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Abstract

We present a hydrodynamic theory to describe shear flows in developing epithelial tissues. We
introduce hydrodynamic fields corresponding to state properties of constituent cells as well as a
contribution to overall tissue shear flow due to rearrangements in cell network topology. We then
construct a generic linear constitutive equation for the shear rate due to topological rearrangements
and we investigate a novel rheological behaviour resulting from memory effects in the tissue. We
identify two distinct active cellular processes: generation of active stress in the tissue, and actively
driven topological rearrangements. We find that these two active processes can produce distinct
cellular and tissue shape changes, depending on boundary conditions applied on the tissue. Our
findings have consequences for the understanding of tissue morphogenesis during development.

1. Introduction

During morphogenesis, epithelial tissues grow and reshape to form different organs in the adult animal. These
tissue shape changes result from external stresses acting on the tissue as well as from autonomous force
generation by cells [1-3]. Cellular forces induce cell deformations and topological rearrangements of the
network of bonds joining the cells. Topological rearrangements occurring in tissue morphogenesis include
neighbour exchanges through T transitions, cell divisions and cell extrusions. During T transitions, an edge
joining two cells shrinks and two neighbours loose their contacts, resulting in a 4-fold vertex (figure 1(A)). A new
bond can then form, establishing a contact between two cells which were not neighbours before. During cell
divisions, a new bond is formed between the two daughter cells, and during cell extrusion, an entire cell leaves
the tissue (figure 1(A)). Topological rearrangements fluidify the epithelium through neighbour exchanges
events, as has been observed in cell aggregates under compression [4], or through cell divisions and extrusion [5].
In passive systems such as foams, topological rearrangements occur as a response to an external force deforming
the system [6, 7]. In biological tissues, which work out-of-equilibrium, topological rearrangements can however
be internally driven by the system to generate deformation. In germ-band elongation of Drosophila embryos for
instance, T} transitions are preferentially oriented, with cell bonds removed along the dorso-ventral axis of the
tissue and added along the antero-posterior axis, and are actively driven by the cells [8, 9], leading to tissue-scale
reorganisation and flows. Similar actively driven oriented cell neighbour exchanges contribute to so called
convergent extension processes that elongate the embryo along the body axis during development in many
animals[10, 11].

During tissue morphogenesis, tissue deformation can either arise from deformation of individual cells of the
tissue, or from topological rearrangements of the tissue: for instance, cellular neighbour exchange can resultin
shear by rearranging the cell positions, without overall cell deformation (figure 1(B)). The contribution of
topological rearrangements to tissue flows has been measured to be a significant component of total tissue
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Figure 1. (A) Cellular processes contributing to tissue deformation. Cell elongation: deforming cells reshape tissue proportionally to
cell area and elongation change. T} transition: duringa T transition two cells lose a bond they share (red bond) and after passing
through 4-fold vertex configuration (middle) a new bond (green) is created between the other two cells taking part in T} transition.
Cell division: cell division produces two new daugher cells from a mother cells. Cell extrusion: during a cell extrusion a single cell (red)
is removed from the tissue. (B) Tissue deformation can arise from changes in cell elongation (top) and from topological
rearrangements (bottom). Note that in the figure topological rearrangements were represented by T) transitions but in general they
can include both cell divisions and cell extrusions. (C) Cell state properties: cell area, cell elongation and structural anisotropy of cells
are represented by hydrodynamic fields. (D) Active anisotropic processes in a tissue can result in anisotropic active stress (top), or
drive actively oriented topological rearrangements (bottom). Active stress and shear due to active topological rearrangements produce
different cell and tissue behaviour (see section 4.4).

deformation in some morphogenetic processes in Drosophila [12—15]. Similar decomposition approaches of the
large scale material deformations were also used to study flows in foams [16—18]. It is however unclear how cell
deformation, topological rearrangements and the overall tissue flow are physically coupled to each other.

The collective behaviour of cells in epithelia based on mechanics of single cells can be captured by different
models [19-22]. Vertex-model numerical simulations for instance attempt to capture the mechanics of
epithelial tissues by representing the tissue by a network of bonds [22]. The vertices are then subjected to forces
derived from an effective mechanical energy, taking into account line tensions acting on the edges of the
networks and an area elasticity. Cell-based simulations of tissues however require making specific hypotheses on
cell mechanics. Alternatively, continuum theories have been proposed to describe tissue growth and
deformation due to cell proliferation [5, 23-26], cell neighbour exchanges [4] or both [13, 27]. Collective
migrations in cell monolayers have been studied using continuum models that couple the tissue mechanics with
the tissue polarisation and to the concentration of a chemical activator [28-31].
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We have recently studied the cell deformations and tissue flows occurring during morphogenesis of the
Drosophila pupal wing [13]. We found that topological rearrangements are oriented relative to the tissue axis and
their preferred orientation exhibits a complex dynamics. The orientation of topological rearrangements has an
intrinsic bias and responds to cell shape changes with a delay. Motivated by these observations, we developed a
continuum model that describes the rate of shear due to topological rearrangements by a linear constitutive
equation that captures its behaviour.

In this work, we study the dynamical properties of this continuum model, including a response with
memory of topological rearrangements to cell shape, as well as active contributions to stress and shear due to
topological rearrangements.

In section 2, we present a generic hydrodynamic theory of flowing tissues with memory. We introduce
hydrodynamic fields corresponding to the observable cell properties (figure 1(C)). Note that we use the word
hydrodynamic here to denote a field relaxing slowly on large spatial scales.

In section 3 we construct generic linear constitutive equations for a polar tissue, characterising the tissue
stress as well as the shear created by topological rearrangements. A set of phenomenological coefficients is
introduced in these equations, characterising the response of the tissue. These coefficients are emerging
properties of a tissue and can be experimentally measured. Similar to active gels [32, 33], an active stress can exist
in the system from the forces generated inside cells by the cytoskeleton. In addition, we introduce an additional
active term, distinct from an active stress, which describes active anisotropic topological rearrangements
internally driven by the system.

In section 4 we consider an exponentially decaying memory kernel in the constitutive equation for shear,
which was found to account for the behaviour of the shear due to topological rearrangements in the Drosophila
wing morphogenesis [ 13]. We explore the physics predicted by this model. In sections 4.1 and 4.2 we study the
influence of memory effects on the tissue rheology. These memory effects can lead to oscillations in the tissue.
We then show that the memory effects give rise to an effective inertia which is not related to the physical mass of
the tissue. In section 4.3 we discuss the relation between the tissue model proposed here and the behaviour of an
active viscoelastic nematic gel close to equilibrium. In section 4.4 we discuss the dynamics of the tissue and cell
deformation in a rectangular homogeneous tissue, and we find qualitative differences between tissues driven by
the active stress and flows driven by active topological rearrangements, depending on boundary conditions.
Finally, in section 4.5 we discuss active tissue Couette flow where a stall force has to be applied to stop tissue from
flowing spontaneously.

