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Abstract—For next-generation wireless networks, massive
multiple-input multiple-output (MIMO) promises significant per-
formance gains compared to today’s wireless communication
standards. In this paper, we address the challenge of how to
synchronize the carrier signals of all antenna units in a large
network. We show that mutually coupled digital phase-locked
loops (DPLLs) can enable in-phase synchronous clocking in large-
scale systems with transmission delay. Using a phase model of
coupled DPLLs including signal filtering and signal transmission
delays, we show how the collective frequency and the time
scales of synchronization depend on system specifications. To
test our theoretical predictions, we designed and carried out
experiments, thereby providing a proof-of-principle that mutually
delay-coupled DPLLs can provide self-organized synchronous
clocking.

I. INTRODUCTION

In wireless communication research the multiple-input
multiple-output (MIMO) concept has recently attracted at-
tention and has found its way into modern wireless com-
munication standards such as Long-Term Evolution (LTE)
[1] and IEEE 802.11n (WiFi) [2]. MIMO relies on multiple
transmission antennas operating in parallel, which use the
characteristics of the different spatial transmission paths to
establish orthogonal transmission channels. This concept can
be exploited beneficially in terms of data rate, reliability,
energy efficiency and interference handling [3]. These benefits
scale with the number of antennas within the system. However,
modern wireless communication standards support only a
small number of antennas. Even though LTE supports up to
eight antenna ports per base station, this potential is not fully
exploited nowadays. Increasing the number of antennas by
several orders of magnitude (massive MIMO), the benefits of
conventional MIMO could be exploited on much larger scales
[4], [5]. However, how to efficiently transmit data through such
a large number of antennas is still an emerging research field.
In large antenna systems, one major challenge is to ensure
phase synchrony of the carrier signals for all antennas [6]–[9].
Hence, precise and robust clock synchronization between an-
tenna units emerges as a critical factor, especially in distributed
modular architectures [10].

Traditional clock distribution concepts rely on a single
master node distributing a clocking signal through a tree-like
structure to multiple slave nodes. Such structures become space
and energy inefficient with an increasing system size [11], [12].
In addition, such clock trees are vulnerable to errors due to
noise and cross-talk. Traditional clock distribution concepts

reach their limits at the large scales that massive MIMO aims
for. Hence, novel clocking concepts are required.

Clock distribution and synchronization of large scale sys-
tems is not restricted to the topic of wireless communication
or engineering. In biological physics, systems exhibiting self-
organized synchronization such as neuron clusters, coupled
genetic oscillators, pacemaker cells in the heart, and flashing
fireflies have attracted a wide experimental and theoretical
research interest [13]–[15]. Through mutual coupling of their
oscillatory dynamics, these systems are able to synchronize
robustly and in highly noisy environments in the absence of an
entraining master clock. Coupled biological oscillators can thus
provide a source of inspiration for clock distribution strategies
to synchronize, e.g., antenna units of a massive MIMO system.
Instead of a hierarchical clock tree, where a master clock
entrains each slave, we propose a network of mutually coupled
clocks that are able to synchronize their clock signals in a self-
organized way. For frequencies in the MHz and GHz range,
common in modern electronics, the spatial distances between
nodes induce transmission delays of the order of an oscillation
period of the clocking signal. For instance, the typical spacing
of antennas in multi-antenna arrays will lead to a transmission
delay on the order of half an oscillation period. This raises
the question how synchronization can be achieved in such
networks in the presence of transmission delays.

In previous work, we presented a system architecture able
to obtain global synchrony in large systems of analogue phase-
locked loops [16]. In this paper, we extend our work to
include digital phase-locked loops (DPLLs) [17]. In Section II,
we develop a phase model of N mutually delay-coupled
DPLLs. In Section III, in-phase synchronized solutions and
their stability for networks of mutually coupled DPLLs are
investigated. In Section IV, we present experimental data for
two mutually coupled DPLLs and discuss measurements and
theoretical results. Finally, conclusions are drawn in Section V.

II. PHASE MODEL

The basic element of our clocking network is a digital
phase-locked loop (DPLL). DPLLs are electronic clocking cir-
cuits able to synchronize their output signal to an input signal.
They are commonly used in electronic system design for a
wide range of clocking applications, e.g., wireless transceivers
and Multiprocessor System-On-Chips. A DPLL consists of
three essential functional blocks (Fig. 1): the phase detector
(PD), the loop filter (LF) and the voltage-controlled oscillator
(VCO). The PD is implemented as an XOR gate and compares
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Fig. 1: Signal flow model of a PLL. The delayed input signal
to PLL k is denoted by xl .t � �/ and its output signal by
xk.t/. The output signal at the phase detector (PD) is denoted
by xPD

k
.t/ and the output signal at the loop filter (LF) by xC

k
.t/.

