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Abstract The actomyosin cell cortex is an active contractile material for driving cell- and tissue

morphogenesis. The cortex has a tendency to form a pattern of myosin foci, which is a signature of

potentially unstable behavior. How a system that is prone to such instabilities can rveliably drive

morphogenesis remains an outstanding question. Here, we report that in the Caenorhabditis

elegans zygote, feedback between active RhoA and myosin induces a contractile instability in the

cortex. We discover that an independent RhoA pacemaking oscillator controls this instability,

generating a pulsatory pattern of myosin foci and preventing the collapse of cortical material into a

few dynamic contracting regions. Our work reveals how contractile instabilities that are natural to

occur in mechanically active media can be biochemically controlled to robustly drive morphogenetic

events.

DOI: 10.7554/eLife.19595.001

Introduction
Alan Turing described in his seminal 1952 paper the ability of an initially homogeneous spatial sys-

tem that contains diffusing and chemically interacting species to form a self-organized

pattern (Turing, 1952). Turing’s original conjecture was that such processes contribute to the pat-

terning of developing organisms. While many examples have been found that are compatible with

this idea (Kondo and Asal, 1995; Müller et al., 2012; Sheth et al., 2012; Raspopovic et al., 2014),

self-organized patterning in morphogenesis, however, is known to not only rely on biochemical regu-

lation but also depend on cell-and tissue scale active mechanical processes (Turing, 1952;

Howard et al., 2011). General physical mechanisms by which the interplay between regulatory and

mechanical processes endows active biological materials to form self-organized spatiotemporal pat-

terns have remained largely unexplored.

Actomyosin contractility (Bray and White, 1988; Salbreux et al., 2012) is an essential cellular

mechanical process, responsible for driving many cell- and tissue scale morphogenetic

events (Murrell et al., 2015; Levayer and Lecuit, 2012). The cortex consists to a large extent of

actin filaments and myosin motor proteins, forming a thin layer underneath the cell membrane that

can be thought of as a thin film of an active gel (Salbreux et al., 2012; Jülicher et al., 2007). Con-

tractility by myosin motor proteins generates active tension in the gel, and gradients in active ten-

sion are known to generate cortical flows of this layer (Mayer et al., 2010). Cortical flow participates

in forming the cytokinetic furrow (Bray and White, 1988; Benink et al., 2000; Yumura, 2001;

Eggert et al., 2006), and drives polarization of the one-cell stage C. elegans embryo (Hird and

White, 1993; Guo and Kemphues, 1996; Cheeks et al., 2004; Munro et al., 2004;

Goehring et al., 2011). Highly contractile cortices, like the one driving polarization in C. elegans,

tend to exhibit transient accumulations of myosin that form a pulsatile pattern. Pulsatile actomyosin

patterns are ubiquitous in development (Munro et al., 2004; Martin et al., 2009; Solon et al.,
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2009; Rauzi et al., 2010; Roh-Johnson et al., 2012; Maı̂tre et al., 2015), and it has been suggested

that they result from positive feedback and contractile instabilities (Kruse and Jülicher, 2000;

Bois et al., 2011; Gowrishankar et al., 2012; Kumar et al., 2014; Munjal et al., 2015;

Hannezo et al., 2015). A contractile instability causes the cortex to become inhomogeneous over

space, with cortical material collapsing into contracting regions (Bois et al., 2011; Alvarado et al.,

2013). Theoretical work has shown that contractile instabilities are inevitable when contractility is

high enough (Bois et al., 2011), raising the question of how a system that is prone to such instabil-

ities can reliably drive morphogenesis. Here we show that there indeed exists a contractile instability

in the actomyosin cortical layer of the C. elegans zygote, and we discover that this instability is con-

trolled by a RhoA oscillator.

Results and discussion
In order to investigate spatiotemporal patterns in the C. elegans cortex, we first sought to see

whether non-muscle myosin II (NMY-2) in the C. elegans zygote displays pulsatile

dynamics (Munro et al., 2004). For this, we determined the temporal derivative of the average

NMY-2 intensity (Figure 1A, averaging over a region in the posterior indicated by a white box), as a

proxy of myosin foci assembly and disassembly behavior (Figure 1A–C). We also quantified the

time-dependence of the average speed of cortical flow in this region as determined by Particle

Image Velocimetry (PIV, see Appendix for detail) (Figure 1B,C). Notably, both quantities exhibited

signs of oscillatory behavior (Figure 1C) and an auto-correlation analysis revealed periodic changes

in both quantities with a time constant of approximately 30 s (Figure 1D,E). To conclude, the myosin

foci pattern in the C. elegans zygote exhibits pulsatile, oscillatory dynamics.

We next sought to understand where this oscillatory behavior comes from. One possibility is that

positive feedback mediated by RhoA (RHO-1 in C. elegans) (Bement et al., 2015), a key activator of

myosin (Jenkins et al., 2006; Motegi and Sugimoto, 2006; Schonegg and Hyman, 2006), plays a

role in generating this pulsatile pattern (Munjal et al., 2015). We investigated the dynamics of active

RhoA by use of a GFP fused anillin homology domain (AHPH) probe, to image the GTP-bound active

form of RhoA (Tse et al., 2012). We find that active RhoA forms a dynamic, pulsatile pattern that is

similar to that of myosin, with both active RhoA and myosin co-localizing in pulsatile foci (Figure 1F,

Figure 1—figure supplement 1, and Video 1). We speculated that flow-based transport of an acti-

vator of myosin could give rise to positive feedback and a contractile instability (Bois et al., 2011),

favouring the spontaneous formation of self-organized pulsatory patterns (Munjal et al., 2015).

However, testing for this possibility requires knowledge of the kinetics of active RhoA mediated

myosin recruitment coupled with a hydrodynamic description of active cortical mechanics, for evalu-

ating if the full mechanochemically coupled system indeed is unstable.

We set out to test if coupling RhoA mediated myosin recruitment to gel flow and advection

results in an intrinsically unstable cortex (Figure 2A). To this end, we sought to determine the effec-

tive reaction kinetics of the regulatory interaction between active RhoA and myosin in vivo. We

developed a method of measuring the kinetic diagram of active RhoA mediated myosin recruitment

(CO-moving Mass Balance Imaging; COMBI): We investigated the mass balance of both species in

the comoving frame of reference of the flowing cortex, under consideration of the effects of dilu-

tion/enrichment by divergent/convergent gel flow (Figure 1G) (Vallotton et al., 2004). In the frame

of reference of the embryo, concentrations of myosin and active RhoA can change due to transport

by flow (advective fluxes) or due to association/dissociation (chemical fluxes). The chemical fluxes Rr

and Rm, where r denote active RhoA and m denotes myosin, correspond to reaction terms that cap-

ture turnover and biochemically regulated recruitment effects. They can depend on the concentra-

tions of both species.

