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Abstract Cilia and flagella are model systems for studying how mechanical forces control

morphology. The periodic bending motion of cilia and flagella is thought to arise from mechanical

feedback: dynein motors generate sliding forces that bend the flagellum, and bending leads to

deformations and stresses, which feed back and regulate the motors. Three alternative feedback

mechanisms have been proposed: regulation by the sliding forces, regulation by the curvature of

the flagellum, and regulation by the normal forces that deform the cross-section of the flagellum. In

this work, we combined theoretical and experimental approaches to show that the curvature

control mechanism is the one that accords best with the bending waveforms of Chlamydomonas

flagella. We make the surprising prediction that the motors respond to the time derivative of

curvature, rather than curvature itself, hinting at an adaptation mechanism controlling the flagellar

beat.

DOI: 10.7554/eLife.13258.001

Introduction
Cilia and flagella are long, thin organelles whose oscillatory bending waves propel cells through flu-

ids and drive fluid flows across the surfaces of cells. The internal motile structure, the axoneme, con-

tains nine doublet microtubules, a central pair of single microtubules, motor proteins of the

axonemal dynein family and a large number of additional structural and regulatory proteins

(Pazour et al., 2005). The axonemal dyneins power the beat by generating sliding forces between

adjacent doublets (Summers and Gibbons, 1971; Brokaw, 1989). The sliding is then converted to

bending (Satir, 1965) by constraints at the base of the axoneme (e.g. the basal body) and/or along

the length of the axoneme (e.g. nexin links) (Brokaw, 2009).

While the mechanism by which the sliding of a doublet is converted to bending is well estab-

lished, it is not known how the activities of the dyneins are coordinated in space and time to produce

the periodic beating pattern of the axoneme. For example, bending the axoneme in one direction

requires higher dynein activity on one side of the axoneme than on the other; if the activities are

equal then the forces will cancel and there will be no bending. Therefore, to alternatively bend in

one direction and then the other requires dynein activity to alternate between the two sides

(Satir and Matsuoka, 1989). The switching of dynein activity is rapid, taking place twice per beat

cycle and at rates above 100 times per second for Chlamydomonas. The coordination required for

such rapidly alternating bending is thought to result from mechanical feedback: the axonemal

dyneins generate forces that bend and deform the axoneme; and the deformations, in turn, regulate

the dyneins. Because of the geometry of the axoneme, deformation leads to stresses and strains
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that have components in various directions (e.g. axial and radial). However, which component (or

components) regulates the dyneins is not known.

Three different, but not mutually exclusive, molecular mechanisms for dynein coordination have

been suggested in the literature (Figure 1D). (i) In the sliding control-mechanism, the dyneins

behave as ’slip bonds’: they detach when subject to forces acting parallel to the long axis of the

microtubule doublets and that oppose sliding (Brokaw, 1975; Jülicher and Prost, 1997;

Camalet and Jülicher, 2000; Riedel-Kruse et al., 2007). The build-up of sliding forces on one side

of the axoneme therefore induces detachment of the dyneins on the other side (and vice versa): the

two sides are antagonistic. The resolution of this reciprocal inhibition or ’tug of war’ is a catastrophic

detachment of dyneins on one side of the axoneme, leading to an imbalance of sliding forces and

therefore to axonemal bending. (ii) In the curvature-control mechanism, the detachment of dynein is

regulated by doublet curvature (Morita and Shingyoji, 2004; Brokaw, 1972; Brokaw, 2009). This

leads to a similar reciprocal inhibition because the sign of the curvature is opposite on opposite

sides of the axoneme. (iii) In the normal-force control mechanism, also called the geometric clutch,

the detachment of dynein is regulated by transverse forces that act to separate adjacent doublets

when they are curved (Lindemann, 1994b). Which, if any, of these mechanisms regulates the beating

of the axoneme is not known.

In this work, we developed a two-dimensional mathematical model of the axoneme that can

incorporate any or all of these different feedback mechanisms. The model extends earlier models

(Camalet and Jülicher, 2000; Riedel-Kruse et al., 2007) by including static curvature, which gives

rise to asymmetric beats such as those of Chlamydomonas and of ciliated epithelial cells. This model

is similar to a recent model (Bayly and Wilson, 2014). We then tested the different feedback mecha-

nisms by comparing the predictions of the associated models with high spatial and temporal resolu-

tion measurements of the bending waveforms of isolated, reactivated Chlamydomonas axonemes

(Hyams and Borisy, 1975; Bessen et al., 1980). We found that the curvature-control mechanism

accorded with experiments using both wild type cells, which have an asymmetric beat, and with

experiments using the mbo2 mutant, which has a nearly symmetric beat. By contrast, the sliding

mechanism gave poor fits to both the wild type and mbo2 data, and the normal-force mechanism

gave unsatisfactory fits to the mbo2 data.

Theoretical model
Two-dimensional model of the axoneme
In the two dimensional model, we project the cross-section of the three-dimensional axoneme onto

a pair of filaments (Figure 1A,B). The projection retains the key idea that motors on opposite sides

of the axoneme generate bends in opposite directions (Satir and Matsuoka, 1989). The dyneins

that give rise to the principle bend (this corresponds to bends that lie on the outside of the curved

path along which an axoneme swims [Gibbons and Gibbons, 1972]; Figure 1A,B green), which in

Chlamyodomonas has the same sign as the static curvature, are combined to generate sliding in one

direction. The dyneins that give rise to the reverse bend (Figure 1A,B blue), are combined to gener-

ate sliding in the opposite direction.

The two filaments have the same polarity (all motors move towards the base) and have combined

bending rigidity k. They are assumed to be inextensible and held together by elastic elements that

maintain the filaments at a constant distance (a) from each other. Although there is some evidence

that doublet separation is not constant (Lindemann and Mitchell, 2007), our assumption simplifies

the theory while still allowing us to calculate the normal force in the elastic elements that keeps the

separation constant (Mukundan et al., 2014). In our normal-force mechanism the motors are regu-

lated by the force rather than by the separation of the doublets, as in Lindemann (1994a). However,

if the normal force is small, the separation is proportional to the force and the two models are

equivalent.

The filaments are immersed in an aqueous fluid and experience drag forces arising from the fluid

viscosity. The hydrodynamic forces are proportional to the velocity, with friction coefficients �n and

�t (per unit length) for motion normal to and tangential to the axis of the filament. The values of the

mechanical parameters are estimated in Appendix 5.

The position of each point on the filament pair is specified at each time by the vector r sð Þ, a func-

tion of the arc-length s, along the centerline between the filaments. Calculating the tangent vector
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as t sð Þ ¼ _r sð Þ, where dots denote arc-length derivatives, allows us to define the tangent angle,  sð Þ,

with respect to the horizontal axis of the laboratory frame. The tangent angle characterizes the

shape of the filament. For a given filament shape, the pair of filaments will have a local sliding dis-

placement, D sð Þ. We assume that the filaments are incompressible, though they can support tension

along their centerline. For incompressible filaments, sliding is linearly related to the tangent angle

via

D sð Þ ¼ Dbþ a  sð Þ� 0ð Þ½ �; (1)

where Db ¼ D 0ð Þ is the basal sliding (Figure 1C). The sign convention is defined in Figure 10 and

Appendix 4.
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Figure 1. Two-dimensional model of the axoneme and mechanisms of dynein regulation. (A) Cross-section of an

axoneme, as seen from the basal end looking towards the distal tip. The numbering of the doublets follows the

convenstion for Chlamydomonas (Hoops and Witman, 1983). The green dyneins bend the axoneme such that the

center of curvature is to the right. (B) The projection of the cross section onto two filaments to form the two-

dimensional model. The green and blue motors bend the filament pair in opposite directions. (C) Two-

dimensional model of the axoneme, as seen in the bending plane, xy. The two filaments are constrained to have

spacing a. The point at arc-length s has position vector r (relative to the origin), tangent vector t, normal vector n,

and tangent angle  with respect to the horizontal axis of the lab-frame xy. Dyneins on the upper filament (green)

have microtubule-binding domains (MTBs, denoted by filled circles) that walk along the lower filament towards the

base and produce a (tensile) force density þf on the lower filament. This force slides the lower filament towards

the distal end. The dyneins on the opposite filament (blue) create sliding (and bending) forces in the opposite

direction. The local sliding displacement is given by D, and the sliding at the base is Db. The sign convention is

defined in Figure 10 and Appendix 4. The springs between the filaments oppose filament separation by the

normal force, f?. The spring and dashpot at the base consitute the basal compliance, with stiffness kb and friction

coefficient �b. (D) Schematic of dynein regulation mechanisms. In curvature control the dynein MTB detaches due

to an increase in curvature. In sliding control detachment is enhanced by a tangential loading force, and in normal

force control the normal force, which tends to separate the filaments, enhances detachment. Signs indicate

doublet polarity.