2. Hydrodynamic description of a flowing tissue

2.1. Cell density balance

We consider a tissue consisting of cells with local cell number density n. The cell number can change through
cellular events such as division and extrusion. Denoting the rates of cell division and extrusion per cell k;and k.,
respectively, the balance of cell number can be expressed as

On + Or(nvy) = n(ky — k), ey

where we have introduced the cell velocity field v;.

2.2.Velocity gradient
Deformations of the tissue result from spatial inhomogeneities of cell velocity v;, described by the velocity
gradient tensor

Vij = 8,-1/]-. (2)

The velocity gradient matrix can be uniquely decomposed into a sum of isotropic, traceless symmetric and
antisymmetric terms

1 -
vij = Evkkéij + 7 + wij, (3

where d is the number of dimensions. In the following we will discuss two-dimensional tissues, but extension to
the d = 3 case is straightforward. The trace of the velocity gradient vy describes local changes in tissue area, the
traceless symmetric part ¥; = (vj + vj;) /2 — ;v /d is the pure shear rate and the antisymmetric part

wij = (vjj — v;;) /2 corresponds to local rotation of the tissue.

2.3. Cell properties
We propose a description of tissue flows at the scale larger than the typical cell size, but we retain information on
the properties of cell shapes. The cell shape is characterised by the average cell area a and the cell elongation
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nematic tensor Q;; (figure 1(C)) describing the cell shape anisotropy. The average cell area of a cellular patch can
be definedas a = 1/n, where nis the cell number density. The cell elongation nematic has a magnitude Q
characterising the strength of cell elongation, and an angle ¢ characterising the orientation of the elongation axis
(see appendix A). Different definitions of cell elongation based on cell outlines have been proposed

[13,15, 34, 35]. In the framework of the hydrodynamic theory we propose, we expect these various definitions to
modify phenomenological coefficients but to leave the hydrodynamic equations unchanged. However, we
impose that the definition of tensor Q;;should be such that homogeneous tissue deformation in the absence of
topological rearrangements gives rise to the cell elongation change

= Yij» (4)

where D /Dt is a corotational convected derivative (see appendix B.1).

In addition, intracellular components can be distributed anisotropically inside the cell. Proteins of the planar
cell polarity pathways, for instance, are known to be distributed across opposite cell edges [36]. Here we take into
account the cell polarisation by introducing a nematic tensor field g;; that describes the orientation of anisotropic
structures in cells (figure 1(C)). If the average cell polarity is characterised by a vector field p, the corresponding
nematic tensor is obtained from

1
q; = pp; — Epzéij' (5)

Cell polarity vectors and nematic tensors can be experimentally measured, for instance from the distribution of
polarity proteins on cellular junctions [35, 37]. As for the cell elongation tensor, a particular choice of polarity
definition will affect the phenomenological coefficients of linear hydrodynamic equations but not their

general form.

2.4. Cellular contributions to tissue flows

Isotropic and shear tissue flows can be decomposed in contributions reflecting changes of cellular properties.
First, we note that equation (1) can be rewritten as an equation for the isotropic flow in terms of the average cell
area a and cell division and extrusion rates

1da
Vik = —— + ka — ke (6)
a dt

where d/dt is the convected derivative (see appendix B.1). Therefore, the relative change in tissue area is equal to
the relative cell area change plus the relative change in cell number. Anisotropic tissue deformation stems from
two sources, (1) cellular deformations which can be captured by a change of cell elongation Qj;, and (2)
topological rearrangements which include T} transitions, cell divisions and cell extrusions (see figure 1(B)).
Therefore, the tissue shear flow rate #; can be decomposed according to the following equation

~ D Qij

Vij = — + Ry, @)
where R;;is a shear rate due to topological rearrangements. Note that collective correlated movements of cells
can also contribute to R;; when spatial fluctuations of rotation and growth are correlated with cell elongation
fluctuations [13, 34]. Here we will consider an effective constitutive equation for R;; that does not distinguish the
different contributions arising from topological rearrangements or correlation contributions arising from
coarse-graining.

2.5. Force balance
Viscous forces typically dominate over inertial contributions at the scale of cells and tissues. We therefore write
force balance in the low Reynolds number limit

B0y + f = 0. 8)

Here, 0;; is the tissue stress, and £ is an external force density acting on the tissue.

3. Constitutive relations

In equations (7) and (8) we have introduced the tensorial quantities R;;and oj;, which are determined by tissue
properties. We now propose constitutive relations for these quantities, using general assumptions about physical
processes acting in the tissue. We distinguish in the constitutive equations ‘passive’ terms, which tend to relax
cell elongation, and ‘active’ terms, which act as forcing terms driving cellular flow and deformation. Note that
tissues function out of equilibrium and active processes in the cell can also in general contribute to passive terms:
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for instance, the effective cellular elasticity can depend on the activity of molecular motors in the cell. If cells are
polarised, cell force generation can be anisotropic, giving rise to anisotropic active stress and anisotropic active
topological rearrangements. Both effects are taken into account in our constitutive relations through the cell
nematic polarity tensor g; introduced in section 2.3.

3.1. Tissue stress
The total two-dimensional tissue stress can be decomposed in a pressure P and shear stress &;

oj = —Pbjj + 5. ©

The anisotropic stress in the tissue depends on the cell elongation Q;;and cell polarity g;;. We consider alinear
elastic response of the tissue stress to tissue elongation described by Q;;. In addition we introduce an active
anisotropic stress capturing anisotropic force generation in the cell

i) = [ oct = Qe + [ g - g e (10)

Here the memory kernels ¢ and ¢, have units of a two-dimensional elastic modulus divided by time. They
characterise the response of anisotropic tissue stress to cell elongation Q;;and cell nematic polarity g;;
(figure 1(D)—top), respectively. In general, the memory kernels are fourth order tensors, however, here we
consider the case where all anisotropies have been accounted for by Q;;and g;;and thus the memory kernels are
isotropic.

For completeness, we express the isotropic stress in the tissue as a linear response to the natural strain
In(a/ag) of cell areaa

— a

P=-Kln|—]|, (11
ao

where K is the isotropic elastic modulus and ay is the cell area in a pressure-free tissue. In what follows, we focus

on the role of anisotropic stress and cell elongation.

