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Abstract. Positioning of microtubule (MT) organizing centers with respect
to the confining geometry of cells depends on pushing and/or pulling forces
generated by MTs that interact with the cell cortex (Dogterom et al 2005 Curr.
Opin. Cell Biol. 17 67–74). How, in living cells, these forces lead to proper
positioning is still largely an open question. Recently, it was shown by in vitro
experiments using artificial microchambers that in a square geometry, MT asters
center more reliably by a combination of pulling and pushing forces than by
pushing forces alone (Laan et al 2012a Cell 148 502–14). These findings were
explained by a physical description of aster mechanics that includes slipping
of pushing MT ends along chamber boundaries. In this paper, we extend that
theoretical work by studying the influence of the shape of the confining geometry
on the positioning process. We find that pushing and pulling forces can have
centering or off-centering behavior in different geometries. Pushing forces center
in a one-dimensional and a square geometry, but lead to off-centering in a circle
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if slipping is sufficiently pronounced. Pulling forces, however, do not center in a
one-dimensional geometry, but improve centering in a circle and a square. In an
elongated stadium geometry, positioning along the short axis depends mainly on
pulling forces, while positioning along the long axis depends mainly on pushing
forces. Our theoretical results suggest that different positioning strategies could
be used by different cell types.
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1. Introduction

In cells, dynamic microtubules (MTs), organized in higher-order structures such as MT asters
or MT bundles, exert forces on MT organizing centers (MTOCs). Such forces are important for
the positioning of these organizing centers with respect to the periphery of the cell. In the fission
yeast Schizosaccharomyces pombe for example, MTs organized in antiparallel bundles position
the nucleus in the center by growth-based pushing forces generated at the cell poles (Tran
et al 2001). The mechanism by which pushing forces position the nucleus has been studied
quite extensively in vivo and in vitro, as well as theoretically (Holy et al 1997, Dogterom
and Yurke 1998, Tran et al 2001, Faivre-Moskalenko and Dogterom 2002, Tolic-Norrelykke
et al 2004). In many other systems however, positioning processes such as the centering of MT
asters and the orientation of the mitotic spindle (Dujardin and Vallee 2002, Vallee and Stehman
2005, O’Connell and Wang 2000) have been suggested to rely on pulling forces generated at
MT contacts with the cell cortex (Busson et al 1998, Koonce et al 1999, Burakov et al 2003).
Pulling forces are also implicated in processes where the positioning needs to be asymmetric.
In Caenorrhabditis elegans for example, MT-based pulling forces contribute to the asymmetric
positioning of the mitotic spindle (Grill et al 2001). It is generally assumed that in this and other
cases, the pulling force is mediated by the minus end-directed motor protein dynein that is linked
to the cell cortex (Gonczy et al 1999). It has been proposed that, in addition, pulling forces may
be generated by dynein along MTs in the cytoplasm (Hamaguchi and Hiramoto 1986, Kimura
and Onami 2005, Wuhr et al 2010, Kimura and Kimura 2011a), which in particular may be
relevant for large embryonic cells where MT asters need to position themselves without directly
contacting the cell periphery (e.g. Wuhr et al 2009).

Several models have been proposed that describe the role of pulling forces in cellular posi-
tioning processes. In one of the earlier models, the positioning mechanism relies on the length
dependence of pulling forces due to lateral interactions of force generators along the length of
MTs (Hamaguchi and Hiramoto 1986, Zhu et al 2010, Kimura and Kimura 2011b), either at

New Journal of Physics 14 (2012) 105025 (http://www.njp.org/)

http://www.njp.org/


3

the cortex or in the cytoplasm. In a more recent model, positioning relies on the assumption that
only a small fraction of MTs interacting with the cortex is subject to pulling forces (Grill and
Hyman 2005). However, for the general situation of length-independent cortical pulling forces
that are not limited by the number of interaction sites, simple arguments based on the expected
length distribution of dynamic MTs predict that MTOCs should not center: in response to
cortical pulling forces, MT asters should move away from the center toward nearby boundaries
where most cortical contacts are made, in contrast to the situation where pushing forces are
generated (Hamaguchi and Hiramoto 1986, Dogterom et al 2005, Howard 2006).

