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Abstract. Epithelia are sheets of cells that are dynamically remodelled by cell division and cell death
during development. Here we describe the cell shapes and packings as networks of polygons: stable and
stationary network configurations obey force balance and are represented as local minima of a potential
function. We characterize the physical properties of this vertex model, including the set of ground states,
and the energetics of topological rearrangements. We furthermore discuss a quasistatic description of cell
division that allows us to study the mechanics and dynamics of tissue remodelling during growth. The
biophysics of cells and their rearrangements can account for the morphology of cell packings observed in
experiments.

1 Introduction

During the development of an organism from a fertilized
egg, cells multiply by cell division and organize in multi-
cellular arrangements. An important situation is the for-
mation of epithelia, which are sheet-like two-dimensional
packings of cells. An epithelium defines a surface that
divides space into two regions, the basal and the api-
cal side. The cells in the epithelium exhibit an apical-
basal asymmetry. Close to the apical side, cell contacts
form highly organized adherens junctions: these junctions
are enriched in adhesion molecules and are associated
with bundles of cortical actin and myosin in the adjacent
cells. This network of adherens junctions organizes the
morphology of cell packings, guides cell rearrangements,
and defines the geometry of cell packings. Remarkably,
some of the detailed structure of epithelia (e.g. polygon
distributions) can be understood using topological argu-
ments alone [1,2]. Nevertheless, understanding the me-
chanics and dynamics of development at the cell scale de-
mands a theoretical treatment of tissue mechanics.

During development, epithelial tissues are dynamically
remodelled. Remodelling involves topological changes of
the junctional network, induced, for example, by cell di-
vision, cell extrusion, and cell boundary rearrangement.
Extrusion implies that cells undergo apoptosis and leave
the epithelium. As a consequence, over time scales of hours
and days, a developing epithelium undergoes dramatic re-
organization and patterning processes. Such dynamic re-
organization of epithelia can be studied experimentally
in model systems. An important system is the develop-
ment of the fly wing from a precursor structure, the wing
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Fig. 1. (a, left) Confocal microscope image of a developing
Drosophila wing (E-cadherin labelled with green fluorescent
protein in a wing disc epithelium). (b, right) Epithelia in the
vertex model are represented as networks of polygons.

imaginal disc, which consists of two epithelial layers. The
network of adherens junctions of an epithelium can be
observed experimentally, see fig. 1a. Its reorganization is
governed by force balance and the biophysical properties
of cells and their adhesive contacts. A physical description
of tissue organization and mechanics can thus be based on
the mechanics of the junctional network [3].

Tissue morphology can be described by vertex models,
which account for the geometry of the junctional network
using polygons. These polygons are characterized by the
positions of vertices and linear bonds connecting them,
see fig. 1b. Force balance in the junctional network is de-
scribed using a potential or work function. Such vertex
models are a coarse-grained representation of cell shape
and thus do not capture finer details such as curvature of
bonds. Vertex models have been used to discuss tissue
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morphology [4], dynamics [5,6], and, more recently, to
study detailed problems such as the dynamics of wound
closure [7], cell sorting [8], the mechanical regulation of cell
division and growth [9], and the emergence and reorienta-
tion of planar polarity [10]. Early models were evoked in
discussions of foam [11–15] and grain boundaries [16,17]
rather than living tissue, and this parallel continues to-
day [18]. We have recently presented a vertex model that
can account for the geometry of the junctional network in
the wing disc (epithelium that forms the developing wing)
of the fruit fly Drosophila [3]. We determined biophysical
parameters that describe the properties of cell mechanics
and adhesion, showing that this vertex model can quanti-
tatively account for the observed statistical properties of
cell packings and that irregularities in the packings result
largely from stochastic cell division.

Vertex models can be made computationally efficient
in two dimensions, however it is not straightforward to
generalize vertex models to three dimensions. An impor-
tant method has been to use a modification of the many-
states Potts model [19–21] in order to represent complex
cell shapes in two and three dimensions. A slightly differ-
ent approach is to treat cells exclusively using cell-centers
(see [22] and references therein); such calculations are typ-
ically less detailed but more computationally efficient. Tis-
sues have been recently treated on large length scales using
continuum descriptions [23–25]. Similar models have also
been used to to study wound closure [26] and the geomet-
ric structure of ommatidia in the Drosophila eye [27].

The broad relevance of vertex models for cell mechan-
ics in different systems demands a detailed understanding
of these models. In this paper, we systematically explore
the physical properties of a vertex model using analytic
arguments and high-precision simulations. Our results ex-
tend and refine those presented in [3]. We briefly review
the vertex model in sect. 2. We discuss in sect. 3 the
ground states of the model and present a ground-state
diagram. In sect. 4 we discuss general elastic properties
of ground states, in particular the compression and shear
moduli. The energetics of topological rearrangements of
the network by T1 and T2 transitions are discussed in
sect. 5. Based on the force balance described by the ver-
tex model, we discuss in sect. 6 a quasistatic description
of cell division that can be used to study the mechanics
and morphology of tissue growth. The article concludes
with a discussion of what has been achieved and future
directions.

