
of stable synchronized oscillations are separated by unstable
branches where synchrony is lost (Figure 5B). To locate the
situation corresponding to the wild-type zebrafish segmenta-
tion clock in this diagram, we estimated parameters 3 and t

by fitting the delayed coupling theory to our experimental
data (Figure 5A, Experimental Procedures). For this purpose,
we assume that saturating DAPT completely blocks coupling
[13] and that a loss of coupling does not affect TA over relevant
time scales [13, 15]. From our time-lapse experiments, the
measured value of TA z 1.18TC (Figure 2E), which for the
zebrafish embryo at 28�C [14] yields TA = 286 1min. This value
is consistent with independent estimates for TA from genetic
network models [9, 19]. To account for the measured change
in period, coupling strength must be at least 0.043 min21

(Equation 1), and from the fit, we estimate coupling strength
3 = 0.07 6 0.04 min21. Multiple values of the coupling delay t

are consistent with the wild-type collective period TC = 23.5
min (Figure 5B, dotted line). We use the only value of t for
which the wave pattern is both stable and unique for the deter-
mined values of TA and 3, which is found on branch 2
(Figure 5B), and so estimate coupling delay t = 216 2min, cor-
responding to 0.9TC.
The various experimental perturbations of the Delta-Notch
pathway can be consistently mapped to distinct points in
a diagram relating collective period and coupling delay (Fig-
ure 5C). This map uses the assumption in accordance with
previous work [9] that most of the delay in Delta-Notch
signaling in the segmentation clock arises from the synthesis
and trafficking of Delta molecules in the signal-sending cell
[18] and that signal transduction via the cleavage of the Notch
intracellular domain is on a shorter time scale [42]. Thus, all
mutants and treatments studied here affect the coupling
strength, which can be estimated from the onset of segmental
defects caused by the gradual desynchronization of the
segmentation clock’s cells [10, 13, 15, 16], but only aei/deltaD
andmib affect the coupling delay in addition. Themibmutant,
with reduced endocytic trafficking of Delta in the signal-
sending cell [43], shows a strong collective period change
despite exhibiting the weakest somite boundary disruption
phenotype of any mutant (Table 1), suggesting that coupling
delay is strongly increased but coupling strength is only mildly
affected. Heterozygote mib embryos show an increased
period without any somite defects (Figure S4), suggesting
that the coupling delay depends sensitively on the level of
Mib protein.

Mind Bomb Overexpression Drives the System
into Instability

A key prediction of the delayed coupling theory is the exis-
tence of instabilities for certain values of the coupling delay.
In particular, the instability that separates branch 1 from
branch 2 should be reached by reducing the coupling delay
from the wild-type value of 21 min to about 16 min (Figures
5B and 5C). Given that reduced levels of Mib increase coupling
delay, we reasoned that elevated levels of Mib might offer
a way to shorten the delays and thereby experimentally test
the existence of the predicted instability. We first performed
numerical simulations of the PSM by using the delayed
coupling theory with wild-type parameters determined in this
work. We found an excellent agreement with the spatial



Table 1. Segmentation Variables in Delta-Notch Mutant and DAPT-Treated Embryos

Experimental

Condition

% Control Periodb

(time-lapse analysis)

% Control Somite

Lengthc (5th somite)

% Control Segment

Lengthd (mespb pattern)

% Control Periode

(deltaC stripe wavelength)