COMBI determines the average changes of per area myosin concentration (cm) and of active

RhoA concentration (crÞ due to turnover/regulation and as a function of the concentrations of both

species. This provides us with information of the reaction kinetics of RhoA
�

Rrðcr; cmÞ
�

and myosin
�

Rmðcr; cmÞ
�

in the myosin and active RhoA concentration phase space (Figure 1G). We determined

cm and cr every 5 s by spinning-disk confocal microscopy (Materials and methods). Advective fluxes

account for the effects of dilution/enrichment by divergent/convergent gel flow, and these were

determined by measuring the velocity field of cortical flow by particle image velocimetry (PIV), an

image-based crosscorrelation analysis (Mayer et al., 2010; Raffel et al., 2007) that quantifies the
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movement of interrogation areas between two sequential timelapse images (Materials and meth-

ods). The spatial resolution of the velocity field is determined by the spacing of the interrogation

areas which we choose as 1:26 �m. This is sufficiently smaller than the correlation length of cortical

flow (the hydrodynamic length is ~14 mm [Mayer et al., 2010; Saha et al., 2016]), hence, COMBI

can provide information on actomyosin homeostasis by determining the average reaction kinetics on

a timescale of seconds and a length scale of microns.

We visualize the reaction terms determined by COMBI in a vector field that illustrates the average

evolution of concentrations of both species (Figure 1H). This reveals interesting features, for
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Figure 1. COMBI of active RhoA and NMY-2. (A) A representative image of NMY-2::GFP showing the NMY-2 foci

pattern (magenta) in the C. elegans zygote. Anterior is to the left throughout, white box denotes region shown in

B. (B) Myosin focus assembly and disassembly time-course from A in inverted contrast; dashed circle indicates a

myosin focus. Arrows denote the velocity field determined by PIV; thick green line: velocity scale bar 0.4 �m=s. (C)

The temporal dynamics of NMY-2 fluorescence intensity time-rate change (magenta) and cortical flow speed (blue,

obtained by PIV) for the region in (B), arrowheads indicate the time interval shown in (B). (D) Normalized

autocorrelation of NMY-2 intensity change and flow speed timecourses in (C) and (E) respective oscillation

periods. (F) NMY-2::RFP (magenta) and AHPH::GFP (green), a probe for active RhoA, co-localize at myosin foci. (G)

COMBI analysis schematic. (H) Effective reaction terms of NMY-2 and active RhoA in the phase plane of

normalized NMY-2 and active RhoA concentrations (N = 25 embryos). Arrows represent concentration changes,

colors indicate the magnitude of change. Thin solid magenta (NMY-2) and green (RhoA) lines, numerically

determined nullclines. Thick dashed lines, linearized nullclines (see Appendix). Scale bars; 5 �m.

DOI: 10.7554/eLife.19595.002

The following figure supplements are available for figure 1:

Figure supplement 1. Co-localization of active RhoA and myosin.

DOI: 10.7554/eLife.19595.003

Figure supplement 2. Trajectories in the phase plane of AHPH and NMY-2 concentrations.

DOI: 10.7554/eLife.19595.004

Figure supplement 3. COMBI of active RhoA and actin.

DOI: 10.7554/eLife.19595.005
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example a trajectory that starts with high active

RhoA and low myosin levels will overshoot in its

level of myosin prior to approaching the single

stable fixed point (thick black line in Figure 1—

figure supplement 2A). Key aspects of these

dynamics can be captured by a nullcline analysis

(Izhikevich, 2007). Reaction terms are zero on a

nullcline (Rr ¼ 0 for active RhoA, Figure 1H, solid

green line; and Rm ¼ 0 for myosin, Figure 1H,

solid magenta line), which describes the concen-

tration that a species would achieve when the

concentration of the other species is fixed. This

reveals that active RhoA recruits myosin

(Figure 1H, solid magenta line) (Motegi and

Sugimoto, 2006; Schonegg and Hyman, 2006)

while RhoA activation kinetics is essentially inde-

pendent of myosin levels (Figure 1H, solid green

line). The full kinetic landscape can be linearized

over its entire range (Figure 1H, dashed lines;

Figure 1—figure supplement 2B–D), capturing global aspects of RhoA-based myosin recruitment.

To conclude, COMBI can provide insight into the cortical kinetics over a broad range of myosin and

active RhoA concentrations.

Given our kinetic analysis, we next sought to test if the full mechanochemically coupled system is

indeed unstable. We describe the actomyosin cortex as a thin film of an active gel (Simha and Ram-

aswamy, 2002; Kruse et al., 2004; Ahmadi et al., 2006; Salbreux et al., 2009), with active tension

generation by myosin under control of RhoA (Figure 2A; see Appendix for details). We measured

the relevant material parameters of the gel in vivo directly from laser ablation experiments (hydrody-

namic length: l ¼ 14:3 �m, and a conversion factor from NMY-2 intensity to active tension,

z0 ¼ 24:9 �m2=s)(Saha et al., 2016). This allowed us to perform a linear stability analysis of the homo-

geneous state for the full model of the mechanochemical patterning system, with the above deter-

mined and linearized reaction kinetics between active RhoA and NMY-2 (Figure 1H). Figure 2B

shows the corresponding stability diagram as a function of both the hydrodynamic length of the cor-

tex l and the active tension measure �s (see Appendix for detail). Notably, the homogeneous state,

in which all concentrations are constant in space, always becomes unstable above a critical value of

the active tension. Furthermore, we find that the parameter values of the C. elegans cortex are such

that the system is close to the transition line between stable and unstable, but placed within the

unstable regime (Figure 2B). Hence, our analysis is consistent with the actomyosin cortex in C. ele-

gans being unstable and poised to form a spatial pattern.

Our theory predicts that the contractile instability depends on the strength of positive feedback,

and thus the amount of recruitment of myosin by active RhoA (Figure 2C,D). Hence, we asked if sup-

pression of RhoA mediated recruitment of myosin in the C. elegans zygote prevents the instability

and results in a homogeneous NMY-2 distribution. LET-502 is the Rho-associated protein kinase that

phosphorylates the regulatory myosin light chain, MLC-4, to activate NMY-2 (Piekny and Mains,

2002). Hence, reducing the concentration of LET-502 by RNAi should suppress RhoA mediated

recruitment of myosin to the cortex. Indeed, COMBI analysis of let-502 RNAi embryos (30 hr)

revealed that RhoA mediated recruitment of NMY-2 to the cortex is reduced, since the myosin null-

cline displays a significantly decreased slope as compared to the non-RNAi condition (Figure 2E,F;

see Table 1). Using the non-RNAi values of l and z0 and the linearized reaction kinetics between

active RhoA and NMY-2 measured by COMBI in let-502 RNAi (dark dashed lines in Figure 2F), we

find that the cortex is predicted to be stable because all eigenvalues are negative (Figure 2G, com-

pare to D; see Appendix for detail). Consistent with this prediction, we observed that let-502 RNAi

embryos display a homogeneous NMY-2 distribution without pulsatory myosin foci (Figure 2H, com-

pare to Figure 1A; Video 2). We conclude that, consistent with COMBI and theory, the actomyosin

cortex can be brought into a stable regime by reducing positive feedback via suppressing myosin

recruitment by active RhoA.

