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During the division of animal cells, an actomyosin ring is formed in the cell cortex. The contraction of
this ring induces shape changes of the cell and the formation of a cytokinesis furrow. In many cases, a cell-
cell interface forms that separates the two new cells. Here we present a simple physical description of the
cell shape changes and the dynamics of the interface closure, based on force balances involving active
stresses and viscous friction. We discuss conditions in which the interface closure is either axially
symmetric or asymmetric. We show that our model can account for the observed dynamics of ring
contraction and interface closure in the C. elegans embryo.
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One of the fundamental aspects of life is the ability of
cells to duplicate by cell division. During cytokinesis, the
last stage of cell division, a cell is physically divided in two
subvolumes. This happens by the constriction of a con-
tractile ring below the cell membrane. This contractile ring
is enriched in actin filaments and myosin molecular motors
which interact to generate contractile stresses. Contraction
of the ring generates a furrow at the equatorial plane of the
cell, see Figs. 1(a) and 1(b). Ring constriction can lead to a
vanishing radius of this furrow [Fig. 1(e)]. Alternatively,
the ring can constrict further while separating from the
furrow, leaving a planar interface where two membranes
adhere between furrow and contractile ring [Fig. 1(c)]. In
the following we use the term “septum” to refer to this
planar interface separating the future daughters [1]. In the
symmetric case, the septum is an annular ring of width
δ ¼ r0 − r. The septum increases in area as the ring radius r
decreases during ring contraction while the initial furrow
remains at a radius r0 [Figs. 1(f) and 1(g)].
Here we focus on the C. elegans embryo as a model

system for cytokinesis for which the dynamics of the
septum can be studied quantitatively [2–5]. We develop
a physical description of the dynamics of the cytokinesis
furrow driven by the active contraction of the actomyosin
ring and governed by dynamic force balances. We show
that the septum forms via a first order transition of the
membrane shape. We describe the dividing cell as an object
with liquidlike material properties subject to a volume
constraint and to actively generated tension. The cell shape
is represented by two spherical elements of radius R that
meet along a circular line. This circle defines the plane in
which the cytokinesis furrow contracts and the septum
expands, see Fig. 1. For a rotationally symmetric furrow
and septum, with respect to the cell division axis, the shape
of the septum can be characterized by the radius r, which
decreases as a function of time during cytokinesis, and the

width δ of the septum, see Figs. 1(f) and 1(g). Note that in
many cell division events, the septum forms asymmetri-
cally, starting from one side of the initial furrow as
discussed below, see Figs. 4(a) and 4(b) [3,4]. The angle
between furrow plane and the plasma membrane is denoted
ψ=2, see Fig. 1(f).
Static force balances can be discussed introducing a

potential function for the outer membrane and the septum
given by F ¼ Eþ 2πrΣ where E ¼ σAþ 2σ0A0. The areas
of the outer cell membrane and of the septum [shaded in
Fig. 1(f)], are denoted A and A0, respectively. The con-
traction of the inner radius of the septum is driven by the
contractile ring with line tension Σ. The surface tension of
the cell surface is σ and that of the septum, consisting of
two membranes, is 2σ0. Here we neglect for simplicity
effects of confinement and we do not consider cortical
flows that in general arise from gradients in contractile
tension [6–8]. Such cortical flows towards the furrow could
modify our boundary conditions for the flow velocity at the
septum boundary at r ¼ r0.
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FIG. 1 (color online). Schematic representation of a dividing
cell with axisymmetric geometry of the contractile process. The
initial spherical cell (a) is deformed by the constriction of a
contractile ring (b), shown as green dots in all the vertical
sections. A septum forms (c). It shrinks to divide the cell (d).
Division leading to vanishing contact area between the daughters
(e). The geometry of the cell is characterized by two intersecting
spheres of radius R which meet at an angle ψ (f). The septum has
the shape of an annulus with inner and outer radii r and rþ δ,
respectively (g).

