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Abstract

We calculate the Casimir stresses in a thin layer of active fluid with nematic order. By using a stochastic
hydrodynamic approach for an active fluid layer of finite thickness L, we generalize the Casimir stress for
nematic liquid crystals in thermal equilibrium to active systems. We show that the active Casimir stress
differs significantly from its equilibrium counterpart. For contractile activity, the active Casimir stress,
although attractive like its equilibrium counterpart, diverges logarithmically as L approaches a threshold
of the spontaneous flow instability from below. In contrast, for small extensile activity, it is repulsive, has
no divergence at any L and has a scaling with L different from its equilibrium counterpart.

Introduction

Itis well-known that although the zero-point energy of the electromagnetic field inside a cavity bounded by
conducting walls is formally diverging, its variation upon displacements of the boundaries remains finite. It
corresponds to a weak but measurable attractive force, known as the Casimir force [1]. For example, in the case

of two parallel conducting plates at a distance L, the attractive Casimir force per unit area, or the Casimir stress is
. 72 h2me
givenby Cr = — 20 i
Subsequently, thermal analogs of the Casimir stress associated to various fluctuating fields at a finite

[1]. Itis of purely quantum origin.

temperature T have been studied. In nematic liquid crystals confined between two parallel plates, the thermal
fluctuations of the director field that describes the nematic order, play the role of the electromagnetic
fluctuations in the electromagnetic Casimir effect. In all such classical systems, the boundary conditions on the
relevant fields (e.g. the director field for nematic liquid crystals) constrain their thermal fluctuations andlead to a
thermal analog of the Casimir stress. For instance, for a nematic liquid crystal between parallel confining plates
separated by a distance L with the director field rigidly anchored to them, one again obtains an attractive Casimir
stress that varies with the thickness L of the liquid crystal film as 1/L*[2].

Studies on non-equilibrium analogs of thermal Casimir stresses are relatively new. In [3], Casimir stresses
between two parallel plates due to non-thermal noises are calculated. Further, embedding objects or inclusions
in a correlated fluid are shown to generate effective Casimir-like stresses between the inclusions [4]. In a more
recent study, [5] numerically examined run-and-tumble active matter particles in Casimir geometries composed
of two finite parallel walls and found an attractive Casimir force depending, rather unusually, exponentially on
the plate separation. There are direct biologically relevant examples as well: recently [6], studied the Casimir-like
forces felt by inclusions in active fluids, in particular their dependence on active noise and hydrodynamic
interaction. Subsequently, [7] studied the role of active Casimir effects on the deformation dynamics of the cell
nucleus and showed the appearance of a fluctuation maximum at a critical level of activity, a result in agreement
with recent experiments [8]. The active fluid models considered by [6, 7] are effectively one-dimensional and
hence do not include any soft orientational fluctuations. More recently, [9] studied one-dimensional
suspension of active particles, and uncovered a Casimir-like attractive force mediated by the active suspension.
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In this article, we calculate the Casimir stress between two parallel plates confining a layer of an active
nematic fluid with a uniform macroscopic orientation [10-14]. The active fluid is driven out of equilibrium by a
local constant supply of energy. Our work directly generalizes thermal Casimir stresses in equilibrium nematics
[2] into the nonequilibrium domain.

The hydrodynamic active fluid model [10, 11] has been proposed as a generic coarse-grained model for a
driven orientable fluid with nematic or polar symmetry. One of the main features of an active fluid is the
existence of an active stress, resulting from the constant energy consumption driving the system out of
equilibrium. Due to its very general nature, the active fluid model is able to describe a broad range of
phenomena, observed in very different physical systems and at very different length scales [10-12]. Notable
examples include the dynamics of actin filaments in the cortex of eukaryotic cells or bird flocks and bacterial
biofilms. In particular, in the case of actin filament dynamics, the active stress results from the release of free
energy due to the chemical conversion of Adenosine-Triphosphate (ATP) to Adenosine-Diphosphate.