Video 1. Active RhoA and myosin co-localization in

pulsatile foci. Time lapse movie shows the cortical

plane of embryo that expresses both AHPH::GFP

(green) and NMY-2::tagRFP-T (magenta) in non-RNAi

condition. Scale bar, 5 �m.

DOI: 10.7554/eLife.19595.006
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Figure 2. Linear stability analysis reveals that the actomyosin cortex in C. elegans is unstable. (A) Schematic of the

full mechanochemical patterning system. (B) Stability diagram of the homogeneous state in the plane of

hydrodynamic length l and active tension measure �s (see Appendix). The homogeneous state is unstable within

the red region. Blue dot represents the parameter values of the non-RNAi C. elegans cortex; error bars denote

95% confidence intervals. (C) Stability diagram for a partial model without NMY-2 recruitment by RhoA; inset:

corresponding schematic. The homogeneous state is unstable within the blue region. (D) Dispersion relations of

the full mechanochemical patterning system with (red) and without (blue) RhoA mediated NMY-2 recruitment.

Lighter shared areas represent 95% confidence intervals. (E) let-502 RNAi suppresses RhoA mediated recruitment

of NMY-2. (F) COMBI diagram for let-502 RNAi (30 hr), N = 12 embryos. Thin solid magenta (NMY-2) and green

(RhoA) lines; numerically determined nullclines. Thick solid dashed lines, linearized nullclines. Light dashed lines,

linearized nullclines for the non-RNAi condition (Figure 1H) for comparison. (G) Dispersion relation for let-502

RNAi, lighter blue area indicates the 95% confidence interval. (H) NMY-2 distribution under let-502 RNAi. Scale

bar; 5 �m.

DOI: 10.7554/eLife.19595.007

The following figure supplements are available for figure 2:

Figure supplement 1. The contractile instability is insensitive to changing the diffusion constants over two orders

of magnitude.

DOI: 10.7554/eLife.19595.008

Figure supplement 2. Stability of the homogeneous state with a linear form of f ðcmÞ ¼ cm.

DOI: 10.7554/eLife.19595.009
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We next asked if the patterns that are formed in the unstable regime in our theory correspond to

the pattern of myosin foci observed in the embryo. Earlier work that considers a cortical gel with a

diffusible activator of myosin (Bois et al., 2011; Kumar et al., 2014) suggests that a contractile

instability results in a myosin foci pattern with a spacing that is determined by the hydrodynamic

length l. Indeed, a numerical solution of the full mechanochemical patterning system (Figure 2A)

reveals the formation of a few dynamic contracting regions which travel and are spaced about 2l

apart (Figure 3—figure supplement 1, Video 3). These traveling peaks have rapid flows converging

upon them (peak flow speed: 0:7 �m=s), and they persist and are not pulsatile. This pattern is differ-

ent from the myosin foci pattern observed in the C. elegans zygote, which is pulsatile and exhibits a

shorter spacing between foci ( ~ 5 �m, compare to l ¼ 14:3 �m; see Figure 3—figure supplement 1)

(Munro et al., 2004; Mayer et al., 2010). This suggests that our model is missing an essential fea-

ture, which is responsible for determining the myosin pattern beyond the contractile instability.

Table 1. Parameter values.

Parameters*,† Value

Determined in this study

Kinetic parameter for non RNAi

kron 3:96� 0:21½10�2=s�

kroff 4:54� 0:244½10�2=s�

kmr
on 0:0576� 0:0934½10�2=s�

kmon 0:126� 0:389½10�2=s�

krmon 9:94� 0:435½10�2=s�

kmoff 10:1� 0:269½10�2=s�

Kinetic parameter for let-502 RNAi

kron 2:87� 0:105½10�2=s�

kroff 4:39� 0:0979½10�2=s�

kmr
on 0:178� 0:178½10�2=s�

kmon 3:56� 0:165½10�2=s�

krmon 1:81� 0:0938½10�2=s�

kmoff 7:49� 0:106½10�2=s�

Dr;Dm 0:01½�m2=s�

Determined in Saha et al.,

l 14:3� 2:94½�m�

z=g 24:8� 8:62½�m2=s�

Parameter values for complex Swift-
Hohenberg equation

a 0:25

b 0:0000490

d1 1:00þ 0:2i

d2 0:0297þ 0:00400i

f0 0:4

f1 0:00247

q0 10:1

*Parameter values are shown with 95 % confidence intervals.
†Active RhoA and NMY-2 densities are normalized by their average concentrations, and reported in dimensionless

units of fluorescence intensities per unit area of 1½pixel�2, corresponding to 0:0110~�m2.

DOI: 10.7554/eLife.19595.010
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To identify the element missing in our model,

we note that our theory predicts that reducing

myosin recruitment by let-502 RNAi should cause

both myosin and RhoA to be homogeneous and

non-pulsatile (all eigenvalues are negative, see

Figure 2G). However, imaging active RhoA under

let-502 RNAi revealed that while the pulsatile

myosin pattern is lost, the pulsatile active RhoA

pattern is still present (Figure 3A,C; Video 4).

Similarly, we find that 16 hr of RNAi of nmy-2 led

to an almost complete loss of cortical myosin

with, however, active RhoA still forming pulsatile

foci (Figure 3B,D; Video 5). We conclude that, in

contrast to the scenario in Drosophila germband

extension (Munjal et al., 2015), active RhoA in C.

elegans exhibits pulsatile foci dynamics indepen-

dently of NMY-2 function. Importantly, both the

characteristic spacing of the myosin-independent

active RhoA pattern and its characteristic time-

scale were similar between nmy-2 RNAi, let-502

RNAi, and the non-RNAi condition (Figure 3E,F).

Given that active RhoA in the wild-type acts to

recruit myosin (Figure 1H), this raises the possi-

bility that the myosin-independent dynamic

active RhoA pattern is responsible for setting the

myosin spatiotemporal pattern beyond the con-

tractile instability. We conclude that the dynamic

active RhoA pattern is generated in a manner

that is independent of the myosin foci pattern,

possibly through an independent RhoA spatio-

temporal oscillator.