DOI: 10.7554/eLife.13258.002
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To compare the observed periodic beats to those predicted by the model, we write the tangent

angle as a sum of Fourier modes

 s; tð Þ ¼
X

¥

n¼�¥

 n sð Þexp in!tð Þ; (2)

where ! is the angular frequency of the beat (!=2p is the beat frequency in cycles per second), t is

time, i is the imaginary unit, and  n are the modes (indexed by n). The modes are complex-valued

functions of arc-length that represent the amplitude and phase of the beat waveforms. They satisfy

 �n ¼  �
n to keep the angle real (* represents the complex conjugate). For each value of n>1, there is

an associated equation of motion. We refer to n¼ 0 as the static mode, which corresponds to the

time-averaged shape. We refer to n¼ 1 as the fundamental mode, which corresponds to the

dynamic shape at the beat frequency. The static and fundamental modes are the only ones consid-

ered in this work. In this case, we can write  s; tð Þ ¼  0 sð Þþ j  1 sð Þ j sin !tþf sð Þ½ � where j  1 sð Þ j is

the amplitude of the fundamental mode and f sð Þ is the phase (arg ). We use the complex formula-

tion because it simplifies the theory, whose goal is to make predictions for j  1 sð Þ j and f sð Þ to com-

pare to the experimental data (e.g. Figure 3ii–iii). The same modal decomposition can be done for

all other parameters that depend on time including the sliding displacement, D sð Þ, the basal sliding,

Db, the sliding force between the filaments, f , and the tension, t, in the centerline of the filaments.

Force balance in the axoneme
The shape of the axoneme depends on the balance between the mechanical forces (from the motors

and the elastic elements) and the hydrodynamic forces. The mechanical force is the derivative (with

respect to the position vector r) of the work functional U (Appendix 1, Equation 11), which depends

on the bending rigidity of the doublets, the stiffness of the cross linkers, motor forces and the shape

of the filament. This force is balanced by the hydrodynamic force from the fluid, which is propor-

tional to the velocity (qtr) of the axoneme at each point: �P̂ � qtr ¼ dU=dr, where P̂ is the friction

matrix (Lauga and Powers, 2009). For a slender body at low Reynolds number the friction matrix is

P̂ ¼ �nnnþ �ttt, where n sð Þ a unit vector normal to the tangent vector t sð Þ (Figure 1C). Force bal-

ance yields non-linear equations of motion (Equations 14–16 in Appendix 1, also see Sartori, 2015).

We then derive the static solution, corresponding to mode n ¼ 0, and the periodic solution at the

beat frequency, corresponding to mode n ¼ 1.

Static mode
If the motor forces do not change with time, then the axoneme will not move and the hydrodynamic

forces are zero, causing the tension in the axoneme to be zero. The static mode of the filament pair

can be calculated from the static force-balance equation

k _ 0 sð Þ ¼ aF0 sð Þ; F sð Þ ¼�

Z L

s

f s0ð Þds0; (3)

where _ 0 sð Þ, the arc-length derivative of the tangle angle, is the curvature of the static mode and

F0 sð Þ is the static mode of the integrated motor force (Appendix 1, Equation 19). The static mode is

the time-averaged shape which, in Chlamydomonas axonemes, has approximately constant curva-

ture all along the length, and as a result _ 0 sð Þ»C0 (Geyer et al., 2016; Eshel and Brokaw, 1987)

(see Results). In our theoretical analysis, we therefore ignore deviations from constant curvature.

Such deviations are not expected to significantly affect the conclusions of this work because we

found that the static curvature had little effect on the dynamics (the wild type and mbo2 axonemes

have similar beats, see Results). According to the static force-balance equation, bending an axo-

neme into a shape with constant curvature requires the integrated motor force to be independent of

arc-length, which in turn requires the motor forces be concentrated near the distal end

(Mukundan et al., 2014). We therefore approximate the static component of the motor force den-

sity by

f0 ¼�d s�Lð ÞkC0=a; (4)
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where d is the Dirac delta function, and the minus sign ensures that a positive dynein force produces

a negative curvature in accord with our sign convention (Appendix 4).

Dynamic mode
To obtain the equation of motion at the beat frequency (i.e the n ¼ 1 dynamic mode), we substitute

the modal expansions of the tangent angle (Equation 2), the motor force and the tension into the

non-linear dynamic equations and keep only the terms at the fundamental frequency (n ¼ 1):

i!�n 1 ¼�k €€1 þ a€f1 þ 1þ �n=�t½ �C0 _t1 þ �n=�tð ÞC2
0ðk

€ 1� af1Þ

�n=�tð Þ€t1 �C2
0t1 ¼� 1þ �n=�tð Þ½ �C0 k €_ 1� a_f1

� � (5)

(Appendix 1, Equations 14–16, Appendix 2, Equation 21). Associated with these equations are

boundary conditions specifying the tangent angle (and its spatial derivatives) and the tension at the

basal and distal ends (Appendix 2, Equation 20). The boundary conditions for a freely swimming

axoneme correspond to no external forces or torques acting at the ends.

Equation 5 generalizes previous models of symmetrically beating axonemes (Machin, 1958; Rie-

del-Kruse et al., 2007; Camalet and Jülicher, 2000, in which the static curvature (C0) and the axial

tension (t1) are zero. For C0 6¼ 0 new terms appear, and the system of equations is of order six rather

than four in the symmetric case. The magnitude of the new terms can be estimated by considering

the plane-wave approximation, in which  1 sð Þ ¼ exp �2pis=lð Þ, with l» L the wavelength. The plane

wave is sinusoidal,  s; tð Þ ¼ sin !t � 2ps=lð Þ. Though the plane wave is only an approximation to the

(i)

10 µm

500 nm

500 nm

B

10 µm

(i) (ii)

(i) (ii)

0.02 0.06 0.1

0

2

4

6

Time, t (s)

T
a

n
g

e
n

t 
a

n
g

le
  

 (
ra

d
)

0.02 0.06 0.1

0

2

4

6

Time, t (s)
T

a
n

g
e

n
t 

a
n

g
le

 (
ra

d
) 

 

  
(m

ra
d
)

  
(n

m
)

Arc-length, s ( µm)
0 5 10

0

10

20

0

20

40

60

  
(m

ra
d
)

(iii)

(iii)

(iv)

(v)

(iv)

(v)

A wild type

mbo2 mutant

0 5 10

0 5 10

0 5 10
0

10

20

0

20

40

60

Arc-length, s ( µm)

Arc-length, s ( µm)

Arc-length, s ( µm)

  
(n

m
)

Figure 2. High precision tracking of isolated, reactivated axonemes. Panel A corresponds to Chlamydomonas wild type axonenes, panel B to mbo2

mutant axonemes. (A) (i) Inverted phase-contrast image of a wild type axoneme. The orange curve represents the tracked centerline. The points depict

the basal end (red), the distal end (green) and the center position (black) of the axoneme. The yellow line depicts the trajectory of the basal end, which

is the leading end during swimming (Geyer, 2012). (ii) Same image as in Ai, magnified around the center region. The tangent angle  s; tð Þ is defined

with respect to the lab frame. (iii) Tangent angle at three different arc-length positions (depicted in Ai) as a function of time. The linearly increasing

tangent angle corresponds to a counter-clockwise rotation of the axoneme during swimming. Mean uncertainty measured over 1000 adjacent frames of

the position dr � y (iv) (the dr � x error gives a similar result) and the tangent angle d in (v). (B) is analogous to (A), but for mbo2 mutant axonemes.

DOI: 10.7554/eLife.13258.003

Sartori et al. eLife 2016;5:e13258. DOI: 10.7554/eLife.13258 5 of 26

Research article Biophysics and structural biology Cell biology

http://dx.doi.org/10.7554/eLife.13258.003
http://dx.doi.org/10.7554/eLife.13258


shape and does not satisfy the boundary conditions (e.g. the curvature at the distal end of an axo-

neme is always zero), it is nevertheless useful for calculating approximate values of parameters. For

example, the fourth term on the right hand side of the upper equation is of order �n=�tð ÞC2
0k 2p=lð Þ2

and is in phase with the first term, which is of order k 2p=lð Þ4. For Chlamydomonas axonemes l ~ L

and C0 ~p=L, and since �n=�t » 2 (Appendix 5) the ratio of these terms is ~ 0:5. A similar reasoning

shows that the third term is in anti-phase, and its contribution is of order ~ 1. This shows that the

new terms, which enter through the asymmetry, can not be neglected a priori. Thus, for the large

observed asymmetry of the Chlamydomonas axoneme, we expect that there is coupling between

the n ¼ 0 and n ¼ 1 modes, significantly modifying the dynamics of the beating axoneme. As we will

see, the static curvature C0 has little effect in the curvature-control model but has a large effect in

the normal-force model.

Equation 5 shows how an oscillatory active sliding force, f s; tð Þ ¼ f1 sð Þei!t þ f �1 sð Þe�i!t, can produce

dynamic bending of the axoneme (with appropriate parameter and boundary conditions). To see

this, note that the upper equation can be rearranged to provide an expression for t1 in terms of  1

and f1 (and their derivatives). This expression can then be substituted into the lower equation, to

provide a relationship between  1 and f1, so that if f1 is known,  1 can be calculated. A trivial exam-

ple is when f1 ¼ 0, in which case the only solutions are  1 ¼ 0 and t1 ¼ 0. If f1 is non zero, the equa-

tion may have non-trivial solutions, corresponding to bending oscillations.

Three mechanisms of motor control
We now build the three molecular mechanisms of motor control into the two-dimensional model of

the axoneme. Equation 5 shows that an oscillating sliding force can produce a dynamic beating pat-

tern. However, we do not expect the motor proteins themselves to be the oscillators, because oscil-

lations have never been observed in single-molecule recordings (but see Shingyoji et al., 1998).

Rather, we expect that the sliding forces generated by the dyneins are regulated directly or indi-

rectly by the shape of the axoneme. Such regulation constitutes mechanical feedback. If we have an

expression for how the motor force depends on the tangent angle (and its derivatives), this can be

substituted into the equation of motion, which can then be solved (using the boundary conditions)

to predict bending waveforms.

