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Abstract. We study the dynamics of active polar fluids in a Taylor–Couette
geometry where the fluid is confined between two rotating coaxial cylinders. This
system can spontaneously generate flow fields and thereby set the two cylinders
into relative rotation either by spontaneous symmetry breaking or via asymmetric
boundary conditions on the polarization field at the cylinder surfaces. In the
presence of an externally applied torque, the system can act as a rotatory motor
and perform mechanical work. The relation between the relative angular velocity
of the cylinders and the externally applied torque exhibits rich behaviors such
as dynamic instabilities and the coexistence of multiple stable steady states for
certain ranges of parameter values and boundary conditions.
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1. Introduction

Living matter is internally driven far from thermodynamic equilibrium by active molecular
processes such as the action of motor molecules. These motors consume a chemical fuel,
adenosinetriphosphate (ATP), to generate directed movements and mechanical work by
interacting with structurally polar filaments. In living cells, large numbers of motors and
filaments collectively generate dynamic processes such as cell division, cell locomotion and
organelle transport in cells. The network of filaments and motors is called the cytoskeleton and
provides a key example of an active complex fluid with unconventional material properties.
Other examples are suspensions of microswimmers or collections of many cells, for example,
in developing tissues.

Active fluids often exhibit long-range nematic or polar order. For example, in crawling
cells, cytoskeletal filaments orient typically in the direction of motion. Similarly, the direction
of motion of microswimmers defines a polarity vector. Macroscopic polar order emerges when
many filaments align or swimmers form swarms [1]. The interplay of actively generated flow
fields with the orientation of polar order can render ordered states unstable [2, 3]. Instabilities
of active polar fluids can have interesting physical consequences and might also be responsible
for observed ‘low Reynolds number turbulence’ in bacterial suspensions [4]. Furthermore, the
polarity dynamics of active fluids could be responsible for physiologically relevant structures
such as contractile rings in dividing cells [5–7], flows during cellular wound healing [8] or the
reorientation of planar cell polarity in tissues [9].

In the hydrodynamic limit, i.e. on large length and long time scales, the generic properties
of visco-elastic active polar gels are described by generic equations. Hydrodynamic modes
are the result of conservation laws and of broken continuous symmetries [10]. Hydrodynamic
equations can be obtained systematically by first identifying conjugate pairs of thermodynamic
fluxes and forces. Constitutive material relations can be expressed by writing all linear coupling
terms permitted by symmetry, respecting Onsager reciprocity relations and the signature
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with respect to time-reversal [11–13]. Note that similar approaches have also been used to
describe bird flocks [14], swarms of hydrodynamically interacting swimmers [2], active nematic
fluids [15, 16] or active solids [17–19]. Furthermore, an extension to multi-component active
fluids has been developed [20].

A large number of instabilities of externally driven flows are known, some of which have
been analyzed in remarkable detail [21]. Among the best-studied instabilities are those of a fluid
flowing in the interstice between two rotating coaxial cylinders, known as the Taylor–Couette
system. In this context, complex fluids such as ferrofluids in the presence of a magnetic
field or visco-elastic fluids have also been considered. For the latter, notably, finite-amplitude
instabilities of linearly stable states have been found even at low Reynolds numbers if elastic
stresses decay sufficiently slowly [22, 23].

Here, we study the flow of an active polar fluid in the Taylor–Couette geometry to
highlight some of the interesting rheological properties of active fluids in a setup that might
be experimentally accessible. This requires an analysis of the angular momentum flux, which
is related to the externally applied torque. In particular, we discuss the role of the Ericksen
stress in the torque balance and extend the discussion of the so-called magic spiral [24, 25] to
active fluids. Our main result is that an active polar gel in a Taylor–Couette system becomes a
rotatory motor which can generate spontaneous rotation against external torques. We distinguish
between symmetric motors where motion occurs by spontaneous symmetry breaking and
asymmetric motors in which symmetry is broken by boundary conditions. Our analysis is also
relevant to biological processes, notably for active flows in the cytoskeleton. Moreover, it might
serve as a starting point for the design of biomimetic rotational motors.

This paper is organized as follows. In section 2, we present a derivation of the
hydrodynamic equations of active polar fluids, paying particular attention to the conservation
of angular momentum. The analysis of the Taylor–Couette motor is presented in section 3. The
paper concludes with a discussion of our results in section 4.

2. Hydrodynamic equations for an active polar fluid

We discuss the hydrodynamic equations of an isothermal active polar fluid. Following the
logic outlined in [11, 12, 24], we express the conservation laws and introduce the relevant
hydrodynamic variables. Based on the conjugate pairs of fluxes and forces in the entropy
production, we write the dynamic equations of the system. In the Taylor–Couette geometry
discussed here, angular momentum fluxes play an important role and are therefore specifically
discussed.