At odds with this simple prediction, we have shown recently that in minimal in vitro
experiments, cortical pulling forces in combination with pushing forces can in fact lead to
efficient positioning of MT asters (Laan et al 2012a). These experiments were set up as follows:
an MT aster was grown from an MTOC, a centrosome, in a square microfabricated chamber
(Holy et al 1997, Faivre-Moskalenko and Dogterom 2002). A gold layer that was sandwiched
in the sidewalls of the microfabricated chamber allowed for specific binding of biotinylated
dynein molecules via gold-specific chemistry and biotin–streptavidin linkage (Romet-Lemonne
et al 2005). Pushing forces arose from MT polymerization and buckling forces (Dogterom
et al 2005, Howard 2006), and pulling forces arose from interactions between MT ends and
the dynein motor proteins. We found that MT asters center more reliably by a combination of
pulling and pushing forces than by pushing forces alone, provided that most MTs reach the
periphery of the chamber. At first sight this was surprising. As depicted in figure 1(a), the net
pulling forces on an MT aster that grows from an MTOC in an isotropic manner, located at
any location in the confining space, is expected to be zero. To explain our data, we developed a
theoretical description based on the following mechanism: slipping of pushing MTs along the
chamber walls generates an anisotropic distribution of MTs that, once MT ends are captured by
dynein, leads to a reliable centering force on the MT aster (figure 1(b)). We applied this model to
the square geometry relevant to our in vitro experiments and showed that pulling forces indeed
improve positioning of an MT aster.

In this paper, we extend our recent work by studying the general role of the geometry of
the confining space in positioning processes driven by a combination of cortical pushing and
pulling forces. Cells have different sizes and shapes and it is thus important to explore the
general applicability of the positioning mechanism that we propose. We find that the magnitude
as well as the direction of positioning forces differ in various geometries. Pushing forces center
reliably in a one-dimensional geometry, but in the case of considerable slipping they lead to
off-centering in a circular geometry. Pulling forces, however, do not lead to centering in a one-
dimensional geometry but center in a circular and a square geometry. In elongated geometries,
such as a stadium and a rectangle, we find that centering by pulling forces is more efficient along
the short axis than along the long axis, as expected from an intermediate between a circle/square
and a one-dimensional geometry. Our results suggest that different positioning strategies could
be employed in different types of cells.

2. Physical description of a microtubule aster within a two-dimensional confinement

In our description of an MT aster, MTs radiate from an MTOC with position r (figure 1(c)). As
in Laan et al (2012a), we consider two populations of MTs that are in contact with a boundary
of a confining space: (i) pushing MTs distributed with angular density n+(φ, t) and (ii) pulling
MTs distributed with angular density n− (φ, t), which are bound to dynein. Here φ describes
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Figure 1. A model for centering due to slipping and pulling. (a), (b) Net pulling
forces in a circular geometry. MTs and the MTOC are drawn in gray and motors
are drawn in blue. (a) If there is no slipping, the MT distribution is isotropic, and
the sum over all pulling forces on the MTOC is zero. (b) If MTs are slipping
along the cell boundary, the MT distribution becomes anisotropic and the sum
over all pulling forces on the MTOC is no longer zero. (c) Schematic representa-
tion of an MTOC at r = (x, y) in an arbitrary confining geometry, introducing the
parameters used in our theoretical description of aster positioning. The MT ori-
entation is described by the angle ϕ. The position of corner i is ϕi and L denotes
the MT length. The left inset shows an MT under pushing force f +, which slips
along the wall with velocity υs. The angle between the MT orientation and the
normal to the boundary is β. The right inset shows an MT under pulling force f −.