2 Vertex model for cell shape and tissue
mechanics

The geometry of the polygonal network is described by
a set of vertex positions ri, with i = 1, . . . , NV , where
NV denotes the number of vertices, together with NB

bonds 〈i, j〉 that connect vertices i and j. Each polygon
describes one cell, indexed by α = 1, . . . , N , where N is
the number of cells in the system. The mechanical proper-
ties of the network in stationary conditions are described

by a potential or work function

F (ri) =
∑

α

Kα

2
(Aα−A(0)

α )2+
∑

〈i,j〉
Λij lij +

∑

α

Γα

2
L2

α. (1)

Here, Aα denotes the area of cell α, Lα is the cell perime-
ter and lij is the length of bond 〈i, j〉. The first term de-
scribes area elasticity, where the sum is over all cells α.
If the polygonal area Aα of a cell with constant volume
V = Aαh is changed, the cell height h adjusts. Under such
a deformation the elastic energy can be described by an
area elastic modulus Kα and a preferred area A(0). The
second term describes bond tension Λij , where the sum is
over all bonds 〈i, j〉. This tension results from actomyosin
contractility in the cortical bundles associated with the
adherens junctions, and also from the mechanics of cell-
cell adhesion. In a general expansion of the work function
in terms of geometrical properties, the next-order term is
quadratic in bond length. We introduce as a specific choice
of a quadratic term the perimeter elasticity described by
the coefficient Γα. This terms accounts for changes in bond
tension due to a change in cell perimeter. It is motivated
by the fact that an actomyosin ring underlies the adherens
junctional network, which is in general expected to exert
a tension depending on cell perimeter.

3 Ground states of the vertex model

Here we systematically determine the ground states of the
vertex model. Ground states can be interpreted as being
the most relaxed network configurations. They are the ab-
solute minima of F for a given number of cells N , using
periodic boundary conditions for simplicity. The size of
the periodic box is given by the lengths Lx and Ly. We
consider the case where all cells have the same properties,
i.e., they all have a common preferred area A

(0)
α = A0,

perimeter stiffness Γα = Γ , area stiffness Kα = K, and
all bonds have the same line tension Λij = Λ. The dimen-
sionless potential energy per cell F = F/(NKA2

0) can be
written as

F =
1
N

∑

α

e(aα, pα), (2)

with

e(a, p) =
1
2

[
(a − 1)2 + Γ (p − p0)2

]
+ e0, (3)

where aα = Aα/A0 and pα = Lα/
√

A0. The model pa-
rameters are represented as p0 = −Λ/2Γ , which is a di-
mensionless preferred perimeter and e0 = −Λ

2
/8Γ , where

Λ = Λ/(KA
3/2
0 ) and Γ = Γ/(KA0). In writing eq. (3) we

have made use of the choice that all bonds have the same
line tension Λij = Λ, so that line tension can be absorbed
in the perimeter term by introducing p0. Changes in area
δa and perimeter δp imply a change in potential,

δe = (a − 1)δa + Γ (p − p0)δp +
1
2
(δa2 + Γδp2). (4)
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Fig. 2. (Colour on-line) (a) The ground-state diagram of the vertex model. In region I (orange) the ground states are degenerate
and correspond to primarily irregular networks, in which all cells have equal perimeter p = p0 and equal area a = 1. Within
this region, dashed lines (described by eq. (7) for n = 3, 4, and 5) separate subregions with varying degrees of degeneracy. In
these subregions the ground state is composed of irregular polygons with (from left to right) n ≥ 3 sides, n ≥ 4 sides, n ≥ 5
sides, and n = 6 sides, respectively. The solid line separating region II where the regular hexagonal lattice is the ground state
is described by eq. (7), with n = 6. Within the hatched region the ground state is a collapsed lattice of cells with zero area. (b)
The region enclosed by the two dotted lines in (a) is magnified. Two additional regions III (red) and IV (blue) can be identified,
where a “4-8” lattice and “3-12” lattice, respectively, have lower energies than the regular hexagonal lattice. The violet line
indicates where the hexagonal lattice becomes locally unstable. In the region outside of the two dotted lines the nature of the
ground state can be shown rigorously. (c) Diagrams of the potential energy per cell ΔF = F − e0 − 1/2 of different lattices,

as a function of normalized line tension Λ for Γ = 0.15. Intersections of ΔF for different lattices are marked by dotted lines.
The lowest energy (orange) corresponds to soft lattices, which exist in region I for Λ � −1.12. The energy of the hexagonal
lattice (green) has minimal energy in region II. The energy of collapsed lattices with zero area is indicated by the black line,
and minimizes the energy in the hatched region. Furthermore, the energies of 4-8 and 3-12 lattices are indicated in red and blue,
respectively. (d) Magnification of a small region of line tension of the energy diagram shown in (c), highlighting the regions
where new periodic lattices have minimal energy.

If a cell has a = 1 and p = p0, then the potential of that
cell e = e0 is at the absolute minimum of e for this cell.

First, we determine minimal potential configurations
of single polygons. We then construct lower bounds of
F for arbitrary polygonal lattices and compare them to
F = e6 for hexagonal lattices and to the value F = 1/2 of
a collapsed network (aα = 0, pα = 0). In this way we de-
termine regions in parameter space where different types
of ground-state networks exists, see fig. 2.