The most general linear expression for the dependence of the motor force on sliding, curvature

and normal force is

fn sð Þ ¼ � n!ð ÞDn sð Þþb n!ð Þ 
:

n sð Þþg n!ð Þf?;n sð Þ; (6)

where n� 0 is the mode index. � !ð Þ, b !ð Þ and g !ð Þ are complex, frequency-dependent coefficients

describing how the motor force responds to sliding, curvature and normal forces, respectively. The

coefficients depend on the molecular properties of the dyneins such as their density along the dou-

blets, their force-velocity curves, and the sensitivity of their unbinding on load force, on curvature or

on normal force; they also depend on the elastic and viscous resistance to sliding between the dou-

blets (Camalet and Jülicher, 2000; Riedel-Kruse et al., 2007). If the density of motors and the

mechanical properties are independent of arc-length, then the coefficients will also be independent

of the arc-length. Though light and electron microscopy studies have shown that there are longitudi-

nal variations in dynein isoforms and dynein density (Yagi et al., 2009; Bui et al., 2012), we ignore

these variations in the present work. Such variation could be included in more elaborate models

(e.g. Riedel-Kruse et al., 2007). The coefficients are complex because in general the force could

depend on the instantaneous value of the parameter (the real part) and or on the rate of change of

the parameter (the imaginary part). To see this, suppose that the force depends on the sliding dis-

placement (D) and the sliding velocity (qtD). Then f s; tð Þ ¼ kD s; tð Þþ �qtD s; tð Þ, and in the Fourier repre-

sentation f1 sð Þ ¼ kþ i!�ð ÞD1 sð Þ, so �¼ kþ i!�. Finally, the coefficients will in general depend on

frequency through delays caused by the finite detachment times. The response coefficients are the

generalization to active motors of the linear response coefficient of a passive system. For example,

the basal force of the axoneme, Fb ¼ F 0ð Þ, is described by Fb ¼ kbDb þ �bqtDb, where kb is the basal

stiffness and �b is the basal damping coefficient. Thus, the fundamental mode of the basal force is

given by Fb;1 ¼ �b !ð ÞDb;1 with basal impedance �b !ð Þ ¼ kbþ i!�b.
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In our model, the response coefficients are small at zero frequency. This is because the observed,

nearly constant static curvature implies that the static component of the force (f0) is approximately

zero all along the length except near the distal end of the axoneme (see Equation 4).

The motor force equation (Equation 6) together with the equation of motion (Equation 5), define

a dynamical system, which can become unstable and produce spontaneous oscillations (Jülicher and

Prost, 1997; Camalet et al., 1999). At the critical point, these oscillations are periodic and we only

retain the fundamental mode (n ¼ 1). These critical-point oscillations constitute the predicted beat

waveforms of our two-dimensional model (see last paragraph of Appendix 1).

Normal-force control
We conclude the theory section with a discussion of the normal force. Unlike the sliding control and

curvature control mechanisms in which the motor force depends linearly on the tangent angle (and

its derivatives), the feedback in the normal-force model is non-linear. This is because the normal

force is the product of the integrated sliding force and the curvature, f? ¼ F _ (Appendix 1,
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Figure 3. Fourier decomposition of the beat. Panel A shows the Fourier decomposition of the waveform of wild

type axonemes, panel B the decomposition of the mbo2 axoneme waveform. (A) (i) Power spectrum of the

tangent angle averaged over arc-length. The fundamental mode (n ¼ 1) and three higher harmonics (n ¼ 2; 3; 4) are

labeled. (ii) Angular representation of the static (n ¼ 0) mode as a function of arc-length. The approximately

constant slope indicates that the static curvature is close to constant  
:

0 ¼ C0. (iii) The amplitude and phase

(argument) of the fundamental mode are shown in iii and iv, respectively. The approximately linear decrease in

phase indicates steady wave propagation. The data of a representative axoneme is highlighted in the panels ii–iv,

with error bars indicating the standard error of the mean calculated by hexadecimation. (B) Equivalent plots to (A)

for mbo2 axonemes. (C) Beat shapes of one representative beat cycle of the wild type axoneme highlighted in

panel A (left panel, data) and shapes reconstructed from the superposition of the static and fundamental modes,

neglecting all higher harmonics. The progression of shapes through the beat cycle is represented by the rainbow

color code (see inset). (D) Same as (C) for an mbo2 mutant axoneme.
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Equation 16), both of which depend on arc-length. However, under the assumption that the static

curvature is constant,  0

:

¼ C0, the normal force can be linearized, simplifying the solution of the

dynamical equations. Expanding F and _ into their static and fundamental Fourier modes, and using

the static force balance aF0 ¼ kC0, we obtain the following expression for the fundamental mode of

the normal force:

f?;1 ¼C0 F1 þk _ 1=a
� �

; (7)

where F1 is the fundamental mode of the integrated sliding force (Appendix 1, Equation 19). Thus,

the force is linear in the curvature and the integrated motor force. Equation 7 vanishes for symmet-

ric beats in which the static curvature is zero (C0 ¼ 0Þ. The important implication is that for symmetric

beats, there is no reciprocal inhibition across the axoneme, unlike sliding and curvature control. This

is related to the property that static bends produce normal forces that always tends to separate fila-

ments, independent of the sign of the bend (Mukundan et al., 2014). Thus the static curvature,

C0 6¼ 0, of the Chlamydomonas beat opens a way for regulation by normal forces, something impos-

sible in symmetrically beating cilia, of which sperm is an approximate example (Riedel-Kruse et al.,

2007).

Results

Quantification of the beat of wild type and mbo2 cilia
To test the different mechanisms of beat regulation, we measured the flagellar beating waveforms in

wild type and mbo2 axonemes with high temporal and spatial precision (Materials and methods and

Figure 2i-ii). We tracked trajectories of 20 points along the arc-length of the axoneme as a function

of time over up to 200 beat cycles (Figure 2iii). Copies of the movies and the extracted tangent

angles are available (see Sartori et al., 2016). The uncertainty of the position in xy space was

» 5 nm and the uncertainty in the tangent angle was »20 mrad (Figure 2iv-v). The latter corre-

sponds to a sliding displacement between adjacent doublet microtubules of only 1.3 nm.

Because the beat of Chlamydomonas is periodic in time, it is convenient to decompose the tan-

gent angle  s; tð Þ into Fourier modes  n (Equation 2). Before doing so, we note that wild type Chla-

mydomonas axonemes swim counterclockwise in circles at a slow angular rotation speed

!rot » 30 rad=s (Figure 2Ai,iii). While the effect of this rotation is small for a single beat it becomes

large for a long time series. Before performing the Fourier decomposition we therefore subtracted

!rott from the tangent angle  s; tð Þ (for simplicity we use the same notation for  s; tð Þ and

 s; tð Þ � !rott). The power spectrum of the tangent angle (averaged over the flagellar length) shows

clear peaks at harmonics of its fundamental frequency (Figure 3Ai). Because the peak at the funda-

mental frequency n ¼ 1ð ) accounts for 90% of the total power, we neglected the higher harmonics

(n = 2,3,4, ...) for reconstructing the flagellar shape. We found that using just the n ¼ 0 and n ¼ 1

modes gave excellent reconstitutions of both the wild type and mbo2 beats (Figure 3C–D). Thus,

the static and fundamental modes provide a good description of the beats.

The amplitude of the static mode (n ¼ 0) and the amplitude and phase of the fundamental mode

(n ¼ 1) are shown in (Figure 3ii–iv). The main difference between the wild type and mutant axo-

nemes comes from the static mode,  0 (Figure 3ii; Eshel and Brokaw, 1987; Geyer et al., 2016).

For wild type axonemes,  0 decreased approximately linearly over arc-length. This corresponds to

an approximately constant static curvature » 0.25 rad/mm, and indicates that the time-averaged

shape is close to a semi-circular arc of radius » 4 mm. The static curvature of wild type axonemes

leads to the highly asymmetric waveform. In contrast, mbo2 mutant axonemes have a small static

mode, with a curvature »0.025 rad/mm, corresponding to an approximately symmetric waveform.

In comparison to the large differences in the static mode between wild type and mutant axo-

nemes, the fundamental modes,  1, are similar. The amplitude of  1 is roughly constant and has a

characteristic dip in the middle (Figure 3iii). The argument of  1, which determines the phase of the

wave, decreases at a roughly constant rate in both cases (Figure 3iv), indicating that the beat is a

traveling wave. Because the total phase shift is about �2p, the wavelength of the beat is approxi-

mately equal to the length of the axoneme. Thus, both wild type and mutant axonemes have
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approximately sinusoidal dynamic beats whose amplitudes dip in the middle of the axoneme and

whose wavelengths are approximately equal to their lengths.