the MT orientation relative to the x-direction and t denotes time. These MT distributions obey
the following equations:

∂n+

∂t
=

ν

2π
− kcatn

+
− kbn+

−
∂

∂φ
Jφ, (1)

∂n−

∂t
= kbn+

− koffn
−. (2)

Here, ν denotes the nucleation rate of MTs at the MTOC (note that we assume that all nucleated
MTs reach the boundary instantly), kcat denotes the catastrophe rate of pushing MTs, kb denotes
the rate of MT binding to dynein and koff denotes the detachment rate of pulling MTs. The
current

Jφ = υφn+ (3)

describes the reorientation of pushing MTs due to slipping along the boundary. In a situation
where r is fixed, υφ = (υs/L) cos β is the rate of angular MT reorientation, where L(r, φ) is the
distance between the organizing center at r and the MT contact with the boundary, and β(r, φ)

is the angle between the MT orientation and the normal to the boundary. The slipping velocity
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is υs = ( f +/ξ) sin β, where f + denotes the force exerted by a pushing MT on the boundary in
the direction given by the MT, and ξ is the friction coefficient associated with slipping. Note
that the function β(r) can exhibit discontinuities, for example, if the geometry has corners.
Such discontinuities occur at a discrete set of angles φi , i = 1, . . . , imax (figure 1(c)), where the
slipping velocity, υφ (φ), is discontinuous, i.e. υ+

i 6= υ−

i , where υ±

i = limε→0+ υφ(φi ± ε). Thus,
in geometries where such discontinuities occur, we describe the corresponding angles, which in
the present work correspond to corners, separately. The theoretical description differs for cases
in which MTs are slipping toward or away from the corners. If MTs are slipping toward a corner
from both sides (υ−

i > 0 and υ+
i < 0), they will get trapped there. In this case, we consider the

numbers N +
i (t) and N−

i (t) of pushing and pulling MTs at φ = φi(r). The MT numbers in that
corner satisfy

dN +
i

dt
= J −

i − J +
i − kcat N

+
i − kb N +

i , (4)

dN−

i

dt
= kb N +

i − koff N
−

i . (5)

Here, J ±

i = limε→0+ Jφ(φi ± ε) are MT currents leaving/entering the corners from both sides.
If MTs, however, are slipping away from a corner from one side and toward that corner from
the other side (υ−

i , υ+
i > 0 or υ−

i , υ+
i < 0), the same number of MTs is leaving/entering that

corner, J −

i = J +
i . Finally, if MTs are slipping away from a corner from both sides (υ−

i < 0 and
υ+

i > 0), the density at φ = φi vanishes: n+ (φi ± ε) = 0 for ε → 0+.
The net force acting on the organizing center is given by F = F+ + F−, where

F±
= ∓

∫ 2π

0
dφn± f ±m ∓

imax∑
i=1

N±

i f ±m (6)

correspond to the net pushing and pulling forces, respectively. Here, m(φ) denotes the unit
vector in the direction of the MT at an angle φ. The pushing force of a single MT is assumed
to be limited by MT buckling, which is described by the Euler buckling formula f +

= π2κ/L2,
where κ denotes the MT bending rigidity (Gittes et al 1993). In addition, the pushing force
may be limited by the MT polymerization force that is related to the polymerization velocity
(Dogterom and Yurke 1997). This limit becomes relevant only for MTs that are very short (and
therefore the Euler buckling force exceeds the so-called stall force at which MTs can no longer
grow), or in general when the polymerization velocity is significantly smaller than the predicted
slipping velocity. For a typical force of 3 pN (corresponding the buckling force of an MT with
a length of about 10 µm) and a friction coefficient of ξ = 50 pN s µm−1, the slipping velocity
is predicted to be 0.06 µm s−1, which is of the same order as the MT growth velocity (several
µm min−1). Therefore, for the sake of simplicity, we assume the pushing force to be limited by
Euler buckling. The pulling force f − > 0 is considered to be constant. In the steady state, ∂tn+