2.1. Conservation laws

In a fluid, the conserved quantities are mass, momentum and angular momentum. Conservation
of mass implies that

∂tρ + ∂α(ρvα)= 0, (1)

where ρ denotes mass density. This equation defines the center of mass velocity vα. The
conservation of momentum is given by

∂t gα − ∂βσ
tot
αβ = f ext

α , (2)
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where g = ρv is the momentum density. Here, the stress tensor σ tot denotes the total momentum
flux and fext denotes the density of external bulk forces. Greek indices take the values 1, . . . , d,
where d is the spatial dimension. Angular momentum conservation is expressed by

∂t`αβ − ∂γ M tot
αβγ = τ ext

αβ + rα f ext
β − rβ f ext

α , (3)

where `αβ = rαgβ − rβgα is the angular momentum density and τ ext
αβ is the density of the

external bulk torques. The total angular momentum flux M tot
αβγ has contributions rασ tot

βγ −

rβσ tot
αγ resulting from momentum fluxes. In complex fluids, however, there exist in general

additional contributions Mαβγ to the angular momentum flux that are related to molecular
anisotropies:

M tot
αβγ = Mαβγ + rασ

tot
βγ − rβσ

tot
αγ . (4)

Here, we are interested in polar fluids with a local polar anisotropy that is described by the
polarization vector p. This polarization field is defined as the average of microscopic polarity in
small volume elements of the system. For a polar fluid, the expression for the intrinsic angular
momentum flux M is given in appendix A. Using the force and torque balance equations (2)
and (3), we see that the antisymmetric part of the total stress in general does not vanish and
obeys

σ
tot,a
αβ =

1
2∂γ Mαβγ + 1

2τ
ext
αβ . (5)

Here σ tot,a
αβ = (σ tot

αβ − σ tot
βα)/2, see also [44]5.

We only consider situations where the total external force and torque applied to the system
is zero and where external bulk forces and torques vanish, i.e. f ext

α = 0 and τ ext
αβ = 0. In this case,

external forces σ tot
αγ dSγ and torques

d0αβ = dSγ M tot
αβγ (6)

can still act locally on the boundary ∂V at a surface element dSγ pointing outward. Vanishing
external force and torque imply

∫
∂V σ

tot
αγ dSγ = 0 and∫

∂V
d0αβ =

∫
∂V

dSγ M tot
αβγ = 0. (7)

Note that even if the total flux M tot
αβγ vanishes at the boundary, the contributions due to Mαβγ

and σ tot
αβ can be non-zero according to equation (4).

2.2. Free energy and hydrostatic stress

We consider a fluid that is locally in thermal equilibrium, but globally evolves in time. Local
equilibrium implies that the free energy density f is well defined. We write the free energy
density as

f =
gαgα
2ρ

+ f0(n, pα, ∂α pβ). (8)

5 Note that under an appropriate redefinition of the stress tensor, the contribution ∂γ Mαβγ to the antisymmetric
part of the total stress vanishes [44]. In such a formulation, the physics described by equation (5) is contained in
the symmetric part of the redefined stress tensor.
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The first term is the kinetic energy of center-of-mass motion. The second term is the free
energy density in the local rest frame. Here, n = ρ/m is the particle density and m denotes
the molecular mass. We define the field hα = −δF/δpα conjugate to the polarization field, and
the chemical potential µ= ∂ f0/∂n, conjugate to the particle density. The total free energy is
given by F =

∫
dd x f .

The hydrostatic or Ericksen stress,

σ e
αβ = ( f0 −µn)δαβ −

∂ f0

∂(∂β pγ )
∂α pγ , (9)

can be obtained by considering variations of the free energy as shown in appendix B and is
a generalization for anisotropic fluids of the hydrostatic pressure. Exploiting the translation
invariance of the system, we obtain the Gibbs–Duhem relation, which links the intensive
thermodynamic variables,

∂βσ
e
αβ = −n∂αµ− hγ ∂α pγ . (10)

The hydrostatic stress tensor has an antisymmetric component,

σ
e,a
αβ =

1
2(hα pβ − hβ pα)+ 1

2∂γ Mαβγ . (11)

This equation is a consequence of the rotational invariance of f0.
In equilibrium, when hα = 0 and σ tot

αβ = σ e
αβ , equation (11) becomes a special case of

equation (5). Note that even though Mαβγ and σ tot
αβ do not necessarily vanish at equilibrium,

the total angular momentum flux M tot
αβγ must be zero if external forces and torques are absent.

This implies that

0 = Mαβγ + rασ
e
βγ − rβσ

e
αγ . (12)

Consequently, the torques due to polarization field and due to the Ericksen stress cancel each
other. This fact is illustrated by the so-called magic spiral [24, 25].