PRL 114, 048102 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

30 JANUARY 2015

0031-9007=15=114(4)=048102(5) 048102-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.048102
http://dx.doi.org/10.1103/PhysRevLett.114.048102
http://dx.doi.org/10.1103/PhysRevLett.114.048102
http://dx.doi.org/10.1103/PhysRevLett.114.048102


We consider cell shape changes that occur at constant
volume V ¼ ð4π=3ÞR3

o [9], where R0 is the radius of
the initial spherical cell. In this case, the configuration
of the cell shape and the septum can be parametrized
by the angle ψ ≤ π and the inner radius r of the septum, see
Fig. 1. The radius R and the width δ of the septum follow
from the geometric constraints rþ δ ¼ R sinðψ=2Þ and
R ¼ R0f1þ ½1þ sin2ðψ=2Þ=2� cosðψ=2Þg−1=3. If no sep-
tum forms, δ ¼ 0 and r ¼ rmax with rmax ¼ R sinðψ=2Þ.
We define the dimensionless length ratios R̄ ¼ R=R0,

r̄ ¼ r=R0, δ̄ ¼ δ=R0 and we normalize the potential as F̄ ¼
F=4πR2

0σ and define Ē correspondingly. In the following
we drop the bars on R and r to keep the notation simple.
The potential reads

F̄ðψ ; rÞ ¼ R2

�
1þ cos

�
ψ

2

��
þ σ̄

2

�
R2sin2

�
ψ

2

�
− r2

�
þ rΣ̄;

ð1Þ

where σ̄ ¼ σ0=σ and Σ̄ ¼ Σ=ð2σR0Þ. The first and second
term describe the contributions of surface tension of the
outer membrane and the septum, respectively, while the last
term describes the line tension of the contractile ring.
Static force balances correspond to values of r and ψ for

which ∂Ē=∂ψ ¼ 0 and ∂Ē=∂r ¼ −Σ̄. For a given value of
σ̄, and for δ̄ > 0, the first condition is satisfied for a
particular value ψ ¼ ψmin, where cosðψmin=2Þ ¼ σ̄.
Note that ψmin is independent of r, as long as
r < rmax ¼ R sinðψmin=2Þ.
The radius r is set by the line tension Σ̄ of the contractile

ring. From −Σ̄ ¼ ∂Ē=∂r it follows that the inner radius
satisfies Σ̄ ¼ σ̄r for δ > 0 and ψ ¼ ψmin. The sequence of
shapes that is generated by ring contraction can be
discussed by considering the potential F̄ðΣ̄;ψÞ as a
function of the normalized line tension Σ̄, for force bal-
anced configurations, see Fig. 2. The figure reveals several
branches of solutions. The black solid line describes the
shapes without septum (δ̄ ¼ 0). The lower branch of this
line correspond to locally stable states, the higher branches
to unstable states. For a certain value of the line tension
Σ̄cðσ̄Þ which depends on the surface tension σ̄ of the
septum, the shapes with δ̄ ¼ 0 become unstable with
respect to the formation of a septum. Unstable branches
of states with new septum are shown as red, green,
and blues lines, respectively, for different values of σ̄.
Formation of a septum occurs if σ̄ < 1. The closed state is
again a locally stable state indicated by dashed lines. For
given σ̄, the branches of solutions form a Gibbs loop,
corresponding to a first order shape transition [10]. The
dynamics of expansion of the septum driven by the
contraction of the inner ring requires a dynamic model
involving dynamic force balances.
We now discuss the dynamics of the ring closure,