Oscillatory activities of Rho GTPases have previously been observed (Hwang et al., 2005;

Miller and Bement, 2009; Das et al., 2012; Antoine-Bertrand et al., 2016). We next asked if this

spatiotemporal oscillator requires ect-2, a RhoGEF, responsible in the early

morphogenesis (Motegi and Sugimoto, 2006; Schonegg and Hyman, 2006). Indeed, RNAi of ect-2

leads to a complete absence of RhoA pulsation

(Video 6). Furthermore, it is interesting to specu-

late if the myosin-independent active RhoA oscil-

lator that we identify here is related to the RhoA/

actin-based excitable oscillatory system reported

previously (Bement et al., 2015;

Westendorf et al., 2013). To test if the underly-

ing mechanism to generate myosin-independent

active RhoA oscillator is shared between C. ele-

gans single-cell embryo and Xenopus embryo,

we used COMBI to investigate the effective

kinetic regulation between active RhoA and actin.

We used LifeAct tagRFP-T as a probe for filamen-

tous actin in the cortex (Riedl et al., 2008;

Reymann et al., 2016). We determined the

kinetic diagram in the active RhoA and actin con-

centration phase plane, to quantitatively evaluate

the rate constants in the effective kinetic equa-

tions (Figure 1—figure supplement 3A). We find

that the active RhoA nullcline is nearly vertical

and inconsistent with actin behaving as a

Video 2. Homogeneous myosin distribution in

suppressed RhoA mediated myosin recruitment. Time

lapse movies show the cortical planes of the embryo

that expresses NMY-2::tagRFP-T in let-502 RNAi

embryo (upper) and in non-RNAi embryo (lower). Scale

bar, 5 �m.

DOI: 10.7554/eLife.19595.011

Video 3. Traveling peaks of myosin in the

mechanochemical patterning system. Time evolution of

the myosin pattern, obtained by the numerical

integration of the mechanochemical patterning system

without an active RhoA pacemaking oscillator.

DOI: 10.7554/eLife.19595.012
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negative regulator of RhoA. Note that this does

not exclude the general possibility of negative

feedback between actin and RhoA (Robin et al.,

2016), but suggests that the C. elegans cortex is

normally operating in a regime where no such

negative feedback is accessed. While the detailed

mechanism as well as the kinetic interactions that

underlie RhoA pulsation in C. elegans remain to

be determined, the RhoGEF ect-2 is involved and

the system appears to undergo spatiotemporal

oscillations in the absence of negative feedback

between actin and RhoA.

We next sought to test in our theory if it is

possible that an active RhoA spatiotemporal

oscillator sets the myosin pattern beyond the

contractile instability (Figure 4A, left). To this

end, we described the dynamical behavior of an

active RhoA pacemaker by use of a generic

model of spatiotemporal oscillating patterns, the

complex Swift-Hohenberg Equation (Figure 4—

figure supplement 1A) (Sakaguchi, 1997).

Importantly, coupling in our model this generic

spatiotemporal oscillator (30 ~ s characteristic

timescale, 5 �m characteristic length scale,

Figure 3E,F; see Appendix for detail) to the full

mechanochemical patterning system does not

destroy the active RhoA spatiotemporal oscillator

pattern. Instead our model predicts that the myo-

sin pattern (which in the absence of the generic

oscillator formed a single traveling peak, see Fig-

ure 3—figure supplement 1) now follows that of

the active RhoA spatiotemporal oscillator

(Figure 4B left). Hence, the active RhoA oscillator

can determine the myosin pattern in the unstable

regime (Video 7). As a consequence, controlling

the myosin pattern also results in reduced cortical

flow speeds (peak flow speed: 0:17 �m=s) as com-

pared to the case where the RhoA oscillator is

absent (0:7 �m=s, see above). However, we find

that the ability of the RhoA oscillator to control

the myosin pattern critically depends on the level

of mechanochemical feedback. We demonstrate this by reducing the hydrodynamic length in our

model, which increases overall flow speeds and advection, and thereby increases the mechanochem-

ical feedback strength. We find in our model that this change destroys the pattern of the active

RhoA spatiotemporal oscillator. Both the myosin and active RhoA pattern no longer form a regular

spatiotemporal oscillation (Figure 4—figure supplement 1, l is reduced by 5 �m to 9 �m). Instead,

the system displays a dynamical state that is characterized by an irregular spatiotemporal pattern of

dynamic contracting regions that move rapidly (Figure 4B right; Figure 4—figure supplement 1;

Video 8). In this state, the pattern of active RhoA now depends on myosin and flows and is essen-

tially under control of the contractile instability. Finally, flow speeds are again increased and compa-

rable to the case when the RhoA oscillator is absent (peak flow speed: 0:94 �m=s). In conclusion,

theory indicates that the active RhoA oscillator can act as a pacemaker for the system, to control the

contractile instability and to prevent the formation of large and irregularly moving contracting

regions of myosin.

We next sought to seek experimental evidence that the myosin pattern in the C. elegans zygote

is under control of the RhoA pacemaker. To this end, we tested if increasing the level of mechanical
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Figure 3. Active RhoA exhibits pulsatory dynamics

under conditions of reduced myosin activity. (A,B)

AHPH::GFP (green) and NMY-2::RFP (magenta) in (A) a

representative let-502 RNAi and (B) a representative

nmy-2 RNAi embryo. (C,D) Normalized AHPH::GFP

intensity change autocorrelation (C) for (A) and (D) for

B, obtained within the posterior. (E,F) Characteristic (E)

spacing of AHPH patterns and (F) period of AHPH

intensity change in non-RNAi, nmy-2 RNAi, and let-502

RNAi embryos. Scale bars, 5 �m.

DOI: 10.7554/eLife.19595.013

The following figure supplements are available for

figure 3:

Figure supplement 1. Myosin forms traveling peaks

that are spaced approximately 2l apart.

DOI: 10.7554/eLife.19595.014

Figure supplement 2. Characteristic spacing of AHPH

foci.

DOI: 10.7554/eLife.19595.015
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feedback in C. elegans destroys the pattern of

the active RhoA spatiotemporal oscillator as pre-

dicted from theory. For this we recorded space-

time patterns of myosin in a midplane section

under conditions of spd-5 RNAi. SPD-5 is a cen-

triole constituent that is essential for centriole

maturation (Hamill et al., 2002), and its RNAi

leads to a delay of polarizing flows which gives us

more time for an analysis of the pulsatory dynam-

ics. To increase mechanochemical feedback we

recorded space-time patterns of myosin under

RNAi of the actin nucleator pfn-1

(Severson et al., 2002) for which the cortex is

weakened and flow speeds are increased by a

factor of three to five (Figure 4F) and for which

the hydrodynamic length is decreased by 5 �m to

9 �m (Severson et al., 2002;

Naganathan, unpublished). For spd-5 RNAi, we

observed the ’normal’ pulsating pattern of myo-

sin foci (Figure 4C left; Video 9 and Video 10).

