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We present a hybrid particle-mesh method for numerically solving the hydrodynamic 
equations of incompressible active polar viscous gels. These equations model the dynamics 
of polar active agents, embedded in a viscous medium, in which stresses are induced 
through constant consumption of energy. The numerical method is based on Lagrangian 
particles and staggered Cartesian finite-difference meshes. We show that the method is 
second-order and first-order accurate with respect to grid and time-step sizes, respectively. 
Using the present method, we simulate the hydrodynamics in rectangular geometries, of a 
passive liquid crystal, of an active polar film and of active gels with topological defects in 
polarization. We show the emergence of spontaneous flow due to Fréedericksz transition, 
and transformation in the nature of topological defects by tuning the activity of the system.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Dynamics of many processes is governed by the mechanics of active matter. Active matter is a system of interacting 
agents that exhibit coordinated motion mediated by active internal stresses induced by consumption of energy [41,58]. 
Consumption of energy occurs at the level of individual agents keeping these systems persistently out of equilibrium [41,
58]. Processes such as the collective motion of robots [60] and the motion of colloidal particles propelled by catalytic 
activity [50,41] are well described as active matter [41]. More striking examples of active matter are living systems like 
collections of bacteria [21,41], groups of biological cells [34,41], meshworks of cytoskeletal filaments [37,33,32], and flocks 
of birds [70,71] that exhibit mechanical motion by dissipating chemical energy. Such active systems constitute a class of 
physical processes where flow is driven from within by consumption of chemical energy.

Inspired by energy-fueled phenomena such as cortical cytoskeleton flows [46,45,32] during biological morphogenesis, the 
theory of active polar viscous gels has been developed [37,33]. The theory models the continuum, macroscopic mechanics 
of a collection of uniaxial active agents, embedded in a viscous bulk medium, in which internal stresses are induced due to 
dissipation of energy [41,58]. The energy-consuming uniaxial polar agents constituting the gel are modeled as unit vectors. 
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The average of unit vectors in a small local volume at each point defines the macroscopic directionality of the agents and 
is described by a polarization field. The polarization field is governed by an equation of motion accounting for energy 
consumption and for the strain rate in the fluid. The relationship between the strain rate and the stress in the fluid is 
provided by a constitutive equation that accounts for anisotropic, polar agents and consumption of energy. These equations, 
along with conservation of momentum, provide a continuum hydrodynamic description modeling active polar viscous gels as 
an energy consuming, anisotropic, non-Newtonian fluid [37,33,32,41]. The resulting partial differential equations governing 
the hydrodynamics of active polar viscous gels are, however, in general analytically intractable.

There have been attempts to numerically simulate the physics of active polar viscous gels at different length scales. At 
the microscopic scale, simulations have been carried out to understand in vitro organization of microtubule filaments in the 
presence of oligomeric motor proteins [49,47]. In addition, Brownian dynamics simulations have been used to model the 
collective dynamics of flexible cytoskeletal fibers [48]. However, such microscopic simulations do not allow large systems 
to be studied and are computationally demanding. At the mesoscopic scale, lattice Boltzmann simulations have been used 
to simulate the emergence of spontaneous flow in active liquid crystal films [42,43], spontaneous symmetry breaking in 
active liquid droplets [69] and pattern formation in active fluids [26]. While this increased the accessible length scales, it is 
challenging to impose constant polarity magnitude due to the limitation of the numerical method [7,42]. We are not aware 
of any numerical method to simulate at the macroscopic scale the hydrodynamic equations of active polar viscous gels 
proposed by Kruse et al. (2005) [37], Jülicher et al. (2007) [33] and, Joanny and Prost (2009) [32]. Lack of such a numerical 
method prohibited macroscopic simulations of complex active processes including coupled mechanochemical processes that 
have been postulated as the fundamental basis of biological morphogenesis [31,5,45,27,28].

In this paper, we present a hybrid particle-mesh method [29,30,40,9,63,10] to simulate the macroscopic hydrodynamics 
of incompressible active polar viscous gels on rectangular geometries with arbitrary boundary conditions. The method is 
based on Lagrangian particles and Cartesian meshes. In Lagrangian particle methods, field quantities are discretized onto 
a set of computational elements called particles [19,20,12,35,23,62,63]. Every particle occupies a position that evolves ac-
cording to a local velocity field. The field quantities carried by particles evolve according to the material derivative in a 
Lagrangian frame of reference. Such a description forms the basis of numerical methods like smoothed particle hydrody-
namics [52,8] and vortex methods [22,35,12] that have been used for various flow simulations. In such methods, advection of 
a field is performed by moving particles according to the velocity field. This enhances numerical stability in flow-dominated 
simulations [19,20,12,35,23,62,63] since the method is not restricted by the Eulerian Courant–Friedrichs–Lewy (CFL) con-
dition [24]. Remeshing the field quantities from particles to meshes guarantees consistency in discretizing the advection 
operator [12,11] and allows using mesh-based methods for discretizing other differential operators. Mesh based methods, 
like finite differences and finite volumes, offer simple and accurate operator discretization schemes, especially in simple 
geometries. Hybrid particle-mesh methods therefore combine the advantages of Lagrangian particle methods and mesh 
based methods [29,30,62,63,3,10]. Using these advantages we develop a conservative numerical method where the nov-
elty is the preservation of the constant magnitude of the polarization field. The numerical method uses an analytically 
derived Lagrange multiplier which is consistent with the physics of active polar viscous gels to conserve the magnitude 
of the polarization field. The Lagrange multiplier is a function of the velocity and polarization fields, and introduces addi-
tional coupling between the dynamics of the polarization and velocity fields. In addition, we perform moment conserving 
remeshing of the polarization field from particles to an underlying mesh that preserves the constant magnitude of the 
polarization field. We exactly impose the incompressibility constraint using staggered finite-difference meshes and direct 
linear solvers to obtain the exact solution of the resulting linear system of equations. Finally, we use particles to perform 
advection so that the discretization scheme is not necessarily restricted by the CFL condition for advection-dominated prob-
lems.

In Section 2, we present the governing equations of the continuum hydrodynamic description of incompressible active 
polar viscous gels in two-dimensional geometries. We present a hybrid particle-mesh method to numerically solve the 
governing equations in two-dimensional rectangular geometries in Section 3. In Sections 3.3 and 3.4, we present the accu-
racy and computational cost of the hybrid particle-mesh method. We validate our numerical method by demonstrating 
its consistency and convergence in Section 4. In Section 5, we use the hybrid particle-mesh method to simulate pas-
sive liquid crystal flows, spontaneous flows in active polar films, and hydrodynamics of active polar viscous gels with 
topological defects in the polarization field. We provide conclusions and discuss the limitations of the current method in 
Section 6.

2. Continuum hydrodynamic description of incompressible active polar viscous gels in two-dimensions

The continuum hydrodynamic description of incompressible active polar viscous gels in two-dimensions [37,33,32]
(see Appendix A for more details) is governed by five partial differential equations (PDEs): one for each velocity component, 
one for the incompressibility condition, and one for each component of the polarization field.

Assuming that the viscous forces in an active gel dominate the inertial forces, the two equations governing the velocity 
field in the low-Reynolds-number limit are obtained by imposing force balance in each of the two directions:
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Here, px(x, y, t) and py(x, y, t) denote the x and y components of the polarization field p(x, y, t) at coordinates (x, y) at 
time t such that the magnitude |p(x, y, t)| is constant (or, without loss of generality, |p| = 1). vx(x, y, t) and vy(x, y, t)
denote the x and y components of the velocity field v(x, y, t), gext

x and gext
y are the x and y components of a externally 

applied force density gext, � is the pressure field, η is the viscosity, ν is coefficient of coupling between the mechanical 
stress and the polarization field, γ is the rotational viscosity, and ζ is the coefficient coupling the stress to the activity 
(or energy consumption) measured by the difference in chemical potential �μ. The components uαβ of the symmetric 
strain-rate tensor u, the components σ (e)

αβ of the Ericksen stress tensor σ (e) , and the transverse component h⊥ of the 
molecular field h (h being the driving force tending to minimize distortions away from a spatially homogeneous polarization 
field) are defined as

uαβ = 1

2
(∂α vβ + ∂β vα), α,β ∈ {x,y}, (3)
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where Ks and Kb are the splay and bend elastic constants respectively. The last six terms on the left-hand side and the 
last two terms on the right-hand side in both of Eqs. (1) and (2) are force density contributions due to the Lagrange 
multiplier h|| that imposes |p| = 1. The Lagrange multiplier h|| is the parallel component of the molecular field h and 
its expression is derived in Appendix A (see Eq. (A.18)). The force density contributions in Eqs. (1) and (2) due to h||
make these equations a system of elliptic PDEs with nonlinear, spatially varying coefficients since h|| is a function of the 
polarization and velocity fields (see Eq. (A.18)). For �μ = 0, Eqs. (1) and (2) reduce to the Ericksen–Leslie flow equations 
at low Reynolds numbers [65,39,1,2,14] for passive liquid crystals. Additionally, also setting ν , ζ , Ks , and Kb to zero further 
simplifies Eqs. (1) and (2) to the Stokes equations that model isotropic, passive fluid flow at low Reynolds numbers. Eqs. (1)
and (2) are, therefore, a generalization of low-Reynolds-number flow equations for active polar viscous gels [37,33,32].

The third PDE is the incompressibility condition that is enforced by the pressure � and is

∂x vx + ∂y vy = 0. (9)

The last two PDEs govern the two components of the polarization field
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are the material (Lagrangian) derivatives of px and py respectively, γ is the rotational viscosity, and λ is a coefficient 
coupling the activity of the system (measured by �μ) to the polarization dynamics. In addition, h|| is the component of h
parallel to the local polarization that enforces constant amplitude of the polarity vector (see Appendix A for more details), 
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Eqs. (10) and (11) reduce to the polarization dynamics of an incompressible passive liquid crystal when �μ = 0. They hence 
are a generalization accounting for consumption of energy in active polar gels [37,33,32].

To solve Eqs. (1), (2), (9), (10), and (11) for the velocity and the polarization fields, we require an initial condition and 
various boundary conditions. The initial condition is given by the polarization field at time t = 0. The active gel equations 
can have a variety of boundary conditions. The velocity at the boundary is prescribed by a Robin (mixed) condition or a 
stress-free condition. Robin boundary conditions for the magnitude v of tangential and normal velocity components, on 
the one hand, are defined as a v + b (n̂ · ∇)v = constant where a, b are constants, n̂ is a unit vector pointing outwards at 
the boundary and ∇ is the gradient differential operator. On the other hand, velocity at stress-free boundaries are such 
that the shear stress at the boundary vanishes (see Eqs. (A.5), (A.6), (A.7) and (A.3) for the expression of the deviatoric 
stress tensor). Additionally, the polarization field at the boundaries is determined according to a Dirichlet or a Neumann 
boundary condition. Therefore, every point on the boundary is governed by four boundary conditions to define the two 
velocity components and the two components of polarization.