expanding the septum. We assume that the area of the

septum can increase by local addition of material, for
example via the fusion of vesicles that arrive from the
cytoplasm [11]. We write dynamic equations that take into
account viscous stresses and dynamic force balance. For a
symmetric septum, the system has rotational symmetry and
the flow profile vρðρÞ in the septum is a function of the
distance ρ from the center only. The nonvanishing com-
ponents of the 2D viscous stress tensor are σρρ ¼
σ0 þ 2ηð∂vρ=∂ρÞ, σθθ ¼ σ0 þ 2ηðvρ=ρÞ, where σ0 is the
isotropic stress in the septum. A surface tension of the
septum corresponds to positive σ0 ¼ 2σ0. Inserting these
expressions for the stress in the force balance equation
∂ρσρρ þ ρ−1ðσρρ − σθθÞ ¼ 0 we get an equation for the
velocity profile, 2η∂ρð∂ρ þ ρ−1Þvρ ¼ 0. The solution to this
equation is of the form vρ ¼ aρþ bρ−1. Using the boundary
condition vρðr0Þ ¼ 0 at the outer septum boundary at
ρ ¼ r0, we obtain vρ ¼ −aρ−1ðr20 − ρ2Þ. The septum stress
is σρρðrÞ ¼ σ0 − 2ηvrrð1þ ðr20=r2ÞÞ=ðr20 − r2Þ, which can
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FIG. 2 (color online). Normalized energy F̄ as a function of
normalized line tension Σ̄, shown for three different values of
normalized membrane tension σ̄ as indicated (colored lines). For
Σ̄ ¼ 0, the lowest energy shape is a sphere. Constricted shapes
without formation of a septum correspond to the line with δ̄ ¼ 0
(black). These shapes exhibit a furrow with increasingly strong
indentation as Σ̄ increases. At the spinodal indicated “þ”, the line
folds back along a branch corresponding to locally unstable
shapes (broken black line) until the radius r̄ vanishes at Σ̄ ¼ 0.
Lines corresponding to shapes with septum with δ̄ ≠ 0 branch off
(colored lines). The star denotes the point where the line σ̄ ¼ 0.5
(green) branches off the black line via the formation of a septum.
The horizontal green line corresponds to the fully constricted
state with r ¼ 0 for which the energy does not depend on Σ̄.
Similar curves are also shown for δ̄ ¼ 0.25 (blue) and 0.75 (red).
The intersection of the colored solid lines corresponding to fully
contracted states with the black solid δ̄ ¼ 0 line marks a first
order transition point where the fully constricted state becomes
energetically favored. The inset shows the normalized line
tension Σ̄ as a function of normalized ring radius r for the values
of σ̄ indicated.
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be expressed in terms of the rate of change of the septum area
A ¼ πðr20 − r2Þ:

σρρðrÞ ¼ σ0 þ
η

A
dA
dt

�
1þ r20

r2

�
: ð2Þ

The closure speed vr ¼ _r with vr ¼ −ða=rÞðr20 − r2Þ is
determined from the stress boundary condition normal to
the inner edge of the septum at ρ ¼ r. Because of radial
symmetry the normal stress σnnðrÞ ¼ −σρρðrÞ and
σnnðrÞ þ Σ=r ¼ 0. This corresponds to a Laplace law in
two dimensions. Note that in addition to a static part Σ0, the
line tension Σ may also contain a dissipative part corre-
sponding to the effects of an intrinsic friction ζL,
Σ ¼ Σ0 þ ðζL=LÞðdL=dtÞ, where L ¼ 2πr is the ring
perimeter.
Combining Eq. (2) and the stress boundary condition,

the dynamic equation for the radius r of the leading edge of
the septum reads in dimensionless form

dx
dτ

¼ ~σx − 1
1
x þ 2

~ζL

1þx2

1−x2
; ð3Þ

where x ¼ r=r0, ~σ ¼ ðσ0r0Þ=Σ0, ~ζL ¼ ζL=ðr0ηÞ, and τ ¼
t=τ0 is the dimensionless time, with τ0 ¼ ζL=Σ0. At late
times when x → 0, the rate of shrinkage dx=dτ decreases
exponentially as xðtÞ≃ expð−t=τ0Þ. An example of a
solution to Eq. (3) is shown in Fig. 3 as a solid line.
Often, the septum closes asymmetrically [2,3], see

Figs. 4 and 5(a). For simplicity we assume that the shape
of an asymmetric septum is characterized by a circular arc c
of radius Rs which intersects the initial furrow of radius r0.
The line tension of the contractile ring along the septum
boundary c of length L is denoted Σ, and along the segment
c0 of length L0 is denoted Σ0, see Fig. 4(c). Note that the line
tensions Σ and Σ0 both describe the contractile ring but
differ because they correspond to different structures.
The asymmetric septum is described by the potential
E ¼ 2σAþ ΣLþ Σ0L0, where A is the septum area and
σ is the surface tension of the septum membrane. The

position and shape of the inner edge of the septum, given by
arc c, are fully determined by the angle θ and the radius Rs
or alternatively, by the angle ϕ and the height h of the
septum opening with boundary c, see Fig. 4(c). We obtain
two coupled first order equations for h and ϕ [12]:2
64Lh −

fAh
~ζL

Lϕ −
fAϕ

~ζL

BLh
L

~ζϕ
~ζL
þ BLϕ

L þ 4 ζL
0

ζL
1
L0

3
75� _h

_ϕ

�
¼

" ð ~σx − 1ÞL
−
�
2 Σ0

0
Σ0

þ B
�#

:

ð4Þ
Here x ¼ Rs=r0 is the dimensionless radius of the inner

edge of the septum, and Lh ¼ ∂L=∂h, Lϕ ¼ ∂L=∂ϕ, and
similarly for Ah and Aϕ. Furthermore, B ¼ Lϕ þ ð1=xÞAϕ,
f ¼ ðxLβÞ=A, and β ¼ 1þ ðA0=A1Þ. Here A0 ¼ πr20 and
A1 are the cross sectional area and the area enclosed by the
ring, respectively. The motion of the corners [at
the intersections of c and c0, see Fig. 4(c)] is described
by the equation ζϕ _ϕ ¼ −ð∂E=∂ϕÞjA, where ζϕ is a friction
coefficient. In addition to the dimensionless parameters
~σ ¼ σ0r0=Σ0 and ~ζL ¼ ζL=r0η which govern the
dynamics of the symmetric closure, we have introduced
the parameter ~ζϕ ¼ ζϕ=r20η. Examples of numerical sol-
utions to these equations as a function of time are shown in
Figs. 5(b)–5(d).
We first compare our theory with experimental data on

symmetric septum closure in C. elegans embryos (see
Fig. 3) [5]. We fit solutions of Eq. (3) to the experimental
data and estimate ~σ¼σ0r0=Σ0≃0.96, τ0¼ðζL=Σ0Þ≈38 s,
and ~ζ−1L ≈ 0. The fact that ~σ ≲ 1 reveals that the contractile
tension Σ0 is slightly above the value necessary to initiate
septum closure against septum tension σ0r0. Therefore, the
closure speed is initially small. The estimate ~ζ−1L ≈ 0
implies that internal line friction in the ring dominates
over septum viscosity ζL ≫ ηr0. In this limit the solution to
Eq. (3) is xðtÞ ¼ ½et=τ0ð1 − ~σÞ þ ~σ�−1 which is shown as a
solid line in Fig. 3. The characteristic time scale for
symmetric septum closure is thus τ0 ¼ ζL=Σ0.
We can estimate the parameter values of σ0, Σ0, and ζL as

follows. Using σ0 ≃ 3 × 10−4 N=m, which was reported
in experimental work on other eukaryotic cells [13],
we estimate Σ0 ≃ 4.4 × 10−9 N and ζL ≃ 1.65 × 10−7 Ns.
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FIG. 4. Formation of an asymmetric septum during cleavage
(a). Cross-sectional view of the furrow in the x-y plane (b).
Parametrization of the septum shape by angles ϕ, θ, and
height h (c).
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FIG. 3 (color online). Time evolution of the radius r of the
contractile ring during cytokinesis. The circles are the exper-
imental data of Ref. [5] obtained for C. elegans embryos,
averaged over five embryos. The solid line is the best fit solution
of Eq. (3) to the experimental data with r0 ¼ 14 μm and
dimensionless parameters ~σ ¼ 0.96, τ0 ≈ 38 s, and ~ζ−1L ≈ 0.
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This estimate for Σ0 is consistent with estimates in other
eukaryotes [14]. Further, using η ≈ 10−3 Ns=m [15], where
the effective 2D viscosity η ≈ η3D × w, with layer thickness
w ∼ 0.5 μm, we obtain ~ζ−1

L ≃ 0.085, confirming that ~ζ−1
L is

small compared to one as required by self-consistency.
We compare our theory to the experimentally observed

asymmetric closure. Carvalho et al. have quantified the
perimeter Lp ¼ Lþ L0 of the inner edge of the asymmetric
septum as a function of time during cell division [see
Fig. 5(a)] [3]. Data collected for successive cell divisions
(n ¼ 1; 2;…; 5) starting from the fertilized egg ðn ¼ 1Þ are
shown in the inset of Fig. 5(b). The data show that the
perimeter shrinks at a rate _Lp proportional to the initial
perimeter L0 ≡ Lpðt ¼ 0Þ. In Fig. 5(b) we represent
LpðtÞ=L0 as a function time, in which all the data collapse
into a single curve. The normalized perimeter Lp=L0, with
L0 ¼ 2πr0, is shown as a solid line. The best fit is obtained
for ~ζ−1L ≈ 0 and ~ζϕ=~ζL ≈ 0, which implies that in addition to
ζL ≫ ηr0, as in the symmetric case, we also have
ζL ≫ ζϕ=η. This suggests that the friction ζϕ is negligible
compared to the intrinsic friction in the ring ζL. Using
σ0 ≃ 3 × 10−4 N=m as in the symmetric case, we estimate
Σ0 ≃ 2.9 × 10−9 N and ζL ≃ 1.8 × 10−7 Ns. This corre-
sponds to ~ζ−1L ≃ 0.076. The sequence of septum shapes