2.3. Entropy production and constitutive equations

Starting from an expression for the rate of entropy production, we identify thermodynamic
forces and the conjugate thermodynamic fluxes and express constitutive relations between
these fluxes and forces. The rate of entropy production 2̇ for an isothermal system [11] can be
written as

T 2̇= −Ḟ + Ẇ + JF. (13)

Here T denotes the temperature, the dots indicate time-derivatives and JF denotes changes in
free energy due to fluxes at the boundary. Moreover, W denotes the work exerted by external
forces and torques. Using the conservation laws, we can evaluate Ḟ and find the entropy
production rate,

T 2̇=

∫
V

dx3
(
(σ tot
αβ − σ e

αβ)∂αvβ + (∂t pα + vβ∂β pα)hα + r1µ
)
. (14)

Here, we have assumed that the system is driven by a chemical reaction of a fuel which is
provided everywhere at constant concentration by a reservoir. In the biological context this fuel
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is ATP, which is hydrolyzed to adenosinediphosphate (ADP) and inorganic phosphate P. The
chemical free energy transduced per fuel molecule 1µ= µATP −µADP −µP is the difference
of the chemical potentials of ATP and its hydrolysis products. The reaction rate describing
the number of fuel molecules hydrolyzed per unit time is denoted by r . Therefore, the rate of
entropy production due to ATP hydrolysis is r1µ/T .

We separate σ tot
− σ e into a symmetric part

σαβ = σ tot
αβ − σ

tot,a
αβ − (σ e

αβ − σ
e,a
αβ )+ ρvαvβ (15)

and an antisymmetric part

σ a
αβ = σ

tot,a
αβ − σ

e,a
αβ = −

1
2(hα pβ − hβ pα), (16)

where equations (5) and (11) have been used. Note that equation (16) differs from the expression
given for σ a

αβ in [13] by an overall sign. Equation (14) then becomes

T 2̇=

∫
V

dx3

(
σαβuαβ +

Dpα
Dt

hα + r1µ

)
. (17)

Here uαβ =
1
2(∂αvβ + ∂βvα) are the components of the strain rate tensor, while the convected

co-rotational derivative of the polarization vector is given by

Dpα
Dt

= ∂t pα + vγ ∂γ pα +ωαβ pβ, (18)

where ωαβ =
1
2(∂αvβ − ∂βvα) is the vorticity of the velocity field.

From equation (17) we thus identify the thermodynamic fluxes σαβ , Dpα/Dt and r as well
as the respective corresponding thermodynamic forces uαβ , hα and1µ. Expanding the fluxes in
terms of the forces, respecting the symmetries of the system and Onsager’s reciprocity principle,
we obtain the generic constitutive equations of the active polar fluid [13]:

2ηuαβ = σαβ −
ν1

2
(pαhβ + pβhα)− ν̄1 pγ hγ δαβ + ζ̄ δαβ1µ+ ζ pα pβ1µ+ ζ ′ pγ pγ δαβ1µ, (19)

Dpα
Dt

=
1

γ
hα + λ1 pα1µ− ν1 pβuαβ − ν̄1uββ pα, (20)

r =31µ+ λ1 pαhα + ζ̄uαα + ζ pα pβuαβ + ζ ′ pα pαuββ . (21)

The viscosities η and γ denote the resistance of the fluid to internal rearrangements. The
coefficients ν1, ν̄1 capture the coupling of the polar distortion field to flows. Finally, the
coefficients denoted by ζ , ζ̄ , ζ ′ describe the active stresses. Positive active stresses are
called expansive, while negative active stresses are called contractile. The values of these
phenomenological constants either need to be measured or can be derived by coarse-graining
microscopic theories [26–30].

The equations of motion of the system are given by the continuity equations (1) and (2) and
by equation (20) for the time evolution of p. Using equations (11) and (5) and the Gibbs–Duhem
relation (10), the force balance becomes

∂t gα = ∂β
(
σαβ − ρvαvβ −

1
2(hα pβ − hβ pα)

)
− n∂αµ− hγ ∂α pγ . (22)
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Figure 1. Schematic illustration of the Taylor–Couette geometry. (a) The
fluid between two coaxial cylinders with radii R− and R+. The system is
invariant under translations along and rotations around the z-axis. (b) Planar cut
perpendicular to the z-axis. The polarization vector p and the polarization angle
ψ with p = (cosψ, sinψ) are shown.