3.2. Shear rate due to topological rearrangements

Tissue rheology is governed by cell rearrangements described by the tensor R;;. In the spirit of linear response
theory, we express R;;in terms of other relevant nematic quantities, the average cell elongation Q;;and the
internal cell anisotropy g;;. Taking into account memory effects, we write to linear order

R;i(t) = f_ . (t — t)Q;(t)dt' + f_ Oyt — 1), (t)dr'. (12)

The memorykernels ¢_(t) and ¢, () have units of inverse squared time and characterise the response of shear
produced by topological rearrangements to cell elongation and active cellular processes, respectively (figure 1(D)
—bottom). Equation (12) corresponds to the underlying assumption that oriented, anisotropic topological
rearrangements depend on the average cell elongation and the orientation of planar cell polarity. Note that
similarly to the constitutive equation for the tissue stress equations (10) and (11), the constitutive equation (12)
and the memory kernels ¢, and ¢, depend on the material or tissue considered. We expect that passive, apolar
foams can be characterised by the function ¢,_, which describes how bubbles in the foam rearrange as a response
to shear stress applied to the foam. In a biological process driven by anisotropic force generation on cell bonds,
such as germ band elongation [8, 9], we expect the function ¢, to contain information characterising how
internal tissue anisotropy results in oriented topological rearrangements. The functions ¢, and ¢, therefore
carry key information about cellular processes in the tissue, and can be measured experimentally in different
morphogenetic tissues, in the same way that a tissue elastic modulus or viscosity can be measured in a rheological
experiment.

4. Shear flows

Equations (6)—(12) constitute a system of equations which can be solved for the velocity field of the tissue v, the
average cell area a and the average cell elongation field Qj;, once the rates of cell division and extrusion k;and k.,
the cell nematic polarity tensor g;;, the phenomenological coefficients and memory kernels, and boundary
conditions are specified. In the next section, we discuss simple limits of the hydrodynamic theory of tissue flows
we propose here.

4.1. Tissue shear rheology
We first discuss the rheology of a homogeneous passive tissue subjected to external forces driving its
deformation in the absence of active anisotropic cellular processes q; = 0. Moreover, we consider the case

5
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Figure 2. (A) Schematics of the relation between cell elongation and topological rearrangements (equations (7) and (12)). Shear due
to topological rearrangements inhibits itself and cell elongation, which in turn induces shear due to topological rearrangements,
forming a feedback loop with damping. Tissue shear flow can also modify cell elongation. (B) Schematics of the tissue response to a
sudden change in cell elongation. The onset of cell elongation triggers topological rearrangements after a delay timescale 7, which
relax cell elongation over a timescale 7. (C) Shear stress response of a material subjected to a step in shear rate #; (equation (19)). Blue
line: for 3 = —0.2 < 0 the shear stress relaxes exponentially to a steady state value. Green line: for 32 = 3 > 0, the shear stress
exhibits damped oscillations relaxing to the steady state value. Red line: case 75 = 0, 3> = —1, corresponding to a viscoelastic
Maxwell material. (D) Mechanical response function x (w) for the three cases in (C) with corresponding line colours. (E) A network
containing a spring in series with a parallel connection of an inerter and a dashpot has equivalent rheology to a tissue with delayed
topological rearrangements.

where the memory in the response of topological rearrangements to cell deformation arises from one
dominating underlying relaxation process: in that case the long time behaviour of memory kernel ¢_,
introduced in equation (12), is dominated by the largest timescale 7

t et
@@:%I_iaﬁgwmﬂ (13)

Td

which can also be written in a differential form
1
1+ Tdat)Rij = ;Ql] (14)

This equation, together with the shear flow decomposition equation (7), describes the coupled dynamics of cell
elongation and topological rearrangements, schematically represented in figure 2(A). Here, 7, is the delay
timescale over which cells integrate changes in cell elongation, such that changes in R;; are delayed by a time 74
relative to changes in cell elongation Q;;. 7is a characteristic timescale of topological rearrangements,
corresponding to the sensitivity of topological rearrangements to cell elongation (figure 2(B)). This form of
response function was found to describe topological rearrangements during the morphogenesis of the
Drosophila pupal wing [13]. In the limit 7; — 0, the tensor of topological rearrangements is simply proportional
to the tensor of cell elongation R;; = Q;; /7.

Similarily, we discuss here a particular choice of shear stress constitutive relation in equation (10) where
memory effects relax on a timescale much shorter than other relevant timescales. Therefore

gij = 2KQj, (15)

where K is the anisotropic elastic modulus.

Assuming that topological rearrangements are described by equation (14), a relationship between shear
stress and shear flow can be derived by combining the shear flow decomposition equation (7), the constitutive
relation describing shear due to topological rearrangements equation (13) and the shear stress constitutive
relation equation (15)

_ N S B
7 () = i(&afj + ;j:w e €=/ d(fij(t’)dt’). (16)
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For simplicity we ignore here corotational terms. Equation (16) can be rewritten in the frequency domain as
Gij (W) = x (W) 73 (W), 17)

1+ irgw
iwr (1 + iyw) + 1

X (W) = 2n (18)
where 17 = K7 isaviscosity and 7; (w) and &;; (w) are Fourier transforms of #j; (¢) and 5;; (t), respectively (see
appendix B.2). In equation (17) we have introduced the frequency dependent mechanical response function

X (w), which characterises the rheology of the tissue. The function  (w) is plotted on figure 2(D). The poles of

X (w) are in the upper half of complex plane, as required by causality. We now discuss the form of the response
function.

For zero delay timescale, 7; = 0, the response function reduces to x (w) = 21/(1 + iwr), corresponding to
aviscoelastic Maxwell material with relaxation time 7 and long-time viscosity . The viscoelastic behaviour can
be understood as follows: on short timescale, tissue deformation results in cell elongation, and the emergence of
an elastic stress in the tissue. On a timescale larger than 7, cell elongation is relaxed by topological
rearrangements, resulting in the relaxation of elastic stress and a fluid behaviour of the tissue.

For 7; < 7/4, the poles have vanishing real parts and the system response is an exponential relaxation,
similar to the case with zero delay timescale.

For large enough delay time, 7; > 7/4, an original, oscillatory rheological behaviour arises. In that limit, the
poles of the response function y {2 have non-zero real parts and the system exhibits damped oscillations. As a
result, the coupled dynamics between cell elongation and topological rearrangements (figure 2(A)) results in an
oscillatory response of the tissue. To demonstrate this, we consider the stress response &;; (t) to a step function in
imposed shear 7; (t) = 171-? O (t), with O (t) the Heaviside step function. The resulting stress response &;; (¢) reads

fort > 0
- . _ 1-0 . (¢ t
.. — 0 _ e—t/Qm) - -
5;j () = 2n; [1 e ( 2 sm(sz ﬁ) + COS(ZT,;] ﬁ))] (19)

where we have introduced 3 = /47;/7 — 1.Por 3? < 0 the stress relaxes exponentially, while for 52 > 0 it
exhibits damped oscillations (figure 2(C)). Therefore, an experiment where a constant shear rate is imposed in
the tissue should result in a transient oscillatory force response when the delay 7; is sufficiently large.