In summary, Eqs. (1), (2), (9), (10), and (11), along with appropriate boundary conditions for velocity and polarization, 
govern the hydrodynamics of incompressible active polar viscous gels in two dimensions as a function of material constants, 
namely, η, ν , γ , ζ , λ, Ks, and Kb, and of the activity �μ. We assume that the material constants are spatially homogeneous
whereas �μ ≡ �μ(x, y, t) is, in general, spatially and temporally variable across the two-dimensional domain.

3. A hybrid particle-mesh method

We present a hybrid particle-mesh method to numerically solve the continuum hydrodynamic equations of incompress-
ible active polar viscous gels (see Section 2) in two-dimensional rectangular geometries with arbitrary boundary conditions. 
The rectangular computational domain contains a set of points with coordinates (x, y) such that 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly, 
where Lx and Ly are the dimensions of the computational domain in x and y directions, respectively. All differential 
operators are discretized on staggered Cartesian finite-difference meshes, while the advection of the polarization field is rep-
resented on particles (for details on particle-function approximation see, for example, Hockney and Eastwood (1988) [30], 
and Cottet and Koumoutsakos (2000) [12]). We initialize particles carrying the local polarization field at mesh nodes at 
every time step. We integrate the material derivative and the local velocity field to compute the polarization field carried 
by the particles, and accordingly update the positions of the particles in the next time step. Subsequently, we interpolate 
the polarization field carried by the particles back to the mesh nodes. Using staggered finite differences, we then compute 
the velocity field at the next time step. This procedure combines the superior numerical stability of Lagrangian particle 
methods in performing advection of field quantities with the accuracy and simplicity of discretizing differential operators 
on Cartesian meshes to simulate the hydrodynamics of active gels.

Numerically simulating the hydrodynamic equations requires computing the velocity field v(x, y, t) and the polarization 
field p(x, y, t) across the computational domain as a function of time t . To do so, we first compute the initial velocity 
field at time t = 0 according to Eqs. (1), (2), and (9) from the initial condition for the polarization field. Subsequently, we 
integrate the equations of motion of the polarization field (Eqs. (10) and (11)) until time δt to compute the polarization 
field at t = δt , where δt is the integration time step. We then use the polarization at time t = δt to compute the velocity 
field at time t = δt according to Eqs. (1), (2), and (9). We use this procedure repeatedly to compute the polarization and 
velocity fields for all time steps until a final time tf = Nt δt , Nt being the total number of integration time steps.

The method, therefore, consists of two principal computational modules. One for integrating the polarization field from 
time t − δt to t according to Eqs. (10) and (11) using point particles and a finite difference mesh. We then make use of the 
polarization field at time t in the second computational module. The second computational module uses staggered finite 
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Fig. 1. Advection of the polarization field using particles. Particles (solid circles) are initialized at the nodes of the Cartesian mesh Mp. The particles carry 
the polarization field at the mesh nodes and move with the flow velocity. The hollow circles represent the particles after advection.

difference meshes to compute the velocity field at time t . We make use of these two computational modules in the hybrid 
particle-mesh method to compute the velocity field and the polarization fields across the computational domain at all times.

3.1. Computing the polarization field

The computational module for numerically evaluating the polarization field is conceptually similar to solving for a con-
centration field governed by an advection-reaction-diffusion equation using particles and meshes. In the case of advection-
reaction-diffusion, the diffusion and the reaction parts are evaluated on a mesh, and combined with the advection of 
particles [29,30,10,3].

To compute p(x, y, t), we use a finite-difference mesh Mp and point particles that are initially placed at the nodes 
of Mp. We assume the knowledge of velocity v , strain-rate u, vorticity ω, the polarization p, and the molecular field h at 
time t − δt on the nodes of Mp. The nodes of Mp are indexed as ( j, i) where j = 0, . . . , Nx − 1 and i = 0, . . . , Ny − 1. The 
x and y coordinates of node ( j, i) are j δx and i δy, respectively, so that (Nx − 1)δx = Lx and (Ny − 1)δy = Ly. Here δx and 
δy are the spacing between nodes in the x and y directions, respectively, and Nx and Ny are the number of nodes in the x 
and y directions, respectively. The particle at the node ( j, i) is indexed with φ = i Nx + j such that φ = 0, . . . , NxNy − 1. The 
particles are characterized by their positions xφ and carry the polarization field pφ such that xφ(t − δt) is the coordinate of 
node ( j, i) and pφ(t − δt) is the polarization at node ( j, i). We then integrate the equations of motion of the polarization 
field (Eqs. (10) and (11)) from time t − δt to t to compute the polarization on the particles at time t . We perform the 
integration according to the equations of motions of the particles in the Lagrangian frame of reference [30,44,12]:

dxφ

dt
= v( j, i, t − δt), (15)

dpφ

dt
= Dp

Dt
( j, i, t − δt), j = 0, . . . , Nx − 1, i = 0, . . . , Ny − 1, φ = i Nx + j, (16)

where g( j, i, t) denotes the value of any function g at the node ( j, i) at time t , and Dp
Dt is the material (Lagrangian) derivative 

of p whose expression is given by the right hand side of Eqs. (10) and (11).
We numerically integrate Eqs. (15) and (16) from t − δt to t to obtain xφ(t) and pφ(t) for all particles. We integrate 

Eq. (15) from t − δt to t using the explicit Euler integration scheme with the initial condition given by xφ(t − δt), which is 
the coordinate of node ( j, i), at time t − δt . This advects the particles as illustrated in Fig. 1. The polarization field, however, 
can be purely oscillatory and using the explicit Euler scheme to integrate Eq. (16) will result in an unstable numerical 
simulation. As an instance of an integration scheme that can be stable in purely oscillatory regimes, we use the fourth-order 
Runge–Kutta scheme (RK4) [61,38] with the initial condition given by pφ(t − δt), which is the polarization on node ( j, i) at 
time t − δt . In order to remain consistent with the explicit Euler integration of Eq. (15), we let the velocity field, strain-rate 
tensor, and the vorticity tensor at the intermediate stages of RK4 be equal to that at time t − δt . The polarization field, 
however, changes at the intermediate stages of RK4. This requires recomputation of the material derivative (right hand side 
of Eq. (16)) at intermediate integration stages. We perform this computation on the nodes of Mp by accounting for the 
boundary condition of the polarization field. This computation requires recomputing h|| and h⊥ at each integration stage. 
We compute h|| and h⊥ on the nodes ( j, i) of Mp according to Eqs. (13) and (8), respectively. The differential operators for 
computing h⊥ are discretized as described in Section 3.1.2.

Once we computed xφ(t) and pφ(t), we interpolate the polarization field back to the nodes of Mp. This procedure is 
generally referred to as remeshing [12] and serves to obtain p( j, i, t) at the nodes of Mp for the next time step. We perform 
remeshing in order to enable discretization of differential operators on the mesh using simple finite difference schemes. The 
details of the remeshing scheme are described in Section 3.1.1.
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Fig. 2. (Color online.) Particle-to-mesh interpolation using the �4,4 function. Illustration of interpolating to a node ( j, i) (denoted by a cross) from particles 
(hollow circles) that are within 3 mesh nodes from ( j, i). The interpolation weight (Eq. (18)) as a function of particle location with respect to node ( j, i)
is color-coded. The figure illustrates interpolation of a field from 4 particles to node ( j, i). The interpolation weight (Eq. (18)) is a Cartesian product of the 
�4,4 function in each direction, so that the weights along the x- and y-directions can be computed independently and multiplied to obtain the final weight.

3.1.1. Remeshing
Remeshing of polarization pφ(t) carried by particles φ to the nodes ( j, i) of mesh Mp is done using the �4,4 interpo-

lation kernel [11]. The �4,4 interpolation kernel is a class C4 function, conserves up to four moments of the interpolated 
field, and is fifth-order accurate if pφ(t) is computed analytically [11]. Accounting for the numerical error in explicit Euler 
time-integration of xφ(t) using v at t − δt (see Eq. (15)), remeshing using the �4,4 interpolation kernel is fourth-order 
accurate with respect to spatial discretization [11]. In addition, the computational cost of remeshing is linear in the number 
of target nodes. Due to its accuracy and favorable computational cost, we employ the �4,4 interpolation kernel.

We obtain the polarization field p( j, i, t) on the nodes of mesh Mp as:

p( j, i, t) =
∑
φ

pφ(t) Wφ( j, i), j = 0, . . . Nx − 1, i = 0, . . . Ny − 1, (17)

where Wφ( j, i) is the weight (a multiplicative factor) of particle φ that contributes to the polarization field on node ( j, i). 
This weight is:

Wφ( j, i) = �4,4

(∣∣∣∣xφ · x̂ − j δx

δx

∣∣∣∣
)

�4,4

(∣∣∣∣∣xφ · ŷ − j δy

δy

∣∣∣∣∣
)

, (18)

where x̂ and ŷ are unit vectors pointing in the x and y directions, respectively, and �4,4(·) is the interpolation kernel 
defined in Eq. (B.1). Because of the limited support of the �4,4 kernel (Eq. (B.1)), each particle contributes only to a bounded 
number of mesh nodes within its neighborhood. We, therefore, loop over all particles, find the mesh nodes that are within 
the support domain of the particle and add the particle’s contribution to the those mesh nodes. Fig. 2 shows Wφ( j, i) and 
illustrates the interpolation from particles to a mesh node ( j, i) using the �4,4 interpolation kernel.

The �4,4 kernel is two-sided (symmetric) and for nodes that are within two mesh nodes of the boundary, the kernel does 
not have the necessary support domain. This leads to incorrect interpolation at these nodes. In order to faithfully interpolate 
polarization from particles to mesh nodes near the boundary, we impose polarization boundary conditions on the mesh Mp
through particles. For every particle φ at a distance d within three nodes of the boundary, carrying a polarization pφ , we 
introduce a ghost particle φg at a distance −d from the boundary. When the polarization at the boundary is set to pb, the 
ghost particle φg gets to carry polarization 2pb − pφ , which amounts to a second-order interpolation of the boundary value 
on the mesh. Similarly, we use second-order interpolation to compute the polarization carried by the ghost particle in the 
case of a Neumann boundary condition.