3.1 Polygons of minimal cell potential energy

First we determine the shapes that minimize the potential
e(a, p) of a single polygon with a fixed number of sides n.
We identify several cases depending on the values of a and
p, see table 1. An optimal polygon with a > 0 must obey
∂e′/∂χ|χ=1 = 0, where

e′ =
1
2

[
(χ2a − 1)2 + Γ (χp − p0)2 + e0

]
(5)
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Table 1. Geometric constraints limit the values of the dimensionless perimeter p and area a that are possible for a polygonal
cell. These constraints are listed in the rightmost column. Given a set of (a, p) (first and second columns), a corresponding
polygon may or may not be a minimum of e, as indicated in the third column.

Perimeter Area Properties of e(a, p) Geometric constraint on (a, p)

p > p0 a < 1 potential minimum is a regular polygon none

p = p0 a = 1 this is the absolute potential minimum Λ ≤ −4Γ
p

n tan(π/n)

p = 0 a = 0 potential minimum is a collapsed cell

8

<

:

Λ ≥ (2/c)[(2c − Γ )/3]3/2 (Γ < 2c)

Λ ≥ 0 (Γ ≥ 2c)

p < p0 any a potential can be reduced by increasing perimeter none

p = p0 a �= 1 potential can be reduced by uniform scaling none

p > p0 a ≥ 1 potential can be reduced by uniform compression none

is the potential of a polygon rescaled by a factor χ = 1+ε.
This condition implies

2a(a − 1) + Γp(p − p0) = 0. (6)

Thus, we distinguish three cases of possible minima of e:
i) p < p0 and a > 1, ii) p = p0 and a = 1, and iii) p > p0

and a < 1. The first case i) is unstable with respect to
shear, because ∂e/∂p|a = Γ (p − p0) < 0 and it is always
possible to increase the perimeter of a polygon at fixed
area. Case ii) corresponds to an absolute minimum of e,
at which both area and perimeter take their preferred val-
ues. This is possible only if p0 is larger than the minimal
perimeter of an n-sided polygon of unit area, which leads
to the condition

Λ ≤ −4Γ

√
n tan

(π

n

)
. (7)

In the limit of large n, eq. (7) becomes

Λ < −4
√

π Γ . (8)

In case iii), the optimal shape is either a regular n-
sided polygon or a collapsed cell (a = 0, p = 0). For
p > p0, ∂e/∂p|a > 0, thus reducing the perimeter at fixed
area reduces the potential. A regular n-sided polygon has
a smaller perimeter than any irregular n-sided polygon
with equal area. Thus if p > 0 the optimal shape is a
regular n-sided polygon. A special case is a collapsed cell
with a = 0, p = 0, and e = 1/2. For regular polygons
a = cp2, where c = cot(π/n)/4n. The potential is

e(p) =
1
2

[
(cp2 − 1)2 + pΛ + p2Γ

]
, (9)

the stationarity condition de(p)/dp = 0 provides the rela-
tion

4c2p3 + (2Γ − 4c)p + Λ = 0. (10)

Combining eq. (10) with the equality e > 1/2, we obtain
the condition for polygonal collapse:

Λ ≥ 2
c

(
2c − Γ

3

)3/2

(Γ < 2c),

≥ 0 (Γ ≥ 2c). (11)

In the limit of large n, eq. (11) becomes

Λ ≥ 8√
π

(
1 − 2πΓ

3

)3/2

(2πΓ < 1),

≥ 0 (2πΓ ≥ 1). (12)

Note that, as shown in sect. 3.2, eq. (7) and eq. (11) define
characteristic boundary lines in the ground-state diagram
of the vertex model, see fig. 2a.

3.2 Networks of minimal potential

In sect. 3.1 we showed that the potential energy e(a, p)
of an individual cell is minimized by regular n-sided poly-
gons. Here we determine ground-state networks, defined as
the configurations of polygons that minimize the potential
F for a given set of parameter values Λ and Γ with peri-
odic boundary conditions. The size of the periodic box is
also varied in the minimization. This minimization prob-
lem is solved by using the minimal-energy polygons de-
scribed in the last section together with the fact that the
average neighbour number is less than or equal to six.
Note that in periodic networks containing only threefold
vertices the average neighbour number is exactly six. In
periodic networks containing manyfold vertices, the aver-
age neighbour number is less than six. Details of the deter-
mination of ground states and the corresponding ground-
state diagram are presented in appendix A.