3. The Taylor–Couette motor

We now discuss the flows of an active polar fluid in the Taylor–Couette geometry at low
Reynolds number. The fluid is confined to the space between two impermeable concentric
cylinders of radii R+ and R−, as shown in figure 1(a). We will discuss situations where the
two cylinders are either stationary or rotate relative to each other at a rate1ω. At low Reynolds
number we can choose to keep the inner cylinder fixed without loss of generality. The rotation
rate of the outer cylinder then equals1ω. We only consider cases that are invariant with respect
to rotations around and translations along the cylinders’ long axes. Furthermore, the fluid is
incompressible, which together with translational and rotational invariance imposes vr = 0. We
only consider cases where the vector p is confined to the r–θ -plane. Furthermore, since the
magnitude of p is not a hydrodynamic variable, we only consider the orientation dynamics
of the polarity vector. The orientational dynamics is captured by choosing p2

= 1. Therefore,
the polarity p can be expressed in terms of the polarization angle ψ such that pr = cosψ and
pθ = sinψ , see figure 1(b).

One can apply torques 0+ and 0− per unit axial length on the outer and the inner cylinder
surfaces, respectively, such that the total torque on the surface vanishes, 0+ +0− = 0. Using
equation (6),

0− = −

∫ 2π

0
dθ r M tot

θrr(r, θ), (23)

which is independent of r for R− 6 r 6 R+ because of angular momentum conservation. Using
equations (4) and (16), this implies that

0− =

∫ 2π

0
dθ r 2

(
σθr + 1

2(hr pθ − hθ pr)
)
. (24)
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3.1. Equation of motion and boundary conditions

We now present the equations of motion governing the system in polar coordinates. The
only non-vanishing component of the strain rate tensor is uθr . From equation (19) we
obtain

2ηuθr = σθr −
ν1

2

(
h⊥ cos 2ψ + h‖ sin 2ψ

)
+
ζ

2
1µ sin 2ψ, (25)

where h‖ = h · p and h⊥ = hr pθ − hθ pr . Projecting equation (20) onto the directions parallel
and perpendicular to the polarization vector yields

1

γ
h‖ = ν1uθr sin 2ψ − λ11µ, (26)

∂tψ =
1

γ
h⊥ − uθr(ν1 cos 2ψ − 1). (27)

The parallel component of the distortion field h‖ = p · h acts as a Lagrange multiplier to
impose the constraint p2

= 1. The perpendicular component h⊥ is the torque exerted by the
polarization field and is given by the expression h⊥ = −δF/δψ . The force balance equation (22)
becomes

∂r

(
σθr +

h⊥

2

)
+

2σθr

r
+

h⊥

r
= 0, (28)

where we have neglected inertial terms. Integration of equation (28) yields

σθr =
0−

2πr 2
−

1

2
h⊥, (29)

where the integration constant 0− is the torque applied to the inner cylinder as can be seen
by comparing equations (29) and (24). Combining equations (25)–(27) and (29) we obtain the
equation of motion for the polarization field:

∂tψ =

[
1

γ
+
(ν2

1 cos2 2ψ − 1)

4η + ν2
1γ (sin 2ψ)2

]
h⊥ −

(
ζ̃1µ sin 2ψ +

0−

2πr 2

)
ν1 cos 2ψ − 1

2η + ν2
1γ

2 (sin 2ψ)2
, (30)

where ζ̃ =
1
2(ζ + γ ν1λ1). For a given polarity field ψ(r), we can determine the flow field vθ by

integrating equation (25).
The boundary conditions that we consider are the following. We prescribe the polarization

angle at both cylinder surfaces, ψ(R−)= ψ(R+)= ψ0. We impose no-slip boundary conditions
for the velocity of the fluid at both cylinders. At the fixed inner cylinder, this implies
vθ(R−)= 0, at the outer cylinder vθ(R+)=1ωR+. With uθr = (r/2)∂r(vθ/r), the rotation rate
1ω reads

1ω =

∫ R+

R−

dr
2uθr

r
. (31)

At the outer cylinder we have the choice of two ensembles: (i) prescribed torque 0+ = −0− or
(ii) prescribed rotation rate 1ω. We will discuss both cases.
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3.2. Equilibrium steady states

In equilibrium, all thermodynamic fluxes and forces vanish. In particular, h⊥ = 0 and 1µ= 0.
In addition, equilibrium requires that 0− = 0 and that no movements occur, vθ = 0. The
polarization field ψ of an equilibrium steady state is obtained by solving the equation h⊥ = 0,
with the specified boundary conditions. Choosing the standard Landau–de Gennes form for the
free energy of the polarization field,

Fp = 2π
∫

dr r

{
K

2

(
1

r

d

dr
r cosψ

)2

+
K + δK

2

(
1

r

d

dr
r sinψ

)2
}
, (32)

we have

h⊥ = −
δFp

δψ
= (K + δK cos2(9))

(
9 ′′ +

9 ′

r

)
−
δK

2
sin(29)

(
1

r 2
+9 ′2

)
, (33)

where primes indicate derivatives with respect to r . In this expression K is the splay elastic
modulus and K + δK is the bend elastic modulus. If the boundary conditions are chosen
accordingly, equilibrium steady states with a constant ψ(r)= ψ0 exist for certain values of
ψ0. These special solutions are ‘asters’ with ψ0 = 0 or π and ‘vortices’ with ψ0 = ±π/2.