=

∂tn−
= 0. If the total number of MTs, M, contacting the boundary is imposed, the nucleation

rate becomes ν = M (kcat + kb) / (1 + kb/koff), where M =
∫ 2π

0 dφ
(
n+ + n−

)
+

∑
i

(
N +

i + N−

i

)
is

the total number of MTs in contact with the boundary. Note that in our calculation of static
forces on MTOCs at fixed positions, we do not explicitly account for length changes of MTs
due to (force-dependent) growth or shrinking (Dogterom and Yurke 1997, Janson and Dogterom
2004), nor do we account for any tilting of MT ends due to buckling of pushing MTs. In this
simplest description we consider MTs to remain straight.
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Table 1. Parameter choices.

Parameter Value Based on

M = 50MTs Rough estimate from experiments where MTs were grown
from centrosomes under similar experimental conditions

kcat = 10−2 s−1 Estimated from the dynamics of MTs in the microfabricated
chambers

koff = 10−2 s−1 Rough estimate from Laan et al (2012a) and from the
dynamics of the MTs in the microfabricated chambers

kb = 10−2 s−1 Equal to koff

f −
= 5 pN Taken from Laan et al (2012a) and Gennerich et al (2007))

ξ = 50 pN s µm−1 Rough estimate from experiments on MTs growing from
centrosomes attached to the surface against the gold barrier
coated with dynein

κ = 33.12 pN µm2 Taken from Gittes et al (1993)

3. Positioning in two-dimensional versus one-dimensional geometries

To investigate the positioning mechanism in different geometries, we compared the calculated
MT distributions and the corresponding forces in a circular geometry, a square geometry and
a one-dimensional elongated geometry. We chose the parameters to be essentially the same
as those in our previous study (Laan et al 2012a). However, we chose kb to be equal to
koff in order to compare forces generated by the same number of pushing and pulling MTs
(table 1). In a circular geometry, pushing MTs slip along the boundary and this leads to an
accumulation of MTs on the side of the chamber opposite to the direction in which the aster is
displaced (figure 2(a)). We refer to this opposite side as the distal side. When many MTs are
contacting the distal side compared to MTs contacting the proximal side, pushing forces can
become off-centering (despite the fact that long MTs exert smaller forces than short ones due
to MT buckling, as described by the Euler buckling formula). This happens when the friction
coefficient ξ is sufficiently small, and therefore slipping distances become sufficiently large
(figure 2(b), magenta curve). In contrast, at high friction coefficient, slipping distances are
reduced and the MT anisotropy is weak. In this case pushing forces have a centering effect due to
the length dependence of the buckling force (figure 2(c), magenta curve). Pulling forces, on the
other hand, always contribute a centering force, although the magnitude of the net pulling force
is reduced for increased friction ξ (figures 2(b) and (c), green curves). In a square geometry, the
MT anisotropy is more pronounced than in a circular geometry for the same set of parameter
values (compare figures 2(a) and (d)). However, the magnitude of the net pulling force is smaller
in a square geometry than in a circle (compare figures 2(b), (c) and 2(e), (f)). This difference is
related to the fact that in a circular geometry all MTs slip in the distal direction, whereas in a
square geometry some of the MTs slip in the opposite direction. As a consequence, centering
by pulling forces is more reliable in a circular geometry than in a square geometry. Recall
that for the same reason, centering by pushing is less reliable in a circular geometry than in a
square geometry. Interestingly, in a one-dimensional geometry the situation is very different:
slipping cannot occur at all (figure 2(g)) and pushing forces always center (figure 2(h), magenta
curve) as previously described (Dogterom and Yurke 1998, Dogterom et al 2005, Howard 2006).
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Figure 2. MT distributions and forces in a circle, a square and a one-dimensional
geometry. For different geometries the MT distribution, n = n+ + n−, is shown
for an MTOC 2 µm displaced from the center in a geometry with a width of
15 µm, and Ni = N +