In figs. 2a and b we present the ground-state diagram
of the vertex model. We find four distinct regions of pa-
rameter space (Λ and Γ ): I irregular networks are the (de-
generate) ground states, II the ground state is a hexagonal
lattice, and two further regions, III and IV, where other
periodic lattices are the ground state. In the hatched re-
gion the ground state is a collapsed network of cells with
zero area. Region I is bounded by a straight line described
by eq. (7) for n = 6. Region I can be further divided into
four subregions (separated by dashed lines in fig. 2a), char-
acterized by the degree of degeneracy of the ground states.
From right to left the ground states in the four subregions
are composed of irregular n-sided polygons with n = 6,
n ≥ 5, n ≥ 4, and all n, respectively. They are obtained
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from eq. (7) for n ≤ 6. The region inside of the dotted
lines is highlighted in fig. 2b. Outside of this region, the
state diagram is known exactly, see appendix A. The dot-
ted line within the hatched region is given by eq. (12),
while the dotted line within region II is determined in ap-
pendix A. Between these dotted lines we find two small
regions III (red) and IV (blue) where two new periodic lat-
tices have a lower energy than the hexagonal lattice, see
fig. 2. These regions were identified numerically by com-
paring the minimized energies of various periodic tilings
of the plane. Furthermore, we show in fig. 2b a violet line,
showing the limit of local stability of the hexagonal net-
work.

The energy of different periodic network configurations
is shown in figs. 2c and d as a function of Λ for Γ = 0.15.
The energy of soft lattices in region I is constant and the
corresponding line (orange) exists for Λ � −1.12, up to
the dotted line in fig. 2c. The energy of hexagonal lattices
is indicated in green, while those of periodic “4-8” and
“3-12” lattices are shown in red and blue, respectively.
Note that the blue line only exists for Λ � −0.20. The
black line shows the energy of collapsed cells of zero area.
The energy branch of soft lattices (orange) meets the en-
ergy of the hexagonal lattice (green) at a point where the
energy of the hexagonal lattice has zero slope, indicative
of a second-order transition, see fig. 2c. The transitions
between regions II, III, and IV, however, are first-order
transitions because the different branches have different
slopes, see fig. 2d.

4 Elastic properties: Shear and compression
moduli

Here we discuss the shear and compression moduli of the
ground states of the vertex model. For fixed cell number
N and box dimensions Lx and Ly, we define the minimum
of the potential F by the function F (Lx, Ly). The shear
modulus μ can then be obtained as

μ =
1

2A

∂2F (Lx, Ly)
∂γ2

∣∣∣∣
γ=0

, (13)

where A = LxLy, Lx = L
(0)
x (1+γ), and Ly = L

(0)
y /(1+γ).

Here, L
(0)
x and L

(0)
y define the size of a reference box and

γ is a dimensionless rescaling parameter. Similarly, the
compression modulus λ can be obtained as

λ =
1

4A

∂2F (Lx, Ly)
∂ε2

∣∣∣∣
ε=0

, (14)

where Lx = L
(0)
x (1+ε) and Ly = L

(0)
y (1+ε). In the region

where the ground state is a hexagonal lattice the network
has both nonzero shear and compression moduli

μ = (
√

3/16)p2 + 2
√

3 Γ − 1/2,

λ = 6
√

3 Γ + 3
√

3 Λ/p, (15)

where λ = λ/(KA0) and μ = μ/(KA0).

As line tension and perimeter elasticity are reduced,
the shear modulus of the network decreases; when the
equilibrium perimeter of cells in the hexagonal ground
state reaches p = p0 the shear modulus vanishes, yielding
a transition line at Λ = −25/231/4Γ . This is exactly the
transition line where the ground state changes from a net-
work of regular hexagons to a degenerate network where
all cells have a = 1, p = p0, and e = e0, see sect. 3.2. For
line tensions and perimeter elasticity below this transition
line, small shear deformations can be performed with no
work required, indicative of a transition from a solid to a
soft network.

For sufficiently high perimeter elasticity and tension
the compression modulus vanishes. Setting λ = 0 in
eq. (15) yields an instability line for the hexagonal lattice

Λ = 23/23−5/2(
√

3 − 12Γ )3/2 (Γ <
√

3/12),

= 0 (Γ ≥
√

3/12). (16)

This line lies primarily in the hatched region of the state
diagram, see the violet line in fig. 2. For points in the
phase diagram beyond this line hexagonal networks are
unstable.

5 Topological changes

The ground state is an important reference state for cellu-
lar networks, representing the most relaxed configuration.
Network configurations that correspond to cell packings
in tissues in general do not correspond to ground states.
Active processes such as cell division and morphogenetic
movements perform mechanical work, and thus generate
network configurations that are of higher potential en-
ergy than the ground state. However, these configurations
are force-balanced, and thus local minima of the poten-
tial F [3]. The large number of such local minima are
physiologically relevant, and are generated via topological
rearrangements of the network. Such topological changes
are often associated with energy barriers. We discuss two
types of topological transitions called T1 and T2 transi-
tions [28]. A T1 transition occurs when a cell boundary
shrinks to zero length, forming a fourfold vertex, which
subsequently decomposes, creating a new cell bond. This
process changes neighbourship relationships, see fig. 3. A
T2 transition occurs when a n-sided polygon shrinks to a
point and is replaced with an n-fold vertex, see fig. 4. Such
a T2 transition corresponds to cell extrusion from an ep-
ithelium, typically associated with cell death (apoptosis).

5.1 Cell extrusion by T2 transitions

Cell extrusion can be discussed in a simple scenario where
triangular cells of dimensionless side length � = l/

√
A0

are introduced at the vertices of a hexagonal network. The
resulting lattice consists of three- and twelve-sided cells,
as in region IV of fig. 2. We show in fig. 5 the potential
energy per cell of the lattice as a function of the side length
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Fig. 3. Schematic of a network rearrangement called a T1
transition. Two threefold vertices combine to form a fourfold
vertex, which subsequently decomposes into two new threefold
vertices. The overall topology of the network is changed during
this process, and cells change their neighbourship relation.