3.3. Non-equilibrium steady states

We now discuss how the equilibrium situation is changed as1µ becomes non-zero. We start by
analyzing the stability of the symmetric aster and vortex states with boundary condition (i) and
a prescribed torque 0− = 0.

3.3.1. No external torque at the outer surface. We write ψ(r, t)= ψ0 + δψ(r, t) with δψ = 0
at both boundaries. The time evolution described by equations (30) can be linearized around a
steady state with ψ = ψ0. For aster solutions, i.e. ψ0 = 0, we find that

∂tδψ(r, t)= (K + δK )

(
1

γ
+
ν2

1 − 1

4η

) (
δψ ′′(r, t)+

δψ ′(r, t)

r

)
− δK

(
1

γ
+
ν2

1 − 1

4η

)
δψ(r, t)

r 2
− ζ̃1µ

ν1 − 1

η
δψ(r, t). (34)

Using the separation ansatz δψ(r, t)= δψ(r)est , we can solve for δψ(r)

δψ(r)= C1 Jn(k r)+ C2Yn(k r), (35)

where Jn and Yn are Bessel functions of the first kind with n2
= δK/(K + δK ) and

k2
= −

2(ν1 − 1)ζ̃1µ+ 4ηs(
4η/γ + (ν2

1 − 1)
)
(K + δK )

. (36)

Asters are stable if the real parts of all growth exponents s are negative. The possible values ki

of k with i ∈ N are restricted by the boundary conditions δψ(R−)= δψ(R+)= 0. Explicitly, the
values ki satisfy the equation

Yn(ki R+)Jn(ki R−)− Jn(ki R+)Yn(ki R−)= 0. (37)
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Figure 2. Bifurcation diagram for an active polar fluid confined between two
coaxial cylinders with the vortex boundary conditions, ψ(R−)= ψ(R+)= π/2,
as a function of the dimensionless activity ζ1µ= R2

+ζ̃1µ/K . No torque is
applied to the outer cylinder 0− = 0. The non-equilibrium steady states are
characterized by the angular velocity of the outer cylinder 1ω = ηvθ(R+)R+/K .
For ζ1µ > ζ1µc = −20.134, the system exhibits spontaneous flows and
rotation. For increasing values of −ζ1µ, further unstable steady states exist
with an increasing number of nodes in the polarization angle (dashed lines).
The profiles of polarization ψ and dimensionless flow velocity v̄ = ηvθ R+/K
are shown in the insets for a stable (above, ζ1µ= −100) and an unstable
(below, ζ1µ= −107) solution as a function of r̄ = r/R−. Parameter values are
R = R−/R+ = 0.1, η/γ = 2, ν1 = 2 and δK = 0.

We find that k2
i and the corresponding values of s are real and we order these values such that

k2
1 < k2

2 < · · ·< k2
i < · · · . By setting s = 0 in equation (36), we can thus determine a critical

value ζ̃1µc for the activity, such that asters are unstable if ζ̃1µ < ζ̃1µc. Explicitly,

ζ̃1µc = −k2
1

(
4η + γ (ν2

1 − 1)
)

2γ (ν1 − 1)
(K + δK ) . (38)

Following the same logic it is also possible to determine the stability of vortices. We find that
the activity threshold for the stability of vortices is

ζ̃1µc = −l2
1

(
4η + γ (ν2

1 − 1)
)

2γ (ν1 + 1)
K . (39)

The values li satisfy Ym(li R+)Jm(li R−)− Jm(li R+)Ym(li R−)= 0 with m2
= −δK/K and we

order their values such that l2
1 < l2

2 < · · ·< l2
i < · · · . The limit R− → 0 corresponds to point

defects that were studied in [13]. Note that our results differ slightly since the sign of the
antisymmetric part of the deviatory stress was chosen incorrectly in [13].