In order to preserve the unit magnitude of the polarization field upon remeshing, we also remesh the magnitude |pφ |
of the polarization field from particles φ to nodes ( j, i) of mesh Mp. The remeshed magnitude is used to renormalize the 
magnitude of the remeshed polarization field.

3.1.2. Computing the transverse component h⊥ of the molecular field
When the polarization field p changes, the transverse component h⊥ of the molecular field h needs to be recomputed. 

We need to perform this computation at all intermediate stages of the RK4 scheme used for numerically integrating Eq. (16), 
and to obtain h⊥ at time t following the computation of p at the nodes ( j, i).

We compute h⊥ on the nodes ( j, i) of Mp according to Eq. (8). Computing h⊥ involves computing four simple second-
order derivatives ∂2

x px, ∂2
y px, ∂2

x py and ∂2
y py, and two mixed second-order derivatives ∂x∂y px and ∂x∂y py (Eq. (8)). We 
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Fig. 3. (Color online.) Staggered meshes and boundary treatment. (a) The 4 staggered meshes used: mesh Mp, Mu, Mv, and M� . The nodes of Mp, 
Mu, Mv, and M� carry the polarity vector p, the x-component of the velocity vx, the y-component of the velocity vy, and the pressure �, respectively. 
(b) Example of ghost nodes to enforce velocity boundary conditions. Shown is the bottom-left (or south-west) boundary of the computational domain with 
boundary nodes, ghost nodes (transparent markers), and internal nodes of Mu and Mv.

numerically compute these derivatives with a second-order accurate spatial discretization. We compute the simple second 
derivatives according to the three-point central finite-difference stencil for all (interior) nodes that are not at the boundary. 
For boundary nodes, we use a second-order one-sided four-point finite-difference stencil to compute the simple second 
derivatives. We compute the mixed derivatives by applying the first-order partial derivative in one direction followed by 
the first-order partial derivative in the other direction. We compute first-order derivatives on the nodes using a two-point 
second-order central finite-difference stencil for all interior nodes. For the nodes at the boundary, we compute the first-order 
partial derivatives using a second-order three-point one-sided finite-difference stencil.

3.2. Computing the velocity field

The computational module for numerically evaluating the velocity field is conceptually similar to finite volume [51,4,24]
or staggered finite difference [51,4,24] approaches to solving time-independent partial differential equations like the Stokes 
equation.

We compute the velocity field v using mesh Mp and three additional staggered finite-difference meshes Mu, Mv, and 
M� . Mesh Mu is shifted by δy

2 in the y-direction with respect to Mp. The nodes of Mu are indexed as ( j, i − 1
2 ), where 

j = 0, . . . , Nx − 1 and i = 0, . . . , Ny (see Fig. 3(a)). The nodes ( j, i − 1
2 ) carry the x-component vx( j, i + 1

2 ) ≡ vx( j δx, (i +
1
2 ) δy) of the velocity field v . The nodes ( j, i − 1

2 ) indexed with j = 0 or j = Nx − 1 and 1 ≤ i ≤ Ny − 1 are boundary 
nodes. Nodes with i = 0 or i = Ny are outside the computational domain and are referred to as ghost nodes (see Fig. 3(b)). 
All nodes except ghost nodes and boundary nodes are referred to as internal nodes. Mesh Mv is shifted by δx

2 in the 
x-direction with respect to Mp. The nodes ( j − 1

2 , i) of Mv carry the y-component vy( j + 1
2 , i) of the velocity field v , 

where j = 0, . . . , Nx and i = 0, . . . , Ny − 1 (see Fig. 3(a)). Similar to the nodes of Mu, nodes ( j, i − 1
2 ) indexed with i = 0

or i = Ny − 1 and 1 ≤ j ≤ Nx − 1 are boundary nodes, nodes with i = 0 or i = Ny are ghost nodes (see Fig. 3(b)), and the 
rest are internal nodes. Mesh M� is shifted by δx

2 and δy
2 in the x and y directions respectively. The nodes ( j + 1

2 , i + 1
2 ) of 

M� carry the pressure field �, where j = 0, . . . , Nx − 2 and i = 0, . . . , Ny − 2 (see Fig. 3(a)). This set of staggered meshes 
Mp, Mu, Mv, and M� is used to numerically solve for the velocity v according to Eqs. (1), (2) and (9).
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In order to numerically solve for the velocity v across the computational domain at time t , we assume the knowledge 
of p( j, i, t) and h⊥( j, i, t) on mesh Mp. We use these quantities in Eqs. (1) and (2), and along with Eq. (9), compute vx
and vy (Eqs. (1) and (2)). We discretize Eq. (1) on the internal nodes of Mu and evaluate all terms in the equation using a 
second-order central finite-difference for all differential operators. On the boundary nodes we evaluate a one-sided second-
order finite-difference scheme to enforce Robin boundary condition for the velocity component normal to the boundary. We 
use the ghost nodes and central second-order finite differences to enforce the Robin boundary condition for the velocity 
component tangential to the boundary. We use the ghost nodes to enforce the stress-free boundary condition using central 
second-order finite differences. Similarly, we discretize Eq. (2) on the nodes of Mv. Additionally, we discretize Eq. (9) on the 
nodes of M� , except on one node where we set � to an arbitrary scalar. This pressure node acts as the reference pressure 
node since the gradient of the pressure field and not its absolute value is relevant. In our implementation, we choose to set 
� 

(⌊
Nx
2

⌋
,
⌊

Ny
2

⌋)
to zero. We solve the resulting unsymmetric, sparse system of Nx(Ny + 1) + Ny(Nx + 1) + (Nx − 1)(Ny − 1)

linear equations for the same number of variables using a direct method, the unsymmetric multifrontal method imple-
mented in UMFPACK [15–17], to obtain vx on the nodes of Mu, vy on the nodes of Mv, and � on nodes of M� .

Subsequently, we interpolate vx to the nodes of Mp using second-order two-point central difference interpolation in 
the y-direction. Similarly, we interpolate vy to the nodes of Mp using two-point central difference interpolation in the 
x-direction. We additionally evaluate the components of the strain-rate tensor u and of the vorticity tensor ω with second-
order accuracy on the nodes of Mp. Using u, we numerically evaluate h|| on the nodes of Mp according to Eq. (13).

Combining all steps of the hybrid particle-mesh method, the complete algorithm, given the material constants η, ν , γ , 
ζ , λ, Ks, and Kb, the activity �μ(x, y, t), the external force density gext, and the boundary conditions for p and v , is as 
follows:

1. Initialize time t ← 0.
2. Compute p( j, i, 0): compute the polarization field p on the nodes of mesh Mp using the initial condition for the 

polarization field.
3. Compute h⊥( j, i, 0): compute the transverse component h⊥ of the molecular field h at the nodes ( j, i) of Mp using 

p( j, i, 0) as described in Section 3.1.2.
4. Compute v( j, i, 0), u( j, i, 0), and ω( j, i, 0) using staggered meshes: compute the velocity field v , strain-rate tensor u, 

and vorticity tensor ω on the nodes ( j, i) of Mp using p( j, i, 0), h⊥( j, i, 0), the material constants η, ν , γ , ζ , λ, Ks, 
and Kb, and the activity �μ( j, i, 0), as described in Section 3.2.

5. Advance time t ← t + δt .
6. If t < tf , then,

6.1. Compute h||( j, i, t −δt): compute the parallel component h|| on the nodes ( j, i) of Mp using p( j, i, t −δt), u( j, i, t −
δt), material constants γ , ν , λ, and the activity �μ( j, i, t − δt) according to Eq. (13).

6.2. Compute p( j, i, t) using point particles and a finite-difference mesh: compute the polarization field p on the nodes 
( j, i) of Mp at time t using v( j, i, t − δt), u( j, i, t − δt), ω( j, i, t − δt), p( j, i, t − δt), h⊥( j, i, t − δt), h||( j, i, t − δt), 
material constants γ , λ and ν , and the activity �μ( j, i, t − δt), as described in Section 3.1.

6.3. Compute h⊥( j, i, t): compute h⊥ on the nodes ( j, i) of Mp using p( j, i, t), as described in Section 3.1.2.
6.4. Compute v( j, i, t), u( j, i, t), and ω( j, i, t) using staggered meshes: compute v , u, and ω on the nodes ( j, i) of Mp

using p( j, i, t), h⊥( j, i, t), material constants η, ν , γ , ζ , λ, Ks, and Kb, and the activity �μ( j, i, t), as described in 
Section 3.2.

6.5. Go to step 5.

3.3. Accuracy

The accuracy of the hybrid particle-mesh method is dictated by the numerical error of the time integration scheme used 
to compute the polarization field on particles, the numerical error in remeshing the polarization field from particles to mesh 
nodes, and the numerical error of discretizing differential operators on the meshes Mp, Mu, Mv, and M� .

The time integration scheme used here is globally first-order accurate due to the explicit Euler integration scheme used 
to advect particles (see Eq. (15)). In other words, the numerical error due to time integration is O(N−1

t ) where Nt is the 
number of integration time steps.

The remeshing from particles to mesh nodes is second-order accurate. This is mediated by the accuracy of imposing 
polarization boundary conditions on the mesh using ghost particles. The numerical error of remeshing using the �4,4
interpolation kernel is O(N−5

x + N−5
y ) [11]. Accounting for the explicit Euler time-integration of particle positions, the 

numerical error increases to O(N−4
x + N−4

y ) [11]. In addition, we impose boundary conditions for the remeshing procedure 
that are second-order accurate and hence the numerical error is O(N−2

x + N−2
y ). Accounting for all these errors, the overall 

numerical error of the remeshing procedure is O(N−2
x + N−2

y ), limited by the error in imposing boundary conditions.
The discretization scheme used to evaluate differential operators on the meshes Mp, Mu, Mv and M� is second-order 

accurate. This is due to the use of one-sided second-order finite differences at boundary nodes and central second-order 
finite differences at internal nodes. The numerical error of discretizing differential operators is therefore O(N−2

x + N−2
y ).
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In summary, the numerical error of the hybrid particle mesh method is O(N−2
x + N−2

y ) in the number of mesh nodes 
Nx and Ny in the x and y-directions, respectively. If the number of mesh nodes in each direction is equal to Nm, the 
numerical error is O(N−2

m ). As a function of the number of integration time steps Nt , the numerical error of the present 
hybrid particle-mesh method is O(N−1

t ).