Fig. 4. Schematic of a network rearrangement called a T2
transition. A cell shrinks to zero area and is removed from the
lattice. This process corresponds to the extrusion of a cell from
an epithelium (apoptosis).

� of the triangles. Depending on parameter values we find
three distinct behaviours: (a) instability of triangles with
respect to spontaneous cell extrusion, (b) locally stable
triangles with a barrier to cell extrusion, and (c) globally
stable triangles in region IV of fig. 2.

5.2 Energetics of manyfold vertices

The energetics of manyfold vertices in the vertex model are
relevant for the dynamics of boundary rearrangements, i.e.
T1 transitions. A manyfold vertex is unstable if there ex-
ists a decomposition into infinitesimally separated three-
fold vertices that lowers the potential F of the network.
For example, a fourfold vertex can be replaced with two
threefold vertices in two topologically different ways, see
fig. 3. Our work suggests that manyfold vertices are un-
stable if all cells are equivalent (common values of A0, Λ,
Γ , and K), unless a = 1 and p = p0. A general proof of
this statement is lacking, but it holds true for any case
investigated.

Consider for example the case where cells meeting at a
fourfold vertex have equal area a �= 1 and equal perimeter
p �= p0. If a fourfold vertex decomposes into two threefold
vertices then the total energy change is

δF =
1
N

∑

α

[
(aα − 1)δaα + Γ (pα − p0)δpα

]
, (17)

plus terms of order δa2
α and δp2

α. Substituting aα = a and
pα = p, eq. (17) reduces to

δF =
Γ (p − p0)

N

∑

α

δpα. (18)

Thus the change in potential during decomposition of
a fourfold vertex is proportional to the total perimeter

change in this case. There are two topologically distinct
ways to decompose a fourfold vertex into two threefold
vertices, see fig. 3. For each of these two topologically
distinct decompositions, there is a continuum of possi-
ble variations, assuming that infinitesimal movements of
the resulting threefold vertices are permitted. As a conse-
quence, there always exist many decompositions of a four-
fold vertex into threefold vertices, some of which increase
and some of which decrease the total perimeter. Thus it
is possible to lower the potential of the network by de-
composing the fourfold vertex, and the fourfold vertex is
always unstable in this case. Finally, if cells are unequal in
their mechanical properties then stable manyfold vertices
can occur.

6 Cell division and tissue growth

Thus far we have defined the ground states of the vertex
model and discussed topological processes necessary for
the analysis of physiologically relevant states, see sects. 3
and 5. Here we exposit quasistatic algorithms that de-
scribe cell division and tissue growth in the vertex model.

6.1 Cell division in the vertex model

In the vertex model, cell division can be introduced by the
following steps [3] (algorithm I): i) Initially the network is
in a force-balanced state, i.e. a local minimum of F . ii) A
cell α is selected to divide. iii) The preferred area A

(0)
α of

cell α is doubled quasistatically. iv) A new cell boundary
is introduced bisecting the cell α into two daughter cells.
In the case of isotropic cell division, the new cell bond
has a random orientation. We choose it to pass through
the center of cell α, defined as the average of the vertex
positions of that cell. v) The preferred areas A

(0)
α of the

daughter cells are reset to the original preferred area of
cells. vi) The system is relaxed to a force-balanced con-
figuration1. This relaxation introduces network rearrange-
ments by T1 and T2 transitions. A detailed discussion of
the algorithms used to account for topological changes are
given in appendix B.

For simplicity and to improve computational perfor-
mance, the steps described above can be reduced as fol-
lows (algorithm II): i) Initially the network is in a force-
balanced state. ii) A cell α is selected to divide. iii) The
cell α is bisected into two daughter cells by inserting a
new cell bond. This new cell bond has a random orien-
tation and passes through the geometric center of cell α.
iv) The system is relaxed to a force-balanced state. We
show in appendix C that algorithm I and II give very sim-
ilar results, and that for practical purposes algorithm II is
sufficient to describe tissue morphology.

1 Both here and in ref. [3] force-balanced states are obtained
using the Polak-Ribière variant of the conjugate gradient al-
gorithm [29], e.g., as implemented in the GNU Scientific Li-
brary [30].
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Fig. 5. Diagrams of the potential energy per cell ΔF = F − e0 − 1/2 of “3-12” lattices, which are hexagonal lattices into
which triangular cells are periodically introduced, see fig. 2b. Different parameter values reveal three possible situations: (a) no
barrier to cell extrusion, (b) a finite barrier to cell extrusions and (c) stable 3-12 lattices in region IV. Parameter values are
(Λ, Γ ) = (0.12, 0.04), (0, 0.1), and (−0.005, 0.15), corresponding to (a), (b), and (c), respectively.

