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Abstract
Tissues can be characterized by their homeostatic stress, i.e. the value of stress for which cell division
and cell death balance.When two different tissues grow in competition, a difference of their
homeostatic stresses determines which tissue grows at the expense of the second. This then leads to the
propagation of the interface separating the tissues.Here, we study structural and dynamical properties
of this interface by combining continuum theory withmesoscopic simulations of a cell-basedmodel.
Using a simulation box thatmoves with the interface, we find that a stationary state exists inwhich the
interface has afinite width and propagates with a constant velocity. The propagation velocity in the
simulations depends linearly on the homeostatic stress difference, in excellent agreement with the
analytical predictions. This agreement is also seen for the stress and velocity profiles. Finally, we
analyzed the interface growth and roughness as a function of time and system size.We estimated
growth and roughness exponents, which differ from those previously obtained for simple tissue
growth.

1. Introduction

Themechanics of growing tissues has receivedmuch attention recently fromphysicists and biologists alike. For
example, in the case of cancer tissue growth is determined by the competition for space between a tumour and
healthy host tissue. A key characteristic determiningwhich tissue can grow as the expense of the other was
proposed to be the homeostatic stress [1]. It is defined as the value of the stress for which cell division and cell
death balance, corresponding to a homeostatic state with constant cell number and cell density.

For larger (expansive) stresses, the balance is shifted towards cell division, while for lower (compressive)
stresses, it is shifted towards cell death. Therefore, if homeostatic stresses are isotropic and if we ignore surface
effects, the tissuewith the lower homeostatic stress in general growswhile the onewith larger homeostatic stress
disappears by cell death.

Tissue growth is affected by boundary effects and by externalmechanical forces [2–5]. Such effects also play a
role at interfaces that separate different tissues [6, 7]. A simplemechanical argument shows how the interface
between a tissue and surrounding liquid, or a tissue-air interface, could affect tissue growth: a cell has to increase
its volume in order to grow and divide. Considering a growing cell for simplicity as a strain dipole, we can discuss
thework associatedwith the insertion of the strain dipole into the tissue. It can be shown that to insert a strain
dipole near the surface (where a part of the strain field does not contribute to thework) requires lessmechanical
work as compared to the case where the dipole is inserted in the bulk. As a consequence, cell division and growth
occur at a larger rate near the surface. This effect has been demonstarted bymesoscale simulations of growing
tissue spheroids [8].

The population dynamics of two competing tissue layers growing on a substrate has been studied recently by
a generalized Fisher–Kolmogorov equation that takes into account the effects of tissue stresses [9]. The Fisher–
Kolmogorov equationwas originally proposed to describe the kinetics of spreading of advantageous alleles in a
population [10]. The resulting traveling-wave solutions are driven by diffusion. Therefore, for vanishing
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diffusion coefficient, the velocity of thesewaves approaches zero. In this work, we explore the properties of
pressure-driven tissue competition by combiningmesoscale simulations of a cell-basedmodel with continuum
theory.Wefind that the tissuewith the lower homeostatic stress takes over the system via the propagation of a
growth front thatmoveswith constant velocity. Themain characteristics of themoving tissue–tissue interface in
the simulations, namely the stress and velocity profiles, agree verywell with analytical calculation in the
continuum theory. Over time, afinite interface width develops. This interface width exhibits a power-law scaling
with system size that characterizes interface roughness.

2. Cell-basedmesoscopicmodel

In order to study the competition between tissues, we used the simulation approach introduced in [11, 12]. A
growing cell is represented by two point particles i and j that are pushed apart by a growth force