Anterior Limit of

Segmental Defects

aei/deltaD 123 6 4a 110 6 5 108 6 2 n.d.f 7 6 2 [31]

des/notch1a 107 6 3 100 6 2 105 6 3 n.d. 7 6 2 [13, 31]

sat. DAPT 118 6 1 108 6 2 106 6 2 n.d. 5.2 6 0.2 [13]

mib 119 6 2 109 6 2 118 6 5 116 6 1 10–12 [57]

aMean 6 95% CI.
b Period measurements: aei/deltaD, n (wt) = 46, n (mutant) = 50, six independent trials; des/notch1a, n (wt) = 37, n (mutant) = 49, six independent trials;

saturating DAPT, n (DMSO) = 114, n (sat. DAPT) = 141, 12 independent trials; and mib, n (wt) = 64, n (mutant) 73, eight independent trials.
c Somite length measurements (5th somite): aei/deltaD, n (wt and het) = 78, n (mutant) = 14; des/notch1a, n (wt and het) = 112, n (mutant) = 43; sat. DAPT,

n (DMSO) = 104, n (sat. DAPT) = 74; and mib, n (wt and het) = 91, n (mutant) = 47, 6 independent trials.
d Segment length measurements: aei/deltaD, n (wt and het) = 132, n (mutant) = 69, 4 independent trials; des/notch1a, n (wt and het) = 80, n (mutant) = 41,

3 independent trials; sat. DAPT, n (DMSO) = 155, n (sat. DAPT) = 239, 8 independent trials; andmib, n (wt and het) = 40, n (mutant) = 40, 4 independent trials.
e Stripe wavelength measurements:mib, n (wt and het) = 65 data points from 28 embryos, n (mutant) = 70 data points from 28 embryos, 2 independent trials.

The largest CIs in control populations were 100%6 2% for period and somite length, 100%6 4% for segment length, and 100%6 4% for stripe wavelength

in mib.
f n.d. denotes not done.
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organization of dlc expression in thewild-type embryo that can
be quantified by comparing autocorrelation functions (Figures
6A–6C; Experimental Procedures).We next repeated the simu-
lation with reduced coupling delay. We found that as the
system approaches the instability, the normal striped gene
expression patterns develop a characteristic disrupted pattern
with a range of spatial wavelengths resulting in a flattened
average autocorrelation function (Figures 6D and 6E;
Figure S5). To test this prediction in vivo, we injected mib
mRNA into the embryo and assayed the resulting spatial
features of cyclic dlc expression in the PSM. We found that
elevated Mib levels resulted in a disruption of somitogenesis
in otherwise normally developing embryos accompanied by
a disrupted pattern of dlc expression with an autocorrelation
function in quantitative agreement with simulations of reduced
delay (Figures 6D and 6E; Figure S6). These patterns are
distinct from those observed in the loss-of-coupling mutants
aei/deltaD, des/notch1a, and mib (Figure S7). These data
provide evidence of the predicted delay-dependent dynamic
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Procedures). The shaded area indicates the error of the fit.

(B) Diagram of solutions to Equation 1. The lines indicate the collective period T

cated. Stable and unstable solutions are indicated by solid and dashed lines,

(C) Close-up of (B): approximate positions of experimental conditions in para

indicates wild-type, ten-somite stage, 28�C; the blue dot refers to experiment

(ALD) of mib is between those of wild-type and des/notch1a, its coupling stre
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instability and give further support to the existence of delays
in Delta-Notch coupling in the zebrafish segmentation clock.

Discussion

Our work in this paper was motivated by theoretical results
suggesting that systems of oscillators with time delays in the
coupling could tick with a collective period different from the
period of the autonomous oscillators (Figure 1). Coupling
by Delta-Notch signaling in the zebrafish segmentation clock
was an attractive candidate system to observe such effects
because the clock’s period is of the same order as the ex-
pected signaling delays. Here we describe that a reduction in
Delta-Notch coupling increases somitogenesis period (Fig-
ure 2), produces longer segments (Figure 3), and lengthens
thewavelength of oscillating gene expression stripes (Figure 4)
in an otherwise normally developing embryo. For this study,
the use of multiple-embryo time-lapse imaging [14, 29] was
critical to sensitively and precisely measure the timing of
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(A) Schematic of how the autocorrelation function (Equation 6, Experimental Procedures) is computed. A magnification of the gene expression pattern from

(B) is shown, together with the reference axes x and y in pixels, and the distance d between two sample points of gene expression intensity I.