Motor regulation in the axoneme: experiment versus theory
To gain insight into how molecular motors in the axoneme are controlled, we compared experimen-

tal beating patterns to those calculated from theory. In the sliding-control model the motor force

depends only on sliding through the sliding coefficient � ¼ �0 þ i�00. The single and double primes

denote real and imaginary parts. �0 and i�00 describe the dependence of force on the sliding dis-

placement and the sliding velocity. They are the elastic and damping components of the sliding

response, respectively. Because the response must be active for oscillations to occur, we have

�0; �00 � 0 (Machin, 1958). In the sliding-control model, the motor force is independent of curvature

and normal forces so the curvature coefficient (b) and the normal force coefficient (g) were set to

zero. In the curvature-control model, the curvature coefficient is non-zero (b 6¼ 0). In addition, we

allow the possibility that the motors have a passive response to sliding (corresponding to elastic

resistance to shear between adjacent doublets at the beat frequency), so that �0>0. The motors are

not regulated by normal force (g ¼ 0). In the normal-force model, g 6¼ 0. We again allow for the pos-

sibility that the motors have a passive response to sliding (�0>0). The motors are not regulated by

curvature (b ¼ 0Þ). Note that for backward traveling waves the signs of b0;b00 and g0; g00 change, but

those of �0; �00 do not.
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Figure 4. Comparison of theoretical and experimental beating patterns. (A) Comparison of the theoretical (lines)

and experimental (dots) beating patterns of a typical wild type axoneme. The real and imaginary part of the first

mode of the tangent angle  1 sð Þ is plotted for beats resulting from sliding control, curvature control, and normal

force control. (B) Analogous to (A) for mbo2. Note that here also curvature control and normal force control

provide good agreement, but not sliding control. (C) and (D) Theoretical and experimental shape reconstruction in

position space for the wild type and mbo2 beats under curvature control.
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We tested the three motor models by adjusting the appropriate response coefficients, together

with the basal stiffness (kb) and the basal damping coefficient (�b), to obtain the closest fit of their

predictions to the dynamic mode. The fitting procedure is described in Appendix 3 using the

mechanical parameters described in Appendix 5. The result of a typical fit for wild type axonemes is

shown in Figure 4A. The real and imaginary parts of the fundamental mode  1ðsÞ – corresponding

to the cosine and sine components of the waveforms – agree well with the data in the cases of curva-

ture control and normal-force control, but not for sliding control. In the latter case, the real and

imaginary parts of the predicted mode are in anti-phase (Figure 4A, left panel), corresponding to a

standing wave and contradicting the observed propagating wave. The xy representation of the beat-

ing pattern predicted by the curvature-control model agrees well with the experimental beating pat-

tern reconstructed from the static and fundamental modes (Figure 4C). The good agreement

reinforces the conclusion from Figure 4A that the curvature control model accords with the experi-

mental data for wild type axonemes. Similar good agreement for wild type axonemes was found

with the normal-force model. Table 1 summarizes average parameters resulting from the fits to data

from 9 wild type axonemes.

We compared the theory to the dynamic modes measured from the mbo2 mutant, where the

static curvature is reduced by at least one order of magnitude compared to wild type beats (Fig-

ure 3). The results were similar to those of wild type (Figure 4B): sliding control could not produce

bend propagation, while curvature and normal force control were in good agreement with the

experimental data. The parameters obtained from the fit of mbo2 beats are given in Table 2. We

also fit the model to the wild type waveforms in which the static curvature had been subtracted. A

good fit to the curvature control model was obtained, but not to the sliding control model. Thus,

the fundamental mode was well fit by the curvature and normal-force models but not sliding control.

Regulation of the beat by sliding
The sliding-control model provides a poor fit to the observed beating patterns. This can be under-

stood using three different, but related, arguments. First, in the plane-wave approximation,  1 ¼

expð�2pis=lÞ; the wavelength satisfies

i!�n=k¼�ð2p=lÞ4 �ð2p=lÞ2a2�=k : (8)

Because the equation is unchanged when l!�l, there are solutions for propagation from base to

tip (l>0) and for propagation from tip to base (l<0). These two waves superimpose to form a stand-

ing wave, inconsistent with the observed traveling wave.

The second argument is that in the limit of very short axonemes (L ! 0), sliding control predicts

that there will only be standing waves, irrespective of whether the boundary conditions are

Table 1. Parameters for beat generation in wild type axonemes.

Sliding control Curvature control Normal-force control

Coefficient of determination R2 %ð Þ 49� 4 95� 1 95� 1

Sliding coefficient �0; �00 nN � �m�2ð Þ �12:2� 3:0;�1:1� 0:1 19:8� 3:3; 0 13:2� 3:6; 0

Curvature coefficient b0;b00 nNð Þ 0 0;�6:5� 0:4 0

Normal-force coefficient g0; g00 0 0 0:12� 0:05; 2:0� 0:2

Basal impedance �0
b; �

00
b nN � �m�1ð Þ 42:4� 0:7; 2800� 6900 42:2� 12; 2:2� 0:7 80� 115; 13000� 34000

Basal sliding (0th mode) Db;0 ðnmÞ �41� 41 �36� 12 �144� 196

Basal sliding (1st mode) jDb;1j ðnmÞ 23� 19 22� 5 12� 11

The values reported are mean and standard deviation calculated from 9 axonemes. The average static curvature is C0 ¼ �0:232� 0:009 �m�1, the

length L ¼ 11:7� 0:4; �m, and the frequency ! ¼ 427� 19 rad/s (68 Hz). Note that, for curvature controlled beats, using the value of b and an estimate

curvature of 0:1 rad=�m results in a sliding force of » 700 pN=�m. Since the motor density of an active half of the axoneme is » 500�m�1 the individual

motor force is ~ 1 pN. For the case of normal force control, the sliding force generated by the motors is of the order of the normal force that they expe-

rience, since jgj» 2.
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symmetric or not (Camalet and Jülicher, 2000). Chlamydomonas axonemes are short in the sense

that are much shorter than the critical length:

‘¼ 2p
k

�n!

� �1=4

; (9)

which is 26�m using the Chlamydomonas parameters (Appendix 5). Based on this limit we only

expect standing waves.

The third argument, is a generalization of the second. Though short, Chlamydomonas axonemes

have a non-zero length. We therefore computed the bend propagation speed according to

v ¼
R L

0
j 1j

2
qs arg 1ds. Using the amplitude and phase of the experimental data for Chlamydomonas,

j 1j ~ 0:68 (Figure 2Aiii and (Geyer et al., 2016) and arg  1 ¼ �2ps=L (Figure 2Aiv), the bend prop-

agation speed is » 3. By contrast, the bend propagation speed predicted by the sliding control

model is only 0.005 �3. Thus, the sliding-control model predicts a bend propagation speed much

lower than observed.

That the low bend propagation speed is due to the short length of the Chlamydomonas axoneme

can be appreciated by plotting the predicted speed (normalized by the measured speed of Chlamy-

domons) against length L (normalized by the critical length). Figure 5A shows that at short lengths,

such as for Chlamydomonas, the wave propagation speed is very slow, whereas for lengths above

the critical length, such as for sperm, the propagation speed is high.

Thus, there are several arguments for why sliding control does not work for the short flagella of

Chlamydomonas.

Regulation of the beat by normal forces
The normal-force model provides a good fit to the beating patterns of wild type and mbo2 axo-

nemes. However, there are two related arguments against the normal-force model. First, despite the

similarities in the dynamics of the beats of wild type and mbo2 axonemes (Figure 3iii–iv), the normal

force model requires very different values for the response coefficient, g, for wild type and mbo2

axonemes (Tables 1 and 2). Second, the normal-force model applied to mbo2 requires large differ-

ences in g from axoneme to axoneme, despite the similarity in the dynamics among the axonemes

(Figure 3Biii–iv). To understand why this is the case, we plotted g as a function of the inverse of the

curvature. The two are strongly correlated: jgj / jC0j
�1(Figure 6A). This correlation follows from

Equation 7, which predicts that the dynamic component of the normal force is linearly proportional

to the static curvature C0. In other words, the normal-force model requires there be static curvature;

if the static curvature were exactly equal to zero then the model would break down. However, the

static curvature in mbo2 axonemes is so small, as few as 3 degrees over the length of the axoneme,

that it is likely to be residual and of no significance. It is therefore puzzling why the key control

parameter would depend so strongly on a residual property. By contrast, the curvature-control

Table 2. Parameters for beat generation in mbo2 mutant axonemes.

Sliding control Curvature control Normal-force control

Coefficient of determination R2 ð%Þ 72� 5 95� 1 96� 1

Sliding coefficient �0; �00 ðnN��m�2Þ �15:0� 1:0;�0:4� 0:1 17:4� 2:5; 0 10:5� 4:3; 0

Curvature coefficient b0;b00 ðpNÞ 0 0;�0:66� 0:4 0

Normal-force coefficient g0; g00 0 0 1:52� 1:52; 32� 25

Basal impedance �0
b; �

00
b ðnN��m�1Þ 30:6� 14:1; 1:6� 0:7 2:1� 2; 2:3� 1:7 2:3� 0:3; 13:6� 6:0

Basal sliding (0th mode) Db;0 ðnmÞ �6� 6 �73� 44 �64� 40

Basal sliding (1st mode) jDb;1j ðnmÞ 51� 10 60� 11 77� 28

Values are averages and standard deviations for 9 axonemes. The static curvature was C0 ¼ �0:0276� 0:005 �m�1, the length L ¼ 9:2� 0:3 �m, and the

frequency ! ¼ 176� 44 rad/s, (28 Hz). Note that the values of g in normal force control are very spread out and compared to the wild type fits. In fact,

in one case we obtained g » 80, indicating that motors must amplify the normal force they sense by almost two orders of magnitude. The values for cur-

vature control are very similar to those of wild type fits..
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coefficient, b, is similar for wild type and mbo2 axonemes and is independent of the static curvature

(Figure 6B). Thus, we conclude that normal force is not a plausible parameter for controlling the cili-

ary beat.