( ) ˆ= +F rG r rij
g

ij ij0
2 . HereG is the strength of this repulsion, rij is the distance and r̂ij the unit displacement

vector between the centers of particles i and j, and r0 is a length scale at which the force saturates. This growth
force is opposed by external stresses, and cell-internal friction gc . This internal friction sets the growth velocity
togetherwith the growth strengthG. Upon reaching a certain critical size rc, the cell divides. Division implies that
newparticles are added in very close proximity to i and jwhich then define two separate cells. Apoptosis is
introduced as a constant rate ka at which particles corresponding to a cell disappear. These are the only active
processes in themodel; the remaining passive interactions resemble soft sticky spheres. The impenetrability of
cells is ensured through the volume exclusion force ( ) ˆ= -F rf R r 1ij ij ij

v
0

5 5 with the cell–cell potential coefficient
f0 and the rangeR of all pair potentials acting on all pairs of particles i j, that do not belong to the same cell.
Adhesion is represented by a simple constant force ˆ= -F rfij ij

a
1 , where f1 denotes the adhesion strength, again

acting only on all pairs of particles i j, not belonging to the same cell. Additionally, cells dissipatemomentum
and energy on the tissue scale by a friction gt with neighbouring cells. All dissipative forces are accompanied by
appropriate random forces. Noise intensity is strong enough to break localminima, but small enough to have
otherwise no noticeable effect. In particular it is not strong enough to lead to significant cell diffusion by itself. So
far themodel is identical to the one presented in [11–13]. Here however, we focus onthe competition between
cell sheets, growing on a substrate. Thus, the simulations are restricted to two-dimensions and a friction force

g= -gF vi bg i is introduced describing the interactionwith a substrate. In the supporting information (SI)we
provide a comprehensive list of all parameters. This in-silico tissue grows in number of cells until itfills all
available space.When the compartment isfilled, the pressure increases and slows downdivisions to the point
where they are exactly balanced by apoptosis. The pressure at this stationary state is the homeostatic pressure PH,
or equivalently the homeostatic stress s = -PH H.

The homeostatic stress sH of the tissue depends on the choice ofmodel parameters. In particular, it can be
varied by changing the growth-force strengthG, as shown in [13]. In the remainder of this work, wemeasure
space in units of the particle interaction rangeR, time by the apoptosis rate ka (per definition equal to the division
rate in the homeostatic state), and force in units of G R0

2, where =G G0 for theweaker tissue in all simulations
of competing tissues. Thuswe report stresses normalized by R G4

0. All rescaled quantities are denoted by an
asterisk, e.g. *s s= R G4

0.
The spatially resolved stress tensor at any pointP is obtained through a virialmethod similar to the one

described in [14] (see SI for details). Note that in our case all forces, in particular the growth force, arise frompair
interactions and contribute to the stress. This is different from simulations of activemicro swimmers, where an
additional swim stress contributes to the overall stress of the system [15, 16].

For computational efficiency, we designed a set-upwith a co-moving simulation box, whichwe call
treadmilling. The simulation box consists of bounce-back boundaries in x- and periodic boundaries in
y-direction, and is initiallyfilledwith one type of cell (A)which is grown until it reaches its homeostatic state.
Then, all cells with <r L 2x x are changed to another type of cell (B) that has the same interaction parameters,
but an increased growth forceG, balanced by an increased intra-cell friction coefficient gc to generate
approximately the same free growth rate. Thus,Bhas a smaller homeostatic stress thanA. The system size Lx is
chosen such that both tissues reach their homeostatic state sufficiently far from the interface. Since the tissue
with the lower homeostatic stress (larger homeostatic pressure) pushes aside the other, the interface is kept at
L 2x by displacing all cells every 1000 integration steps by - á ñL h2x , where á ñh refers to the current averaged
interface position. In order to remove the excess number of cells of the stronger tissue, all cells entering a small
region near the hardwall are taken out of the simulation. The background friction near this region is
continuously increased to ten times its bulk value, such that cell velocities become negligible in accordancewith
a bulk situation. Theweaker tissue simply replenishes itself by growing into the free space that opens up after the
cell displacement step (see SI for further details).We verified the validity of this approach by comparing the
results to those offixed boundaries simulations (see SI).
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Due to overhangs and island formation (seefigure 1(a) and SImovies S1 and S2) a unique interface position
is not easily defined. Apart fromutilizing the cell number fraction, defined below, to characterize the interface
position andwidth, we also employVoronoi tesselations, which are determined by the programTriangle [17].
All Voronoi edges that separate particles of different tissue types are therein defined as part of the interface.