The steady states of equation (30) beyond the instability can be obtained numerically by a
shoot-and-match algorithm. In these states, the fluid flows spontaneously and the outer cylinder
rotates. We present the bifurcation diagram of the Taylor–Couette motor for 0− = 0 and vortex
boundary conditions, ψ0 = ±π/2, in figure 2. The sense of rotation of the outer cylinder is
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Figure 3. Bifurcation diagram for the system shown in figure 2 but with
stall boundary conditions 1ω = 0. The non-equilibrium steady states are
characterized by their torque 0̄ = 0−/(2π)K . Full lines indicate stable solutions
and dashed lines unstable solutions. Insets present a stable solution for ζ1µ=

−50 and an unstable solution for ζ1µ= −120. All other parameters are chosen
as in figure 2.

determined by spontaneous symmetry breaking. Therefore, two stable branches exist in the
bifurcation diagram. We have explicitly determined the linear stability of these and all following
states numerically. Moving further away from the bifurcation point, additional unstable steady
states appear. These states correspond to l2

2 and present an additional node for ψ(r). Further
unstable steady states corresponding to l2

i with i > 2 exist for yet larger values of |ζ̃1µ| and the
number of nodes of the corresponding ψ(r) is i − 1.

3.3.2. The stalled system. The emergence of spontaneous rotations indicates that the system
can act as a rotatory motor. Its stall torque is determined by setting 1ω = 0. To investigate the
stability of the corresponding steady state, we employ again equation (30), but now 0− depends
on time. Its value is determined by simultaneously solving equation (25) for vθ and imposing
vθ(R+)= 0. For the stationary vortex solution with ψ0 = ±π/2, we again find an instability at
a critical value ζ1µc at which spontaneous flows occur, as is shown in the bifurcation diagram
figure 3. As in the case 0− = 0, the direction of the flow depends on the initial conditions via
spontaneous symmetry breaking. In contrast to the case considered above, the solutions with
1ω = 0 are characterized by non-vanishing torques 0−.

3.4. The relation between the rotation rate and applied torque

We determine the relation between applied torque 0− and rotation rate 1ω by numerically
solving for the stationary solutions of equations (25) and (27). In the passive case ζ̃1µ= 0, the
rotation rate 1ω is always proportional to the torque 1ω ∝ 0− and vanishes for 0− = 0. Our
results for finite ζ̃1µ are displayed in figure 4. For a sufficiently small ζ̃1µ, the rotation rate
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Figure 4. The relationship between the rotation rate and applied torque of the
Taylor–Couette motor with vortex-boundary conditions for different values of
the dimensionless active stress ζ1µ. Full lines indicate stable states and dotted
lines unstable steady states. Parameter values are ζ1µ= −20 (a), ζ1µ= −22
(b), ζ1µ= −100 (c) and ζ1µ= −150 (d). Other parameters are η/γ = 2,
ν1 = 2 and δK = 0.

1ω increases monotonically as a function of 0−, see figure 4(a). For ζ̃1µ= ζ̃1µc ' −20KR−2
+ ,

a critical point appears. Beyond this point, three solutions coexist for ζ̃1µ.−20KR−2
+ , two

of which are stable (solid lines) and one is unstable (dashed line); see figure 4(b). As a
consequence, the rotation rate exhibits discontinuous changes as a function of torque and
hysteresis occurs. If ζ̃1µ is decreased further, a more complex set of branches of unstable
steady states emerges, see figures 4(c) and (d). In all cases there are two stable branches and a
regime of hysteresis. Note that the stable branches always have positive slope, while the slope
of unstable branches can have either sign. This relation between torque and rotation rate is very
similar to the properties of the force–velocity relation of symmetric collections of molecular
motors [31, 32].

3.5. Variation of the boundary conditions of the polarization field

Changing the polarization angleψ0 at the boundaries leads in general to a non-symmetric motor,
which has a spontaneous rotation rate even in the absence of a torque. In figure 5, we show
the steady state rotation rate 1ω for 0− = 0 as a function of ψ0 for different values of the
active stress. This figure shows that the system rotates spontaneously except for ψ0 = 0 (aster)
and ψ0 = π/2 (vortex). As the magnitude of the active stress is increased, unstable branches
appear and the rotation rate exhibits discontinuous changes and hysteresis. The vortex becomes
unstable for lower values of the active stress than the aster, see figure 5(b). Figure 5(c) reveals
the subsequent emergence of additional unstable branches as well as the instability of the
aster.
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Figure 5. The dimensionless rotation rate 1ω as a function of the polarization
angle ψ0 at the boundaries in the absence of an external torque and for
different values of the active stress: ζ1µ= −10 (a), ζ1µ= −50 (b) and ζ1µ=

−150 (c). Other parameters are η/γ = 2, ν1 = 2 and δK = 0. Stable states are
represented by solid lines and unstable states by dashed lines.