Regulation of the beat by curvature
The curvature control model provides a good fit to the experimental data for both wild type and

mbo2 axonemes (Figure 4A and B, middle panel). Initially, we fitted the data using non-zero values

for both the sliding control parameters (�0, �00) and for both the curvature control parameters (b0,

b00). We found that the best fit values of �00 and b0 were not significantly different from zero. Further-

more, the quality of the fits were as good when we set both to zero. We therefore took �00 = b0 ¼ 0

(Tables 1 and 2). We present an argument in the Discussion for why these two parameters are

expected to be zero. Thus, the curvature control model is specified by just two free parameters, the

sliding elasticity between doublet microtubules at the beat frequency ð�0Þ and the rate of change of

axonemal curvature (b00) (note that the parameters, �0
b and �00

b, which characterize the stiffness and

viscosity at the base respectively, are determined once �0 and b00 are specified in order to satisfy the

boundary conditions [final paragraph of Appendix 2]).

The average values of �0 and b00 varied little between wild type and mbo2 mutant axonemes

(compare the third column of Table 1 with that of Table 2, see also Figure 6B). This accords with

the observation that there is little difference in the dynamical properties of the beat between wild

type and mbo2 axonemes. Furthermore, the standard deviations of �0 and b00 are small, indicating

that there is little variation from axoneme to axoneme. Thus, the tight distribution of values of the

parameters in the model reflects the similarity in the observed shapes in different axonemes. In other

words, �0 and b00 are well constrained by the experimental data.

To understand what aspects of the experimental data specify these two parameters, we per-

formed a sensitivity analysis on �0 and b00. In Figure 7A we show a density map of the mean square

distance R2 between the theoretical waveforms and a reference experimental beating pattern as a

function of �0 and b00. The red ellipse delimits a region of good fit in which R2>0:90. This region

closely coincides with the region where �0
b and �00

b are both positive, which is delimited by the central

pair of black lines. This is important because negative values of the basal parameters imply an active

process at the base, which would result in a whip-like motion of the axoneme, as noted by Machin

(Machin, 1958). From the shapes of beating spermatozoa, Machin argued against such an active

base.

We systematically varied �0 and b00 parallel and perpendicular to the long axis of the ellipse. Mov-

ing perpendicular into the region of active base indeed results in whip-like beats, with a larger ampli-

tude at the base (Figure 7B, blue circles). This argues against a basal, whip-like driving of the

Waveform 2Waveform 1B C

Waveform 1

Waveform 2

Chlamydomonas Bull sperm

A

-0.6

N
o
rm

a
liz

e
d
 w

a
v
e
 s

p
e
e
d
, 
v
 

-0.3

0

0.3

 0.6

Normalized axoneme length, 

1.3 1.3

0.2 0.2
0.5 1.0 1.5 2.0

Figure 5. The role of length in sliding-regulated beats. (A) Wave speed versus relative length of the first two

unstable waveforms of a freely swimming axoneme regulated by sliding. For short lengths, in the range of

Chlamydomonas, the modes lose directionality and become standing waves. Long axonemes have directional

waves that can travel either forward, as in waveform 1,or backwards, as in waveform 2. (B) Two examples of

waveform 1 for long (top) and short (bottom) axonemes. Note that the short axonemes have standing waves. See

(Sartori, 2015) for more details. (C) Beating patterns of waveform 2 for a long (top) and short (bottom) axonemes.

In B and C arrows denote direction of wave propagation.
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motion of Chlamydomonas axonemes. Moving parallel affects the amplitude of the beat, with the

middle-dip becoming more or less prominent (Figure 7B, green circles). Thus, the arc-length depen-

dence of the amplitude of the fundamental mode constrains the value of the response coefficients

and the sign of the basal response.

To better understand the cell-to-cell variability we plotted data from all the axonemes in the

ð�0;b00Þ space (Figure 8A). Points scatter mainly along the long axis of the ellipse, where there is a

large region of small shape variation. We consistently saw a shift perpendicular to the long axis

between the wild type and mbo2 axonemes. This variation correlates with the difference in normal-

ized lengths between wild type and mutant axonemes (Figure 8B), suggesting a possible depen-

dence of the response coefficients on length and/or frequency.

A striking difference between the wild type and mbo2 axonemes is that the curve-fitting indicates

that the basal stiffness in the mutant is about 20-fold smaller than in the wild type (Table 1 and

2). This softening at the base is associated with a larger basal sliding in the mutant. Whether this dif-

ference causes the difference in beat frequency (the mutant beats more slowly) or whether it is a

consequence of the shorter lengths of the mutant axonemes (Figure 8C) will require additional

study.

Discussion
In this work we imaged isolated axonemes of Chlamydomonas with high spatial and temporal resolu-

tion. We decomposed the beating patterns into Fourier modes and compared the fundamental

mode, which is the dominant dynamic mode, with theoretical predictions of three motor control

mechanisms built into a two-dimensional model of the axoneme (Figure 1). The sliding control

model provided a poor fit to the experimental data. We argued that the reason for this is that sliding

control cannot produce wave propagation for axonemes as short as those of Chlamydomonas (Fig-

ure 5). While the normal-force model (also termed the geometric clutch model) provided good fits

to the experimental data, it relies on the presence of static curvature (Bayly and Wilson, 2015),

which varies greatly between the mbo2 and wild type axonemes. As a result of this large difference

in static curvature, the control parameters in this model had to be varied over a wide range to fit the

data from the different axonemes (Figure 6). Because the waveforms of mbo2 and wild type axo-

nemes have similar dynamic characteristics, such variation in the control parameter seems implausi-

ble and we therefore argue against regulation by normal forces in the two-dimensional model.

Finally, the curvature-control model provided a good fit to the experimental data with similar param-

eters for mbo2 and wild type axonemes. Thus, we conclude that only the curvature-control model is

fully consistent with our experimental data.

A potential caveat of these conclusions is that the model used here is two-dimensional. Impor-

tantly, in order to simplify the geometry, the model only contains one pair of filaments. While this

captures the essential features of the sliding control and curvature control models, it oversimplifies

the normal-force model, because in the three-dimensional axoneme there are radial and transverse

forces acting on the doublets as the axoneme bends. Yet the two-dimensional model does not
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symbols are mbo2 and green symbols are wild type. (B) The curvature control response coefficient b00 is

independent of the static curvature, and remains constant even for a fifty-fold change in static curvature.
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distinguish between them. To bridge this gap, in

other work (Sartori et al., 2015) we developed

a full three-dimensional model of the axoneme

to calculate the radial and transverse stresses.

The three-dimensional model shows that even

when there is a static curvature (without twist),

normal (transverse) forces are not antagonistic

across the centerline and therefore cannot serve

as a control parameter for motors.

Relation with past work
Earlier results showed that sliding control can

account for the beating patterns of sperm

(Camalet and Jülicher, 2000; Riedel-

Kruse et al., 2007; Brokaw, 1975). This is con-

sistent with the present results because the bull

sperm axoneme is approximately five times lon-

ger than the Chlamydomonas axoneme and we

have shown that sliding control can lead to bend

propagation in long axonemes (Figure 5 and

see Brokaw, 2005). Thus, it is possible that dif-

ferent control mechanisms operate in different

cilia and flagella, with sliding control being used

in longer axonemes and curvature control being

used in shorter ones. However we do note that

curvature control models can account for the

bull sperm data (Riedel-Kruse et al., 2007), as

well as data from other sperm (Brokaw, 2002;

Brokaw, 1985; Bayly and Wilson, 2015), so

there is no strong morphological evidence favor-

ing either sliding or curvature control in sperm. The normal-force model produces beating patterns

that resemble those of sperm (Lindemann, 1994b; Bayly and Wilson, 2015; Bayly and Wilson,

2014). However, these models rely on there being an asymmetry which is small and variable in

sperm, arguing against normal-force control. Thus, the curvature control model, unlike the other two

models, robustly describes symmetric and asymmetric beats in short and long axonemes, and could

serve as a ’universal’ regulator of flagellar mechanics.

Dynamic curvature control as a mechanism for motor regulation
An unexpected feature of our curvature control model is that the motor force depends only on the

time derivative of the curvature. This follows from the fact that the curvature response function b has

no real part (Table 1 and 2, see Theoretical Model section). Such a model is fundamentally different

from the current views of curvature control, in which motors are thought to respond to instantaneous

curvature (Brokaw, 1972; Brokaw, 2002; Brokaw, 2009) and not to its time derivative.

While motors can respond to time derivatives of sliding displacement through their force-velocity

relation, it is hard to understand how a similar mechanism could apply to curvature. One possibility

is that there is a curvature adaptation system analogous to that of sensory systems, like the signaling

pathway of bacterial chemotaxis (Macnab and Koshland, 1972; Yi et al., 2000; Shimizu et al.,

2010). In an adaptation mechanism, curvature (or motor activity) would be ’remembered’, and the

average curvature (or motor activity) over past times would in turn down-regulate the activity of the

motors on a long time-scale. Such regulation could occur, for example, via phosphorylation sites in

the dynein regulatory complex or the radial spokes (Witman, 2009; Smith and Yang, 2004;

Porter and Sale, 2000). Just as methylation of the chemoreceptors of bacteria modifies their ligand

affinity, phosphorylation of regulatory elements within the axoneme could modify the motor sensitiv-

ity to curvature over times long compared to the period of the beat.
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Figure 7. Phase space of curvature control. (A) Heat

map of the mean-square distance R2 between the

theoretical and a reference experimental beat as a

function of the sliding response coefficient �0 and the

curvature response coefficient b00. The ellipsoid delimits

the region with R2 ¼ 0:90. Each pair of nearby black

lines delimits a region with a passive base. Moving

along the long axis (green circles) affects the amplitude

dip in the midpoint of the axonemem, left panel in (B).