3. Tissue competition

3.1. Interface dynamics in themesoscopic simulations
Simulating two tissues that only differ by their homeostatic pressure, wefind a stable steady-state interface in a
co-moving simulation box. Starting froman initiallyflat interface, we observe a roughening over time, with
interface width reaching a finite plateau on longer time scales (see figure 1). The interfacemoveswith a constant

Figure 1.Properties of a quasi one-dimensional competition. (a) Simulation snapshots at early and late times for relatively thin channels
( )=L R 20 . The image shown is zoomed in into the interface region ( *s sD = D =R G 0.18H H

4
0 , width =L R 20y , total length

=L R 140x , only central region ∣ ∣ <s R 30 is shown). The stronger tissue (red, s » -R G 0.78H
4

0 ) invades into theweaker tissue
(blue, s » -R G 0.6H

4
0 ). The initially flat interface roughens over time, while propagating to the right. Note that the scale is the same

as for (c) and (e). (b) Interface height h (average position of the interface) as a function of time t for three different homeostatic stress
differences *s sD = D R GH H

4
0. (c)Velocity profile vx(s) as a function of position s. Solid blue line represents analytical prediction,

where the parameters are obtained by separate independent simulations. (d) Interface widthw as a function of time t for three different
homeostatic stress differences *sD H. (e) Stress *s s= R Gxx xx

4
0 as a function of position s. The dashed lines correspond to the

homeostatic stresses of the two tissues. Solid blue line as in (c). (f) Interface velocity v0 as a function of the homeostatic stress difference
*sD (solid blue line as in (c)). (c) and (e) correspond to time averages of one simulationwith a run length of =Tk 80a and a system

width =L R 20. Each point and line in (b) and (d), (f) correspond to a single simulation.
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velocity v0 that depends on the homeostatic stress difference sD H. The local average cell velocity vx in the lab
frame depends on the distance from the interface. It decays from the interface velocity v0 to zero on afinite length
scale l »R 10 for increasing distance from the interface. The coordinate s refers to cell position in a comoving
coordinate system = -s x v t0 , with s=0 describing the interface position. The stress profile ( )s sxx varies on
the same length scale fromone homeostatic stress to the other as shown infigure 1(e). Note that both tissues
indeed reach their respective homeostatic stresses far away from the interface. In the sections below, we study the
competition and interface properties using our simulations and analytic theory.We focus on competition of
tissues growing on a substrate in two-dimensions, and analyze the emerging stress and velocity profiles as well as
the interface propagation and interface width.

3.2. Velocity and stress profiles
The velocity and stress profiles can be understood using a simple continuummodel in one-dimension. The
competition between two incompressible tissuesA andBwith constant density is governed by the cell-number
balance equation

( ) ( ) ( )j j j j¶ + ¶ = - -v k k 1 , 1A x A
A B

A At

wherewe have neglected for simplicity terms corresponding to cell diffusion.Here

( ) ( )
( ) ( )

( )j =
+

x t
n x t

n x t n x t
,

,

, ,
2A

A

A B

is the number fraction ofA type cells, where ( )n x t,c is the total number density of cells of type { }=c A B, at
time t and position x. The velocity field v is determined by a generalized incompressibility condition

( ) ( )j j¶ = + -v k k 1 , 3x
A

A
B

A

which relates the velocity gradient to the growth rates k c. The growth rates k c, in turn, depend on the local
stressσ

( ) ( ) ( )s k s s= - -k , 4c c c
H

wherewe have expanded to linear order and neglected higher order terms, see [1]. The growth coefficients kc

and homeostatic stresses sc
H are tissue properties and the onlymodel parameters. Equation (1) is solved in a

comoving coordinate system = -s x v t0 by ( ) ( )j = Qs sA , theHeaviside step function describing a sharp
interface, where v0 is the interface velocity. Force balance implies

( ) ( ) ( )s r g¶ =s v s2 5s bgb

with the cell density rb and the substrate friction coefficient gbg . The velocity v(s) is determined by equation (3),
which then results in the stress profile

( )
( )( ) ( )

-
s

s l

s l
=

+

+ - >

s s
l l l

s s
l l l

-
+

-
+

⎧
⎨⎪

⎩⎪
s

s

s

exp for 0,

exp for 0.
6
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H

H

A B
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B A
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H H