4.2. Representation by a simple mechanical network

We now discuss whether the rheological properties of the material described by the response function y (w) can
be mapped to a simple rheological behaviour. We first note that the response function in equation (18) cannot be
realised by any finite network of parallel and serial connections of springs and dashpots. This can be shown by
inspecting the real and imaginary parts of x (w)

2n
Rey(w) = S 20
Xw) T2? + (1 — TTyw?)? (20)

T — T4 + TTéwz

Imy (W) = —2nw .
x( K T2 + (1 — TTyw?)?

1)

We note that the imaginary part of the response function can become positive when 7; > 7. As we now explain,
anetwork of springs and dashposts in series and in parallel can only have a non-negative real part and a non-
positive imaginary part of the response function. Let us consider two elements in series or in parallel in a
rheological network, and assume that these two elements have the same sign of real and imaginary part of the
response function at given frequency. One can verify then that the response function of the combined elements
has the same sign of real and imaginary parts than the individual elements (appendix C.1). The response function
of aspring with elastic constant kis x,;,, = —ik /w, and the response function of a dashpot with viscosity 77 is
Xdashpot = 7]- Asaresult, any combination of spring and dashpot elements in series and in parallel has a positive
real part and a negative imaginary part.

However, it is easy to verify that the Laplace transform of the response function y (¢)

1+ 74s

7s(1 + 745) + 1 (22)

X(s) = 2n
is a positive real function. A positive real function is a rational complex function which is real for real values of s
and has a positive real part for Res > 0. The Bott and Duffin synthesis theorem [38] for electrical circuits
guarantees that a positive real response function can be reproduced by a network of resistors, capacitors and
inductors. By drawing a mechanical analogy to electrical networks, one can verify that similarly, any rheological
network with a positive real Laplace transform of the response function can be represented by a network of
spring, dashpots, and inerters. An inerter is an additional mechanical element corresponding to a capacitor in
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electrical networks, in the analogy where electrical current corresponds to stress and electric potential to shear
rate [39]. The response function of an inerter is ;..o = iw# where m is called inertance of the inerter and has
units of mass for a two-dimensional system.

Interestingly, inerters are generally omitted from rheological schemes aimed at describing tissue rheology.
Indeed, because biological tissues operate at low Reynolds numbers, inertial terms associated to the mass density
of the tissue can be ignored when compared to viscous forces. We find here however that a delay in topological
rearrangements introduces an effective inertial term, which does not come from physical masses in the system.
We find that the response function of a tissue with delayed topological rearrangements is equivalent to a circuit
made of a spring connected in series with a circuit of an inerter and dashpot connected in parallel (figure 2(E),
appendix C.2). The inertance of the inerter is given by m = 2K, the effective elastic constant of the spring is
k = 2K and the dashpot viscosity 7 = 2n = 2K7.In [13], we found that equation (14) accounted for
experimental observations with 7 >~ 2 hand 7; = 4 h. Assuming a typical tissue three-dimensional elastic
modulus Ksp =~ 10 Pa and characteristic cellular length-scale I ~ 10 pm, this corresponds to an inertance of
m = 2IK3p 77y = 2 x 10* kg. This inertance is very large compared to the actual physical mass of the system
and arises from memory effects in the system.

4.3. Viscoelastic nematic gel close to equilibrium
We show in appendix D that the shear decomposition equation (7) also applies to nematic viscoelastic gels. In a
gel, the cell elongation tensor Q;; corresponds to the local elastic shear strain. In appendix D, we derive for
comparison constitutive equations for an active viscoelastic nematic gel close to equilibrium, where Onsager
symmetry relations impose relations between the phenomenological coefficients relating fields and their
conjugated thermodynamic forces [40]. Taking into account the internal dynamics of the nematic field in the
gel, we find an effective constitutive equation for the tensor R;;, which responds with a delay to changes in the
local elastic shear strain, and contains an additional term involving a time derivative of elastic shear strain Q;;
compared to equation (14)

(1 + TdDBt)Rij = %Qij + aDD—QtU. (23)
Here, advective and corotational non-linearities, which were ignored for simplicity in equation (14), have been
included. In this work, we consider the simple case where a = 0. We discuss in appendix D parameter regimes
of the viscoelastic nematic gel theory where « is negligible.

4.4. Activity-induced shear flows

We now discuss the effects of the two distinct active processes introduced in equations (10) and (12). We start
from the constitutive equation for the tensor of topological rearrangements, equation (12), and assume that the
two memory kernels ¢ and ¢, are exponential with the same relaxation timescale 7;. This leads to a differential
equation for R;;

1

where A characterises the magnitude of shear flow due to active topological rearrangements. Moreover, we
assume that the response of tissue shear stress to tissue polarity is instantaneous and has magnitude ¢

i = 2KQ;j + qu]“ (25)

Let us first discuss a simple but instructive case of a convergent extension process in a stress free,
homogeneous, polarised tissue. Two distinct active processes can drive tissue and cell deformation: active
topological rearrangements, characterised by the coefficient A in equation (24), and active stress generation,
characterised by the coefficient (in equation (25). At steady state, using equations (7), (24) and (25), one finds
that as a result of these active processes in the tissue, the tissue deforms with the shear rate

V= (—% + /\)qij. (26)
From equation (26), one finds that at long timescales, the tissue is constantly deforming, with a steady-state shear
flow controlled by the active shear coefficient v = —(/(27) + A. Therefore for v = 0, non-zero flows are
present in the steady state. Note that the contributions of the two active processes cannot be distinguished by
observing only the tissue flow for a stress free tissue. However, observing the cell elongation together with the
flow allows to identify the active shear stress (g; = —2KQ; and thus to distinguish the two active processes.