In contrast, for pfn-1 RNAi we observed large contracting regions of myosin that rapidly move in an

irregular fashion (Figure 4C right, D right; Videos 9 and 11). Importantly, in pfn-1 RNAi active RhoA

assembles in large and irregularly moving foci structures (Figure 4E right, compare to Figure 4E left

and Figure 3A,C; Video 11). This suggests that the normal pattern of the active RhoA spatiotempo-

ral oscillator is destroyed, and the distribution of active RhoA is now governed by the irregular

dynamics of myosin. Note that pfn-1 RNAi does not destroy the general ability of RhoA to generate

a pulsating pacemaker pattern, as revealed by double RNAi of pfn-1 and nmy-2 (Video 12). We con-

clude that reducing the hydrodynamic length increases mechanochemical feedback and advection.

This causes the RhoA pacemaker to lose the ability to control the contractile instability. Consistent

with the predictions of our theory, this destroys the RhoA pacemaker pattern and causes the system

to undergo a transition to irregular behavior with large and rapidly moving contracting regions

(Figure 4C–E). Interestingly, the uncontrolled gel is no longer capable to drive coherent flows of the

cortex over large distances (Figure 4G), and the embryo fails to polarize (Severson et al., 2002).

Taken together, our quantitative analysis is consistent with the interpretation that the spatiotemporal

RhoA oscillator acts as a pacemaker in C. elegans, controlling the contractile instability of the acto-

myosin cortex.

Video 4. Pulsatile dynamics of the active RhoA exhibits

pulsatile dynamics in homogenous myosin cortex. Time

lapse movie shows the cortical plane of the embryo

that expresses both AHPH::GFP (green) and NMY-2::

tagRFP-T (magenta) in let-502 RNAi embryo. Scale bar,

5 �m.

DOI: 10.7554/eLife.19595.016

Video 5. Pulsatile dynamics of the active RhoA exhibits

pulsatile dynamics independently of myosin function.

Time lapse movie shows the cortical plane of the

embryo that expresses both AHPH::GFP (green) and

NMY-2::tagRFP-T (magenta) in nmy-2 RNAi embryo.

Scale bar, 5 �m.

DOI: 10.7554/eLife.19595.017

Video 6. The absence of the active RhoA pacemaking

oscillator in ect-2 RNAi embryo. Time lapse movies

show the cortical planes of the embryos that expresses

AHPH::GFP (green) in nmy-2 RNAi embryo (upper), and

in ect-2 RNAi embryo (lower). Scale bar, 5 �m.

DOI: 10.7554/eLife.19595.018
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We have here investigated the mechanisms of pattern formation in an active system that com-

bines the contractile force generation and flow with regulation and advection. For this, we intro-

duced the COMBI method to directly infer reaction kinetics without relying for example on

photobleaching (Sprague et al., 2004). We determined the effective reaction kinetics of myosin and

active RhoA in the actomyosin cortex with COMBI. This allowed us to build a quantitative model of

mechanochemical patterning in the actomyosin layer. By use of linear stability analysis, we found

that the actomyosin cortex is unstable and spontaneously forms a self-organized pattern. We specu-

late that during embryogenesis cells need high cortical contractility to drive morphological changes.

This can lead them near or beyond contractile instabilities, leading to dynamics characterized by

strong fluctuations and irregular behavior, possibly exhibiting active turbulence (Giomi, 2015). We

suggest that such instabilities are inevitable in dynamic systems that are highly contractile. We dis-

covered a spatiotemporal RhoA oscillator that determines the myosin pattern even beyond the con-

tractile instability, thereby controlling the contractile instability. The independent biochemical RhoA
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Figure 4. A RhoA pacemaking oscillator controls the contractile instability. (A) Schematic of a mechanochemical

patterning system under control of a RhoA pacemaker, with (left) normal conditions and (right) with increased

mechanochemical feedback and with faster flows. (B) Numerically obtained space time plots of the myosin

distribution, for normal conditions (l ¼ 14:3 �m; left) and for a weakened cortex with increased mechanochemical

feedback (l ¼ 9 �m; right); see Appendix. (C) Kymographs of NMY-2 intensity under normal conditions (spd-5

RNAi; left) and under conditions of a weakened cortex (pfn-1 RNAi; right) obtained in mid-plane images and from

the yellow region illustrated in the inset image on the right. (D,E) Representative cortical plane images of (D)

NMY-2::tagRFP-T and (E) RhoA::GFP, dotted circles indicate foci. (F) Average cortical flow speed as a function of

direction under conditions of a normal cortex (dark blue: non-RNAi; light blue: spd-5 RNAi) as well as for a

weakened cortex (red: pfn-1 RNAi). (G) Radially averaged velocity orientation correlation function (Materials and

methods) for the same three conditions, note that the pfn-1 RNAi embryo cannot drive coherent flow over large

distances. Scale bars, 5 �m.

DOI: 10.7554/eLife.19595.019

The following figure supplement is available for figure 4:

Figure supplement 1. A RhoA pacemaking oscillator can control the myosin pattern in the model.

DOI: 10.7554/eLife.19595.020
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oscillator endows the cell with the ability to use an intrinsically unstable active contractile medium

for driving morphogenetic processes such as polarization. To conclude, our work paves the way for

understanding pattern formation in active biological materials that utilize potentially unstable con-

tractile processes.

Materials and methods

Worm strains, maintenance, and
sample preparation
The following transgenic lines were used in this

study. SWG003: nmy-2(cp8[nmy-2::GFP + unc-

119(+)]) I; unc-119(ed3) III; gesIs002[Ppie-1::Life-

act::tagRFP-T::pie-1UTR + unc-119(+)], for imag-

ing of GFP labelled NMY-2 (the images shown in

Figure 1A and B and in Figure 4C). SWG012:

nmy-2(ges6[nmy-2::tagRFP-T + unc-119(+)]) I;

xsSi5[cb-UNC-119 (+) GFP:: ANI-1 (AH+PH)] II;

unc-119(ed3) III, for imaging of tagRFP-T labelled

NMY-2 and GFP labelled AHPH for a probe of

active RhoA in the cortex (the images shown in

Figure 1F, in Figure 2H, and in Figure 3A and

B).

Worm strains were maintained at 20˚C, and

shifted to 24˚C for 24 hr before imaging.

Embryos were dissected in M9 buffer and

mounted onto agar pads (2% agarose in water)

to squish the embryos gently. All experiments

were performed at 23–24˚C. RNA interference

experiments were performed by feeding as

described in Naganathan et al. (2014). Feeding

times for RNAi experiments were 16–18 hr for

nmy-2, 23–25 hr for spd-5, 19–21 hr for pfn-1,

Video 7. Active RhoA pacemaker can determine the

myosin pattern in the contractile instability regime.

Time evolution of the myosin pattern, obtained by the

numerical integration of the mechanochemical

patterning system, coupled with the active RhoA

pacemaking oscillator.

DOI: 10.7554/eLife.19595.021

Video 8. Rapid and irregularly moving myosin pattern

in the cortex with the reduced hydrodynamic length.