The output signal xk.t/ is generated by a voltage-controlled
oscillator (VCO) and fed back to the PD. A signal inverter
(INV) is placed in this feedback loop which can be activated
as needed.

the external signal xl to the feedback signal xk . The LF is
a low-pass filter that damps high frequency components of
the PD’s output signal xPD

k
and yields a control signal xC

k

for the VCO. The control signal xC
k

modulates the VCO’s
frequency and results in an entrainment to the input signal’s
phase and frequency. A signal inverter (INV) is placed within
the feedback loop between the VCO and the PD, which can
be used to enable an in-phase synchronized state for arbitrary
transmission delay (Fig. 1), see Section IV. To develop a phase
model for networks of mutually coupled DPLLs we first show
the derivation for a single DPLL. Subsequently, we extend
the model to a network of N coupled DPLLs. In contrast
to Ref. [16], we consider digital PLLs throughout our work,
implying time-continuous binary signals.

A. Coupling of a digital PLL to an external signal

The VCO outputs a rectangular oscillation with ampli-
tude 1,

xk.t/ D ….�k.t// ; (1)

where ….�/ is a square-wave function, which takes the value 1
for 0 � � < � , the value 0 for � � � < 2� and satisfies
….� C 2�/ D ….�/ for all �, and �k.t/ is the phase of
oscillator k. The PD compares the external input signal xl

with the signal of the internal feedback xk using an XOR
operation. We account for transmission delays with a discrete
delay � in the input signal,

xPD
k .t/ D xl .t � �/ ˚ xk.t/

D xl .t � �/ � :xk.t/ C :xl .t � �/ � xk.t/ ;
(2)

where ˚ denotes the XOR operation and :x.t/ D 1 � x.t/.
The PD’s output signal xPD

k
.t/ is filtered by the LF whose

output signal xC
k

is given by

xC
k .t/ D

Z 1

0

du p.u/xPD
k .t � u/ ; (3)

where p.u/ denotes the impulse response of the LF and
satisfies

R 1

0 du p.u/ D 1. The control signal xC
k

.t/ is fed
into the VCO and determines the VCO’s oscillation frequency
according to

P�k.t/ D !0 C KVCOxC
k .t/ (4)

0 0:2 0:4 0:6 0:8 1

!0

!

!0 C KVCO

xC

Fig. 2: Dynamic frequency of the VCO in response to an
external control voltage xC: linear approximation used in
Eq. (4) (solid curve), measured VCO response curve from the
DPLLs in our experimental setup (circles). The shaded areas
display the VCO clipping region.

where !0 is the minimal frequency of the VCO for zero
input and KVCO is its sensitivity. We here assume that the
frequency response of the VCO is linear, that is, proportional
to the control signal xC

k
. Fig. 2 shows this linear response

approximation together with the measured response curve
from our experimental setup, discussed in Section IV. We
consider an ideal loop filter, perfectly damping high frequency
components, see Appendix. Using Eqs. (2) and (3) in Eq. (4),
we obtain

P�k.t/ ' ! C K

Z 1

0

du p.u/ �
�
�l .t � � � u/ � �k.t � u/

�
(5)

where � is the triangle function defined by �.�/ D 2j�j=��1
in the range �� � � � � and satisfies �.� C 2�/ D �.�/
for all �, and we have defined ! D !0 C KVCO=2 and K D

KVCO=2.

B. Networks of mutually coupled DPLLs

We extend the phase model for two coupled DPLLs,
Eq. (5), to networks of N mutually coupled DPLLs with
transmission delays. For more than one input signal to a DPLL,
each input signal has to undergo the XOR operation with the
feedback signal individually. The resulting signals are then
averaged (Fig. 3). The phase model for N coupled DPLLs with
identical intrinsic frequencies and transmission delays reads

P�k.t/ ' ! C
K

n.k/

NX
lD1

ckl

Z 1

0

du p.u/

� �
�
�l .t � � � u/ � �k.t � u/

�
:

(6)

The connections between DPLLs are described by the coupling
matrix .ckl / with ckl 2 f1; 0g, where ckl D 1 indicates a con-
nection between DPLL k and DPLL l . The coupling strength
is normalized by the number of input signals, n.k/ D

P
l ckl .