6.2 Tissue morphologies generated by growth

Growth simulations are performed by randomly selecting
cells with equal probability to divide. A single cell division
is performed using algorithm II and the next cell is sub-
sequently selected at random. This implies a quasistatic
representation of growth. This process can be related to
real time by assigning times to each cell division event.
This can be done such that the probability per unit time
of each cell to divide, the cell division rate kd, is constant.
Alternatively, one can describe the process as a function
of generation number g = log2(N/N0), where N is the cell
number and N0 is the cell number in the original genera-
tion of cells.

We show in fig. 6a polygon class distributions resulting
from vertex model simulations using algorithm II (solid
line). These data were obtained by performing 104 simu-
lations, each starting from 16 cells and having 102 sub-
sequent cell divisions. The errors are smaller than the
line width and are thus not indicated. Note that neigh-
bor numbers in the simulations were determined without
a cutoff for minimal bond length and therefore the av-
erage neighbor number is 6. This data is compared to
experimental estimates of neighbor number distributions
in the developing wing of fruit fly Drosophila (data from
ref. [3]).

In a series of studies spanning from 1928 to 1950,
F.T. Lewis reported an approximately linear relationship
between the number of sides and the area of cells of var-
ious organisms [31,32]. This maxim is commonly referred
to as Lewis’s Law. We present in fig. 6b the area of poly-
gons resulting from simulated growth in the vertex model
(algorithm II, solid line) and values reported experimen-
tally (dashed line). Note that our simulations show that
the average area exhibits nonlinear behavior. However, if
the same data were presented over a limited range of n
(e.g., 4 ≤ n ≤ 8) and with larger error bars, then one
might mistakenly identify a linear relationship. Nonlin-
earities can have several causes, for instance because cells
cannot have arbitrarily large areas while the number of
neighbors can become large. These nonlinearities are ac-
cessible in simulations, where precise statistics are pos-

sible. Lewis’s Law therefore represents an approximation
that is valid for limited ranges of n.

We also present in figs. 6c and d the full distributions
of polygon area and perimeter. The mean areas 〈a〉n pre-
sented in fig. 6b are the first moments of the distributions
shown in 6c.

7 Conclusions

In ref. [3], a vertex model was shown to reproduce mor-
phology and topology of epithelial network configurations
in the developing wing of the fruit fly. Similar approaches
have subsequently been employed to study a variety of
biological problems including wound closure [7,26], cell
sorting [8], and the mechanical regulation of cell division
and growth [9]. Here we discuss key properties of these
vertex models.

We showed in sect. 3 and the accompanying ap-
pendix A that ground states of the vertex model can be
determined analytically for most parameter values (Λ, Γ ).
This was done by reformulating the vertex model in terms
of isolated polygons (sect. 3.1). The full phase diagram is
presented in fig. 2. Using this phase diagram we identify
transition lines related to shear and compression moduli
of the bulk tissue.

While the ground state is an important reference state,
active processes such as cell division and death result in
irregular networks that correspond to local minima in the
vertex model. In order to understand physiologically rel-
evant states, it is first necessary to understand the rele-
vant topological processes that can occur. We show that
a simplified algorithm, which omits quasistatic doubling
of preferred area, is sufficient to describe cell packings in
growing epithelia. Furthermore, we investigate details con-
cerning topological network rearrangements by T1 and T2
transitions, in sect. 5. We find that processes including cell
extrusion and cell boundary rearrangements can involve
energetic barriers in the vertex model.

The vertex model investigated here provides a basis to
describe quasistatic remodeling of epithelia during devel-
opment. Additional cell properties and molecular signaling
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Fig. 6. (Colour on-line) (a) Fraction of n-sided polygons as a function of cell neighbour number n. Neighbour number distri-
butions are obtained in growth simulations with algorithm II for (Λ, Γ ) = (0.12, 0.04) without a length cutoff (black) and with
a length cutoff of 20% of the average bond length (blue). Experimental data (red) of the wing of the fruit fly from ref. [3] is
shown for comparison. The length cutoff defines a distance, below which two threefold vertices are considered to be a single
fourfold vertex. For each polygon containing one or more edges shorter than the length cutoff, the neighbour number n is
reduced appropriately. (b) Average area of n-sided polygons, normalized by the average area of cells in the network, for the
same simulations and experiments shown in (a). (c) Stationary probability distributions of the areas of n-sided polygons in the
growth simulations with algorithm II that are indicated by solid lines in (a) and (b). (d) Stationary probability distributions of
the perimeters of n-sided polygons in the simulations shown in (c).

processes can be naturally incorporated in this theoreti-
cal framework. This opens the possibility to study the
interplay of active mechanics and cellular signaling in the
shaping and patterning of tissues.