We now discuss the behaviour of our model in a tissue subjected to different combinations of active
processes and boundary conditions. We consider a rectangular shaped, homogeneous tissue, oriented such that
polarity axis is along the x axis: g, = 1, q,,, = 0 (see figure 3(A)). The tissue is constrained in space by an elastic
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Figure 3. (A) A rectangular, homogeneous tissue, is attached to an external solid frame by springs. Active processes drive internal
anisotropic tension and oriented topological rearrangements in the tissue. (B) Time evolution of the shear and cell elongation of a
rectangular tissue, subjected either to active stress (( = 0 and A = 0, top row), or to active shear due to topological rearrangements
(¢ = 0and X = 0, bottom row), under different boundary conditions. The active stress and active shear due to topological
rearrangements give rise to different behaviour of cell elongation and tissue flow. The active shear coefficient 7y is set to be the same in
all cases: 77 = —(/(2K) + A7 = —0.2. Other parameters: 7; /7 = 2 and in the third column, the spring constants are
k¢ /K = k, /K = 1.Note that a Dirac delta peak at t = 0in v,.(t) is not plotted. (C) Active Couette flow, reminiscent of tissue flow in
developing Drosophila genital imaginal disc [41]. The tissue is constrained to have width /1 and the bottom of the tissue is fixed

% (0) = 0 while the top tissue margin is free to slide oy, () = 0. (D) Relation between the velocity of the upper interface and the shear
stress applied. The tissue has a spontaneous flowing velocity v**°™ and a stalling stress 2!,

material connected to a solid frame. The elastic material provides resistance to changes in tissue length and
width. We define the natural strain variables L = In(I/ly) and H = In(h/h), where [, h are tissue length and
tissue width. Introducing the elastic moduli of the surrounding material k, and k,, the external stress acting on

the tissue can be written
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Oxx = — ki L,
oy = — k,H. 27)

Weassume that for t < 0, the tissue is at rest, not subjected to active anisotropic processes, that cells are isotropic
and that there is no stress in the elastic material surrounding the tissue. We then assume that active anisotropic
processes are turned on at ¢ = 0 and are constant for r > 0. We solve for the tissue shape and cell elongation
using equations (6), (7), (11), (24) and (25). For simplicity, we discuss here only the case k, = k, = k.Inthis
case, thetissuearea A = Agexp(H (t) + L(t))is conserved. The general solution is given in appendix E. We
findfort > 0;

L) = 72_7[1 _ (1 4 ¢ K)et/(m)(l sinit + cos it)]) (28)
v 27Ky s 274 274
H(t) = —L(¢), (29)
— 4 _C Y eengn Sy - S
Vex (1) 4SM (1 + ZKTfyu)e sin 27_dt MKé(t), (30)
1
() = — (=KL () — ), 31
Qux (1) 2K( QENE (31
where

s= [a14Y (32)

T

k

=2|1+ —| 33
y ( + ZK) (33)

k

and the corresponding dynamics of the shear rate v, and cell elongation Q,, are plotted on figure 3(B) for a few
parameter values. We distinguish an oscillatory solution when s > 0 corresponding to high values of 7, and
non-oscillatory dynamics when s? < 0 corresponding to low values of 7;. Note that for s? < 0, equation (28)
can be written in terms of hyperbolic functions. When boundary conditions are stress free, v/u = 0, s> = —1
and the solution cannot be oscillatory. When the rigid boundary conditions are imposed, v/ = 1and the
parameter s is equal to the parameter 3in equation (19). In general these two coefficients are related by

(s> + Dp/v = B* + 1. Thefactor v/ is related to boundary conditions; by imposing firmer boundary
conditions, this factor is increased. Therefore, the oscillatory behaviour disappears for decreased rigidity of the
boundary springs. However, oscillatory flow does not necessarily appear at high external rigidity, due to the
constraint v/ < 1.

Using the solution in equations (28) and (31), we now discuss the cases of free, rigid, and intermediate
boundary conditions, and consider the difference between flows and cell elongation induced by the anisotropic
active stress (q; and anisotropic topological rearrangements /\qij (figure 3(A)). Wetakehere A < Oand ¢ > 0,
such that the active stress is larger along the x direction and horizontal bonds are actively removed. Tissue flow
and cell elongation depend crucially on boundary conditions (figure 3(B)).

For rigid boundary conditions, the tissue can not deform and the active anisotropic stress has no effect.
Active topological rearrangements however drive cell elongation along the x direction. The process reaches
steady-state when topological rearrangements driven by cell elongation are balanced by active topological

rearrangements, and a final cell elongation Q,, = — A7 isreached.
For free boundary conditions, active anisotropic stresses result in cell elongation along the y direction and
tissue flow. In the steady state limit, the cell elongation reaches the value Q,, = —(/(2K). Active topological

rearrangements do not result in cell deformation, but generate tissue shear.

For intermediate values of boundary spring elasticity, the tissue flows until the boundary springs deform
sufficiently to balance stresses in the tissue. When the tissue shape reaches steady state, flows vanish and the
average cell elongation reaches the same value as in the case of rigid boundary conditions, Q,, = —AT.

In the cases described above, when boundary conditions are such that the tissue eventually stops flowing, a
steady state is reached when the shear created by topological rearrangements also vanishes. This occurs when
topological rearrangements induced by cell elongation and spontaneous, active topological rearrangements
balance each other. This process selects a value of the cell elongation tensor, Q; = —A7q . (see equation (24)).
Therefore, by controlling active topological rearrangements, a tissue should be able to establish a fixed value of
cell elongation at steady-state.

In addition, we note that although both active shear stress and active topological rearrangements can induce
tissue flows (figure 3(B)), these two processes affect cell shape differently. This suggests that the relative
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contribution in tissue morphogenesis of these two active processes can be distinguished by observing both cell
and tissue shape changes.

4.5. Active tissue Couette flow
We now discuss the Couette flow of a tissue confined between two parallel plates. We consider a two-
dimensional tissue which is constrained in the direction y to have fixed width , it is translationally invariant in
the other direction and is firmly fixed at the bottom side of tissue y = 0 (see figure 3(C)). Cell polarity is assumed
to be homogeneous in space. We assume for simplicity that the tissue is incompressible, v, = 0, so that the only
non-vanishing component of the shear flowis 7, = 9,15 /2. On the top side, a fixed external shear stress
0y (y = h) = o, isimposed on the tissue. The tissue is immobile for t < 0, and active processes are turned on at
t = 0and are then constant in time. The general solution is given in appendix F.

We first consider the case where the top side of the tissue y = his free to slide, 0, = 0. The Couette flow
velocity increases and reaches a steady-state over the timescale 74

Ay (1) = 2()\ - %)qu(l — e ). (35)
Similar to earlier examples, this flow can be produced by either active stress and active shear due to topological
rearrangements. Measuring the cell elongation component in the steady state Q,, = —¢ /(2K)q,, allows to
determine how much each of the two active processes contributes to the tissue flow. If the component g, of the
cell polarity is present it does not contribute to the tissue flows but determines the steady state value of cell
elongation component Q,, = —7\q,, since the boundary conditions in this direction are rigid. This situation is
reminiscent of flows observed in the Drosophila genitalia rotation and vertex model simulations intended to
reproduce this process [41, 42].

Finally, we obtain for arbitrary external shear stress o, at steady-state

h ¢
ve(h) = KTO'e + Zh()\ ZKT)qu’ (36)
which is a relation between the velocity of the upper interface, the external shear applied to the tissue and the
spontaneous flowing velocity of the tissue v*P°™ = 2h(\ — ( / (2K7)) 4, The effective friction coefficient of
the tissue layer is K7 /h, while a stalling stress g, = o*®ll = (¢ — 2KTA)q,, must be applied to stop the tissue
from spontaneously flowing (figure 3(D)). It would be interesting to see if rheological experiments can allow to
measure these quantities.