H H

The characteristic length scale ( )l k r g= -2c
c

bg
2

b
1 is fixed by the friction gbg , the bulk density rb, and the growth

coefficients kc. Note that ( ) ( ) ( )s s l s l l l= + +0 A
B

B
A A BH H is theweighted average of the homeostatic

stresses, which simplifies to ( ) ( )s s s= +0 2A B
H H for l l»A B. Thefinite length lc leads to interfacemotion

with a constant interface propagation velocity

( )
( )

rg
s

s
rg l l

= ¶ =
D

+
=

v
1

2 2
7

bg
s

s bg A B
0

0

H

that depends linearly on the difference in the homeostatic stresses, s s sD = -A B
H H H.

Wefind the prediction for the stress profile to be in very good agreementwith the simulation results (see
figure 1). In order tomake such a comparison, we characterized the tissues used in the simulations by the
methods outlined in [13], which result in the growth rate coefficients kc, the homeostatic stresses sc

H, and the
bulk density rb (see SI). The velocity profile, which can be obtained analytically from equations (5) and (6), also
agrees verywell with the simulations (see figure 1(b))without adjusting any parameters. Furthermore, the linear
dependence of the interface velocity v0 on the homeostatic pressure diffrence sD H in the simulations can be
understood by the analytical calculation (seefigure 1(c)).

3.3. Interfacewidth
Over the course of the simulations, we observe afinite steady-state width of the interface thatmainly depends on
the channel width L. Figure 2(a) shows a typical snapshot of the interface for a relatively wide channel. To
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quantify the interface width, we define ( ) = á ñ - á ñw t h h2 2 , with the interface function ( )h y t, . Thefirst two
moments of this function are determined by (see SI)

( )ò já ñ =h xd , 8
L

A
0

x

( )ò já ñ =h x x2 d . 9
L

A
2

0

x

Wecan then follow the evolution of the interface widthw(t) over time, as shown infigure 2(b). For small times t,
w displays a power-law increase with time, ( ) ~ bw t t (with growth exponentβ), asmight be expected by
analogywith othergrowing interfaces. For two identical tissues, onewould expect an ever growing interface
width.However, a difference solely in their respective homeostatic stresses, is enough for interface width to
saturate over time (see figure 2(b) and inset). This saturated interface width growswith the system size L, and
seemingly obeys a scaling relation ~ aw Lsat [18], whereα is called the roughness exponent (see figure 2(c)).We
obtainα from afit ofwsat(L) and afit of the structure factor

( ) (̃ ) (̃ ) ( )( )= á - ñ µ a- +S k h k h k k 102 1

in the steady state (see [19–22] for details). Here, (̃ )h k t, denotes the Fourier transformation of the height
field ( )h y t, .

From suchfits, we obtain roughness exponentsα in the range of 0.2–0.4 and growth exponentsβ in the
range of 0.4–0.5 (see figures 2(c) and (d)). Both exponents do not vary systematically with either the homeostatic
stress difference sD H or the system size L. In the case of sD =R G 0.184

0 system size was varied between
=L R 6 and =L R 400 (in the case of sD =R G 0.08 0.364

0 between =L R 10 and =L R 200), thus,
covering nearly three orders ofmagnitude.

3.4. Island formation
The simulations revealed another interesting phenomenon: the interface is not a single-valued function, butwe
furthermore observe islands of weaker tissue left behind in the stronger tissue, (see figure 3(a) and SImovie S1).

Figure 2. Interface width and saturation width as a function of time, system size and homeostatic stress difference. (a) Snapshot of an
interface for awider systemwith =L R 100. (b)The interface widthw as a function of time t for different homeostatic stress
differences *s sD = D R G4

0 for a system size L=20.Note the double logarithmic scale. The inset shows the same datawith a linear
scale. (c)The saturationwidthwsat for different homeostatic stress differences *sD as a function of the system size L. Dashed lines
represent power laws. (d)The dynamic structure function S(k ) as a function of thewave vector k for L=100 and different *sD . All
error bars represent standard deviation.
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These islands consist of cells of theweaker tissue that eventually die due to their higher homeostatic stress.We
characterize the island formation usingVoronoi tesselation (see figure 3(b)), as outlined in themethods section.