In this article, we study Casimir stresses using a stochastically driven coarse-grained hydrodynamic
approach for active fluids [ 10—12] with a nematic order, described by a unit director field p,,, @ = x, ,z. The film
is infinite along the x, y plane, but has a finite thickness L in the z-direction. A typical example of ordered active
nematic where our results may apply is the cortical actin layer in a cell where the orientation of the actin
filaments can have a component parallel to the cell membrane. It has been recently shown that a liquid
contractile active film of thickness L with polarization either parallel or perpendicular to its surface has a
spontaneous flow instability, above a critical value of the activity [15, 16]. This is the nonequilibrium analog of
the ‘Frederiks transition’ in equilibrium classical nematic liquid crystals, in which a uniform magnetic field wins
over the direction imposed by boundaries, above a critical value depending on sample thickness [17]. It is driven
by the coupling between the director orientation and the active stress. We here calculate C,, the active analog of
the thermal equilibrium Casimir stress, that we formally define below.

Active Casimir stress

We consider a thin film of active fluid with a fixed thickness L along the z-direction confined between the planes
z = 0and z = L.Inthe passive case, i.e. without any activity, the Casimir stress C, is defined as [2]

Ceq = <U§g> |Z:L - <U;§l> |z:oo- (1)

Here, 0] is the normal component of the equilibrium stress that diverges for all z (or, all L); C., however is finite
for any non-zero L[2]. Here, (..) implies averages over thermal noise ensembles (see below).

The average total normal stress (o5 ) depends a priori on the slab thickness L. It also has a piece independent
of L. We define the L dependent part as the ‘Casimir stress’. We show below that this allows us to extract an active

Casimir effect C e, by
Cact - <0;(z)t> Iz:L - <0—Zt> IA/L:O,Z:L) (2)

where the L-independent parts of the stresses are ignored. Here, A is the chemical potential difference between
ATP and its hydrolysis products. It is the thermodynamic force conjugate to the rate of hydrolysis of the number
of ATP molecules per unit time and per unit volume. Further, o}3'|a,—o = 053, the normal component of the
equilibrium stress.

For simplicity, we assume a one Frank constant description with K as the Frank constant (in which the Frank
constants for the splay, bend and twist modes are equal). The Frank free energy density in three dimensions is
given by (0, pﬂ)ZK / 2, where o, B = x, , z. By using stochastic hydrodynamic descriptions for orientationally
ordered active fluids, we show below that, for a given reference orientation state p, = 1 and up to the quadratic
order in orientation fluctuations, C,. as given by (2) reduces to

K K
Cact = _E <(8zp1)2> |z:L + z<(8zpl)2> |Au:0,z:L: (3)

wherei,j = x, y. The quantity C,, is difficult to measure directly. However changes of C, . due to changes in L
can in principle be measured.

When the thickness L of a contractile active fluid layer approaches the critical thickness L, for the
spontaneous flow instability from below [15], we show that C,, remains attractive, though it does not scale like
its equilibrium counterpart: there is alog correction to the equilibrium result as L approaches L, from below. We
also calculate C,, for extensile activity, and contrast it with C, for the contractile case: in this case, C,., is found
be repulsive unlike the contractile case, has no divergence at any finite L, and scales with L differently from the
equilibrium result.
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Steady state stresses in a fluctuating active fluid

We consider an incompressible viscous active fluid film with nematic order. Our analysis below closely follows
the physical discussion of [ 18], where the diffusion coefficient of a test particle immersed in an active fluid with
nematic order is calculated. The force balance in an incompressible active fluid is given by

05(Gup + 04 — Pdup + 045 = 0, 4)

where fluid inertia is neglected [10, 19]. Here, &, denotes the traceless part of the symmetric deviatoric stress
and the antisymmetric deviatoric stress is given by

1
0o = > (Bt = pyha)- (5)