Eqs. (6) describe a network of N coupled DPLLs, taking
explicitly into account a filter impulse response p.u/ and
identical transmission delays � . Identical transmission delays
can, e.g., be achieved in a regular square lattice with nearest-
neighbor coupling.

IEEE ICC 2015 - Wireless Communications Symposium

1717



PD

PD

PD LF

INV

xC
k
.t/ xk.t/

AVG

xPD
k
.t/

xl1
.t � �/

:::

xln.k/
.t � �/

Fig. 3: Signal flow of a PLL with multiple delayed input
signals. Each input signal xli

(i D 1; : : : ; n.k/) undergoes
the XOR operation with the feedback signal individually. The
resulting signals are averaged (AVG).

III. IN-PHASE SYNCHRONIZED STATES

In massive MIMO systems, it is important that the carrier
signals of all antennas are in synchrony. However, networks
of mutually coupled DPLLs may also exhibit other dynamical
states. Here, we analyze the existence and the stability of an
in-phase synchronized state.

A. Existence of the in-phase synchronized state

The globally in-phase synchronized state is characterized
by all DPLLs evolving with the same collective frequency �
and no phase lag relative to each other,

�k.t/ D �t : (7)

Substituting the ansatz Eq. (7) into Eq. (6) we find

� D ! C K�.��/ (8)

where we have used
R 1

0 du p.u/ D 1, n.k/ D
P

l ckl , and
the fact that � is even. The in-phase synchronized state exists
if Eq. (8) has a solution in �. This solution is independent of
the number N of oscillators. Depending on the value of the
transmission delay � , Eq. (8) can have multiple solutions rep-
resenting different in-phase synchronized states with different
collective frequencies. In the following section, we analyze the
stability of these states.

B. Linear stability of the in-phase synchronized state

Whether an in-phase synchronized state can be achieved
depends on its stability properties. We assess the stability of
the state Eq. (8) by performing a linear stability analysis [18],
[19]. We use the ansatz

�k.t/ D �t C "qk.t/ (9)

where qk is a perturbation of order unity to the in-phase
synchronized state and " is a small expansion parameter. The
linear dynamics of the perturbation is obtained by expanding
Eq. (6) to first order in " at " D 0,

Pqk.t/ D
˛

n.k/

NX
lD1

ckl

Z 1

0

du p.u/
�
ql .t � � � u/ � qk.t � u/

�
(10)

where

˛ D K
d�

d�

ˇ̌̌̌
�D���

: (11)

Note that � is not differentiable for arguments m� with
m 2 Z. However, �� attains such values only within the
VCO clipping regions, whose description is outside the scope
of our theory (see, e.g., Fig. 5). Substituting the exponential
ansatz qk.t/ D vke�t with � 2 C into Eq. (10) we obtain the
characteristic equation

�vk D ˛ Op.�/

NX
lD1

dkl .vle
���

� vk/ (12)

where Op.�/ D
R 1

0 du e�up.u/ is the transfer function of the
LF and dkl D ckl=n.k/ are the components of the normalized
coupling matrix D D .dkl /. The in-phase synchronized state
Eq. (7) is linearly stable if and only if Re.�/ < 0 for all
solutions to Eq. (12). The time evolution of the perturbation
is dominated by the solution �0 with the largest real part [16],
whose real part and imaginary part we denote by

�0 D � C iˇ ; (13)

where � is the perturbation response rate. The imaginary part
ˇ is a frequency that modulates the collective frequency �
[16].

The transfer function of a large class of loop filters is given
by

Op.�/ D
1

.1 C �b/a
(14)

where b denotes the time constant and a the order of the filter,
which set the cutoff frequency !c of the filter according to
!c D .ab/�1 [16], [20]. Substituting Eq. (14) into Eq. (12),
rewriting the equation in vector form and solving the eigen-
value problem �v D Dv, with v D .v1; : : : ; vN /, we find

�.1 C �b/a
C ˛.1 � �e��� / D 0 : (15)

TABLE I: Parameters of the experimental setup.