3.4. Computational cost

The computational cost of calculating the polarization and velocity fields at each time point is mediated by the cost of 
each step in the algorithm. The scaling of the cost for computing vx, vy, and � at mesh nodes is dominated by the un-
symmetric multifrontal method [15–17] to solve for vx, vy and � from the unsymmetric, sparse system of linear equations 
obtained by discretizing Eqs. (1), (2) and (9) on meshes Mp, Mu, Mv, and M� . By discretizing Eqs. (1), (2) and (9), we 
obtain Nx(Ny + 1) + Ny(Nx + 1) + (Nx − 1)(Ny − 1) linear equations involving vx, vy, and � at the mesh nodes. We observe 
that the cost of solving for vx, vy, and � at the nodes of Mu, Mv, and M� , respectively using the unsymmetric multi-
frontal method [15–17] is O ((NxNy)

a) where 1 < a < 2 with a ≈ 3
2 for the system considered here. The cost of computing 

h⊥ and h|| is O(NxNy). The cost of the time integration scheme to compute the polarization field on particles is O(Nx Ny). 
The cost of the remeshing procedure is O (Nx Ny).

In summary, the computational cost of each time-step of the present implementation of our method is dominated by 
the cost of the direct method to solve the linear system of equations to compute the velocity components and pressure 
field, and is O ((NxNy)

3
2 ). The overall computational cost is linear in the number of time steps, and a hybrid particle-mesh 

method can potentially use large time-step sizes since they are not restricted by the Eulerian CFL condition for advection.

4. Validation

We validate the hybrid particle-mesh method by studying its consistency and convergence on two test problems. On a 
test problem for which the analytical solutions of p(x, y, t) and v(x, y, t) are not known, we demonstrate consistency by 
showing that the error in the numerical solution decreases with increasing spatial and temporal resolution of the numerical 
simulation. A consistent numerical method, however, does not guarantee convergence of the numerical solution towards 
the correct solution of Eqs. (1), (2), (9), (10) and (11) upon increasing spatial and temporal resolution of the simulation. 
We demonstrate convergence of the numerical solution to the analytical solution at steady state on a second test problem 
where the steady-state analytical solutions of p(x, y) and v(x, y) can be computed. In addition, we show that convergence 
of the hybrid particle-mesh method is preserved for time steps corresponding to CFL numbers larger than 1.

4.1. Consistency

We show consistency of the hybrid particle-mesh method on a computational test case where the analytical solution is 
not known. We choose a computational domain with Lx = Ly = 10. The initial condition of the polarization field is a smooth 
harmonic map [1]

px(x, y,0) = sin a,

py(x, y,0) = cos a, (19)

where

a = 2π (cos x1 − sin y1) (20)

with x1 = 2x−Lx
Lx

and y1 = 2y−Ly
Ly

. We choose these initial conditions because they have been previously used to test accuracy 
of numerical methods for simulating passive liquid crystals [2,1]. The boundary conditions are

v(xb, yb, t) = 0,

p(xb, yb, t) = p(xb, yb,0), (21)

where (xb, yb) represent the coordinates of points on the boundary. The material constants are η = 1, ν = −0.5, γ = 0.1, 
ζ = 0.07, λ = 0.1, Ks = 1, and Kb = 1. The activity �μ(x, y, t) = −1 and the external force density gext = 0. Fig. 4 shows 
snapshots of the polarization, velocity, and pressure fields across the computational domain at times t = 0, 7.5, and 15
obtained with Nx = Ny = 17 and δt = 0.003. We observe that the system reaches steady state beyond t = 12 with non-zero 
steady state flow (Fig. 4(f)). We confirm the constant magnitude of the polarization field in Fig. 5, showing the maximum 
deviation of the magnitude of the polarization field from unity over the course of the simulation. We observe that the 
maximum deviation is close to machine epsilon, which is 10−16 for double-precision floating-point arithmetic.

To measure the scaling of the numerical error due to spatial discretization, we perform simulations with increasing 
numbers of mesh nodes for a fixed δt . We perform simulations with Nx = Ny = Nm for Nm = 9, 17, 33, 65, and 129. We use 
δt = 2 × 10−7 in all these simulations. Subsequently, we compute the error of the resulting numerical solutions at t = tf =
2 × 10−6 against the numerical solution obtained from a more finely resolved computational domain with Nx = Ny = 257. 
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Fig. 4. (Color online.) Simulation snapshots of the polarization, velocity, and pressure fields of an active polar viscous gel with a smooth harmonic initial 
polarization field. (a), (b), (c) The polarization vector field across the computational domain at times t = 0, 7.5, and 15. The polarization vector field is 
indicated by cylindrical rods. The Franck free-energy density of the polarization field (Eq. (A.9)) across the computational domain is color coded. (d), (e), 
(f) The corresponding velocity field at t = 0, 7.5, and 15. At each time t , the arrows indicate velocities across the computational domain normalized by 
the maximum magnitude of velocity. The direction of the arrows therefore indicate the local flow direction, and the length of the arrows indicates the 
relative magnitude of velocity at each time point. The kinetic energy density (sum of squares of the two velocity components) is color coded. (g), (h), 
(i) The pressure field at t = 0, 7.5, and 15. The magnitude of the pressure field is color coded. The parameters used in the simulation are Lx = Ly = 10, 
Nx = Ny = 17, δt = 0.003, η = 1, ν = −0.5, γ = 0.1, ζ = 0.07, λ = 0.1, Ks = 1, Kb = 1, �μ = −1 and gext = 0. See Section 4.1 for more details.
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Fig. 5. Validation of unit polarity magnitude. Maximum deviation in the magnitude of the polarization field as a function of time for the simulation 
presented in Fig. 4. See Section 4.1 for more details.

Fig. 6(a) shows the error in px, py, vx, and vy as a function of Nm. We observe that the error decreases with increasing Nm
and is O(N−2

m ). This observation demonstrates that the present hybrid-particle mesh method is second-order accurate with 
respect to spatial discretization.

To measure the scaling of the numerical error with the number of integration time steps, we perform simulations with 
decreasing δt for a fixed Nm. We perform simulations with δt = 4 × 10−3, 2 × 10−3, 1 × 10−3, 5 × 10−4, 2.5 × 10−4, 1.25 ×
10−4, 6.25 × 10−5, and 3.125 × 10−5 using a fixed number of mesh nodes in each direction Nm = 17. We compute the 
error of the numerical solutions at t = tf = 1.024 against the numerical solution obtained with a finer integration time 
step δt = 1.5625 × 10−5. Fig. 6(b) shows the error in px, py, vx, and vy as a function of the number of integration time 
steps Nt = tf

δt . We observe that the error decreases with increasing Nt and is O(N−1
t ). This demonstrates that the hybrid 

particle-mesh method is first-order accurate with respect to the time stepping scheme.
In summary, the present hybrid particle-mesh method is consistent. In addition, the measured numerical error scales 

according to the theoretically expected bound (see Section 3.3) when increasing spatial or temporal resolution.

4.2. Convergence

We show convergence of the present hybrid particle-mesh method simulating a two-dimensional film where the steady-
state analytical solution can be computed on a computational domain with Lx = 10 and Ly = 10. The initial condition for 
the polarization is

px(x, y,0) = cos

(
π y

2Ly

)
,

py(x, y,0) = sin

(
π y

2Ly

)
. (22)

The boundary conditions are

p(0, y, t) = p(Lx, y, t),

v(0, y, t) = v(Lx, y, t),

v(x,0, t) = 0,

σxy(x, Ly, t) = 0,

vy(x, Ly, t) = 0, (23)

where σxy(x, Ly, t) = 0 imposes a stress-free boundary along y = Ly (see Eqs. (A.5), (A.6), (A.7) and (A.3) for the expression 
of σxy). We set η = 1, ν = 0, γ = 1, ζ = 1, λ = 1, Ks = 1, Kb = 1, and �μ(x, y, t) = −1. The external force density is 
gext = 0.

We perform numerical simulations until steady state is reached. We observe that by t = 40 the system reaches steady 
state. We, therefore, perform simulations with tf = 40 with increasing numbers of mesh nodes in each direction. We run 
simulations with Nx = Ny = Nm for Nm = 9, 17, 33, and 65. We run these simulations with δt = 0.04, 0.01, 0.0025, and 
0.000625, respectively. In words, we decrease δt and increase the number of time steps Nt = tf

δt by a factor of 4 upon 

increasing the number of mesh cells Nm −1 by a factor of 2. More specifically, Nm =
√

8Nt
125 + 1. Fig. 7 shows the polarization 

and velocity fields as a function of time obtained by running a simulation with Nm = 17. We observe that the velocity field is 
translationally invariant in the x-direction and vy(x, y, t) is on the order of machine epsilon. Fig. 8 shows the error in px, py, 
h⊥ , and uxy from our numerical simulation at t = tf with respect to the steady-state analytical solution (Eqs. (C.11), (C.12), 

(C.13), (C.14), and (C.15)). We observe that the error decreases with increasing Nm and is O(N−2
m ). Since Nm =

√
8Nt
125 + 1, 

we hence observe that the error is O(N−1
t ).
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Fig. 6. Consistency of the hybrid particle-mesh method. (a) Logarithmic plots of the root mean square (RMS) and maximum numerical error in the compo-
nents px and py of the polarization field, and of the components vx and vy of the velocity field for increasing numbers of mesh nodes Nm. The numerical 
error is computed against simulation results obtained with a higher spatial resolution (Nm = 257). The dotted line is a reference for error decreasing as 
N−2

m . (b) Logarithmic plots of the root mean square (RMS) and maximum numerical error in px and py, and in vx and vy for increasing numbers of inte-
gration time steps Nt with a constant final time tf . The numerical error is computed against simulation results obtained with a higher temporal resolution 
(Nt = 65 536). The dotted line is a reference for error decreasing as N−1

m . See Section 4.1 for more details.

In summary, the present hybrid particle-mesh method is consistent and converges to the analytical solution. Conse-
quently, we conclude that the method is numerically stable. The error in the numerical solution decreases according to the 
theoretical error bounds (see Section 3.3).