5. Discussion

We have presented a hydrodynamic theory of tissue shear flows which explicitly accounts for topological
rearrangements at the cellular scale. We have introduced active terms influencing the shear stress as well as
oriented topological rearrangements of cells, coupled to the nematic field g;;. The theory applies to both
effectively two-dimensional epithelia, which have been most widely studied [1-3], and to three-dimensional
tissues, which can also undergo topological rearrangements [43, 44]. We have introduced phenomenological
parameters characterising the response of shear stress to cell shape anisotropy and cell polarisation (¢ and ¢, in
equation (10)) and shear due to topological rearrangements (¢, and ¢, in equation (12)). These parameters can
be experimentally measured, similarly to an elastic modulus or a viscosity, and we expect that future analysis of
morphogenetic processes will involve the quantification of their values.

We find that the dependency of topological rearrangements on cell shape generically leads to tissue
fluidification. The long timescale tissue viscosity depends on cellular elasticity and a characteristic timescale of
topological rearrangements (equation (18)).

We have also introduced a delay in the response of topological rearrangements to cell shape change
(equation (13)) through an exponential memory kernel, motivated by experimental observations in the
Drosophila wing epithelium during pupal morphogenesis [13]. For delay timescale sufficiently smaller than the
characteristic timescale of topological rearrangements, 7; < 7/4, the qualitative behaviour of the tissue is not
different from the one without delay in the response. However, sufficiently large delay timescale 7; > 7/4 leads
to anovel rheological behaviour, with an oscillatory response of the tissue to the imposed shear. The response of
the tissue can be described by a simple rheological scheme, involving a spring, a dashpot, and an effective inertial
element (figure 2(E)). Such an effective inertial response is not generally taken into account as tissues operate at
low Reynolds number, but we show that complex tissue time-dependent behaviour can indeed show an effective
inertial behaviour, unrelated to the tissue’s real mass. Recent works have proposed alternative mechanisms
giving rise to effective inertial behaviour, possibly arising from the dynamics of cell self-propelling forces [28] or
concentration and polarity fields coupled to tissue flow and internal stresses [30, 31].
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The theory we propose here also accounts for autonomously produced stress and oriented topological
rearrangements that are a consequence of active processes in the tissue. They drive tissue flows and cell
elongation changes on long timescales even in the absence of external forces. In general, active stress and
active topological rearrangements may occur together in tissue morphogenesis, and both drive tissue and
cell shape changes. Quantification methods must be developed to characterise the effects of these active
processes [13].

Our theory makes a number of experimentaly testable predictions. Most notably, perturbing boundary
conditions around a developing homogeneous tissue affects significantly the dynamics of both tissue flow
and cell elongation. We predict that the topological rearrangements will drive flow when the tissue is free to
deform, but will drive instead cell elongation changes in the direction perpendicular to the original shear
flow when the tissue is prevented from deforming. Intuitively, active topological rearrangement force cells
to change their neighbour relationships, driving cell elongation; when the tissue is free, cell elongation can
relax, driving tissue deformation; while when tissue deformation is prevented, cell elongation is
maintained. In contrast, active stress can also generate a flow in a free tissue but will not drive cell elongation
changes when tissue deformation is stopped. Possibly, experiments aiming at preventing tissue flow could
allow to distinguish between these contributions.

We have focused here on anisotropic flows. We expect that future work combining a description of
isotropic and anisotropic flows in tissues, incorporating the effect of cell division and cell extrusion, will allow
a full picture of tissue morphogenesis to be obtained.

Finally, we have described here the case of a flat tissue. It would be interesting to explore how the theory
proposed here extends to the more general case of a curved tissue.
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Appendix A. Nematic tensors in 2D

The nematic tensor Q;; can be expressed by its cartesian components in two-dimensions

Qxx Qxy
(Qxy - Qxx]’ (A‘l)

It can also be rewritten using polar components

(Q cos2p Qsin2y )

A2
Qsin2¢p — Qcos2p 4.2

where Q and ¢ are respectively the magnitude and angle of the nematic relative to the x axis.

Appendix B. Conventions

B.1. Convected and corotational derivatives
The convected derivative of a scalar field S is defined as
dS oS

— = — OkS. B.1
dt 8t+vkk (B.1)

The convected corotational derivative of a vector field U; is defined as

DU; oUj;
22 = T B+ wyU B2
Dt ot kYk ij Vj ( )
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and for a tensor field V;

DV; GVU
E = E + Vkakvij + Wikvkj + ijVik- (B.3)

B.2. Fourier transform
The following convention for Fourier transform is used:

f@ = [ fweta, (B.4)

1 > iwt
F(6) = Ejioc f(w)edw. (B.5)

Here f (w) is the Fourier transform of the function f ().

Appendix C. Rheological networks

C.1. Real and imaginary parts of a rheological network response function

We discuss here some properties of the response function y (w) of the serial and parallel connections of two
mechanical elements with response functions x; (w) and X, (w). The mechanical response function of a parallel
connection of these elements is

Xparallel = X1 T X2 (C.D

so that
Re Xparater = ReX; + Rex,, (C.2)
Im X = Im x; + Im ;. (C.3)

The response function of a serial connection is

X1X2

Xserial = X + Xs ’ (C4)
which can be written in terms of real and imaginary parts
Rex; Rex,(Rex, + Rex,) + Rex,[Imx,]* + Rex,[Im ]
Re Xserial — - : - = : 2 2 L > (CS)

(Rey; + Rex,)? + (Imy, + Imx,)?

Imy.. = Im x; Im x,(Im x; + Im x,) + Im x;[Re x,]* + Imx,[Re ] C6)
serial (Rex; + Rex,)? + (Imy; + Imy,)?

By inspecting equations (C.2) and (C.5) we conclude that if the real parts of the response functions of two
elements in a serial or parallel connection have the same sign, this sign is preserved in the real part of the response
function of the connection. The same is true for the imaginary parts (equations (C.3) and (C.6)).

C.2. Response function of a rheological network with a spring in series with a parallel connection of an
inerter and a dashpot

We calculate here the response function of the mechanical network shown in figure 2(E). Using equation (C.1)
we find that the response function of a parallel connection of an inerter with inertance m and dashpot with
viscosity 7] reads

Xy = iwm + 7. (C.7)
The full response function is found using equation (C.4) for a serial connection of a spring with elastic constant k

and parallel connection of an inerter and dashpot

%(iwm—i—ﬁ)
X=—_—"%
1wm+7_7+;

1+ iw?
.