i + N−

i is the total number of MTs at corner φi (orange
bars). The net (black), pulling (green) and pushing (magenta) forces on the
MTOC are plotted for different positions along the x-axis, x, in the geometry.
The black arrowheads indicate the 2 µm displacement used for the MT dis-
tributions. The white quadrants show centering forces and the gray quadrants
show off-centering forces. (a) MT distributions in a circular geometry, for two
different values of the friction: low friction ξ = 10−5 N s m−1 and high friction
ξ = 10−4 N s m−1. (b), (c) Net pulling and pushing forces for two different ξ in a
circular geometry. (d) MT distributions in a square geometry, for two different ξ .
(e), (f) Net pulling and pushing forces for two different ξ in a square geometry.
(g) In a one-dimensional geometry we define two populations of MTs. These
populations contain equal numbers of MTs, but with orientations in opposite
directions. Note that in this geometry MTs do not change their initial orientation
by slipping and thus MT distributions are friction independent. (h) Net pulling
and pushing forces for a one-dimensional geometry. The parameters used in
these graphs are kcat = 10−2 s−1, kb = 10−2 s−1, koff = 10−2 s−1, f −

= 5 pN,
κ = 3.3 × 10−23 N m2, M = 50.
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Figure 3. MT distributions in a stadium and a rectangle. For the different
geometries the MT distributions are shown in a geometry with a length of 30 µm
and a width of 15 µm. (a), (b) MT distributions in a stadium geometry, where
the MTOC is 2.5 µm displaced from the center, along the x-axis (a) and along
the y-axis (b) with low friction ξ = 10−5 N s m−1. (c), (d) MT distributions in a
rectangular geometry with the MTOC 2.5 µm displaced from the center along
the x-axis (c) and y-axis (d), for low friction. The remaining parameters used in
these graphs are the same as in figure 2.

This is in contrast to pulling forces, which do not relay any positional information in this
geometry (figure 2(h), green curve).

4. Positioning in elongated geometries

In the previous section, we have shown the opposite roles pushing and pulling forces can have
in a circular versus a one-dimensional geometry. To understand how a transition between these
two extremes occurs, we investigate positioning in two elongated geometries: in a stadium and
in a rectangle. In figure 3, we plot MT distributions for an MTOC displaced from the center
either along the long or the short axis, for both geometries (see figure 4 for the corresponding
force fields). In all cases MTs tend to align with the long axis, resulting in the same number of
MTs pointing to the left and to the right, similar to the one-dimensional case. Compared with
displacement along the long axis (figures 3(a) and (c)), MT asymmetry is more pronounced
for displacement along the short axis (figure 3(b) and (d)). For the stadium, this asymmetry is
reflected by fewer MTs pointing upward, in the direction of the displacement, than downward,
in the opposite direction (figure 3(b)). In a rectangle, MTs instead accumulate in the corners as
they do in a square (figures 3(c) and (d)).

Forces experienced by the MTOC reflect the distribution of MTs. In all geometries, in the
vicinity of the center, pulling forces are directed parallel to the short axis and are pointing toward
the center (figures 4(a)–(d), top). This means that pulling forces have a centering character
along the short axis, while along the long axis there is almost no positional information, similar
to the one-dimensional case. To find the position of the force-balanced states along the long
axis, we calculated pulling forces at smaller spacings than indicated in the figure. In a stadium
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Figure 4. Force fields in a stadium and a rectangle. Force fields of the pulling
(green), pushing (magenta) and net (black) forces in two different geometries
with a length of 30 µm and a width of 15 µm. (a), (b) Force fields in a stadium
geometry for two different frictions: low friction ξ = 10−5 N s m−1 and high
friction ξ = 10−4 N s m−1. (c), (d) Force fields in a rectangular geometry, for
two different ξ . The arrows representing the forces in the vicinity of corners
are smaller (by about a factor of 3) than the actual (relative) magnitude of these
forces and are thus crossed by two tildes. The remaining parameters used in these
graphs are the same as in figure 2. Full and hollow blue circles show the stable
and unstable force-balanced states, respectively. The force-balanced states are
found by additional calculations of the forces along the long and short symmetry
axes with a spacing of 0.15 µm.