4.3. Convergence for CFL numbers larger than 1

For a purely mesh-based approach with explicit numerical time integration, it is necessary that the CFL number ∥∥∥ |vx|δt
δx + |vy|δt

δy

∥∥∥∞ is less than 1 for numerical stability [13,24], where the norm || · ||∞ denotes the maximum across the 
computational domain. This constraint limits the size of the time step δt . Hybrid particle-mesh methods have the advantage 
that the value of δt is not restricted by the CFL condition. Instead, stability of the advection operator in any hybrid particle-
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Fig. 7. (Color online.) Simulation snapshots of the polarization, velocity, and pressure fields of a simplified active polar film. (a), (b), (c) The polarization 
vector field across the computational domain at times t = 0, 26.68 and 40. The polarization vector field is indicated by cylindrical rods. The Franck 
free-energy density of the polarization field (Eq. (A.9)) across the computational domain is color coded. (d), (e), (f) The corresponding velocity field at t = 0, 
26.68, and 40. At each time t , the arrows indicate velocities across the computational domain normalized by the maximum magnitude of velocity. The 
direction of the arrows therefore indicates the local flow direction, and the length of the arrows indicates the relative magnitude of velocity at each time 
point. The kinetic energy density (sum of square of the two velocity components) is color coded. (g), (h), (i) The pressure field at t = 0, 26.68, and 40. 
The magnitude of the pressure field is color coded. The parameters used in the simulation are Lx = Ly = 10, Nx = Ny = 17, δt = 0.01, η = 1, ν = 0, γ = 1, 
ζ = 1, λ = 1, Ks = 1, Kb = 1, �μ = −1 and gext = 0. See Section 4.2 for more details.
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Fig. 8. Convergence of the hybrid particle-mesh method. Logarithmic plots of the root mean square (RMS) and maximum numerical error for increasing 
numbers of mesh nodes Nm and increasing numbers of time steps Nt for a fixed final time tf . Nm and Nt are coupled such that Nm =

√
8Nt
125 + 1. The 

errors are shown for the components px and py of the polarization field, the transverse component h⊥ of the molecular field, and a component uxy of 
the strain-rate tensor. The errors are computed against the analytical solution (Eqs. (C.11), (C.12), (C.13), (C.14), and (C.15)) of the system (see Section 4.2). 
The dotted line is a reference for error decreasing as N−2

m . Since Nm ∼ N
1
2

t , the dotted line also acts as a reference for the error decreasing as N−1
t . See 

Section 4.2 for more details.

Fig. 9. Accurate numerical results at CFL numbers larger than 1. Steady state polarization field (px on the left and py on the right) along the y-direction for 
a two-dimensional active polar film for CFL numbers = 0.32733 and 26.1866. See Section 4.3 for more details.

mesh method that uses explicit Euler for integrating particle positions and �4,4 remeshing requires that the Lagrangian CFL 
number δt ‖∇ v‖∞ is less than 1 [11,9]. The Lagrangian CFL condition ensures that pathlines of particles do not intersect 
and is potentially less restrictive on δt . Here, we demonstrate the numerical accuracy of our hybrid particle-mesh method 
for CFL numbers larger than 1.

The test problem we use is the same as the one used to demonstrate convergence (see Section 4.2). With η = 1, ν = 1.5, 
γ = 1, ζ = 1, λ = 1, Ks = 0.1, Kb = 0.1, and �μ = −6, advection is the faster time scale (i.e., advection-dominated). Fig. 9
shows the steady-state polarization field along the y-direction obtained with Nx = Ny = 33 for δt = 0.0025 and δt = 0.2. 
These time steps correspond to median CFL numbers of 0.32733 and 26.1866 respectively, where the median is computed 
across time steps. The corresponding median of the Lagrangian CFL numbers are 0.011354 and 0.90838, respectively. We 
observe that the steady-state polarization field at CFL number much larger than 1 agrees with the polarization field obtained 
using CFL number smaller than 1 (see Fig. 9). This shows that the hybrid particle-mesh method is accurate at CFL numbers 
larger than 1, thereby relaxing the constraint on δt . The CFL condition becomes more stringent with increasing number 
of mesh nodes Nx and Ny making the hybrid particle-mesh method more attractive for simulations with high spatial 
resolution.

In summary, the hybrid particle-mesh method potentially allows for time steps larger than those prescribed by the CFL 
condition. This potentially reduces the number of integration time steps and therefore the overall computational cost of 
simulating the dynamics of active polar viscous gels. When the CFL condition is fulfilled, or when the polarization dynamics 
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is not advection dominated, the computational cost of our hybrid particle-mesh method becomes identical with that of a 
stable finite difference scheme.

5. Computational experiments

We report results from computational experiments on incompressible active polar viscous gels in rectangular geometries 
using the present hybrid particle-mesh method. The method enables simulations of the low-Reynolds-number hydrodynam-
ics of simple fluids, of passive liquid crystal flows [65,39,1,2,14], and finally, of active polar viscous gels. Here, we present 
numerical results of the time-evolution of the polarization and velocity fields in a passive liquid crystal [1,2], in an active 
polar film [33,32], and in active polar viscous gels with topological defects in the polarization field [33,36].

5.1. Passive liquid crystal

If �μ = 0, the hydrodynamic equations (Eqs. (1), (2), (9), (10), and (11)) of incompressible active polar viscous gels 
reduce to the Ericksen–Leslie equations governing passive liquid crystals flows [65,39,1,2,14]. Note that when �μ = 0, 
Eqs. (1), (2), (9), (10), and (11) are independent of ζ and λ, as these coefficients couple the activity (or energy consumption) 
measured by �μ to the dynamics of the velocity and polarization fields, respectively.

We use a test case previously used to simulate passive liquid crystal flow [1,2]. We choose a computational domain with 
Lx = 20 and Ly = 10. The initial condition of the polarization field at interior points is given by Eq. (19). The polarization at 
the boundary is dictated by the boundary condition:

∂ p(x, y, t)

∂x

∣∣∣∣
x=0

= ∂ p(x, y, t)

∂x

∣∣∣∣
x=Lx

= ∂ p(x, y, t)

∂ y

∣∣∣∣
y=0

= ∂ p(x, y, t)

∂ y

∣∣∣∣
y=Ly

= 0, (24)

for all times t . The velocities at the boundary follows a no-slip condition given by

v(xb, yb, t) = 0, (25)

where (xb, yb) denotes boundary points. We set η = 1, ν = 1, γ = 1, ζ = 0, λ = 0, Ks = 1, Kb = 1, �μ(x, y, t) = 0, and 
gext = 0. For the simulation we choose Nx = 21, Ny = 31, δt = 0.04, and tf = 500. Fig. 10 shows snapshots of the polarization 
and velocity fields at t = 0, 10.4, and 500. We observe that the polarization field relaxes to a homogeneous orientation 
across the computational domain (Figs. 10(a)–10(c)). At t = 500, the system is at steady state and the orientation of the 
polarization field is approximately 2.55 radians (or 146◦). This direction of alignment is governed by the initial polarization 
field. Due to lack of gradients in the steady-state polarization field, we observe that the steady-state velocity field is zero 
(Fig. 10(f)).

5.2. Active polar film

We show numerical simulation results of an active polar viscous gel of certain thickness with periodic boundary condi-
tions in the other dimension. Such an active polar film is a model for in vitro actomyosin films and in vivo cortical actomyosin 
meshworks in biological cells [33,32].

We choose a computational domain with Lx = Ly = 10. The initial condition of the polarization field is

px(x, y,0) = cos

(
π

3

Ly − y

Ly

)
,

py(x, y,0) = sin

(
π

3

Ly − y

Ly

)
. (26)

The boundary conditions are

p(x,0, t) = p(x,0,0),

p(x, Ly, t) = p(x, Ly,0),

p(0, y, t) = p(Lx, y, t),

v(x,0, t) = 0,

σxy(x, Ly, t) = 0,

v(0, y, t) = v(Lx, y, t), (27)

where σxy(x, Ly, t) = 0 imposes a stress-free boundary along y = Ly (see Eqs. (A.5), (A.6), (A.7) and (A.3) for the expres-
sion of σxy). We set η = 1, ν = −5, γ = 1, ζ = −4, λ = −1, Ks = 1, Kb = 1, �μ(x, y, t) = −1, and gext = 0. We choose 
Nx = Ny = 17 and simulate the system until tf = 160 with δt = 0.01. We observe that the system reaches steady state at 
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Fig. 10. (Color online.) Simulation snapshots of the polarization and velocity fields in a passive liquid crystal. (a), (b), (c) The polarization vector field across 
the computational domain at times t = 0, 10.4, and 500. The polarization vector field is indicated by cylindrical rods. The Franck free-energy density of the 
polarization field (Eq. (A.9)) across the computational domain is color coded. (d), (e), (f) The corresponding velocity field at t = 0, 10.4, and 500. At each 
time t , the arrows indicate velocities across the computational domain normalized by the maximum magnitude of velocity. The direction of the arrows 
therefore indicates the local flow direction and the length of the arrows indicates the relative magnitude of velocity at each time point. The kinetic energy 
density (sum of squares of the two velocity components) is color coded. The kinetic energy density at t = 500 is almost 0 indicating that the magnitude of 
velocity is almost 0 everywhere. The lengths of the arrows representing the normalized velocity vectors, however, are not zero, due to normalization with 
the maximum magnitude of velocity. The parameters used in the simulation are Lx = 20, Ly = 10, Nx = 21, Ny = 31, δt = 0.04, η = 1, ν = 1, γ = 1, ζ = 0, 
λ = 0, Ks = 1, Kb = 1, �μ = 0 and gext = 0. See Section 5.1 for more details.

around t = 90. Fig. 11 shows the polarization and velocity fields at times t = 0, 10, and 90. The polarization field is homo-
geneous along the x-direction (see Figs. 11(a)–11(c)). The polarization, however, is non-homogeneous along the y-direction 
and therefore the gradient of the polarization field is non-zero (see Figs. 11(a)–11(c)). The velocity field is also invariant 
along the x-direction, and the y-component of the velocity field is zero (see Figs. 11(d)–11(f)). Importantly, the velocity 
field at steady state is non-zero (see Fig. 11(f)). This non-zero steady-state flow is mediated by gradients in the steady-state 
polarization field, which in turn is imposed by the polarization boundary condition.