(C.8)

=17
iw

~[

(1+iw’:—])+1

Comparing with the equation (18) we can identify 77 = 2K7, k = 2K and m = 2K77,.
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Appendix D. Viscoelastic nematic gel close to equilibrium

Here we derive hydrodynamic equations for a viscoelastic nematic gel close to equilibrium and we discuss
parameter regimes which reproduce equation (14). Our derivation is similar to the one given in the [33], but fora
one-component, nematic gel. We start by writing conservation equations for density and momentum

Oip + 0i(pvi) = 0, (D.1)

dig; — 0joi" = 0, (D.2)
where g, = pv;and U‘g)t is the total two-dimensional stress. We treat the local elastic shear strain Q;;asa
thermodynamic state variable. We also include in our description a nematic order parameter g;; describing other
internal anisotropies, motivated by the cell polarity in tissues. Here we will discuss the case when g;;is not
spontaneously generated in equilibrium. Assuming that the dynamics of elastic shear strain Q;;and nematic
order parameter g;; are sufficiently slow, we introduce the free energy density of the gel as f (p, Qjj» ;).

We define the elastic shear stress as the thermodynamic conjugate quantity to the elastic shear strain Q;

o5 = i. (D.3)
0Q;;
We also allow for ATP driven active processes described by the chemical reaction rate r and the chemical
potential difference between ATP molecule and hydrolysis products Ays.
Using the free energy density f (p, Qy;, q;)>we find the expression for the density of entropy production rate &
;+H<-%+rA (D.4)
' Dt e '

Here 0;; = ag’t + pvivj + Pé, vij = 1/2(9;v; + Ojv;) is the symmetric part of velocity gradient tensor and Hj; is

the nematic molecular field conjugate to g;; defined as

= - (D.5)
5%‘

For simplicity, we ignored here terms associated to the gradients of chemical potential and elastic shear
strain, and we discuss traceless symmetric components. Identifying the thermodynamic fluxes ;;, DQ;; /Dt,

el

Dg;; /Dt and r, and the corresponding forces 7, —oj;, Hjjand A, we write the phenomenological equations

&j = 2ni + o — BiHy + (Oq; + ©Qy) Ap, (D.6)
DQ; . 1 —
— = - FU,j1 + —Hjj + (Yg; + VQi) Ap, (D.7)
Dt 0>
%—ﬂ”.,_id (0 90:) A
= PV oj + YHij + (0q; + 0Qi) Ap, (D.8)
Dt B2
r=— (@qij + @Qij)ﬂj — (1/)6]1] + EQi]‘)O'?jl
+ (Hqij + aQij)Hij + AAp, (D.9)

where Onsager symmetry relations have been taken into account. We have included ATP consumption terms
thatare coupled to fluxes of different tensorial order through Onsager coefficients proportional to the elastic
shear strain Q;;and nematic order parameter g;;. Note that since elastic shear strain is conjugate to the elastic
shear stress, the Onsager coefficient relating #; to the change of shear strain Q;; can be set to 1 without loss of
generality, see [33].

One can already note that equation (D.7) is in the form of equation (7) if we identify
Ry = Fafjl — Hj /ﬁz — wAMqij — P ApQj;. Wenow show that this general description can result in the
delayed response of R;; discussed in the main text, produced by the relaxation dynamics of g;;. In the
remaining part of this appendix, we consider the following simple choice for the elastic stress and molecular
field

ol = 2KQ;
H; = — K.
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D.1. Passive gel
Let us first consider the case of a passive gel which would not consume ATP. Using equations (D.7) and (D.8), the
tensor R;; can be expressed as a function of the shear strain Q;;

r—— 2KT + k2
1 D B2 8 D
L — g R = 2K Qi+ N (D.10)
S - — _ P
%i(l ","ﬁz) ¥, fyn(l vﬂz)

We find that the choice 7y = 1/[vx(1 — 81/(y62))]and 7 = [1 — 31/ (7B2)1/[2K (T — 1/(357))]allows
to identify equation (D.10) with (14). The last term on the right-hand side of equation (D.10), involving the
derivative of Qjj, is not present in equation (14). The dimensionless prefactor in front of this term,

a = [2KT + kB1/6:1/[vw(1 — B1/(y8,))], canbesetto 0if 3, = —2KT'3, /. This choice implies the
following relations

2
2Kk (T — L) + 9%
T [2KT' + k] > 4l >4, (D.11)

Td oK (F — 717%)7,% 2K (F - %aé)ﬂm
where we have used 7, k, K, I' > 0andI" — 1/(y33) > 0. Therefore, if the parameter (3, is chosen such that o
is negligible, the gel can never be in the oscillatory regime 7; > 7/4 described in section 4.1.

A finite value of 3; implies a dependence of the shear stress on the molecular field H;;. If we assume that the
main contribution to the shear stress comes from the viscous and elastic stresses and other contributions are
negligible, one would set 3; = 0.In this case it is no longer possible for o to be arbirtrarily small. Indeed, due to
the positive semi-definiteness of Onsager coefficient matrix I' — 1/(y33) > 0, the coefficient I' cannot be
arbitrarily small, for given values of yand (3,. For I' < 1/(7/33) the timescale 7 would become negative and the
thermodynamic equilibrium state would become unstable. Moreover, a lower limit to the prefactor «is given by

o> (D.12)
T
Other possible choices of parameters which would allow neglecting the term involving the shear strain are
K — 0and vk — oo. However, both choices inevitably remove a term in equation (D.10), in such a way that
the form of equation (14) can not be reproduced. Therefore, a passive gel with only viscous and elastic stresses
can reproduce equation (14) only with an additional term involving time derivative of the tensor Qj;.

D.2. Active gel
If the system is provided with a reservoir of ATP molecules to keep it out of equilibrium, such that the difference
of chemical potential Az is not 0, the equation for R;;in the case 3; = 0 reads

(1 + ;2] i = (ZKI‘ — EAN . (ZB—K — gAu)M)sz

vk — OAp Dt ) vk — OAp

2KT — YAp D
#_Qij (D.13)

vk — 0Ap Dt

and we identify
1
R D.14
Td T (D.14)
_— ! P (D.15)
— K pa N A1B v

In this case, the term involving the derivative of shear strain Q;;becomes small when

|QKT — Y Ap)/(yvv — 6Ap)| < 1. The stability in this limit can still be maintained if the factor

(2K /By — 0Ap)(k/ B, — A w) is negative. This is possible because the signs of the active terms 1A and
OA 1 are not constrained. Thus, an active nematic gel close to equilibrium can be described by equation (14),
even without a specific coupling of molecular field to the shear stress.