(B) Representative cyclic dlc expression in PSM of wild-type embryo and DCT simulation with wild-type parameters defined in this work, black dot in

Figure 5C.

(C) Average autocorrelation function of spatial patterns in red box from (B): n (embryos) = 15, black line; n (simulations) = 20, gray line. Error bars show stan-

dard error of the mean (SEM).

(D) Representative experimental Mib overexpression (400 pgmRNA) and corresponding DCT simulation with reduced coupling delay, blue dot in Figure 5C.

(E) Average autocorrelation function of spatial patterns in red box from (D): n (embryos) = 8, dark blue line; n (simulation) = 20, light blue line. The arbitrary

units in the correlation axis are multiplied by 1023. Figures S5 and S6 show the autocorrelations for decreasing delays in numerical simulations and

increasing levels of Mib overexpression in the embryo, and Figure S7 shows that the Delta-Notch loss-of-coupling mutants have autocorrelation functions

distinct from Mib overexpression. Error bars show SEM.
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somitogenesis and growth in live embryos under controlled
conditions. Combined, these experimental results are compel-
ling evidence of a role for Delta-Notch signaling in controlling
the period of the segmentation clock.

We analyzed the role of the Delta-Notch intercellular
signaling system in regulating the period with the delayed
coupling theory [20], which describes the segmentation clock
in a simplified way at a cellular and tissue level as a spatially
distributed population of phase oscillators with time delays
in the coupling. According to theory, collective period ismodu-
lated through perturbation of coupling if there are time delays
in the coupling [6, 7, 9, 19, 20]. The existence of coupling
delays in the segmentation clock is supported by the fit of
the delayed coupling theory to the data from the change in
collective period with coupling strength (Figure 5), as well as
the successful numerical simulation of the oscillating gene
expression patterns of the wild-type PSM (Figure 6) using
the values of autonomous period, coupling strength, and
coupling delay obtained from the fit. Further support for a crit-
ical role of coupling delay in the system comes from the exper-
imental observation of a predicted instability consistent with
shorter delays (Figure 6). This comparison of spatial patterns
of cyclic gene expression in experiment and simulation using
an autocorrelation function introduces a novel method for
the analysis of perturbation to the segmentation clock.
Together, the fit of theory and experimental data in this work
gives strong support to the existence and period-setting func-
tion of delays in Delta-Notch coupling in the segmentation
clock.

Phase oscillators have been shown to correctly capture the
dynamics of gene regulatory networkmodels of the segmenta-
tion clock [23]. Building such models is one of the important
goals of the field [9, 19, 23, 24, 44–46], but the experimental
measurement of the many rate parameters of these models
is currently difficult in vivo. In contrast, most parameters of
the delayed coupling theory, such as collective period, arrest
front velocity, segment length, and frequency profile, can be
measured from the embryo directly or have been estimated
previously [14, 20], leaving autonomous period, coupling
strength, and coupling delay to be obtained in this work from
the fit of the theory to the new data (Figure 5). The main use
of the values we estimate for the effective parameters coupling
strength and coupling delay is in the quantitative comparison
of experimental situations. Future work may connect these
parameter values to measurable events described in detailed
molecular models. In contrast, the autonomous period is
a simple biological parameter that can be directly tested by
methods with cellular resolution of the dynamics.
Our discovery of segmentation period mutants in an

intercellular signaling system provides insight into the
fundamentally multicellular organization of the segmentation
clock. Whereas it was previously recognized that coupling in
the zebrafish segmentation clock synchronizes the phases of
the oscillating cells of the PSM [10, 13, 15, 16], the results
here indicate that the time cost of coupling using macromole-
cules causes an additional, novel effect—a self-organized
regulation of the collective period. This phenomenon is prob-
ably not restricted to the segmentation clock; any system
where oscillators are coupled with delays of the order of the
period should show similar effects. One biological candidate
system is the circadian clock, in which cellular rhythms are
synchronized by VIP signaling, and where loss of this coupling
alters the period [47, 48]. A similar situation may occur in other
multicellular systemswith coordinated oscillations such as the
neuroepithelium and hair follicles [49, 50]. The role of collective
effects in controlling the period of other biological clocks now
awaits investigation.
Experimental Procedures