We next show a case of steady-state flow in active polar films due to gradients in the polarization field emerging 
spontaneously only when the ratio of activity �μ to a critical activity �μc is greater than 1. When �μ

�μc
< 1, we observe 

no steady-state gradients in the polarization field. The corresponding steady-state velocity field is, therefore, zero. When 
�μ
�μc

> 1, we observe a non-zero steady-state velocity field. This transition to a non-zero flow velocity for �μ
�μc

> 1 is referred 
to as the Fréedericksz transition [65,18,33,72]. To simulate a Fréedericksz transition, we choose a computational domain with 
Lx = Ly = 10. The initial polarization field is constant across the computational domain, except for a noisy perturbation:

px(x, y,0) = cos
(π

2
+ ε(y)

)
,

py(x, y,0) = sin
(π + ε(y)

)
, (28)
2
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Fig. 11. (Color online.) Simulation snapshots of the polarization and velocity fields in an active polar film. (a), (b), (c) The polarization vector field across 
the computational domain at times t = 0, 10, and 90. The polarization vector field is indicated by cylindrical rods. The Franck free-energy density of the 
polarization field (Eq. (A.9)) across the computational domain is color coded. (d), (e), (f) The corresponding velocity field at t = 0, 10, and 90. At each 
time t , the arrows indicate velocities normalized by the maximum magnitude of velocity. The direction of the arrows therefore indicates the local flow 
direction and the length of the arrows indicates the relative magnitude of velocity at each time point. The kinetic energy density (sum of squares of the 
two velocity components) is color coded. The parameters used in the simulation are Lx = Ly = 10, Nx = Ny = 17, δt = 0.01, η = 1, ν = −5, γ = 1, ζ = −4, 
λ = −1, Ks = 1, Kb = 1, �μ = −1 and gext = 0. See Section 5.2 for more details.

where the perturbation ε(x) = rπ
2 , r being a uniform random number in [−0.2, 0.2]. The boundary conditions are given by 

Eq. (27). We set η = 1, ν = −2, γ = 1, ζ = 1, λ = 0.1, Ks = 1, Kb = 1, and gext = 0. For these parameters, the theoretical 
value of �μc = 0.2673 (see Eq. (C.18)). We perform simulations using Nx = Ny = 17 and δt = 0.05.

Fig. 12 shows the polarization and velocity fields at t = 0, 100, and 300 for �μ = 0.1 so that �μ
�μc

< 1. The system 
reaches steady state at approximately t = 280. The polarization angle relaxes to π

2 across the computational domain (see 
Figs. 12(a)–12(c)). In other words, the polarization gradient at steady state is zero (see Fig. 12(c)). Consequently, the steady-
state velocity field is zero (see Fig. 12(f)). We now repeat the simulation with �μ = 0.4 so that �μ

�μc
> 1. Fig. 13 shows the 

polarization and velocity fields at t = 0, 40, and 160. Beyond t = 150, the system is at steady state. The polarization angle at 
y = Ly

2 relaxes to approximately 0.983 radians (or 56.3◦) at steady state (Figs. 13(a)–13(c)). The gradient in the polarization 
field is, therefore, non-zero in the y-direction (see Fig. 13(c)). Consequently, the velocity field at steady state is non-zero 
(see Fig. 13(f)). This shows activity �μ larger than the critical value �μc induces gradients in the polarization field leading 
to non-zero flow velocities.

5.3. Aster and spiral defects

We present simulation results of the dynamics of Eqs. (1), (2), (9), (10), and (11) in the presence of topological defects 
in the polarization field. At the topological defects, the polarization field is not defined (|p| = 0) and the gradient of the 
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Fig. 12. (Color online.) Simulation snapshots of the polarization and velocity fields in an active polar film below the critical activity (critical chemical 
potential difference) threshold. (a), (b), (c) The polarization vector field across the computational domain at times t = 0, 100, and 300. The polarization 
vector field is indicated by cylindrical rods. The Franck free-energy density of the polarization field (Eq. (A.9)) is color coded. (d), (e), (f) The corresponding 
velocity field at t = 0, 100, and 300. At each time t , the arrows indicate velocities normalized by the maximum magnitude of velocity. The direction of 
the arrows therefore indicates the local flow direction, and the length of the arrows indicates the relative magnitude of velocity at each time point. The 
kinetic energy density (sum of squares of the two velocity components) is color coded. The kinetic energy density at t = 300 is almost 0, indicating that 
the magnitude of velocity is almost 0 everywhere. The lengths of the arrows representing the normalized velocity vector, however, are not zero, due to 
normalization with the maximum magnitude of velocity. The parameters used in the simulation are Lx = Ly = 10, Nx = Ny = 17, δt = 0.05, η = 1, ν = −2, 
γ = 1, ζ = 1, λ = 0.1, Ks = 1, Kb = 1, �μ = 0.1 and gext = 0. See Section 5.2 for more details.

polarization field diverges. Such a point defect could be the center of an aster, a spiral, or a vortex. In an aster, the polar-
ization field at each point is oriented along the line connecting the point with the defect. In a vortex, the polarization field 
at each point is orthogonal to the line connecting the point with the defect. Defects with any other constant orientation 
between the polarization field at each point and the line connecting the defect with that point are referred to as a spiral 
defects [33,36].

We present simulation results with spiral and aster defects in an incompressible active polar viscous gel. We perform 
a simulation with δt = 0.01 on a computational domain with Lx = Ly = 10 and Nx = Ny = 17. The initial polarization field 
represents a spiral defect (see Fig. 14(a)). The defect is at the center of the computational domain at x = Lx

2 , y = Ly
2 , where 

p = 0. In order to avoid a diverging gradient in the polarization field at the defect location, we smooth (regularize) the 
magnitude of the polarization field so that it increases smoothly to 1 over a distance of approximately 3 units from the 
defect. At the boundaries, we impose the velocities and the normal derivative of the polarization field to be zero. We set 
η = 0.1, ν = 2, γ = 0.1, ζ = −1, λ = 1, Ks = 1, Kb = 1.5, and gext = 0.

Figs. 14 and 15 show the polarization and velocity fields at t = 0, 2.5, and 5 for �μ = 1.5 and 0.5, respectively. For both 
values of �μ, we observe a circular flow profile centered at the defect location (Figs. 14(d)–14(f) and Figs. 15(d)–15(f)) 
with the maximum kinetic energy density being approximately 50 times smaller at t = 5 for �μ = 0.5 in comparison to 
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Fig. 13. (Color online.) Simulation snapshots of the polarization and velocity fields in an active polar film showing the Fréedericksz transition above the 
critical activity (critical chemical potential difference) threshold. (a), (b), (c) The polarization vector field across the computational domain at times t = 0, 
40, and 160. The polarization vector field is indicated by cylindrical rods. The Franck free-energy density of the polarization field (Eq. (A.9)) across the 
computational domain is color coded. (d), (e), (f) The corresponding velocity field at t = 0, 40, and 160. At each time t , the arrows indicate the velocities 
normalized by the maximum magnitude of velocity. The direction of the arrows therefore indicates the local flow direction, and the length of the arrows 
indicates the relative magnitude of velocity at each time point. The kinetic energy density (sum of squares of the two velocity components) is color coded. 
The parameters used in the simulation are Lx = Ly = 10, Nx = Ny = 17, δt = 0.05, η = 1, ν = −2, γ = 1, ζ = 1, λ = 0.1, Ks = 1, Kb = 1, �μ = 0.4 and 
gext = 0. See Section 5.2 for more details.

�μ = 1.5 (Figs. 14(f) and 15(f)). The spiral character of the initial polarization field persists over time when �μ = 1.5 (see 
Figs. 14(a)–14(c)). For the smaller �μ = 0.5, the same initial polarization field gets transformed to an aster over time (see 
Figs. 15(a)–15(c)). This shows that tuning the activity �μ can change a spiral defect to an aster defect.

We now switch the initial polarization field to an aster (Fig. 16(a)) and perform simulations retaining all other settings. 
Figs. 16 and 17 show the polarization and velocity fields at t = 0, 2.5, and 5 for �μ = 0.5 and 1.5, respectively. For 
�μ = 0.5, we observe that the aster defect persists over time (see Figs. 16(a)–16(c)). The corresponding velocity field (see 
Figs. 16(d)–16(f)) shows a pattern consisting of 8 vortices. The centers of these vortices form a octahedron whose centroid 
coincides with the defect. In addition, the flow at neighboring vertices of the octahedron is in opposite directions. For the 
larger �μ = 1.5, we observe that the aster defect is transformed into a spiral defect over time (see Figs. 17(a)–17(c)). The 
corresponding velocity field is also transformed from a pattern consisting of 8 local vortices organized along an octahedron 
to a single large vortex centered at the defect (see Figs. 17(d)–17(f)). This observation shows that �μ can change an aster 
to a spiral defect. Such transformations of topological defects, for instance from a spiral to an aster or vice versa, have 
been predicted using linear perturbation analysis of the hydrodynamic equations [36]. Experimentally, such transformations 
have been observed in in vitro microtubule dynamics [49,66,67]. In these experiments, modulating �μ by changing the 
concentration of motor proteins induced a change in the overall filament orientations from a spiral to an aster configuration 
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Fig. 14. (Color online.) Simulation snapshots of the persistence of a spiral defect in the polarization field. (a), (b), (c) The polarization vector field across 
the computational domain at times t = 0, 2.5, and 5. The polarization vector field is indicated by cylindrical rods. The Franck free-energy density of the 
polarization field (Eq. (A.9)) is color coded. (d), (e), (f) The corresponding velocity field at t = 0, 2.5, and 5. At each time t , the arrows indicate the 
velocities across the computational domain normalized by the maximum magnitude of velocity. The direction of the arrows therefore indicates the local 
flow direction, and the length of the arrows indicates the relative magnitude of velocity at each time point. The kinetic energy density (sum of squares of 
the two velocity components) is color coded. The parameters used in the simulation are Lx = Ly = 10, Nx = Ny = 17, δt = 0.01, η = 0.1, ν = 2, γ = 0.1, 
ζ = −1, λ = 1, Ks = 1, Kb = 1.5, �μ = 1.5 and gext = 0. See Section 5.3 for more details.

and vice versa [49,66,67]. This is the first time such topological transitions are confirmed in a numerical simulations of the 
macroscopic governing equations of active polar viscous gels.