Appendix E. Autonomous convergent extension

Here we solve in detail the example from the section 4.4. We consider a rectangular homogeneous tissue with
length land width k. The cell polarity nematic g;;is constant and oriented along x-axis such that
4. =1L Qy = 0. We assume that for t < 0, the tissue is at rest, not subjected to active anisotropic processes,
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that cells are isotropic and that there is no stress in the elastic material surrounding the tissue. At t = 0, active
anisotropic processes are turned on and remain constant for ¢ > 0. The tissue is constrained in space by
surrounding elastic material which provides resistance to the changes in tissue length and width. We describe the
external elastic response to the tissue deformations by a Hooke’s law

O = — kiL,
oy =—k,H, (E.1)

where L = In(l/ly) and H = In(h/hy) are natural strain variables of the tissue and I, g are tissue length and
width at zero stress. For negative times, the tissue is stress freeand thus L (t < 0) = H (t < 0) = 0.

Since the shape of the tissue is constrained to be a rectangle, the velocity gradient tensor has only diagonal
components:

Vex = 8[L,
V)/,V == atH. (E'z)

Combining these relations with the constitutive relation for the isotropic stress in equation (11), we obtain a
relation between L and H from the isotropic flow component

k
(1 + ki)a,L + (1 + —i)(’)tH =0, (E.3)
2K 2K

where we have used the fact that in the absence of cell division and extrusion, (da/dt) /a = (dA/dt) /A with A
being the area of the tissue. Using the constitutive relation for the shear stress equation (25), the constitutive
equation for the shear due to topological rearrangements equation (24), and the shear decomposition
equation (7), we obtain a second relation between L and H:

k k k k
1+ 2|1+ )0l + =L — |1+ = | + 740)0,H — ——H = 2, E4
( ZK)( 401) O K~ ( K ( 401) O 2Kr Y (E.4)
where v = —(/(2n) + A.Integrating equation (E.3) from an arbitrary lower bound ¢ < 0 yields
kx k)’
2K 2K
We now express Hin terms of L in equation (E.4) and we obtain the second order equation
2
702 + 0L + 2L =21, (E.6)
TH K
where
k
k. oY1+ =
2K 2K)1 + &
2K
ke k 1+
V:§+i X, (E.8)
o4
1+ P
This can be solved for
L) = 2_7'7 1—|1- 1o ] + cos ——t
v 277y s 21y 274
. S
e smz—Tdt E9)
+ O;L(0)e "/ ¥a) ——L_| .
s/ (27a)
where L(0) and 0, L (0) are initial conditions, and
o= fv (E.10)
TH

The parameter s” is positive only for high enough values of the memory timescale 7;. When s> becomes negative,
the solution is equivalent in form to equation (E.9), with trigonometric functions replaced by their hyperbolic
counterparts and s” replaced with —s2.

We now determine the initial conditions for an experimental setting in which the tissue is initially at rest,
cells in the tissue are not elongated, external elastic connections are not under tension, and there is no tissue
polarity. Att = 0 the polarity is activated on a timescale much shorter than 7and 74, so that we can treat the
activation as instantaneous. First, considering equation (24) we can conclude that R, (0") = 0. Then, using
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equations (E.1)—(E.3), (7) and (25) we can show that for t — 0

k
1 1+ =
|1+ —=5 0L (1) = 9,:Quc (1)
2 1+ %

k
1| k ky 1+ 5% ¢

=— | = 4+ L —Z|5,L(t) — =0 t). E.11
2otk L) = 2010, (1) (E.11)

2K

Then, using 0,9, = 0 (t) and integrating over a small finite time interval around t = 0, we obtain the initial
conditions

¢

)y — — 2

L(0T) K

A.L(0%) = 0. (E.12)

When the elastic connections around the tissue are isotropic (k, = k,), one obtains from equations (E.5),
(E.7)and (E.8):

H() = —L(1), (E.13)
k
= 2(1 + ﬁ) (E.14)
k
V=L (E.15)

Since L (t) + H (t) = 0, the tissue area is constant. Therefore, area changes arise only when the surrounding
material is anisotropic. Using these relations, the initial conditions discussed above and equation (E.9), we
obtain equation (28) in the main text.

Finally, we note that in the limit 7; — 0, equation (E.9) describes a simple exponential relaxation of the

tissue length:
L) = 27_7[1 - (1 - VL(O))e:T‘]. (E.16)
v 217y

with a characteristic relaxation timescale equal to 7 (1 + 2K /k) for isotropic external springs. It differs from the
Maxwell timescale of the tissue 7 by a factor describing a competition of internal and external elasticities.

Appendix F. Couette flow in active tissue

Here we consider a two-dimensional tissue, which is constrained on two sides by straight boundaries, setting the
tissue width to a fixed value h. The tissue is fixed on its lower side and it is translationally invariant along the
boundaries:

v (0) = 0, (F.1)
v,(0) = 0, (F.2)
w(h) =0, (F.3)
O.F =0 (F.4)
for any quantity F. For simplicity we assume that the tissue is incompressible
Beve + Dy, = 0, (F.5)
so we can conclude that v, = 0. Force balance in this system reads in the absence of external force
0,0 = 0, (F.6)
0,0y, = 0. (E.7)
From equations (7) and (24) we find in the frequency domain
Lo, = l[im + 7] 5+ ———Ad,,. (F.8)
2 T 1+ iwry 1+ wry

where for simplicity we have neglected nonlinear terms coming from corotational derivatives. Combining
equations (25), (F.6) and (F.8) we obtain the equation for v,
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0,(\q,)- (F.9)

2Kt 1+ iwry

9,((q,,)
8ivx = —Z[in + 1. ] Ay + 2
1+ 1wy

We consider the case when active terms M, and (q,, are homogeneous is space so that the right-hand side of
equation (F.9) vanishes. The solution of equation (F.9) is then

Ve (y, w) = v (h, w)%, (F.10)

and the stress oy, which is constant in space, can be evaluated at y = htobe
ny(h> w) = Xh(w)[vx(ha w) — Vq(w)] (F.11)
Here, the response function
Kt 1+ iwty

= — EF.12
i) h iwr(1 + iwry) + 1 ( )

is proportional to the response function in equation (17), and the spontaneous velocity is given by

—onl i 1 _ <
Vo) = Zh[ MZquy * 1+ iwry ()\ )qu]' (E1

If the top tissue boundaryaty = his free toslide, oy, (h) = 0and 1 (h, w) = V;(w). In that case we find the
following expression of the tissue velocity as a response to the cell polarity:

i 1 r
ve(h, t) = _gat(cqu) + 2h f Tlew“”(A - %)qudt’. (F.14)
o T

For an immobile tissue starting with zero values of A, and (g, for t < 0 and constant values for t > 0 we
obtain equation (35), where a delta function has been omitted.
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