The average number of islands á ñnI per unit length is independent of the system size L but seems to vary non-
monotonically with the homeostatic stress difference sD H (see figures 4(a) and (b)). In the limit of sD = 0,
both tissues are the same and thuswouldmix completely on large time scales, i.e. the number of islands is
expected to diverge as sD approaches zero. For larger sD , on the other hand, the increasing interface
propagation velocitymay explain the higher detachment rate and thereby an increased number of islands.

3.5. Stress across interface
So far, we have only considered the principal stress sxx in the direction perpendicular to the interface. The
interface, on the other hand, breaks the x–y isotropy, which results in a surface tension

( ( ) ( )) ( )ò s sG = -
-¥

¥
s s sd 11yy xx

(see e.g. [23]). In our simulations, however, the interactions between all cells (even of different type) are exactly
the same and, thus, no ‘static’ interface tension should be observed.On the other hand, the anisotropic active
growth of the cells have to be considered for the overall stress.Wewrite the stress equations for an anisotropically
growingmaterial in 2d under the assumption of incompressibility (see [24])

Figure 3. Island formation. (a) Snapshot of the simulation data for =L R 20 and sD =R G 0.184
0 . Note the islands that detach

from the interface andmove away. (b) Interface determined by aVoronoi tessellation for the same data as in (a).

Figure 4. Island formation rate. (a)Average number of islands per system size L as a function of L for different homeostatic stress
differences *s sD = D R GH H

4
0. (b) Same as in (a) but as a function of the homeostatic stress difference *sD H for two different system

sizes L. The solid blue line is a guide to the eye. All error bars represent standard deviation.
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( ) ( )s d h m= - + ¶ + ¶ -ab ab a b b a abP v v k Q
1

2
. 12g

Here,-P represents the isotropic part of the stress tensor, η is the shear viscosity, kg is the growth rate,μ is the
strength of the anisotropic growth, and = -ab a bQ p p2 1 is the nematic-order tensor that is often used in the
context of liquid crystals to characterize nematic order (p is a unit vector describing the preferred axis of growth;
in the simulations it is the vector connecting the particles constituting one cell).We consider kg to be a constant
since in our simulations all cells always growuntil they divide; there is no distinction between the different
phases of the cell cycle. Thus, all cells contribute to anisotropic part of the stress, independent of the actual
division rate. Hencewe shorthand m m¢ = kg in the remainder. In the integral (see equation (11)) all but the
anisotropic part of the active stress drop out.We thus arrive at an interface tension, which is active in nature
because it is caused by the anisotropic active growth of the cells.

Wemeasured the difference in the principal stresses s s-xx yy aswell as the order parameterQxx as a
function of the distance s to the interface in our simulations (see figures 5(a) and (b)). Both seem to show the
same behavior. Neglecting shear viscosity and assuming ( ) ( ) ( ( ))m m m j m j¢ = ¢ = ¢ + ¢ -s s s1A

A
B

A to be
proportional to the concentration profile ( )j sA , where m¢c are the directed growth coefficients that differ for
both tissues, wewrite the difference in principal stresses as

( ) ( ) [ ( ( )) ( )] ( ) ( )s s m j m j- = ¢ - + ¢s s s s Q s2 1 . 13yy xx
B

A
A

A xx

A least-squaresfit of s s-yy xx as a function ofQxx(s) and ( )j sA results in coefficients m¢c that are roughly
constant for different system sizes L, but differ considerably for different growth force strengthsG, as would be
expected (see SI). This leads to an effective surface tension that arises from the directed growth of cells.Wefind
the surface tension to growwith the homeostatic stress difference, while it is roughly independent of the system
size (see figures 5(c) and SIfigure S7).