6. Conclusions and discussion

We have presented an algorithm to solve the macroscopic governing hydrodynamic equations of incompressible active 
polar viscous gels [37,33,32,41] in two-dimensional rectangular domains using a hybrid particle-mesh method. The method 
is a hybrid of Lagrangian particles and staggered finite-difference meshes. Combining the superior numerical stability of 
Lagrangian particle methods for flow-dominated problems with the simplicity of discretizing differential operators on stag-
gered Cartesian meshes, we numerically solve the equations of active polar viscous gels. As the main novelty, the numerical 
method uses an analytically derived Lagrange multiplier to impose constant magnitude of the polarization field that is con-
sistent with the physics of active polar viscous gels. We use particles to transport the polarization field so that the advection 
is not restricted by the Courant–Friedrichs–Lewy (CFL) condition. Staggered finite differences are used to exactly impose in-
compressibility, and a direct solver to obtain the exact solution of the resulting linear system of equations. Remeshing of the 
polarization field from particles to mesh nodes is performed using a moment-conserving interpolation kernel preserving the 
constant magnitude of the polarization field. Using these ingredients, we developed a novel conservative numerical method 
to accurately solve the hydrodynamic equations of incompressible active polar viscous gels.
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Fig. 15. (Color online.) Simulation snapshots of the transformation of a spiral defect to an aster defect. (a), (b), (c) The polarization vector field across 
the computational domain at times t = 0, 2.5, and 5. The polarization vector field is indicated by cylindrical rods. The Franck free-energy density of the 
polarization field (Eq. (A.9)) is color coded. (d), (e), (f) The corresponding velocity field at t = 0, 2.5, and 5. At each time t , the arrows indicate the 
velocities across the computational domain normalized by the maximum magnitude of velocity. The direction of the arrows therefore indicates the local 
flow direction, and the length of the arrows indicates relative magnitude of velocity at each time point. The kinetic energy density (sum of squares of the 
two velocity components) is color coded. The parameters used in the simulation are Lx = Ly = 10, Nx = Ny = 17, δt = 0.01, η = 0.1, ν = 2, γ = 0.1, ζ = −1, 
λ = 1, Ks = 1, Kb = 1.5, �μ = 0.5 and gext = 0. See Section 5.3 for more details.

We have validated the hybrid particle-mesh method on two test problems. On one test problem, where the analytical 
solution is not known, we showed that the numerical error of the method decreases with increasing the spatial and tem-
poral resolution of the simulation. On another test problem, where the analytical solution can be computed, we showed 
that the numerical solution converges to the correct analytical solution with increasing spatial and temporal resolution of 
the simulation. Specifically, we showed that the numerical error decreases by a factor of four upon doubling the number of 
mesh nodes in each direction and decreases by a factor of two upon halving the time-step size. These observations demon-
strate that the presented hybrid particle-mesh method is consistent and converges to the correct solution of the underlying 
governing equations. Further, we demonstrated that the presented hybrid particle-mesh method is stable and converges to 
the correct solution even for CFL numbers much larger than 1 making the method advantageous especially for advection 
dominated dynamics.

Using the present hybrid particle-mesh method, we have performed computational experiments on a few instances of 
active polar viscous gels. Setting the energy consumption or the activity of the gel to zero, we simulated the hydrodynamics 
of passive liquid crystals using the same method. Using active polar films, which are a model system for cortical actomyosin 
layers in biological cells [33,32,72], we demonstrated the Fréedericksz transition [33,72,42] when the activity is larger than 
a critical value. At supra-critical activities, we showed the emergence of non-zero gradients in the steady-state polarization 
field. As a result we observed a non-zero velocity field. In active polar viscous gels with defects in the polarization field, 
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Fig. 16. (Color online.) Simulation snapshots of the persistence of an aster defect in the polarization field. (a), (b), (c) The polarization vector field across 
the computational domain at times t = 0, 2.5, and 5. The polarization vector field is indicated by cylindrical rods. The Franck free-energy density of the 
polarization field (Eq. (A.9)) across the computational domain is color coded. (d), (e), (f) The corresponding velocity field at t = 0, 2.5, and 5. At each time 
t , the arrows indicate velocities normalized by the maximum magnitude of velocity. The direction of the arrows therefore indicates the local flow direction, 
and the length of the arrows indicates the relative magnitude of velocity at each time point. The kinetic energy density (sum of squares of the two velocity 
components) of the velocity field is color coded. The parameters used in the simulation are Lx = Ly = 10, Nx = Ny = 17, δt = 0.01, η = 0.1, ν = 2, γ = 0.1, 
ζ = −1, λ = 1, Ks = 1, Kb = 1.5, �μ = 0.5 and gext = 0. See Section 5.3 for more details. See Section 5.3 for more details.

we showed the transition from a spiral to an aster defect, and vice versa, by tuning the activity of the gel as observed in in 
vitro experiments on microtubule dynamics [49,66,67].

The present hybrid particle-mesh method has several limitations. The method is limited to two-dimensional rectangular 
domains and has a computational cost proportional to the total number of mesh nodes to the power 3

2 . Even though 
extending the method to three-dimensional geometries is straightforward, the scaling of the computational cost might 
prohibit efficient simulations in three dimensions. The computational cost of the method may, however, be reduced by 
using iterative linear solvers at the expense of numerical accuracy. For complex geometries, discretizing differential operators 
using simple finite difference schemes is problematic. This limitation can be addressed by using generalized finite-difference 
schemes, like discretization-corrected particle strength exchange (DC-PSE) operators [64,59]. In addition, the current time 
integration scheme is explicit and is therefore only conditionally stable. Using an implicit integration scheme can alleviate 
this limitation at the expense of larger computational cost. Future work will involve relaxing these limitations, leading to 
a robust hybrid particle-mesh method for simulating active polar viscous gels in complex three dimensional geometries. 
Additional future extension of the present method include coupling the local activity of active gels to concentration of 
chemicals that are advected by the flow velocity of the gel, diffuse, and undergo reactions that are deterministic or stochastic 
depending on the population of the chemicals [37,33,68,3,53,55–57,54].

The theory of active polar viscous gels offers a framework for simulating active matter like migrating cells and cytoskele-
tal meshworks. The theory, in general, provides a basis for modeling active mechanochemical processes that are crucial to 
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Fig. 17. (Color online.) Simulation snapshots of the transformation of an aster defect to a spiral defect. (a), (b), (c) The polarization vector field across 
the computational domain at times t = 0, 2.5, and 5. The polarization vector field is indicated by cylindrical rods. The Franck free-energy density of the 
polarization field (Eq. (A.9)) is color coded. (d), (e), (f) The corresponding velocity field at t = 0, 2.5, and 5. At each time t , the arrows indicate the velocities 
normalized by the maximum magnitude of velocity. The direction of the arrows therefore indicates the local flow direction, and the length of the arrows 
indicates the relative magnitude of velocity at each time point. The kinetic energy density (sum of squares of the two velocity components) is color coded. 
The parameters used in the simulation are Lx = Ly = 10, Nx = Ny = 17, δt = 0.01, η = 0.1, ν = 2, γ = 0.1, ζ = −1, λ = 1, Ks = 1, Kb = 1.5, �μ = 1.5 and 
gext = 0. See Section 5.3 for more details. See Section 5.3 for more details.

biological morphogenesis [31,5,27]. We envision an important role for computer simulations of such active mechanochemical 
processes in understanding complex phenomena in developmental biology.
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Appendix A. Detailed description of the continuum hydrodynamic equations governing incompressible active polar 
viscous gels in two dimensions

Let pα(r, t) and vα(r, t) denote one of the two components (α ∈ {x, y}) of polarization and velocity vectors, respectively, 
at position r and time t . Using Einstein’s index summation convention, the hydrodynamic equations for incompressible 
active polar viscous gels in two dimensions [36,37,33,32] are

∂βσαβ − ∂α� + gext
α = 0, (A.1)
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∂γ vγ = 0, (A.2)

2ηuαβ = σ
(s)
αβ + ζ�μ

(
pα pβ − 1

2
pγ pγ δαβ

)
− ν

2

(
pαhβ + pβhα − pγ hγ δαβ

)
, (A.3)

Dpα

Dt
= hα

γ
+ λ�μpα − νuαβ pβ + ωαβ pβ, (A.4)

where

σαβ = σ
(s)
αβ + σ

(a)
αβ + σ

(e)
αβ , (A.5)

σ
(a)
αβ = 1

2
(pαhβ − pβhα), (A.6)

σ
(e)
αβ = − ∂ f

∂(∂β pγ )
∂α pγ , (A.7)

hα = − ∂ f

∂ pα
+ ∂γ

(
∂ f

∂(∂γ pα)

)
, (A.8)

f = Ks

2
(∂α pβ)(∂α pβ) + Kb − Ks

2
(εαβ∂β pα)2 − h||

2
pγ pγ , (A.9)

uαβ = 1

2
(∂α vβ + ∂β vα), (A.10)

ωαβ = 1

2
(∂β vα − ∂α vβ), (A.11)

Dpα

Dt
= ∂ pα

∂t
+ vγ ∂γ pα. (A.12)

Eq. (A.1) is a force balance equation that is equivalent to the equation of conservation of momentum assuming negligible 
inertial forces (low Reynolds number regime). In Eq. (A.1), � is the pressure, σαβ denotes one of the four components 
of the deviatoric stress tensor σ , gext

β denotes one of the two components of a external force density vector gext and 
∂β denotes the spatial derivative along direction β . The pressure � enforces the incompressibility condition defined by 
Eq. (A.2). The deviatoric stress tensor σ with components σαβ , is a sum of a symmetric stress tensor σ (s) with components 
σ

(s)
αβ , an antisymmetric stress tensor σ (a) with components σ (a)

αβ , and the Ericksen stress tensor σ (e) with components 
σ

(e)
αβ (Eq. (A.5)). The Ericksen stress tensor is an equilibrium stress that generalizes the hydrostatic pressure to anisotropic 

fluids [18,25,6].
Eq. (A.3) is the constitutive equation for incompressible active polar viscous gels relating the strain-rate tensor u (with 

components uαβ ; see Eq. (A.10)), and the symmetric stress tensor σ (s) . The material constant η is the viscosity of the gel, 
h is the molecular field vector with two components hα , ζ is the coefficient coupling the material stress to the activity 
in the system as measured by the chemical potential difference �μ, ν is the coefficient coupling mechanical stress to 
polarization field, and δαβ are the components of the Kronecker-delta tensor such that δαβ = 1 if α = β and 0 otherwise. 
Eq. (A.3) models active polar viscous gels as a non-Newtonian fluid, since the stress is non-zero even when the spatial 
velocity gradients are zero [65].

Eq. (A.4) is the equation of motion of the polarization field where D
Dt is the material (Lagrangian) derivative (Eq. (A.12)). 

γ is the rotational viscosity, λ is the coefficient coupling �μ to the polarization dynamics, and ωαβ (Eq. (A.11)) are the 
components of the vorticity tensor ω.