!=2� KVCO=2�

DPLL #1 1008 Hz 816 Hz
DPLL #2 1011 Hz 813 Hz
Average 1009:5 Hz 814:5 Hz
Standard deviation 0:21 % 0:26 %

Filter cutoff frequency !c=2� 14 Hz
Filter order a 1

TABLE II: Measurement parameters of the experiments.

description value

signal amplitudes 5 V
sampling interval 10 µs
number of samples 109 224
FFT size 131 072
FFT frequency resolution 0:7198 Hz
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Fig. 4: Experimental setup: Two DPLLs coupled through a
microcontroller, which artificially introduces a coupling delay.
An oscilloscope samples the periodic signals of the DPLLs.

Eq. (15) can have multiple solutions for each �. Although the
collective frequency � of the in-phase synchronized state is
independent of the coupling topology as well as the properties
of the LF, the linear stability is not.

IV. MEASUREMENTS ON A PROTOTYPE SYSTEM

To test the predictions of our phase model in a real system,
we conducted experiments with mutually coupled DPLLs to
study their synchronization behavior. Our setup consisted of
two DPLLs (CD4046B [21], specifications given in Table I), a
Digilent ChipKit Max32 microcontroller [22], and a PicoScope
2205 Mixed-Signal oscilloscope [23] (Fig. 4). As electronic
signals are transmitted with about two thirds of the speed
of light [11], the wiring distance needed to obtain significant
transmission delays in devices operating in the GHz range is
of the order of centimeters, while in the kHz range, it is of
the order of kilometers. Since it is technically challenging to
sample signals in the GHz range, we used DPLLs that operate
in the kHz regime. To achieve a significant coupling delay,
we used a microcontroller that introduces the necessary delays
artificially by holding back the signals for a prescribed amount
of time. We used the oscilloscope to measure the DPLL’s
output signals (measurement parameters given in Table II).
From these signals, we extracted a phase time series from
which we obtained (i) the exponential relaxation time to the
synchronized state and (ii) the collective frequency of the
DPLLs once the synchronized state was reached.

Fig. 5 shows the measurements of the collective fre-
quency � of the in-phase synchronized state for different
values of the coupling delay, together with the results from the
phase model, Eq. (8). In addition to the in-phase synchronized
state discussed in Sec. III-A, the system of two DPLLs also
exhibits an anti-phase synchronized state, characterized by
�1.t/ D �2.t/�� . In the phase model, the collective frequency
of the anti-phase state can be obtained as � D ! � K�.��/;
note the inverted sign compared to Eq. (8). The system
considered here exhibits bistability of both solutions in certain
regions in parameter space. Moreover, above a certain value of
the transmission delay, the system exhibits multiple in-phase
and/or anti-phase synchronized states with different collective
frequencies. To obtain the frequency of all solutions, the sys-
tem has to be prepared in different initial conditions. Outside
the VCO clipping regions, the measurements are in excellent
agreement with the theoretical results from the phase model. In
the VCO clipping regions, the linear response approximation
of the VCO’s dynamic frequency, Eq. (4), becomes inaccurate

0 0:2 0:4 0:6 0:8 1
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0:8

1

1:2

1:4

�
=
!

A
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1:4

!�=2�

�
=
!

B

Fig. 5: Collective frequency � of the in-phase (blue circles)
and anti-phase synchronized state (red squares) for two mutu-
ally coupled DPLLs as a function of the transmission delay � .
Symbols show experimental data points. Lines show analytical
results of the phase model, Eq. (8), where solid blue lines
denote in-phase solutions and dashed red lines denote anti-
phase solutions. The shaded areas display the VCO clipping
region. (A) Operation mode with signal inverter deactivated.
(B) Operation mode with signal inverter activated.
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Fig. 6: Perturbation response rate � , Eq. (13), of the in-
phase synchronized state for a system of two mutually coupled
DPLLs for (A) deactivated inverter and (B) activated inverter.
Symbols show experimental data points. Lines show results of
the phase model, numerical solutions to Eq. (15) with � D �1.
The shaded areas display the VCO clipping region.
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(Fig. 2). Hence, the measured collective frequency deviates
from the theoretical results. The value of the coupling delay
determines whether only one or multiple solutions are stable.
In addition, switching the activation state of the signal inverter
in the feedback loop (see Fig. 1) exchanges the collective
frequency and the stability of the in-phase and the anti-phase
synchronized state (see Fig. 5B).