Time evolution of the myosin pattern, obtained by the

numerical integration of the mechanochemical

patterning system with the reduced hydrodynamic

length by 5 �m to 9 �m, and coupled with the active

RhoA pacemaking oscillator.

DOI: 10.7554/eLife.19595.022

Video 9. Rapid and irregular movement of myosin foci

for a pfn-1 RNAi embryo. Time lapse movies show the

midplane sections of the embryos that express NMY-2::

GFP (magenta) in spd-5 RNAi embryo (upper) and pfn-

1 RNAi embryo (lower). Scale bar, 5 �m.

DOI: 10.7554/eLife.19595.023
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19–21 hr for pfn-1;nmy-2 double knockdown and 29–31 hr for let-502. Feeding clones were obtained

from the Hyman lab (MPI-CBG, Dresden, Germany).

Imaging
One-cell stage embryos were observed under the inverted fluorescence microscope (Axio Observer

Z1, Zeiss) using a Zeiss C-Apochromat 63� water immersion lens, equipped with a spinning disc con-

focal unit (Yokogawa, CSU-X1) and AOTF laser combiner (Andor, ALC). Fluorescence images were

acquired by a sCMOS camera (Hamamatsu, ORCA flash 4.0) at 5 s time intervals for non-RNAi, let-

502 RNAi, nmy-2 RNAi, and pfn-1;nmy-2 RNAi embryos. For pfn-1 RNAi embryos, images were

taken every 3 s. Pixel size was 0.105 � 0.105 �m2, all devices were controlled through ��manager

(Edelstein et al., 2014). Fluorescence images of GFP and tagRFT-T labeled proteins in the embryos

were excited by 488 and 561 nm lasers, respectively.

Image analysis
Prior to COMBI analysis, images were filtered using the nonlocal means method (Buades et al.,

2005), reducing spatially uncorrelated noise while preserving finer structures. Filtering was per-

formed by averaging fluorescence intensities on the basis of the similarity between the fluores-

cence intensity profile in the interrogation area and the intensity profile in the neighboring region,

i.e., a searching window. We set the size of the interrogation area and the searching window, to

be 5� 5 pixels and 25� 25 pixels, corresponding to 0.525 � 0.525 �m2 and 2.625 � 2.625 �m2,

respectively. A filtering parameter, h, was set to be 0:1 s for NMY-2 images, 0:3 s for AHPH

images, where s denotes the standard deviation of the fluorescence intensity in each image. We

performed the filtering using a freely available code from MATLAB central (Fast Non-Local Means

1D, 2D Color and 3D by Kroon). Note that it is important to remove spatially uncorrelated noise

prior to the computation of the spatial derivatives, since differential value is affected by spatially

uncorrelated noises.

To perform COMBI, we first determined the cortical flow velocity, vðx; yÞ, by Particle Image Veloc-

imetry (PIV) using a freely available PIV algorithm, PIVlab 1.32 (available from http://pivlab.blogspot.

Video 10. Pulsatile dynamics of the active RhoA and

the myosin in spd-5 RNAi embryo. Time lapse movies

show the cortical planes of the embryo that expresses

both AHPH::GFP (green) and NMY-2::tagRFP-T

(magenta) in spd-5 RNAi embryo. Scale bar, 5 �m.

DOI: 10.7554/eLife.19595.024

Video 11. Irregular dynamics of the active RhoA and

the myosin in pfn-1 RNAi embryo. Time lapse movies

show the cortical planes of the embryo that expresses

both AHPH::GFP (green) and NMY-2::tagRFP-T

(magenta) in pfn-1 RNAi embryo. Scale bar, 5 �m.

DOI: 10.7554/eLife.19595.025
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de/). PIV was performed on NMY-2 images by

setting the interrogation area as 24 pixels with a

step of 12 pixels. Velocity vectors were then

interpolated to single pixel resolution for deter-

mining Rr and Rm:qtCi; Cirv and vrCi for both

the background subtracted, active RhoA and

myosin intensities (denoted by Cr and Cm, respec-

tively). Intensity background levels were obtained

by averaging the intensity in the region outside

the embryo. Rr and Rm were then determined for

each pixel throughout the cortical plane, by the

use of the mass balance equations given in

Figure 1G. We obtained a kinetic diagram

(Figure 1H) by averaging Rr and Rm in 10�

10 �m2 boxes located in the anterior region. We

determined average values for each embryo by

averaging over the first 36 frames after the start

of polarizing flow. For the non-RNAi case

(Figure 1H), we report the average kinetic dia-

gram from N ¼ 25 embryos, for let-502 RNAi

(Figure 2F) we averaged over N ¼ 12 embryos.

Note that the active RhoA and NMY-2 concentra-

tions were normalized by the respective mean

intensities of active RhoA and NMY-2 under non-

RNAi conditions.

Correlation analysis
To characterize the myosin intensity change, DIðtÞ and the cortical flow speed vrðtÞ in a box of size

10� 10 �m2 in the posterior region, we determined the spatial average over the box. We then com-

puted the autocorrelation function

CtðtÞ ¼
f ðtÞ2��f

h i

f ðtþ tÞ2 ��f
h iD E

t

s2

f

; (1)

where f ðtÞ ¼ DIðtÞ or vrðtÞ, sf denote the standard deviation of f ðtÞ, and �f denotes the mean of f ðtÞ,

averaged over time t, where hit represents an average over time. Ct is mean-subtracted and normal-

ized by the variance of f ðtÞ. The period of oscillation was determined by the peak position in the

autocorrelation function. For a precise detection of oscillatory behavior, we removed from our analy-

sis embryos in which the second peak in the autocorrelation function of the time course was unde-

tectable (12 out of 25 cases for non-RNAi embryos, 5 out of 12 cases in let-502 embryos, 4 out of 12

embryos for nmy-2 RNAi embryos, respectively).

We obtained the characteristic length of the spatial pattern of myosin and RhoA by detecting the

location of the first peak in the radial spatial intensity correlation function. The spatial intensity auto-

correlation function of intensity, f ðx; y; tÞ, was obtained by

Cspð�;h; tÞ ¼
f ðx;y; tÞ2 ��f ðtÞ

h i

f ðxþ �;yþh; tÞ2 ��f
h iD E

x;y

s2

f

; (2)

where �f ðtÞ denotes the spatial average of f ðx;y; tÞ, see Figure 3—figure supplement 2C. This func-

tion was radially averaged, and the first peak was detected (Figure 3—figure supplement 2D) in

each time point. The radii of first peak were then averaged over time in each embryo. For the deter-

mination of the spacing in AHPH foci, the contrast of the fluorescence images was enhanced using

the Contrast Limited Adaptive Histogram Equalization method using Matlab (Mathworks)(see Fig-

ure 3—figure supplement 2).

Video 12. Pulsatile dynamics of the active RhoA in pfn-

1;nmy-2 RNAi embryo. Time lapse movies show the

cortical planes of the embryos that expresses AHPH::

GFP (green) in nmy-2 RNAi embryo (upper), and in pfn-

1;nmy-2 RNAi embryo (lower). Scale bar, 5 �m.