Eq. (A.7) defines the components σ (e)
αβ of the Ericksen stress σ (e) in terms of a distortion free-energy density (or Franck 

free-energy density) f of polar nematic liquid crystals [18,65,33]. Eq. (A.6) defines the antisymmetric stress tensor σ (a) in 
terms of the molecular field h. The molecular field h is defined as the functional derivative of the volume integral of f
with respect to the polarization vector p (Eq. (A.8)). The distortion free-energy density f defines the increase in the energy 
density due to distortions in polar nematic liquid crystals from its uniformly aligned configuration and is given by Eq. (A.9)
where εαβ are the components of the permutation (Levi-Civita) tensor. The free-energy density f is parametrized by the 
splay elastic constant Ks and the bend elastic constant Kb, neglecting the twist elastic constant since it is irrelevant in 
two dimensions. The free-energy density also includes a contribution from the parallel component h|| of the molecular field 
assuming that fluctuations in polarity orientation dominate the fluctuations in polarity amplitudes. This assumption implies 
that the amplitude pγ pγ is a constant and can be assumed to be 1 without loss of generality [33]. In other words, h|| acts 
as a Lagrange multiplier to ensure that the amplitude of the polarization field does not fluctuate. Using Eqs. (A.8), (A.9) and 
imposing pγ pγ = 1,

h|| = hx px + hy py. (A.13)

The transverse component of h, h⊥ , creates a torque that tends to align the polarization field. It is given by
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h⊥ = pxhy − pyhx (A.14)

= px

[
− ∂ f

∂ py
+ ∂x

(
∂ f

∂(∂x py)

)
+ ∂y

(
∂ f

∂(∂y py)

)]
− py

[
− ∂ f

∂ px
+ ∂x

(
∂ f

∂(∂x px)

)
+ ∂y

(
∂ f

∂(∂y px)

)]
. (A.15)

Using Eqs. (A.13) and (A.14),

hx = h|| px − h⊥py (A.16)

hy = h|| py + h⊥px. (A.17)

Substituting these expression for hx and hy in Eq. (A.4) and setting pγ
Dpγ

Dt = 0 to ensure that pγ pγ stays constant, we find 
that

h|| = −γ

[
λ�μ − ν

uxx p2
x

p2
x + p2

y
− ν

uyy p2
y

p2
x + p2

y
− 2ν

uxy px py

p2
x + p2

y

]
. (A.18)

Imposing this expression for h|| ensures that the amplitude of the polarization field does not fluctuate over time. In other 
words, if the initial polarization field at t = 0 has a magnitude of 1 everywhere, the polarization field at all subsequent 
times will have a magnitude of 1.

Combining Eqs. (A.1), (A.3), (A.5) and (A.6), and substituting the expressions for hx (Eq. (A.16)), hy (Eq. (A.17)), and h||
(Eq. (A.18)), we obtain Eqs. (1) and (2). Substituting the expressions for hx (Eq. (A.16)) and hy (Eq. (A.17)) into Eq. (A.4), we 
obtain Eqs. (10) and (11).

Appendix B. �4,4 interpolation kernel function

The �4,4 interpolation kernel is given by [11]

�4,4(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 5
4 |x|2 + 1

4 |x|4 − 100
3 |x|5 + 455

4 |x|6 − 295
2 |x|7 + 345

4 |x|8 − 115
6 |x|9 0 ≤ |x| < 1,

−199 + 5485
4 |x| − 32 975

8 |x|2 + 28 425
4 |x|3 − 61 953

8 |x|4 + 33 175
6 |x|5

− 20 685
8 |x|6 + 3055

4 |x|7 − 1035
8 |x|8 + 115

12 |x|9 1 ≤ |x| < 2,

5913 − 89 235
4 |x| + 297 585

8 |x|2 − 143 895
4 |x|3 + 177 871

8 |x|4 − 54 641
6 |x|5

+ 19 775
8 |x|6 − 1715

4 |x|7 + 345
8 |x|8 − 23

12 |x|9 2 ≤ |x| < 3,

0 3 ≤ |x|.

(B.1)

Appendix C. Steady-state analytical solution of a two-dimensional incompressible active polar film

We consider a film that is infinitely long along the x-direction and has a thickness L in the y-direction. The surface 
of the film at y = L is stress free (σxy(x, L) = 0) and impenetrable (vy(x, L, t) = 0). The surface of the film at y = 0 is 
also impenetrable (vy(x, L, t) = 0) and has a no-slip boundary condition (vx(x, L, t) = 0). The orientation of polarization at 
y = L and y = 0 is fixed to θt and θb, respectively, so that px(x, L, t) = cos θt, py(x, L, t) = sin θt and px(x, 0, t) = cos θb, 
py(x, 0, t) = sin θb.

Under these conditions, the y-component vy of the velocity vanishes for an incompressible velocity field. Consequently, 
both the polarization and the velocity field depend solely on y and are invariant with respect to x. Substituting px = cos θ

and py = sin θ , the constitutive equation for the shear stress σxy (Eq. (A.3)) is

2ηuxy = σxy − σ
(e)
xy − 1

2
(hy cos θ − hx sin θ) + ζ�μ

2
sin 2θ − ν

2
(hy cos θ + hx sin θ). (C.1)

The equation of force balance (Eq. (A.1)) and the stress-free boundary condition at y = L impose that the stress σxy = 0
everywhere. Substituting the expressions for hx (Eq. (A.16)), hy (Eq. (A.17)), h|| (Eq. (A.18)), and setting σxy = 0 in Eq. (C.1), 
we find

uxy = �μ sin 2θ(ζ + νγ λ) − h⊥(1 + ν cos 2θ) − 2σ
(e)
xy

4η + γ ν2 sin2 2θ
. (C.2)

Evaluating Eq. (A.4) at steady state,

uxy = h⊥
γ (1 + ν cos θ)

. (C.3)

Combining Eqs. (C.2) and (C.3),

h⊥ = γ (1 + ν cos 2θ)[�μ sin 2θ(ζ + νγ λ) − 2σ
(e)
xy ]

2
. (C.4)
4η + γ (ν + 1) + 2νγ cos 2θ
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Using Eqs. (8) and (5) and knowing that ∂θ
∂x = 0,

h⊥ = (Ks cos2 θ + Kb sin2 θ)
d2θ

dy2
+ Kb − Ks

2
sin 2θ

(
dθ

dy

)2

, (C.5)

σ
(e)
xy = 0. (C.6)

Substituting the expressions for h⊥ (Eq. (C.5)) and σ (e)
xy (Eq. (C.6)) into Eq. (C.4), the equation governing θ(y) at steady state 

is

(Ks cos2 θ + Kb sin2 θ)
d2θ

dy2
+ Kb − Ks

2
sin 2θ

(
dθ

dy

)2

= �μγ (ζ + νγ λ)(1 + ν cos 2θ) sin 2θ

4η + γ (ν2 + 1) + 2νγ cos 2θ
(C.7)

with θ(0) = θb and θ(L) = θt. Setting the elastic constants Ks = Kb = K , the equation governing θ(y) simplifies to

d2θ

dy2
= �μγ (ζ + νγ λ)(1 + ν cos 2θ) sin 2θ

K [4η + γ (ν2 + 1) + 2νγ cos 2θ] . (C.8)

Simplifying Eq. (C.8) by further imposing ν = 0 makes it analytically tractable. Setting ν = 0 in Eq. (C.8) reduces it to

d2θ

dy2
= �μγ ζ

K (4η + γ )
sin 2θ. (C.9)

Integrating Eq. (C.9),

F

(
θ(y),− 2a

c1 − a

)
= (y + c2)

√
c1 − a, (C.10)

where a = �μγ ζ
K (4η+γ )

and F (·, ·) is the elliptic integral of the first kind. Inverting Eq. (C.10)

θ(y) = am

(√
c1 − a(c2 + y),− 2a

c1 − a

)
, (C.11)

where am(u, k) is the Jacobi amplitude function, which is the inverse of the elliptic integral of the first kind, and c1 and 
c2 are integration constants satisfying θ(0) = θb and θ(L) = θt. For the film used in Section 4.2 where η = 1, γ = 1, ζ = 1, 
λ = 1, Ks = 1, Kb = 1, �μ(x, y, t) = −1, L = 10, θ(0) = 0, and θ(L) = π

2 , we find c2 = 0 and numerically evaluate c1 to be 
13 584 055
67 913 299 .

Using the steady-state expression for θ (Eq. (C.11)), we evaluate the components of the polarization field px and py, the 
transverse component h⊥ of the molecular field, and the strain rate u yx = uxy :

px(x, y) = cos θ(y), (C.12)

py(x, y) = sin θ(y), (C.13)

h⊥(x, y) = K
d2θ(y)

dy2
, (C.14)

uxy = uyx = K

γ [1 + ν cos θ(y)]
d2θ(y)

dy2
. (C.15)

C.1. Expression for the critical activity �μc for Fréedericksz transition

If the polarization angles at the boundaries are equal, that is, θ(0) = θ(L) = θ0, a trivial steady-state solution of Eq. (C.8)
is θ(y) = θ0.

Assuming θ0 = π
2 , we weakly perturb the system so that θ(y) = π

2 − ε(y). Linearizing Eq. (C.8), a small perturbation ε
is a solution of

d2ε

dy2
+ 2γ (ζ + νγ λ)�μ(1 − ν)

K
(
4η + γ (ν2 + 1) − 2νγ

)ε = 0 (C.16)

with ε(0) = ε(L) = 0.
ε(y) = 0 is a trivial solution of this equation for all values of �μ, so that θ(y) = π

2 . We can, however, also expect 
solutions of the form [65,33,72]

ε(y) = εm sin
(π

L
y
)

(C.17)

satisfying
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ε(0) = 0,

ε(L) = 0,

dε

dy

∣∣∣∣
y= L

2

= 0,

ε

(
L

2

)
= εm,

where εm is the maximum deviation of the polarity angles from π
2 .

Inserting Eq. (C.17) into Eq. (C.16), we find that the expression for ε(y) given by Eq. (C.17) is a solution at a critical 
activity �μc where

�μc = π2 K
[
4η + γ (ν2 + 1) − 2νγ

]
2L2(ζ + νγ λ)γ (1 − ν)

. (C.18)

We find that for all �μ such that �μ
�μc

< 1, the only solution is ε(y) = 0 and therefore θ(y) = π
2 . For �μ’s such that 

�μ
�μc

≥ 1, ε is finite and the angle of polarization θ deviates from π
2 , such that θ(y) = π

2 − εm sin
(
π
L y

)
, where εm depends 

on �μ and is analytically intractable [33,72,65].
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