In this section we provide a brief outline of the methods that we introduce

and use in this work. This material, plus a more comprehensive description

and extensive technical details, is provided in corresponding sections in the

Supplemental Information. Embryology, microscopy, andmolecular biology

are covered in section 2.1 and theoretical methods and parameter fitting are

covered in section 2.2.
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Embryology, Microscopy, and Molecular Biology

Zebrafish embryos were obtained via standard procedures [51]. Mutant

alleles were aei tr233 [52], beatm98 [30], desp37a [53], mibta52b [43], aceti282a

[54], mbltm013 [55], and nof u11 [56], and DAPT treatment was according to

[13]. Time-lapse recordings and estimation of somitogenesis period were

according to [14, 29], and in situ hybridization was according to [33]. Statis-

tical significance in somitogenesis period, somite and segment length,

axial elongation rate, and position of the arrest front was assessed with

Student’s t test, two-sided, unequal variance. In vitro synthesis of mib

and GFP mRNA was carried out as previously described [32], quantified

with a Nanodrop1000 spectrophotometer (Thermo Scientific), and

delivered in varying amounts to one-cell-stage embryos via our

quantitative injection protocol [13]. After injection, embryos were left to

develop until they reached the 3–4 somite stage, when they were fixed

for in situ hybridization.
Theoretical Methods and Parameter Fitting

Overview of the Delayed Coupling Theory

The delayed coupling theory (DCT) describes the PSM as an array of

coupled phase oscillators and has been previously introduced in detail

[20]. The state of oscillator i at time t is described by a phase variable qi(t)

whose dynamics is given by

dqiðtÞ
dt

=uiðtÞ+ 3iðtÞ
Ni

X
k

sin½qkðt2 tÞ2 qiðtÞ�+ hziðtÞ: (2)

The frequency profile ui(t) describes the slowing down of oscillators as

they get closer to the arrest front, where oscillations stop. Oscillators are

coupled to their neighbors with a coupling strength 3i(t), and a delay t

accounts for the finite time introduced by synthesis and trafficking of

ligands in the cells sending the signal. Oscillator i is coupled to its Ni nearest

neighbors, labeled by k. The zero average uncorrelated random term zi
represents different noise sources with total noise strength h.

Parameter Estimation from Cyclic Stripe Wavelength Fitting

Cyclic gene expression patterns are related to the frequency profile in the

DCT. To fit these patterns, it is convenient to use the continuum approxima-

tion to Equation 2 in the reference frame comoving with the PSM [20].

We assume that the intrinsic frequency at a distance x to the arrest front

is uðxÞ=uAð12 e2 x=sÞ=ð12 e2 L=sÞ, where x is a continuous variable and

uA = 2p/TA is the frequency of the individual oscillators in the posterior

PSM. s is the decay length of the frequency profile, measuring the charac-

teristic distance over which the frequency decreases from high to low

values, and L is the distance between the posterior end of the notochord

and the arrest front of the oscillations. The continuum description relates

the position x of the center of a wave of gene expression with its wavelength

l (Figure 4A) through the expression [20]

x = sln

�
2ssinhðl=2sÞ

Sð12 e2 L=sÞ+ le2L=s

�
; (3)

where S is the arrested segment length. Note that the patterns of expres-

sion described by Equation 3 are not sensitive to spatial variation in

coupling strength or delay. Fits of the theory to our deltaC stripe wave-

length measurements were done by a total least square method, and error

bars for S and s were calculated by a bootstrap method. To allow an intu-

itive visualization of the results and comparison with potential results in

different species, in Figures 4B and 4C we show the results normalized

by the length L, for which we defined the normalized parameters r = s/L

and s = S/L.