4. Conclusions and discussion

In summary, we analyzed the dynamics of an active polar fluid confined in the Taylor–Couette
geometry between two coaxial cylinders. We found that similar to active polar fluids confined
to a straight channel [3], the active stress can induce spontaneous flows. The circular flow in
the Taylor–Couette system drives a rotation of the outer cylinder relative to the inner cylinder
even in the absence of an externally applied torque. If the polarization angle at the boundary is
either parallel or perpendicular to the cylinder wall, relative motion between the two cylinders
occurs by spontaneous symmetry breaking if the contractile active stress exceeds a critical value.
Beyond this instability two steady states with opposite rotation rates coexist. For any other
boundary condition imposed on the polarization, rotation in the absence of torque occurs for
non-zero active stress. Here, we have restricted our analysis to states that are invariant with
respect to rotations around and translations along the cylinder axis. Since we know that in the
passive system rotationally symmetric states are stable for sufficiently low Reynolds numbers,
we expect that the rotationally symmetric active steady states discussed above are stable for
small enough active stresses. Additional instabilities to those discussed here could therefore
occur at higher values of active stresses. Notably, active analogues of Taylor vortices, which
break rotational and translational invariance, might exist.

The classical Taylor–Couette system displays a large variety of flow patterns, including
turbulent flow for very large Reynolds numbers. It will be interesting to see which of these
structures can be generated in the low Reynolds number regime by active stresses. In particular,
flow patterns that break the axial and rotational symmetries we imposed in this study should be
analyzed. In view of ‘low Reynolds number turbulence’ observed in bacterial suspensions [4],
one might also be interested in investigating the possibility of spatiotemporal chaos in the
Taylor–Couette motor. Considering the finite relaxation time of elastic stresses exhibited
by a number of active gels, the system might also be capable of spontaneously generating
oscillations. Consequently, the classical system of two rotating coaxial cylinders is a promising
geometry to study also experimentally the rich dynamic behavior of active gels.

If an external torque is applied between the two cylinders, the system behaves as a
rotary motor that can perform mechanical work. In the special cases where the polarization
is parallel or perpendicular to the boundary, this motor only works beyond the instability and
can act in both senses of rotation. We find dynamic transitions between states of different
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rotation rates and hysteresis. These behaviors are very similar to those found for collections
of symmetric coupled molecular motors where motion occurs via spontaneous symmetry
breaking [31, 32]. The behaviors of the Taylor–Couette motor for other choices of boundary
conditions can be compared to those found for asymmetric collections of motors. Indeed, as
already described for collective motors we find here dynamic transitions between states of
different rotation rates at finite applied torques. Coupling to a rotational spring would thus
lead to spontaneous oscillations [33–35]. Due to the possible appearance of additional unstable
states, such oscillations may exist only in a finite range of active stresses.

The Taylor–Couette motor described in this paper could be realized experimentally using
actin gels with myosin motors in small Taylor–Couette rheometers. We will now estimate the
orders of magnitude of the quantities characterizing the system’s dynamics. First, we note that
the active stress together with the elastic constant K , which has the dimension of a force, see
equation (32), introduce a length scale ξ = (K/ζ1µ)1/2, see also [3]. The instability criterion
derived above can be expressed in terms of this length scale: for ξ � R+ − R− spontaneous
motion occurs in a symmetric system. The critical active stress beyond which spontaneous
motion occurs is thus of the order of K/R2

+ for which ξ ' R+ − R−. In passive systems,
the value of K has been estimated using dimensional analysis, as K ∼ U/a where U and a
are a characteristic interaction energy and length, respectively [24]. Using U = 10 pN nm and
a = 1 nm implies a value of K of the order of several pN, which is consistent with estimates
provided by Odijk for semi-flexible polymers [36]. In an actin gel, the stiffness K could result
from the action of motor molecules and therefore be larger. For example, estimating K by the
typical stress exerted by myosin mini-filaments on an actin filament in the network suggests
values of several tens of pN. The active stress generated by the actin cytoskeleton has been
estimated to be up to ζ1µ' 103 Pa [37], which would correspond to ξ ' 1µm.

In a Taylor–Couette system with an outer radius R+ = 5 mm and an inner radius R− =

1 mm, the critical active stress would be of the order of 10−6 Pa and thus the system should
start to rotate even at very small active stresses. The order of magnitude of the stall torque
can be obtained from 0 ∼ |ζ̃1µ|R2

+, see equation (24) and figure 3. Using again R+ ' 5 mm
and ζ1µ' 103 Pa, we estimate a stall torque per unit length 0 ' 25 × 10−3 N. To estimate
the corresponding rotation rate 1ω ∼ urθ , we note that it scales as 1ω ∼ |ζ̃1µ|/η, see
equations (31) and (25) and figure 2. The viscosity η of an actin gel can be estimated as η ' Eτ ,
where E is the gel elastic modulus and τ denotes the characteristic visco-elastic relaxation time.
The elastic modulus of a passive actin gel scales as E ' kBT Lpλ

−4, where Lp is the persistence
length of actin filaments and λ is the mesh size of the gel. For kBT ' 4 pN nm, Lp ' 17µm
and λ' 100 nm [38], we estimate that E ' 103 Pa, which is consistent with measurements for
actin gels under various conditions [39–41]. Using τ ' 30 s [42], we obtain η ' 104 Pa s. For
ζ1µ' 103 Pa, we estimate a rotation rate of about 1ω ' 0.1 s−1.