(figures 4(a) and (b), top), we found an unstable force-balanced state at the center (open blue
circle) and two stable force-balanced states in the vicinity of the center (solid blue circles).
In a rectangle there is a single stable force-balanced state at the center (figures 4(c) and (d),
top, solid blue circle). Away from the center, close to the poles, pulling forces are pointing
toward the center irrespective of whether the displacement is along the long or short axis.
For pushing forces, the result depends on the shape and on the magnitude of the friction
coefficient (figures 4(a)–(d), middle). In a stadium at low friction, the pushing forces are, for
small displacements, centering along the long axis and off-centering along the short axis, with
an unstable force-balanced state at the center (figure 4(a), middle). In the remaining three cases,
in a stadium at high friction and in a rectangle at both frictions, the pushing forces are centering
along both the axes, resulting in a stable force-balanced state at the center (figures 4(b)–(d),
middle). In all the cases, for the MTOC displaced far away from the center, four additional
stable force-balanced states occur at the edges (figure 4, middle). In all the cases, the combined
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Figure 5. The positioning of MT asters in a rectangular geometry (experiment
and theory). (a) Single plane spinning disc confocal fluorescence image of an
MT aster in a rectangular microfabricated chamber. The scale bar is 10 µm.
(b) Scatter plot of the absolute aster positions (pluses), normalized with the
chamber half-length and half-width a and b. The ratio a : b = 2 : 1 is the same
for all chambers. (c) Theoretical MT distribution in a rectangle with a length of
30 µm and a width of 15 µm as a function of φ for an MTOC 4 µm displaced
from the center. (d) Vector field in which arrows indicate the net forces acting
on the MTOC in a chamber due to cortical pushing and pulling forces. The full
red circle shows the stable force-balanced state, and the dashed green and pink
lines indicate the lines along which the forces are shown below. The parameters
used in (c) and (d) are ξ = 5 × 10−5 N s m−1, kcat = 10−3 s−1, kb = 2 × 10−2 s−1,
koff = 10−4 s−1. The remaining parameters are the same as in figure 2.

pushing and pulling forces are centering with stronger centering forces along the short axis as
compared with the long axis (figure 4, bottom).

5. Comparison of experiments and theory of positioning in elongated geometries

To verify experimentally that MT asters indeed position more reliably along the short than
the long axis of an elongated geometry, we performed in vitro experiments in rectangular
microfabricated chambers with a length-to-width ratio of 2:1 (figure 4(a)). The length varied
from 15 to 80 µm. The experiments were performed as described previously under the same
experimental conditions (Laan and Dogterom 2010, Laan et al 2012a). In brief, dynein
molecules were specifically bound to a 700 nm thick gold layer in the sidewalls of the
microfabricated chambers. MT asters were grown at 25 ◦C with fluorescent tubulin (22 µM
tubulin, 1.6 µM Rhodamin tubulin, cytoskeleton, and Denver) from centrosomes (purified from
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human lymphoblastic KE37 cell lines), and imaged using spinning disc confocal (single plane)
fluorescence microscopy. In figure 5(a) an experimental picture of an MT aster in a rectangular
chamber is shown. The anisotropic MT distribution indicates the slipping of MTs along the
chamber walls, which is supported by comparing the experimental data directly with the
theoretical prediction (figure 5(c)). For this comparison the position r of the MTOC is chosen
at the same location as in the experiment. The parameters in the model are chosen to match the
experimental conditions (see the caption of figure 5). We studied the centering efficiency of MT
asters by recording the positions of 17 asters. These asters had MTs that were all long enough
to reach the edges of the microfabricated chamber and did not show observable movement
(anymore). The relative positions of these asters in chambers of different sizes, normalized with
the chamber half-width and half-length, are plotted in figure 5(b). This plot shows that deviations
from the center along the y-axis, y/b = 0 ± 0.06 (mean ± SD), are much smaller than deviations
along the x-axis, x/a = 0 ± 0.24 (mean ± SD), implying an eightfold better positioning along
the short axis than the long axis, compared in absolute coordinates. Interestingly, our theory
predicts that forces experienced by the MTOC at r1 = (0.24a, 0) and r2 = (0, 0.06b), positions
that represent deviations along the x- and y-axis, respectively, are of comparable magnitudes
F(r1)/F(r2) ≈ 0.57. Both experimental and theoretical results thus suggest that positioning is
more efficient along the short axis than along the long axis (figures 5(b) and (d)).