DOI: 10.7554/eLife.19595.026
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To characterize the spatial coherence of the velocity field, we evaluated the spatial correlation of

the normalized velocity vectors, nðx; y; tÞ ¼ vðx;y; tÞ= vðx;y; tÞj jj j. The spatial correlation function was

computed by,

Corið�;hÞ ¼ nðx;y; tÞ �nðxþ �;yþh; tÞh ix;y;t ; (3)

where � represents scalar product, and hix;y denotes the spatial average. Note that the coordinate

transformation from Cartesian to polar coordinates of the orientation vectors, nðx;y; tÞ, provides a

simpler representation of Corið�;hÞ as,

Corið�;hÞ ¼ cos �ðx;y; tÞ� �ðxþ �;yþh; tÞ½ �h i;

where �ðx;y; tÞ denotes the anti-clockwise angle from x-axis of nðx;y; tÞ. The above expression shows

that the Corið�;hÞ provides spatial correlation of the cosine similarity between �ðx;y; tÞ and

�ðxþ �;yþh; tÞ. Therefore, the characteristic length of the decay of Corið�;hÞ represents the loss of

correlation between the directions of velocity vectors, ð�;hÞ away. Larger characteristic length of the

decay demonstrates the large-scale flow of the cortex.

For visualizing purpose, we transformed the coordinate system from ð�;hÞ to polar ðr;fÞ and then

determined the average over the angle, f, to plot Cori as a function of the radius, r, e.g. Figure 4G.
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Appendix

Active gel description of the cortex
We described the dynamics of the cortical layer on the surface of the zygote by use of a full

mechanochemically coupled system containing an active gel description for the cortical layer

(Bois et al., 2011; Kumar et al., 2014) together with a reaction-diffusion-advection

equation system for active RhoA and NMY-2. For the latter, the concentrations of active

RhoA and NMY-2 in one dimension are given by �mðx; tÞ and �rðx; tÞ, respectively, where x

denotes position and t denotes time. The dynamics of the 1-D surface concentration vector

rðx; tÞ ¼ �mðx; tÞ; �rðx; tÞ½ �t is given by

qt�iðx; tÞþ qxjiðx; tÞ ¼ Riðrðx; tÞÞ (4)

jiðx; tÞ ¼ vðx; tÞ�iðx; tÞ�Diqx�iðx; tÞ ; (5)

where i 2 fm; rg, with m denoting NMY-2 and r denoting active RhoA. Here, vðx; tÞ

represents the gel velocity field determined by active cortical mechanics, see below.

Rmðrðx; tÞÞ and Rrðrðx; tÞÞ denote the respective fluxes of NMY-2 and active RhoAand from

the cytosol onto the surface via turnover and recruitment. Dm and Dr denote the respective

diffusion coefficients of active RhoA and NMY-2. We estimated the surface diffusion

coefficients of both active RhoA and myosin, by analyzing FRAP recovery in ANI-1::GFP and

NMY-2::GFP by use of a method considers of both turnover and lateral diffusion

(Goehring et al., 2010). This revealed in both cases that lateral (surface) diffusion was below

the detection limit and undistinguishable from zero. Hence, we expect surface diffusion of

myosin and active RhoA to not significantly impact the dynamics of the cortical layer.

However, for the purpose of preventing sharp peaks in concentration fields in our numerical

simulations, we here set Dr ¼ Dm ¼ 0:01 �m2=s. Note that the general results of our

numerical analysis do not change when increasing or decreasing either diffusion constant by

a factor of 10. Importantly, the fastest growing mode occurs for wavelengths of the order of

l in all cases (Figure 2—figure supplement 1).

We describe forces and flows within the cortical layer in the framework of active gel theory

(Bois et al., 2011; Kumar et al., 2014; Kruse et al., 2005; Mayer et al., 2010). We

consider the cortex to be a thin film active viscous fluid in 1D, where NMY-2 generates

active tension (Bois et al., 2011; Kumar et al., 2014; Mayer et al., 2010). Hence, total

tension

sin the layer is given by a sum of viscous tension arising characterized by a bulk viscosity h,

and active tension (or contractility) sa that depends on myosin concentration acording to

sa ¼ zf ð�mÞ, with f ð�mÞ and increasing function of the concentration �m and z a coefficient

that determines the magnitude of active tension.

The constitutive equation for an active viscous fluid is then given by Mayer et al. (2010)

s¼ hqxvðx; tÞþsað�mÞ : (6)

We choose for f ð�mÞ a saturating Hill-function, f ð�mÞ ¼ �mð�m0 þ 1Þ=ð�m þ 1Þ(Bois et al.,

2011; Kumar et al., 2014), to limit the active stress in our numerical simulations. Here, �m0

denotes the stationary concentration of NMY-2. Note that choosing a linear dependence

without saturation does not significantly change the stability diagram, see Figure 2—figure

supplement 2.

The force balance equation for an active viscous fluid in the presence of friction with a

coefficient g between the cortex and its surrounding cytoplasm and cell membrane

(Mayer et al., 2010; Bois et al., 2011; Kumar et al., 2014) is given by
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qxs¼ gv : (7)

Equations 6 and 7 provide an equation of motion

lq2xvþ
z0

l
qxf ð�mÞ�

1

l
v¼ 0 ; (8)

where l ¼
ffiffiffiffiffiffiffiffiffi

h=g
p

represents the hydrodynamic length of the cortex, which sets a correlation

length for the velocity field. We determined the parameters l and z0 ¼ z
g
that characterize

the active viscous fluid with a method that compares the relaxation dynamics of the cortex in

response to cortical laser ablation (COLA) between experiment and theoretical predictions

(l ¼ 14:3 �m, z0 ¼ 24:9 �m2=s) (Saha et al., 2016). Note that we ignored the polar or nematic

order of actin filament in the cortex, which can introduce the tension anisotropy. Based on

the recent study by Reymann et al. (Reymann et al., 2016), the alignment is mainly due to

large-scale cortical flow in one-cell stage C. elegans embryo, which has the highest

compressible component and nematic order parameter in the mid-zone of posterior.

Rescaling
We rescale the spatial coordinate with respect to l, and rewrite Equations 5–7 according to

~s¼ q~x~vþ ~sa

q~x~s¼ ~v

qt�i þ q~x~v�i � ~Diq
2

~x�i ¼ Rið�m; �rÞ;

(9)

with the following rescaled quantities

~x ¼ x=l
~v ¼ v

l

~s ¼ s
l2g

~sa ¼ z

l2g
f ð�mÞ

~Di ¼ D
l2
:

We performed numerical integrations of Equation 9 with periodic boundary conditions by

use of the pseudospectral method (Boyd, 2001).