It has been shown previously that velocity gradients can align cell divisions [25] and, indeed, wefindQxx to
be proportional to ¶ vx x. The proportionality constant, however, depends on the absolute value of the stress.
Similar to the island formation, vanishing homeostatic stress difference leads to vanishing surface tension, but
diverging interface width (see figure 5(d)).With increasing homeostatic stress difference the interface tension
increases, and thewithfirst decreases, but than increases again for larger differences in homeostatic stress. It is

Figure 5. Interface stress, order and interfacial tension. (a)Normalized stress difference * *s s-xx yy as a function of position s for L=20
and three homeostatic stress differences *sD H. (b) Interfacial tensionΓ as a function of the homeostatic stress difference *sD H for two
system sizes L. (c)Order parameterQxx as a function of position s for L=20 and three homeostatic stress differences *sD H. (d)The
saturationwidthwsat as a function of the interface tension *G = GR G3

0 for two system sizes L. Solid blue lines in (b) and (d) are guides
to the eye. Stress and order in (a) and (c) have been averaged over the channel width y, simulation time and eight ensembles. All error
bars represent standard deviation.
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important to note that the saturated interface widthwsat and its scaling is not dominated by the aforementioned
interfacial tensionΓ.We observe no systematic decrease ofwsat withΓ as would be expected for surface tension
dominated scaling, but instead a slight increase of the interface width for higher tension (seefigure 5(d)).

4. Summary and conclusions

Wehave investigated the interface dynamics of two competing tissues with different homeostatic stresses. In the
context of the continuum theory of growing tissues, this difference leads to a take-over of the tissuewith the
lower homeostatic stress [9].We have shownby analytical calculations for the interface dynamics in one
dimension that an interface propagates at a constant velocity even in the simple case of vanishing diffusion. The
interface velocity depends linearly on the difference in the homeostatic stresses of the tissues.

We employ an established simulationmethod tomodel the competition of tissues growing on a substrate in
two-dimensions.Wefind the analytical predictions to capture the stress and velocity profiles of our simulations
qualitatively and even quantitatively. For the latter, a few tissue characteristics are obtained from independent
single-tissue simulations. Furthermore, the linear take-over and, in particular, the linear dependence of the
interface velocity on the homeostatic stress difference are reproduced in our simulations aswell.

The initially flat interface profile grows inwitdthwith a power law for short times, saturating on longer time
scales. This saturationwidth obeys a power-law growthwith the system size. Lacking published experimental
data of tissue competition on substrates, we compare the scalingwith colonies growing freely, i.e. not in
competitionwith second tissue. The obtained exponents clearly differ significantly from those previously
determined for free in vitro growth of 15 different cell lines as well as in vitro growth of 16 different tumors [22]
(b = 3 8, a = 3 2). In order to calculate the roughness exponent for real tumors, slices through surgically
removed tumorswere analyzed. Furthermore, the roughness exponent found in freely growing bacterial
colonies [26] (a » 0.78) is stillmuch larger than the onewe estimated. Instead, our results aremore similar to
those obtained by a cellular automatonmodel of a single growing tissue [21]which showsKardar–Parisi–Zhang
(KPZ) scaling [27] (b = 1 3, a = 1 2). KPZ is one of the standard theories for growing interfaces, like in
ballistic deposition.More recent experiments on growingmicrobial colonies [28] also indicate aKPZ scaling.
However, it is important to note that the typical length scale onwhich the stress changes across the interface in
our simulations is of the order of l »R 10, such that even the largest feasible simulationswith =L R 400 are
only one order ofmagnitude above this length scale.

Although cell–cell interactions in our simulations are identical even between different cell types, a non-zero
interface tension is found in our simulations. This interface tension can be understood qualitatively by the
anisotropic active cell growth. It is thus fundamentally different from thermodynamic interface tension and
results from anisotropic active stresses at the interface. Futhermore, ourfindings show that this interface tension
does not control the scaling of the saturationwidth of the interface.

These findings suggest that competition experiments provide a powerful tool to study the growth dynamics
of tissues. In particular we find that interface velocity, velocity decay length, island formation, and the stress
profile are to a large degree independent of the system size.We show that they depend in awell-defined, algebraic
maner on tissue properties (homeostatic stress, background friction, growth coefficient). Traction force
microscopy of growing and competing tissue colonies [29–31] could shed light on the role of homeostatic
pressure on growth.

Ourwork brings the by-now classical field of nonequilibrium interface dynamics [20] to intrinsically
growing systems. It results in novel dynamical interface features yet to be studied on a fundamental level.
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