The Taylor–Couette motor could be realized at small scales with radii of several µm using
microfabrication techniques [43]. This leads to a stall torque of the order of several nN and
since the rotation rate is rather insensitive to the system size again to rotation rates of the order
of 0.1 s−1. Note that when the system size approaches the mesh site of the acto-myosin gel,
the hydrodynamic limit will no longer provide an accurate approximation. Note also that a
symmetric system would only rotate if the characteristic length ξ is smaller than the system
size. However, even in micrometer-sized systems, we expect many of the general features and
the scaling relations to still hold. Thus, the Taylor–Couette motor described here is a promising
candidate for the construction of artificial rotational micromotors.
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Appendix A. Torques from the polar distortion field

To find the torque exerted by the polarization field, we write down the variation of the free
energy F0 =

∫
dxd f0(n, pα, ∂β pα) due to changes in pα,

δF0 =

∫
dxd

(
∂ f0

∂pα
δpα +

∂ f0

∂(∂β pα)
δ∂β pα

)
=

∫
dxd

(
−hαδpα + ∂β

(
∂ f0

∂(∂β pα)
δpα

))
. (A.1)

Under infinitesimal rotations defined by the pseudovector δθα, with δpα = εαβγ δθβ pγ we have

δF0 = −

∫
V

dx3 εαβγ pβhγ δθα −

∫
∂V

dSβ
1
2 Mαγβεαγ δδθδ. (A.2)

From these expressions, we identify the angular momentum density flux carried by the
polarization field as

Mαβγ =
∂ f0

∂(∂γ pβ)
pα −

∂ f0

∂(∂γ pα)
pβ . (A.3)

Appendix B. The Ericksen stress

To obtain the Ericksen stress we consider a general variation of the free energy of a volume V
of a fluid,

δF =

∫
V

dx3

(
vαδgα +

(
µ− m

gαgα
2ρ2

)
δn +

∂ f0

∂pα
δpα +

∂ f0

∂(∂β pα)
δ∂β pα

)
+

∫
∂V

dSγ uγ

(
gαgα
2ρ

+ f0(n, pα, ∂α pβ)

)
. (B.1)

The first term describes variations in the bulk of the volume, while the second captures variations
of the volume surface with u denoting the corresponding infinitesimal displacements. Using
Gauss’ theorem we obtain

δF =

∫
V

dx3

(
vαδgα +

(
µ− m

gαgα
2ρ2

)
δn − hαδpα

)
+

∫
∂V

dSγ

(
gαgα
2ρ

+ f0(n, pα, ∂α pβ)

)
uγ +

∫
∂V

dSβ
∂ f0

∂(∂β pα)
δpα. (B.2)

The dependence of the free energy on derivatives of the polarization field thus generates
an additional surface term. Displacing the hydrodynamic fields by the deformation field u,
δgα = −uγ ∂γ gα, δpα = −uγ ∂γ pα and δn = −uγ ∂γn, yields

δF =

∫
V

dx3(ni∂γµi + hα∂γ pα)uγ −

∫
V

dx3
(gαvα

2
+µn

)
∂γuγ +

∫
∂V

dSγ σ
e
αγuα. (B.3)

Here, we identify the Ericksen stress from the surface term, leading to the expression given
in equation (9). Let us remark that the Gibbs–Duhem relation is automatically satisfied if
u = const, as can be deduced from equation (B.2).

Now, from equation (9) we deduce that rotation invariance implies that σ e
αβ = 0 for

a uniform rotation around the origin of angle θ ; that is, δgα = −uγ ∂γ gα + εαβγ θβgγ , δpα =

−uγ ∂γ pα + εαβγ θβ pγ , δni = −uγ ∂γni and uα = εαβγ θβrγ . This leads to equation (11).
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[20] Joanny J-F, Jülicher F, Kruse K and Prost J 2007 New J. Phys. 9 422
[21] Cross M C and Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[22] Groisman A and Steinberg V 2000 Nature 405 53
[23] Morozov A N and van Saarloos W 2005 Phys. Rev. Lett. 95 024501
[24] de Gennes P G and Prost J 1995 The Physics of Liquid Crystals (Oxford: Oxford University Press)
[25] Williams D R M 1994 Phys. Rev. E 50 1686
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