during closure that corresponds to the solid line in Fig. 5(b),
is shown in Fig. 5(c). These shapes qualitatively resemble
the experimentally observed shapes shown in Fig. 5(a). In
Fig. 5(d) we show that using smaller values of ~σ ¼ 0.5 and
Σ0
0=Σ0 ¼ 1.5 in our calculations, the septum edge has a

different shape with smaller curvature.
In this Letter we have developed a dynamical model to

describe cytokinesis in animal cells, taking into account
symmetric and asymmetric septum formation. By compar-
ing our theoretical results with experimental data, we
estimated parameter values that are relevant for the C.
elegans embryo. The collapse of the time course of
LpðtÞ=L0 for different cell sizes implies scaling of the

closure dynamics with respect to L0, _LpðtÞ ∼ L0. In our
theory scaling thus implies that LpðtÞ=L0 is independent of

r0. For the case where ~ζL ≫ ~ζϕ discussed here, this scaling
is achieved if Σ0 and ζL are both proportional to the initial
septum radius r0.
Scaling of Σ0 and ζL with r0 is achieved if the properties

of the contractile ring scale with cell size. This has also
been suggested recently in a physical description of
cytokinesis without septum formation [8]. Consistent with
this idea it has been observed in other eukaryotes that the
amount of myosin in the contractile ring increases with
increasing cell size [16]. The scaling of both Σ0 and ζL with
r0 also implies that the time scale of closure τ0 ¼ ζL=Σ0 is
independent of the cell size, as is indeed observed [see
Fig. 5(b)].
Here, we have described the septum as a fluid sheet with

effective tension σ0 ¼ 2σ0 and viscosity η. Material proper-
ties [17] of the septum are difficult to estimate, also the
source of the septum material is not clear. Material could
arrive in the septum from the cytoplasm in small vesicles or
it could flow from the plasma membrane, or both. Here we
ignored the effects of confinement for septum formation. In
the absence of confinement, septum formation requires that
σ0 < σ. This is the case if the septum is less contractile than
the outer membrane or if the two membranes in the septum
adhere [18,19]. Confinement allows for septum formation
even in the absence of adhesion with σ0 ¼ σ. Interestingly,
in the absence of the egg shell septum formation does not
occur during the first division of the C. elegans embryo
[20]. This suggests that in this division membrane confine-
ment is relevant. At the same time, the estimated value of
the furrow angle ψ ≃ 120°� 15° (see Fig. A of Ref. [4]),
implies the presence of significant adhesion at the mature
septum. Note that confinement affects only the outer radius
of the septum but not the dynamics of septum growth. We
note that our theory could apply to other animal cells where
division occurs via septation, but not to situations where a
rigid cell wall is built to separate the daughter cells, as in
fission yeast.
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FIG. 5 (color online). Ring contraction during cytokinesis with
an asymmetric septum. Fluorescence microscopy images of
cytokinesis at different times (shown in seconds) in a C. elegans
embryo in the four-cell stage [3] (a); scale bar 5 μm. The
contractile ring (see arrow) is stained by septin labeled green
fluorescent protein. The septum emerges at the side of the cell
which is not adhering to a neighboring cell. Quantification of the
normalized perimeter LpðtÞ of the ring as a function of time (b).
The symbols distinguish different cell generations n. The inset
shows original data from Ref. [3] for generations n ¼ 1 to 5 (top
to bottom). The solid line is a fit of the solution to the equations
for _h; _ϕ to the data for n ¼ 1; 2; 3, with r0 ¼ 14 μm, ζ0L ¼ ζL and
fit parameters ~σ ¼ 1.43, τ0 ¼ 62.5 s, Σ0

0=Σ0 ¼ 2.5, ~ζ−1L ≈ 0, and
~ζϕ=~ζL ≈ 0. Calculated septum shapes corresponding to the solid
line in (b) [(c)]. Calculated septum shapes for smaller values of
~σ ¼ 0.5 and Σ0

0=Σ0 ¼ 1.5 (d). Panel (a) and the inset of (b) are
adapted from Ref. [3], with permission.
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