From experimental measurements, we obtained the expo-
nential relaxation time of the phase difference between the
two DPLLs, which corresponds to the perturbation response
rate � from the phase model, Eq. (13). The experimental
and theoretical results for the perturbation response rate are
shown in Fig. 6. Experimental data were obtained outside the
VCO clipping regions and for values of the delay for which
the in-phase synchronized state is stable (� < 0). Again, the
experimental results are in excellent agreement with the results
from the phase model. Moreover, the perturbation response rate
is a non-monotonic function of the coupling delay and displays
local extrema suitable for efficient operation.

V. DISCUSSION

In this paper, we have shown theoretically and experimen-
tally that global synchronization can be achieved in mutually
delay-coupled systems of DPLLs. We developed a theory of
coupled phase oscillators taking into account the effects of
filtering and transmission delays. We obtained analytical re-
sults for the collective frequency of the in-phase synchronized
state and analyzed its stability. We showed how the collective
frequency as well as the time scales of synchronization depend
on the characteristics of the DPLLs’ filters and on transmission
delays. Specifically, the collective frequency of the synchro-
nized state in general differs from the intrinsic frequency of
the DPLLs. Moreover, it does not depend on the total number
of oscillators and the details of the coupling topology. Hence,
our approach of mutually coupled distributed DPLLs can scale
up to massive MIMO systems with an arbitrary number of
oscillators. We believe that our approach is particularly relevant
for massive MIMO due to considerable delays induced by
typical spacing between antennas. However, it can also be
applied to other problems where a large number of electronic
clocks have to be synchronized.

We designed experiments to test the predictions of our
phase model in real systems of coupled DPLLs. Our mea-
surements of the collective frequency and the synchronization
speed show mostly excellent quantitative agreement with the
theoretical results. Deviations of experimental and theoretical
results only occur at the stability boundaries and are due to
the idealized description of the VCO response in the phase
model. These proof-of-concept experimental results are the
first step to demonstrate the viability of our approach for
technical applications.

For massive MIMO systems, our results suggest that mutu-
ally delay-coupled DPLLs are a viable way to synchronize the
carrier frequencies of large numbers of antennas. In contrast
to master clock architectures, such mutually coupled systems
are highly scalable and simple to implement. In addition,
such architectures limit energetic costs of signal amplification
requiring only short wiring distances. The theory presented
here is a practical tool to identify system parameters required
for the desired application.

With an increasing number of mutually delay-coupled
DPLLs in the network, more and more dynamical states
become possible in addition to in-phase synchronized state. A
possible strategy to boot the system into global synchrony is to
first synchronize a subnetwork of two DPLLs and sequentially
connecting the remaining DPLLs of the network once the
subnetworks are synchronized. The problem of efficiently
booting such systems into synchrony is an interesting topic
for future research.

APPENDIX

The Fourier representation of the square wave function …
and the triangle function � are given by

….�/ D
1

2
C

2

�

1X
iD0

sin.ai �/

ai

; (16)

�.�/ D �
8

�2

1X
iD0

cos.ai �/

a2
i

; (17)

where ai D 2i C 1. Hence evaluating Eq. (2) yields,

xPD
k D

1

2
�

8

�2

X
ij

sin.ai �l;� / sin.aj �k/

ai aj

D
1

2
�

4

�2

X
i

cos.ai .�l;� � �k//

a2
i

�
4

�2

X
i¤j

cos.ai �l;� � aj �k/

ai aj

�
4

�2

X
ij

cos.ai �l;� C aj �k/

ai aj

;

(18)

where �l;� .t/ D �l .t � �/. The different sums in the sec-
ond identity represent different frequency components. From
Eq. (4), it can be seen that P�k� P�l D O.KVCO/. Hence, the first
sum in the second identity contains low frequency components.
The lowest frequency components in the second sum are given
by the terms with i C j D 1. From Eq. (4), it can be seen
that ai

P�k � a1�i
P�l D O.2!0/ for i 2 f0; 1g and hence, the

second sum contains only high frequency components. The
lowest frequency component in the third sum is given by the
term with i D j D 0. From Eq. (4), it can be seen that
P�k C P�l D O.2!0/ and hence, the third sum contains only high
frequency components. Thus, using Eq. (17), we can write xPD

k
as

xPD
k .t/ D

1

2
C

1

2
�

�
�l .t � �/ � �k.t/

�
C RHF.t/ ; (19)

where RHF denotes the high frequency components of the
signal. In Eq. (5), we approximate

R 1

0 du p.u/RHF.t �u/ ' 0,
assuming ideal suppression of the high frequency components
by the loop filter [17].
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