Appendix A. Ground states of the vertex
model

Appendix A.1. Networks of identical cells

We first determine the ground state of networks of iden-
tically shaped cells. Networks of identically shaped cells
can only be n-sided polygons with n = 3, 4, 5 or 6. Note
that, due to the restriction of average neighbour number,
networks of identically shaped cells with n = 3, 4 or 5

must contain fourfold or manyfold vertices. As shown in
sect. 3.1, for Λ < −25/231/4Γ the lowest potential energy
of individual polygons corresponds to irregular polygons
with preferred area and perimeter. Similarly, it was shown
that if

Λ ≥ 2 · 3−5/2(
√

3 − 12Γ )3/2 (Γ <
√

3/12), (A.1)

or

Λ ≥ 0 (Γ ≥
√

3/12), (A.2)

then the lowest potential of individual polygons corre-
sponds to collapsed cells with a = 0. These results also
apply for networks of identical polygons. For values of Λ
between these two cases, a regular hexagon of minimal e
has a lower potential than any other n-sided polygon with
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Table 2. Ground states of the potential energy F of networks of identically shaped cells as a function of the dimensionless line
tension Λ and perimeter elasticity Γ . For Λ < −25/231/4Γ the ground states are degenerate, consisting of identical irregular
polygons with a = 1 and p = p0.

Parameter values Ground state (identical cells)

Λ < −25/231/4Γ –

−25/231/4Γ ≤ Λ < 2 · 3−5/2(
√

3 − 12Γ )3/2 Γ <
√

3/12

−25/231/4Γ ≤ Λ < 0 Γ ≥
√

3/12

Λ ≥ 2 · 3−5/2(
√

3 − 12Γ )3/2 Γ <
√

3/12

Λ ≥ 0 Γ ≥
√

3/12

irregular polygons (a = 1, p = p0)
)

hexagonal lattice

)

collapsed lattice (a = 0, p = 0)

n ≤ 6. Interestingly, for Λ ≥ 0 this fact also follows di-
rectly from the so-called “Honeycomb Conjecture”, which
states that a network of regular hexagons has the smallest
perimeter of any periodic tiling of equal area regions [33].
These arguments define the ground states of networks of
identical cells, depending on the values of Λ and Γ , see
table 2.

Appendix A.2. General networks of cells

We now consider all possible networks and determine the
ground states of F . For Λ < −25/231/4Γ any state for
which all cells have area a = 1 and perimeter p = p0 is
a ground state of the system. In the following we only
consider parameter values with Λ ≥ −25/231/4Γ .

The ground state of all networks composed of n-sided
polygons with n ≤ 6 is a perfect hexagonal network with
optimized areas. This follows because an optimal hexagon
has a lower potential than any other n-gon with n ≤ 6.
The problem is nontrivial in the case where some poly-
gons have n > 6 sides. Because for periodic boundary
conditions the average neighbor number 〈n〉 in an arbi-
trary network is 〈n〉 ≤ 6, any n-gon with n > 6 must be
balanced by a number of n-gons with n < 6. We use this
fact to determine a lower bound Δnet(n) + e6 of the po-
tential of networks containing cells with n > 6, where e6

denotes the optimal energy of regular hexagons.
For a network containing an n > 6-sided cell, the aver-

age neighbour number can be less than or equal to 6 if the
network also contains n − 6 pentagons, (n − 6)/2 quadri-
laterals, or (n− 6)/3 triangles. Combinations of triangles,
quadrilaterals, and pentagons are also possible. A lower
bound on the potential difference between such a network
and one containing only regular hexagons is given by

Δnet(n) = Δn + (n − 6)min
[
Δ5,

Δ4

2
,
Δ3

3

]
, (A.3)

where Δn = en − e6. Here en is the lowest energy e of
an n-sided polygon given Λ and Γ . Note that as shown in
sect. 3.1, the corresponding optimal polygon shape is ei-
ther a regular n-sided polygon, an irregular polygon with
a = 1 and p = p0, or a collapsed cell (a = 0, p = 0).
If Δnet(n) > 0, then any network constructed using cells
with six or fewer sides together with cells with n > 6 sides
will have a higher potential than the hexagonal lattice. If

Δnet(n) > 0 for all n > 6, then the optimal hexagonal
network is the ground state of the system for the given
parameter values. We note that en is monotonically de-
creasing with n, so that

Δnet(n′) ≥ Δnet(n) + e∞ − en, (A.4)

for all n′ ≥ n, where

e∞ = lim
n→∞

en. (A.5)

The procedure for showing that the hexagonal lat-
tice is the ground state for a particular set of param-
eter values (Λ, Γ ) is as follows. Starting at n = 7, we
check the inequality Δnet(n) > 0 for increasing values
of n. If Δnet(n) < 0 for any n, the then hexagonal net-
work may not be the ground state. If for Δnet(n) > 0
we also find Δnet(n) + e∞ − en > 0 then the hexago-
nal network is proven to be the ground state, and larger
n do not need to be considered. We continue checking
these two inequalities for increasing values of n, until ei-
ther Δnet(n) < 0 for some n, and no conclusions can be
drawn, or Δnet(n) + e∞ − en > 0, and thus the hexagonal
lattice is shown to be the ground state.

We have applied these arguments numerically at each
set of parameter values (Λ, Γ ) in the ranges −1.5 ≤ Λ ≤
0.5, 0 ≤ Γ ≤ 0.2 in increments of ΔΛ = ΔΓ = 10−4. We
find that the hexagonal lattice is the ground-state network
of the vertex model everywhere in the part of region II of
figs. 2a and b that is exterior to the dotted lines.

Appendix B. Topological changes during
network relaxation

When the potential energy F is minimized by a conjugate
gradient procedure, a cell bond can shrink to zero length
and the network can undergo a T1 transition. Similarly, a
cell can shrink to zero area and induce a T2 transition.