Moving along the short axis towards the region of

active base results in waveforms with a large amplitude

at the base (blue and red circles), central and right

panels in B. The axis in A is normalized by the

reference fit, such that ð�0 ¼ 1;b00 ¼ 1Þ corresponds to

the highest value of R2.
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The molecular mechanisms underlying curva-

ture sensing are unknown. A difficulty with

dyneins directly sensing microtubule curvature is

that the strain in a curved microtubule (radius of

curvature 4 mm) is very small ( » 1%), correspond-

ing to a sub-angstrom strain in a tubulin dimer.

Such a small strain would be difficult for an indi-

vidual dynein microtubule-binding domain to

detect, though this difficulty could be circum-

vented if dynein binding were cooperative, as

found for microtubule curvature-sensing by dou-

blecortin (Bechstedt et al., 2014). On the other

hand, indirect curvature-sensing mechanisms

that rely on the central pair pathway (Wit-

man, 2009) are difficult to reconcile with

mutants missing the central pair and radial

spokes (Yagi and Kamiya, 2000; Frey et al.,

1997). Thus, our findings highlight the question

of how curvature might be sensed in the

axoneme.

Independence of static and
dynamic waveform components
Our dynamic curvature control model adds to

the view that dynamic and static components of

the beat are regulated independently. The prob-

lem with models in which dynein activity is regu-

lated by the instantaneous value of the curvature

is that both the static and dynamic components

of the beat would contribute to regulation and

hence the dynamic component of the waveform

would be highly dependent on the static compo-

nent (Sartori, 2015). Yet the dynamic beats of wild type and mbo2 are similar, as also noted in

(Eshel and Brokaw, 1987). Our dynamic curvature control model provides a solution to this problem

because static curvature is ’adapted’ away. We now bring together several lines of evidence sup-

porting the notion that the static and dynamic modes are separable in their origin and in their affect

on the beat.

1. Dynamic and static components of the beat can exist independently of each other. This is evi-
denced by the existence of bent, non-motile cilia at low ATP concentrations on the one hand,
as well as symmetrically beating mutants on the other (Geyer et al., 2016).

2. The waveform of mbo2 has a fundamental dynamic mode similar to that of wild type, Figure 3
Aiii and Biii. However, the static mode is absent in the former, Figure 3 Aii and Bii. The same
also holds for the two beating modes of the uniflagellar mutant (Eshel and Brokaw, 1987).
Thus, altering the static mode of Chlamydomonas has little effect on the dynamic mode.

3. The dynamic motor response coefficients are largely independent of the asymmetry, and very
similar for mbo2 and wild type axonemes, (Figure 6 A).

If the dynamic and static modes are indeed independently controlled, the dynamic motor

response is robust to changes in the asymmetry. This has important biological implications: power

generation (the beat) and steering (the asymmetry) can be independently controlled so that the

swimming direction can be adjusted without having to alter the motor properties. We note, how-

ever, that the molecular origin of asymmetry is not known nor is the mechanism by which the mbo2

mutation leads to symmetric beats (see Geyer et al., 2016 for a discussion of possible mechanisms).
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Circles represent values obtained from fits for each of

the axonemes, green corresponds to wild type and red

to mbo2. In the background we have the same heat

map as in Figure 7. Note that mbo2 points lie away

from wild type circles in the direction of the short axis

of the ellipse. All values are normalized by those of the

reference fit used also to normalize the heat map axis.

(B) The distance of the circles to the long axis of all fits

shows a clear correlation with normalized axonemal

length. Note also that mbo2 axonemes are

systematically shorter than wild type axonemes. (C) The

basal compliance (�b) also correlates with the

normalized length, resulting in a high value for wild

type axonemes, which are longer. The values are

normalized by the value for a reference axoneme.
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Phase of motor activity during the beat
Our work predicts how the timing of motor activity drives the bending of the axoneme during the

beat. The simplest way to understand the spatio-temporal relationship between motor force, f , and

axoneme curvature, _ , is to use the plane-wave approximation  ðs; tÞ ¼ sinð!t � 2ps=lÞ, where ! is

the frequency in radians per second and l is the wavelength in microns. Differentiation with respect

to time t, leads to a phase advance by p=2 (90 degrees or a quarter of a cycle). This can be appreci-

ated by noting that the cosine function (the derivative of sine) reaches its maximum before the sine

function (in the complex representation, exp½ið!t � 2ps=lÞ�, differentiation with respect to time leads

to multiplication by i, which is equivalent to a phase lead of p=2, since i ¼ expðip=2Þ). For a traveling

wave moving from base to tip (i.e. moving in the direction of increasing arc-length, s), the wave-

length is positive and differentiation with respect to arc-length leads to a phase delay by p=2. This

can be appreciated by noting that �cosðsÞ, the derivative of sinð�sÞ, reaches its maximum after the

original function. Thus, time derivatives lead and spatial derivatives lag.

Using these differentiation rules, we can represent the phase relations between the axonemal

parameters on a phase plot (Figure 9A). For the reference phase, we use the sliding displacement,

D, or the tangent angle  , which are proportional to each other in the plane-wave approximation

ðD ¼ a Þ: we define them (arbitrarily) to zero degrees (compass bearing east, E). The sliding velocity

qtD has a phase lead of p=2 (i.e. compass bearing N on the phase plot). The curvature, the derivative

of tangent angle with respect to arc-length, qs ¼ _ , has a phase delay of p=2 (i.e. S on the phase

plot). The key parameter is motor force, which, in the curvature-control model, is

f1 ¼ �0D1 þ ib00
qs 1 » ½a�

0 þ b00ð2p=lÞ� 1. Using the parameters for wild type axonemes in Table 1,

the sliding stiffness �0 ¼ þ20 nN=�m2 and the dynamic curvature coefficient b00 ¼ �6:5 nN, together

with a ¼ 0:066�m and l ¼ L ¼ 11:7�m, we find that the absolute magnitude of the first term in the

square bracket is smaller than the second term, which is negative. Thus, in the plane-wave approxi-

mation, the sign of the force is opposite that of the tangent angle and so the motor force is out of

phase with the tangent angle and sliding (compass bearing W).

An exact calculation shows that the phases predicted by the curvature control model are similar

to those of the plane-wave approximation. Thus, the tangent angle (Figure 9A, gray arrow) lags

slightly behind the sliding displacement (Figure 9A, black arrow, E) due to the delay associated with

the basal compliances. Furthermore, the curvature (Figure 9A, blue arrow) lags the plane-wave cur-

vature (S) due to the basal compliance and because the wavelength has a small imaginary compo-

nent. Likewise, the motor force (Figure 9A, red arrow) lags slightly behind the plane-wave force (W).

Thus, the exact theory shows that curvature leads the motor force by approximately one quarter of a

cycle and is nearly out of phase with the sliding displacement. The time series for the various param-

eters are plotted in Figure 9B.

From these phase relations, we can use the curvature-control model to predict the activity of the

motors in relation to the curvature of the axoneme. These predictions can then be compared to

structural studies, such as cryo-electon microscopy. Because the motor force lags the curvature

(Figure 9B), the motor force is in phase with the spatial derivative of the curvature. Thus, the motor

force is positive in the region marked green in Figure 9D and negative in the blue region. In other

words, the motors whose bases are statically attached to the upper filament are actively interacting

with the lower filament with their microtubule-binding domains to drive the bend that will develop

at this place as the wave travels towards the distal tip. The motors with opposite polarity (i.e. on the

opposite side of the axoneme) will be active proximal to the bend. Such a relative phase of the

motor activity with respect to curvature is a consequence of the dynamic curvature mechanism: the

force that generates the curvature (Figure 9C, green) is activated by the rate of change in curvature

with a sign (b00 < 0) consistent with our sign convention. Note that if these predictions are to be com-

pared to experiments, then the static curvature needs to be subtracted.

Efficiency and energetics
Our finding that the motor force is nearly out of phase with the sliding displacement (and tangent

angle) shows that the Chlamydomonas flagellum does not operate close to optimal efficiency. The

maximally efficient phase was defined as the phase of the motors that maximized the swimming

speed while minimizing the elastic and viscous dissipation (i.e. minimizing energy consumption)

(Machin, 1958). Machin showed that for a plane wave, the optimum occurs when the phase of the
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motors is at 225 degrees (compass bearing SW), considerably different from our predicted motor

phase, which is <180 degrees. Thus, unlike sperm, which Machin calculated to be close to the opti-

mum, the short cilia of Chlamydomonas deviate considerably from optimum efficiency.

The reason that Chlamydomonas deviates from optimum efficiency is that the elastic dissipation

dominates over the viscous dissipation. Elastic dissipation arises from the straightening of the bent

axoneme and the loss of the associated bending energy (for an asymmetric beat like that of Chlamy-

domonas, in which the static and dynamic modes have approximately equal amplitudes, the elastic

loss is almost twice as great as that for a symmetric beat). Indeed, in the plane wave approximation,

the ratio of the viscous to elastic dissipation is p=2ð Þ L=‘ð Þ4� 1. This inequality, which was noted

recently (Chen et al., 2015), holds for Chlamydomonas because Chlamydomonas axonemes are

shorter than the critical length (‘). By contrast, the inequality is � 1 for the much longer mammalian

sperm axonemes (and » 1 for sea-urchin sperm). Note that the dependence of the critical length

(Equation 9) on the mechanical parameters - drag coefficient and bending rigidity - is very weak due

to the 1/4 power dependence. As a result, even if the bending rigidity were five times smaller than

our estimate (Pelle et al., 2009), our argument would still be valid. Thus, the short length of Chlamy-

domonas axonemes has important implications for the energetics of the flagellar beat.