Fit of Somitogenesis Period versus DAPT Treatment Concentration

To relate the coupling strength 3 in Equation 1 to the concentration n of

the DAPT treatment, we first assume [13] that DAPT suppresses Notch

signaling following Michaelis-Menten kinetics, [Notch]w 1/(1 + n/n0), where

n0 is the DAPT concentration that halves Notch signaling. The assumption of

a linear relation of coupling strength to the level of Notch signaling, and that

saturating DAPT completely blocks coupling [13], then yields 3(n) = B/(1 + n/

n0), where B is a constant related to the wild-type level of Notch receptor

expression. Following previous work, we assume that DAPT does not affect

TA over relevant time scales [13, 15]. Starting from Equation 1, a relation

between period of oscillation and the level of DAPT treatment can be

derived. Including a factor 100 to express the result as a percentage and

assuming that the coupling delay lies on the second branch (Figure 5B),

this relation is
TðnÞ
Tu

%=100
nTA=Tu +Q

n+Q
; (4)

Q=n0ð1+BTAÞ: (5)

Tu = T(0) is the period of untreated wild-type embryos. The parameters n0
and B appear only through the combination Q defined in Equation 5. From

the fit of Equation 4 to the data in Figure 5A we obtain Q = 7.5 6 3.5 mM.

Using this value of Q we can estimate the coupling strength 3 = 3(0) = B =

0.07 6 0.04 min21 and the coupling delay t = 21 6 2 min.

Numerical Simulations of the Delayed Coupling Theory

For the simulations in this work we used a hexagonal two-dimensional

lattice that has the same average shape and size as the experimental condi-

tions. We solved the DCT equations by using parameters that we estimated

in this work for the wild-type zebrafish. We measured a cell size of 7 pixels

and used this as the size of single cells in the simulated patterns. Other

parameters are the decay length of the frequency profile [20] s = 27 cell

diameters, the autonomous frequency of oscillators at the posterior

boundary uA = 0.2205 min21, the coupling strength 3 = 0.07 min21, the

coupling delay t = 20.75min, and the arrest front velocity v = 0.249 cell diam-

eters/min. Fluctuations were introduced with a noise term of strength

h = 0.02 min21.

Autocorrelation Function

In this work we introduce a spatial autocorrelation function to measure

disorder in gene expression patterns under different experimental condi-

tions. We compute the autocorrelation function in a box from the anterior-

most region of the PSM, where the most striking features of the expression

patterns of wild-type,mutant, and also theMib overexpression experiments

are observed (Figure 6A). We define the autocorrelation function of the

observed fluorescence intensity I(x) as

CðdÞ= hIðxÞIðx + dÞi (6)

where the position x is measured from the anterior border of the box along

the anteroposterior axial direction, and the brackets denote an average over

space along the same axial direction followed by an average across the

lateral direction. The autocorrelation is a function of the distance d between

two points in the pattern. Peaks of this function occur at distanceswhere the

intensity of the pattern is on average similar, as for example in consecutive

stripes or interstripes of the cyclic gene expression patterns.

Supplemental Information

Supplemental Information includes seven figures, one table, Supplemental

Experimental Procedures, and three movies and can be found with this

article online at doi:10.1016/j.cub.2010.06.034.
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The intracellular region of Notch ligands Dll1 and Dll3 regulates their

trafficking and signaling activity. Proc. Natl. Acad. Sci. USA 105,

11212–11217.

19. Leier, A., Marquez-Lago, T.T., and Burrage, K. (2008). Generalized bino-

mial tau-leap method for biochemical kinetics incorporating both delay

and intrinsic noise. J. Chem. Phys. 128, 205107.

20. Morelli, L.G., Ares, S., Herrgen, L., Schröter, C., Jülicher, F., and Oates,
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