Appendix B.1. T1 transitions

Method A. Each bond 〈i, j〉 is assigned a state variable
σ〈i,j〉, which can take the values 0 or 1. Initially σ〈i,j〉 = 1
for all bonds. The algorithm consists of the following steps,
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Fig. 7. Schematic representation of T1 transitions as imple-
mented in the numerical algorithm described in appendix B.

applied at each iteration of energy minimization: i) A T1
transition is performed whenever a bond with σ〈i,j〉 = 1
shrinks below a cutoff length lmin, i.e. if lij < lmin. After
the transition this bond no longer exists, and the newly
created bond is assigned σ〈i,j〉 = 0. ii) For all bonds with
lij ≥ lmin we set σ〈i,j〉 = 1.

Method B is the algorithm used in ref. [3]. The algorithm
consists of the following steps, applied at each iteration of
energy minimization: i) For each bond with lij < lmin we
determine F+ and F−, the energies corresponding to net-
work configurations due to right-handed and left-handed
T1 transitions, see fig. 7. ii) The network with the lowest
potential value F0, F+, or F− is chosen, where F0 is the
energy of the initial network, see fig. 7. This implies that
a T1 transition occurs whenever F+ or F− is below F0.

Method C is similar to Method B, except that F+ and F−
are determined after an additional relaxation, which keeps
all vertices fixed except for i and j.

We find that polygon distributions and cell area varia-
tions are indistinguishable for tissues obtained using these
three algorithms (data not shown). The simplest algo-
rithm presented here (Method A) is more robust to nu-
merical implementation than methods B and C, because
methods B and C require precise computation of small
potential changes F+ − F0 and F− − F0.

Appendix B.2. T2 transitions

T2 transitions are accounted for by replacing a cell α with
Aα < Amin with a vertex, where Amin is an area cutoff.

Appendix C. Comparison of growth
algorithms

Algorithm II for quasistatic cell division introduced in this
paper is a simplified version of Algorithm I, which was

3 6 9 12
Number of Sides  n

0

0.1

0.2

0.3

Po
ly

go
n 

Fr
ac

tio
n 

 P
n

(a)

3 6 9 12
Number of Sides  n

0

0.5

1

1.5

2

M
ea

n 
A

re
a 

 <
a>

n
[<

a>
]

(b)

Fig. 8. (Colour on-line) Comparison of algorithms I (dashed
red lines) and II (solid black lines), which use different rules for
cell division, for (Λ, Γ ) = (0.12, 0.04). (a) Fraction of n-sided
polygons as a function of cell neighbour number n. (b) Average
area of n-sided polygons, normalized by the average area of the
network, for the same simulations shown in (a). The solid black
lines in (a) and (b) are the same as in figs. 6a and b.

used in ref. [3], see sect. 6.1. We show in fig. 8 that these
two growth algorithms give very similar results (compare
solid and dashed lines).

Note that the polygon distributions shown in ref. [3]
differ slightly from the dashed line in fig. 8, which is ob-
tained using the same algorithm. Reasons for this are: i) A
length cutoff was used when defining neighbour numbers
in ref. [3], which is necessary when comparing with exper-
iment. No such cutoff is used here. ii) In ref. [3] a single
network containing 104 cells was used, whereas here we use
103 networks (dashed line in fig. 8) and 104 networks (solid
line) containing ∼ 110 cells each. This implies a larger sta-
tistical error in ref. [3] compared to fig. 8. iii) There are
additional numerical inaccuracies in ref. [3].
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Leipzig, F. Clemm, 1873).

12. J.E. Taylor, Ann. Math. 103, 489 (1976).
13. K. Kawasaki, T. Nagai, K. Nakashima, Philos. Mag. B 60,

399 (1989).
14. K. Nakashima, T. Nagai, K. Kawasaki, J. Stat. Phys. 57,

759 (1989).
15. T. Okuzono, K. Kawasaki, Phys. Rev. E 51, 1246 (1995).
16. R.L. Fullman, in Metal Interfaces (American Society for

Metals, Cleveland, 1952) pp. 179–207.

17. A. Soares, A.C. Ferro, M.A. Fortes, Scr. Met. 19, 1491
(1985).

18. D. Weaire, The Physics of Foams (Oxford University
Press, 2000) ISBN 0198505515.

19. F. Graner, J.A. Glazier, Phys. Rev. Lett. 69, 2013 (1992).
20. J.C.M. Mombach, R.M.C. de Almeida, J.R. Iglesias, Phys.

Rev. E 48, 598 (1993).
21. R. Smallwood, Wiley Interdiscip. Rev. Syst. Biol. Med. 1,

191 (2009).
22. P. Pathmanathan, J. Cooper, A. Fletcher, G. Mirams, P.

Murray, J. Osborne, J. Pitt-Francis, A. Walter, S.J. Chap-
man, Phys. Biol. 6, 036001 (2009).

23. Y. Hatwalne, S. Ramaswamy, M. Rao, R.A. Simha, Phys.
Rev. Lett. 92, 118101 (2004).

24. K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, K. Sekimoto,
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