The reasoning behind the relatively small viscous dissipation also allows us to understand why the

curvature mechanism is sensitive to the rate of change of curvature rather than the instantaneous

value. Equation 5 for a symmetric plane wave (C0 ¼ 0) regulated by curvature (using

f1 ¼ �a þb _ ¼ �a þ ib 2p=l) gives
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Figure 9. Phase delays and active force distribution on the axoneme. (A) Polar representation of the phases of

sliding D, curvature _ , normal force f? and the sliding force f for a beating axoneme regulated by curvature. For a

plane wave,  ðs; tÞ ¼ sin ð!t � 2ps=lÞ, a time derivative rotates the phase counter-clockwise through p=2 radians,

while a spatial derivative rotates the phase clockwise by p=2 radians. Deviations from the compass points (E, S, W,

N) are due to deviations of the axonemal beat from a plane wave. Machin’s prediction for an optimum flagellum is

shown as the red dashed line. (B) Time evolution of the quantities in A.(C) Illustration of the local sliding force for a

shape of a symmetrically beating axoneme (e.g. mbo2). The regions of motor activity on the upper and lower

filament are highlighted in blue and green respectively. (D) Asymmetrically beating wild type axoneme with two

shapes highlighted during the breast and recovery strokes. The arrows represent direction of motion of the

axoneme, and the colored patches represent the local sliding force on the respective filaments (see panel C and

Figure 1).
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�n!þ a2�00ð2p=lÞ2� ab0ð2p=lÞ3 ¼ 0

kð2p=lÞ4 þ a2�0ð2p=lÞ2þ ab00ð2p=lÞ3 ¼ 0
(10)

The upper line of Equation 10 shows that b0 produces an active motor force to counter the vis-

cous dissipation due to the fluid and the inter-filament sliding. If the fluid damping coefficient is

small, then we can have solutions with �00 ¼ b0 »0. Furthermore, if the sliding response coefficient is

small (�0;�00 small) then j b0=b00 j » ðl=lÞ4 � 1, showing that the dynamic curvature response domi-

nates over the instantaneous response. Thus, the dynamic curvature dependence is a consequence

of the viscous forces being small compared to the elastic forces.

Summary and outlook
We finish the discussion by noting that the short length of Chlamydomonas flagella, relative to the

critical length ‘ ¼ 2pðk=�n!Þ
1=4 is key to understanding not just the energetics, but also the mecha-

nism of motor control. Indeed, it was the shortness of the axonemes that implied that the sliding

control model only generated a standing wave and so could not recapitulate the observed traveling

wave. Furthermore, it was the shortness that gave rise to the imaginary curvature control coefficient,

leading to the dynamic curvature-control mechanism. In addition, the shortness implies that the vis-

cous dissipation is small compared to the elastic dissipation. These conclusions are robust because

the power of 1/4 in the expression for the critical length makes it quite insensitive to the parameter

values. The long length of sperm leads to quantitatively different properties (e.g the viscous and

elastic energies are of similar magnitude, leading to efficient motion, as argued by Machin). Whether

the long axonemes use the same dynamic curvature-control mechanism as short axonemes will

require further study.

Materials and methods

Preparation and reactivation of axonemes
Axonemes from Chlamydomonas reinhardtii wild type cells (CC-125 wild type mt+ 137c, R.P. Levine

via N.W. Gillham, 1968) and mutant cells that move backwards only (CC-2377 mbo2 mt-, David

Luck, Rockefeller University, May 1989) were purified and reactivated. The procedures described in

the following are detailed in Alper et al. (2013).

Chemicals were purchased from Sigma Aldrich, MO if not stated otherwise. In brief, cells were

grown in TAP+P medium under conditions of illumination (2x75 W, fluorescent bulb) and air bub-

bling at 24˚C over the course of 2 days, to a final density of 106 cells/ml. Flagella were isolated using

dibucaine, then purified on a 25% sucrose cushion and demembranated in HMDEK (30 mM HEPES-

KOH, 5 mM MgSO4, 1 mM DTT, 1 mM EGTA, 50 mM potassium acetate, pH 7.4) augmented with

1% (v/v) Igpal and 0.2 mM Pefabloc SC. The membrane-free axonemes were resuspended in HMDEK

plus 1% (w/v) polyethylene glycol (molecular weight 20 kDa), 30% sucrose, 0.2 mM Pefabloc and

stored at �80˚C. Prior to reactivation, axonemes were thawed at room temperature, then kept on

ice. Thawed axonemes were used for up to 2 hr.

Base 

(-) 

Tip 
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y

x

Figure 10. Sign convention for motors that step towards the base. See text for details
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Reactivation was performed in flow chambers of depth 100 mm, built from easy-cleaned glass and

double-sided sticky tape. Thawed axonemes were diluted in HMDEKP reactivation buffer containing

1 mM ATP and an ATP-regeneration system (5 units/ml creatine kinase, 6 mM creatine phosphate)

used to maintain the ATP concentration. The axoneme dilution was infused into a glass chamber,

which was blocked using casein solution (from bovine milk, 2 mg/mL) for 10 min and then sealed

with vacuum grease. Prior to imaging, the sample was equilibrated on the microscope for 5 min and

data was collected for a maximum time of 20 min.

Imaging of axonemes
The reactivated axonemes were imaged by either phase constrast microscopy (wild type axonemes)

or darkfield microscopy (mbo2 axonemes). Phase contrast microscopy was set up on an inverted

Zeiss Axiovert S100-TV microscope using a Zeiss 63� Plan-Apochromat NA 1.4 Phase3 oil lens in

combination with a 1.6� tube lens and a Zeiss oil condenser (NA 1.4). Data were acquired using a

EoSens 3CL CMOS highspeed camera. The effective pixel size was 139 nm/pixel. Darkfield micros-

copy was set up on an inverted Zeiss Axiovert 200 microscope using a Zeiss 63� Plan achromat NA

iris 0.7–1.4 oil lens in combination with an 1.25� tube lens and a Zeiss oil darkfield condenser (NA

1.4). Data were acquired using a pco dmaxS highspeed camera. In both cases, the illumination was

performed using a Sola light engine with a 455 LP filter. Movies of up to 3000 frames were recorded

at a frame rate of 1000 fps. The sample temperature was kept constant at 24˚C using an objective

heater (Chromaphor).

High precision tracking of isolated axonemes
To track the axoneme in each movie frame with nm precision, the Matlab-based software tool

FIESTA was used (Ruhnow et al., 2011). Prior to tracking, movies were background subtracted to

remove static inhomogeneities arising from uneven illumination and dirt particles. The background

image contained the mean intensity in each pixel calculated over the entire movie. This procedure

increased the signal-to-noise ratio by a factor of 3 (Alper et al., 2013). Phase-contrast images were

inverted; darkfield images were tracked directly.

The tracking algorithm FIESTA uses manual thresholding to determine the filament skeleton,

which is then divided into square segments. During tracking, the filament position in each segment

is determined independently. For tracking, a segment size of 733 nm (approximately 5x5 pixels) was

used, corresponding to the following program settings: a full width at half maximum of 750 nm, and

a “reduced box size for tracking especially curved filaments” of 30%. Along the arc-length of each

filament, 20 equally spaced segments were fitted using two-dimensional Gaussian functions. Two

examples of spline-fitted shapes are presented in Figure 2Ai and Bi superimposed on the image.

The mean localization uncertainty of the center position of each of these segments was about 5 nm

(Figure 2Aiv and Biv). For localization of the ends, the program uses a different fitting function,

resulting in an increased uncertainty.
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Appendices

1. Non-linear dynamics of the axoneme
The equations that describe the dynamics of the axoneme are obtained by balancing

mechanical and fluid forces. We used a variational approach similar to that in Camalet and

Jülicher (2000), Riedel-Kruse et al. (2007), Sartori (2015). The work done on the filament

pair when it is bent and tensed by the motor force f is

U ¼

Z L

0

k

2
_ 2 þ fDþ f?ða

0� aÞþ
L

2
ð _r2 � 1Þ

� �

dsþ
kb

2
D2
b ; (11)

where k is the bending rigidity and kb the stiffness of cross-linkers at the base. The normal

force f? is a Lagrange multiplier that ensures that the interfilament spacing a0 is a constant.

Similarly, L is a multiplier that ensures the incompressibility constraint _r2 ¼ 1, and is related to

the tension in the centerline through t ¼ Lþ k _ 2 � aF _ , where F is the integrated motor force

(Equation 3).

The instantaneous mechanical force that the axoneme exerts on the fluid is given by dU=dr,

and calculating it requires computing d _ . From the relation

rðsÞ ¼ r0 þ
R s

0
ðcosð ðs0ÞÞ; sinð ðs0ÞÞÞds0, where r0 is the position of the base, it follows that _ ¼

n� _t and d _ ¼ n� d€r. Using this, we arrive at dU=dr ¼ qs ðk € � af Þn� tt
� �

(Camalet and Jülicher,

2000; Sartori, 2015). The net sliding force exerted at the base is

dU=dDb ¼ �Fð0Þ þ kbDb(Mukundan et al., 2014). To obtain the dynamics of the axoneme we

balance these mechanical forces by the fluid friction P̂� qtr and the basal friction �bqtDb, which

results in

qtr¼�ð��1
n nnþ ��1

t ttÞ�qs ðk € � af Þn� tt
� �

(12)

qtDb ¼���1
b ðkbDb �Fð0ÞÞ ; (13)

We can calculate a dynamic equation for the tangent angle using that qt _r ¼ nqt , which results

in

qt ¼ ��1
n ð�k 

::::

þ a€f þ _ _tþ t € Þþ ��1
t

_ ðk _ € � af _ þ _tÞ : (14)

This equation contains no information about the trajectory of the basal point r0ðtÞ, which can

be determined from the condition that the total force on the cilium vanishes (Friedrich et al.,

2010; Sartori, 2015; Johnson and Brokaw, 1979).