Linear stability analysis
The homogeneous state with the concentrations r0 ¼ ð�r0; �m0Þ

t and a vanishing flow field

vðx; tÞ ¼ 0 can be a stationary state of the system. To test the stability of this stationary state,

we apply a small perturbation of d� ¼ r0 þ d�0 e2pinxþaðnÞt, where n and a denote spatial

frequency and eigenvalue, respectively. Inserting d� into Equation 9 and retaining linear

terms only, the linear stability matrix A with respect to the perturbation d� becomes

A¼4p2n2
�~Dr 0

0 �~Dm

" #

þ
4p2n2~zq�m f ð�m0Þ

4p2n2þ 1

0 �r0

0 �m0

� �

þV (10)

V¼
q�rRrðr0Þ q�mRrðr0Þ

q�rRmðr0Þ q�mRmðr0Þ

� �

; (11)
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where ~z ¼ z=l2g. To determine the linearized matrix V that characterizes biochemical

regulation of NMY-2 and active RhoA, we performed a linear regression over the whole

range of Rr and Rm values determined by COMBI (Figure 1H in main text) using

Rrðcr;crmÞ ¼ kron� kroffcrþ kmr
on cm

Rmðcr;crmÞ ¼ kmonþ krmon cr� kmoffcm :
(12)

Here, cr and cm denote the normalized intensities of AHPH and NMY-2, respectively, with

cr; cm½ � ¼ �r; �m½ �. We get

V¼
�kroff kmr

on

krmon �kmoff

� �

: (13)

We determined the matrix V directly from our experimental data (Figure 1H in main text) by

robust regression and using standard deviations for weights, and find

V¼
�0:0454 0:000576

0:0994 �0:101

� �

: (14)

Please see Figure 1—figure supplement 2 for a comparison between the linearized and full

landscapes. The corresponding eigenvalues of V are a ¼ �0:102;�0:0444. Both of these are

negative and real, indicating that the fixpoint is a sink.

The stability diagram shown in Figure 2B in the main text was obtained in the plane of

hydrodynamic length l and the active tension (or contractility) measure �s ¼ z0f ðc$mÞ, where

c$m denotes the stationary concentration of cm in the homogeneous state.

Pulsatile dynamics of active RhoA

Phenomenological description of the pulsatory dynamics
To investigate if an active RhoA pacemaking oscillator can control the contractile instability and

determine the myosin pattern, we describe active RhoA pulsation dynamics by an oscillating

standing wave. For this, we utilize a generic spatiotemporal oscillator, the complex Swift-

Hohenberg equation (Cross and Hohenberg, 1993; Sakaguchi, 1997). We introduce a

complex variable  ðx; tÞ, the real part of which represents the concentration of active RhoA,

<½ ðx; tÞ� ¼ �rðx; tÞ. We write a conservation law for  ðx; tÞ according to

qt ðx; tÞ ¼�qxjr þRSHð ðx; tÞ� �r0ðx; tÞÞ;

jr ¼<½ ðx; tÞ�vþDrqx<½ ðx; tÞ�
(15)

with

RSHð ðx; tÞÞ ¼ ðaþ if0Þ ðx; tÞ� bðq2
0
þ q

2

xÞ
2 ðx; tÞ

þif1q
2

x ðx; tÞ� d1j ðx; tÞj
2 ðx; tÞ

�d2jqx ðx; tÞj
2 ðx; tÞ:

(16)

Here, RSH is the pacemaking oscillator term using the complex Swift-Hohenberg equation,

while a; b; d1; d2; f0; f1 and q0 are phenomenological coefficients that determine the

spatiotemporal dynamics of  ðx; tÞ.

We chose a set of parameter values that is based on (Sakaguchi, 1997) and that gives rise

to an oscillating pattern that is similar to the active RhoA oscillation shown in Figure 3 of the
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manuscript, with a characteristic length-scale of 5 �m and a characteristic time-scale of 60 s (

i,e. the half-period corresponds to the active RhoA oscillation period). We find that the

occurrence of a transition from a pacemaker- entrained state (i.e. the myosin pattern is

determined by the pattern of the active RhoA pacemaker) to a detrained state (i.e. the

active RhoA pattern is destroyed and now determined by cortical mechanics and myosin) is

not sensitive to the detailed characteristics of the pacemaking oscillator, e.g. its amplitude,

period, and spacing. For large hydrodynamic lengths l, the myosin pattern is entrained to

the active RhoA pulsatility. As we decrease l, the period of myosin pattern oscillation

increases, due to increasing amounts of accumulation of myosin and active RhoA at the

myosin foci by advection. At intermediate values of l around ~ 12 �m, we observed a

transition from the entrained state to the detrained state. Here, the dynamical pattern is

characterized by irregular movements and ‘mechanochemical turbulence’ (Figure 4 in main

text, Figure 4—figure supplement 1), and depends on a both flow and advection as well as

the active RhoA pacemaking activity.

Associated time-scales
To provide an intuitive understanding of entrainment-detrainment transition, we compare

characteristic time-scales of advection and biochemical regulations. First we obtain an

advection time-scale, tadv, by solving Equation 8 for qxf ð�mÞ ¼ dðx� x0Þ, where dðxÞ is Dirac’s

delta function. For the infinite interval, �¥ < x < ¥, and a no-flux boundary condition,

vð�¥; tÞ ¼ 0, the velocity profile, v0ðxÞ, is given by

v0ðxÞ ¼
z

2lg
exp �

x� x0j j

l

� �

: (17)

hence, the velocity decay over space is characterized by the hydrodynamic length l, while

the magnitude of velocity is set by Vc ¼
z

2lg
. We obtain a time-scale for advection as

tadv ~
l

Vc

¼
2gl2

z
; (18)

which specifies the time required for the thin film active fluid to advect biochemical

regulators over the characteristic length l.

Next, we introduce a characteristic time-scale of biochemical regulation as

tR ¼ qRm=q�rð Þ�1¼ krmon
�1

~ 10 s. If tadv � tR, the RhoA pacemaking oscillator controls the

dynamics of the full mechanochemical patterning system, and advection plays a minor role.

In this case, NMY-2 dynamics are entrained to the pulsatory dynamics of the active

RhoApacemaker. In contrast to this, flow and advection dominate the dynamics of the full

mechanochemical patterning system when tadv � tr. Here, the regularly oscillating

pacemaker pattern of active RhoAis destroyed due to increased advection, leading to

irregular spatiotemporal dynamics and ‘mechanochemical turbulence’.

In the zygote, we find that for the non-RNAi case that tadv ¼ 16:5 s is larger than tR ~ 10 s.

Thus the myosin pattern is entrained to the active RhoA pulsatory dynamics. On the other

hand, we find that for the pfn-1 RNAi case that tadv ¼ 6:5 s, which is smaller than tR. Hence,

we observe irregular behavior (Figure 4B, right, in the main text).
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