6. Discussion

Living cells have various sizes and shapes. For example, sea urchin eggs have spherical shapes.
Mammalian cells obtain an elongated shape during cell division and cells within tissues often
have polygonal shapes because they interact with neighboring cells. In all these cases the
centrosome tends to be positioned near the cell center and the mitotic spindle is aligned with
the long cell axis (O’Connell and Wang 2000, Minc et al 2011). Our findings show that cortical
MT pulling forces together with MT slipping could explain the robust centering of MT asters in
all these cell types. Further, our findings show that in elongated geometries, positioning along
the short axis is more reliable than along the long axis, implying that two separate asters would
distribute along the central part of the long axis. This could explain the alignment of mitotic
spindles with the long axis of cells.

Recently, in a series of in vivo experiments, Minc and colleagues (Minc et al 2011)
investigated the positioning of the nucleus in sea urchin eggs, which are of the order of 100 µm
in size. These eggs were confined to microfabricated chambers of different geometries to change
their shape accordingly. The position of the nucleus was found to be at the center of mass
of the cell, independent of cell geometry. This result was explained by a theory based on the
assumption that MT pulling forces are length dependent, similar to what has been proposed
for large millimeter-size cells where MTs do not reach the cell cortex (Wuhr et al 2010).
However, our theory based on length-independent cortical pulling forces could also explain
the experimentally observed centering of the nucleus in a square and in elongated geometries as
a result of MT slipping. Further in vivo experiments, in this and other systems, will be necessary
to investigate the relative role of this slipping mechanism compared to centering due to length-
dependent pulling forces. For example, in this study we predict that in elongated cells MTs tend
to align with the long axis and that centering of the MTOC along the longer axis is less accurate
than along the shorter axis. This prediction for elongated cells could be tested by measuring
angular distributions of MTs and centrosome positions in experiments such as performed by
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Minc and colleagues (Minc et al 2011). Alternatively, selective laser ablation of MTs at different
distances from the centrosome, such as in Vogel et al (2009), may provide a direct answer to
whether the pulling forces are generated along the MT lattice or at the MT ends.

In this study we have focused on static forces on MTOCs at a fixed position. Our results
suggest that spontaneous redistribution of MT orientations due to slipping leads to an efficient
centering strategy for dynamic MT asters subject to cortical pulling forces. In the future, it
will be interesting to study, both experimentally and theoretically, the dynamic aspects of the
positioning process. Experimentally perturbing the force balance with laser ablation (Grill
et al 2001, Vogel et al 2009) should, for example, reveal whether the MT aster is indeed
dynamically centered, and whether the subsequent dynamic response of the aster is consistent
with a theoretical analysis of the dynamics of our system. We are furthermore extending both
our experimental and theoretical work to three-dimensional geometries and asymmetric motor
distributions, as well as to systems with soft deformable geometries bringing our analysis closer
to the situation in cells. One might speculate that centering by slipping will be less efficient if
the geometry is strongly deformable because the MTs will generate a local ‘corner’ which will
prevent slipping and may even allow for lateral contacts (Laan et al 2012b). However, in vitro
experiments as well as detailed calculations will be necessary to shed light on this problem.
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