The tension t and normal force f? are obtained by imposing the corresponding constraints.

For the case of the tension we take the time derivative of _r2 ¼ 1. This gives t� qt _r ¼ 0, where

we can replace the dynamic equation for r. For the normal force f? we use the force balance

dG=da ¼ 0 (Camalet and Jülicher, 2000; Mukundan et al., 2014). The resulting equations are

�n
�t
€t� _ 2t¼� _ ðk 

:::

� a _f Þþ
�n
�t
qs½ _ ðaf �k € Þ� (15)

f? ¼ F _ : (16)

Because Equation 16 plays a key role in normal-force control, we expand out the modes:
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f? ¼ ðF0þF1e
i!t þ :::Þð _ 0þ _ 1e

i!t þ :::Þ (17)

¼ ð
kC0

a
þF1e

i!t þ :::ÞðC0 þ _ 1e
i!t þ :::Þ (18)

¼
k

a
C2
0 þC0½F1 þ

k

a
_ 1�e

i!t þF1
_ 1e

2i!t::: (19)

where the second term corresponds to Equation 7. To solve the dynamic equations we need

to use boundary conditions. These represent force and torque balances at the ends of the

filament pair. For the case of a freely swimming axoneme (no external forces or torques at

either end) we have

s¼ 0 : k € ð0Þ ¼ af ð0Þ ; tð0Þ ¼ 0 ; k _ ð0Þ ¼ aFb

s¼ L : k € ðLÞ ¼ af ðLÞ ; tðLÞ ¼ 0 ; _ ðLÞ ¼ 0 ;
(20)

where the basal force is Fb ¼ kbDb þ �bqtDb. Equation 14–16 together with the boundary

conditions and the force-response equation Equation 6 constitute the full, non-linear model

for the axonemal beat. Rather than solving this non-linear model, we only considered the first

two modes and assumed that the static curvature was constant. This leads to an ordinary

differential equation in arc-length for the tangent angle, with constant coefficients. A discrete

set of solutions can then be obtained by solving the boundary value problem as described in

Appendix 2. Each periodic solution corresponds to the critical point of a non-linear dynamic

solution at the point of a Hopf bifurcation, as described in Camalet et al. (1999).

2. Asymmetric equation for the fundamental mode
The periodic dynamics of the tangent angle can be decomposed into Fourier modes as defined

in Equation 2. For asymmetric beating patterns in which _ 0 6¼ 0, the static mode is

characterized by the force balance k _ 0 ¼ aF0, obtained from integrating Equation 12 and

using the boundary conditions. The static mode of the tension vanishes (also by Equation 12).

The dynamics of a small amplitude oscillation dominated by the fundamental mode can be

described by expanding Equation 14 and 15 around the static component and keeping only

terms in the n=1 mode. This results in

i�! 1 ¼� 1

::::

þ€f1þ _ 0 _t1 þ € 0t1 þ � _ 0ðk _ 0
€ 1� _ 0f1 þ _t1Þ;

�€t1 � _ 2
0t1 ¼� _ 0ð 

:::

1� _f1Þþ �qs½ _ 0ðf1 � € 1Þ�;
(21)

The equations above have been made dimensionless using the following rescalings: � ¼ �n=�t,

�s ¼ s=L, �D ¼ D=a, �! ¼ �n!L
4=k, �f ¼ aL2f =k, �t ¼ L2t=k, �kb ¼ a2Lkb=k and ��b ¼ a2L!�b=k. This

choice results in the additional rescalings �f? ¼ aL2f?=k, �� ¼ a2L2�=k, �b ¼ aLb=k and �g ¼ g,

since g is already dimensionless. This pair of equations is the generalization of the equations

for the symmetric beat (Machin, 1958; Camalet et al., 1999). In them, the fundamental mode

is coupled to the static mode. For the particular case in which the static shape has constant

curvature _ 0 ¼ C0, Equation 21 reduces to the asymmetric beat equations used in the main

text (Equation 5).

Equation 5 together with Equation 6 form a system of ordinary differential equations with

constant coefficients. Using the boundary conditions, the discrete spectrum of solutions can

be obtained (Cross and Hohenberg, 1993; Camalet and Jülicher, 2000; Sartori, 2015)].

While the system is of sixth order, it contains an integral term in the expression for the normal

force, Equation 7. It is thus convenient to convert the system to seventh order by taking the

derivative of Equation 7, which eliminates the integral term. Provided values for the response

coefficients �, b and g we can then use the ansatz  1 ¼ Aeks to obtain a characteristic
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polynomial of order seven in k. The general solution to the boundary value problem is

 1 ¼
P7

i¼1 Aie
kis, where the roots kið�;b; gÞ of the characteristic polynomial are implicit

functions of the motor response coefficients. The amplitudes Ai are then determined, up to an

arbitrary factor, imposing that the boundary conditions be satisfied. Determining the

amplitudes will in turn result in a fixed discrete spectrum of solutions for the possible basal

compliances. Conversely, if the basal compliance is provided, calculating the amplitudes will

return a discrete set of solutions for the real and imaginary parts of one of the response

coefficients. These are the critical modes in Camalet and Jülicher (2000), two examples are

shown in Figure 5.

3. Fitting procedure
The fitting procedure was done as follows. Given a set of values for the response coefficients �,

b and g, a theoretical solution  the was obtained in the manner described in the previous

section, up to an arbitrary complex amplitude. Given this solution, the force balance �bDb ¼

Fð0Þ allows us to determine �b. If the value for the real or imaginary parts of �b were negative,

corresponding to an active base, the solution was discarded. If they were positive, then the

complex amplitude was chosen as to minimize the mean square displacement R2ð the;  expÞ

given by

R2 ¼ 1�

PN
i¼1 j expðsiÞ� theðsiÞj

2

PN
i¼1 j expðsiÞj

; (22)

where N ¼ 20 and the points si were equally spaced along the axonemal length. Finally, a

value of R2<1 was obtained. This quality function, which takes the response coefficients as an

input, was maximized with the routine Find Minimum of Mathematica 10 using the Principal

Axis method.

4. Sign convention
The signs of the geometric parameters such as sliding displacement, tangent angle and

curvature, as well as the forces, are defined in Figure 10. The tangent angle is measured with

respect to the horizontal x axis and grows counter-clockwise (the xy frame has the usual

orientation). When a dynein motor is attached to the upper filament and walks towards the

base on the lower filament (corresponding to the minus end of the microtubule), the filament

pair bends downwards: the tangent angle is therefore negative ( < 0), as is the curvature

( _ < 0). The sliding displacement, in which the lower filament extends beyond the upper

filament, is therefore also negative (D < 0). The force generated by this motor on the lower

filament is defined as positive (f > 0) as the lower filament slides with its distal end leading.

The integrated force acting at the base, Fb ¼ �
R L

0
f ðsÞds is therefore negative. This is

consistent with the static force balance equation, k _ ð0Þ ¼ aFb, in which the basal curvature

( _ ð0Þ) and the basal force have the same sign. The sliding force will tend to make the upper

filament extend leftwards beyond the lower one; because the basal force and the basal shear

have the same sign, this shear is therefore negative (Db < 0).

The signs of the parameters shown in the Figures and defined in the equations are consistent

with this convention. For example, because the flagellum swims counterclockwise, the tangent

angle slowly grows more positive over time, as shown in Figure 2Aiii. Also, the average angle

shown in Figure 3Aii has a negative slope, which corresponds to a negative static curvature

C0 < 0.

Sartori et al. eLife 2016;5:e13258. DOI: 10.7554/eLife.13258 25 of 26

Research article Biophysics and structural biology Cell biology

http://dx.doi.org/10.7554/eLife.13258


5. Estimation of mechanical parameters of the axoneme
The only mechanical parameters entering the problem are the bending rigidity k, the spacing a

of the filaments, and the two friction coefficients �n and �t.

The bending rigidity of a single microtubule is » 20 pN�m2 (Gittes et al., 1993) and see

(Schaedel et al., 2015) and the bending rigidity of one doublet is expected to be

approximately three times that of a single microtubule (Howard, 2001). Together, the

axoneme is comprised of 9 doublet and 2 singlet microtubules which amounts to a bending

rigidity of 580 pN�m2.

The diameter D of the axoneme, determined from a circle through the centers of the 9

doublets, is 192� 4 nm (SD, n=19), measured from two different axonemes in Figure 1 of

Bui et al. (2012) and Nicastro (2006). The spacing between the centers of adjacent doublets,

a, is given by a ¼ D sinðp=9Þ, which is 66 nm. The hydrodynamic radius r of the axoneme was

calculated as r ¼ ðDþ 25 nmÞ=2 and was 108 nm.

The tangential and normal friction coefficients per unit length of a slender rod of

hydrodynamic radius r near a surface (at height h from surface to rod center) are given by

�t » 2ph=lnð2h=rÞ, where h is the viscosity and �n ¼ 2�t (Riedel-Kruse et al., 2007). Considering

the axoneme being immersed in water at 24�C (h ¼ 0:91 10�3pN s�m�2), and beating at height

h ¼ 0:55�m, from the surface, then �t » 0:0025 pN s�m�2 and �n » 0:0049 pN s�m�2.
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