Here h, = —0F/p,, is the orientational field conjugate to the nematic director p,,, where F = f &rf denotes
the nematic director free energy with a free energy density f. Furthermore, P denotes the hydrostatic pressure.
Note that in a nematic system the equilibrium stress includes the Ericksen stress

of

¢ = —————0up, = —K(0up,)(Osp,)- 6
0'&[3 6(631%) P,y ( p»y)( JP’,) ( )

Here, o, 8 = x, y,z. The total normal stress is thus given by
Uto?é = Oup + 0o — Pbap + Ufw; 7)

see equation (4) above.
In the following, we impose for simplicity a constant amplitude of the nematic director p.p., = 1. The
constitutive equations of a single-component active fluid then read [19]

2

{5_&3 + CAuqaﬁ + %(pahg + pﬁha - gpv h’)/(saﬂ)} = 277Va6 + fz‘@’ (8)
D 1 "

Defe = ;hu = iPsVap + E1as )

where g, 5= ( Db — %6@@) is the nematic tensor. The symmetric velocity gradient tensor is 7,3 = (0,3 + Jsva) /25
where v,, is the three-dimensional velocity field of the active fluid (o« = x, ¥, 2). The term (A piq.zin (8) is the traceless
part of the active stress. The term % ( bhs + psha — % p,hy 6(,‘3) is the traceless symmetric part of a stress contribution

that originates in the orientation fluctuations and is required to be present due to the Onsager symmetry relations. The
shear viscosity is denoted by 7, 7, is the rotational viscosity and v, the flow alignment parameter which is a number of
order one. Noises £? - and & | , are assumed to be thermal noises of zero-mean and variances given by

<§Z;(t, X)f%(t/, X/)> = ZkBT’U[((Sa»Y(Sﬂg + (505(5{;1, — %(%3675]5(1' — t’)6(x — X/), (10)
W, ks T ! !
(ELatXx)E 5, X)) = 2—7 [bap — Dups16(t — )6 (x — x), (11)
1

where kg is Boltzmann constant and T denotes temperature. Notice that the noises &, , (t, X) are multiplicative in
nature (see noise variance (11)). However, since we are interested in a linearized description about uniform
ordered states (see below), the multiplicative nature of these noises do not affect our calculations. Furthermore,
we do not consider any athermal or active noises for simplicity. We consider an incompressible system imposed
by the constraint d,v, = 0.

The pressure P plays the role of a Lagrange multiplier used to impose the incompressibility constraint
OuVa = 0. The incompressibility leads to the following equation for P:

2
V2P = —%80[65([1(1}13 + pyha — gp . héaﬂ) — CApda05(p,ps) + 0a030%5 + 00387 5 (12)

We consider a film of the active fluid with a fixed thickness L along the z direction, confined between the
planesz = 0 and z = L. We consider a quiescent reference state together with p, = 1, which is a steady state
solution of (4) and (9). We study small fluctuations ép = (px. p,,0) around this state; op = |6p| (fluctuations of p
along the z direction, dp, is quadratic in p: dp, = ( p}f + pyz) / 2). We impose boundary conditions (p,, p,) = 0
and vanishing shear stressatz = 0 and z = L. See figure 1 for a schematic diagram of the system.

3
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Ao.=0 v,=0 p=0=p,

szzl

z=0 > X
0, =0 v, =0 pX:O:py

Figure 1. A two-dimensional projection of the model system (in light gray) on the xz-plane. Boundary conditions on the flow field and
the orientation fluctuations are indicated. The upward arrow within the system indicates the orientation reference state p, = 1,and
i=x7.

The total average normal stress on the surfaceatz = L, (o' ), reads:

0 8Vz 12 1%
o =n{22) = cAutp)lr - Liphies - Liphl
0z [,—1 3 3
+ (0%)=1 — (P)e=1, (13)
where 0%, = —K (0,p;)*. Here, i,j = x, y are the coordinates along the film surface. Using, for simplicity and

analytical convenience, a single Frank elastic constant K for the nematic liquid crystals, the Frank free energy
densityis given by f = K (V,,p;)* / 2. Below we evaluate the pressure P which obeys equations (12). The
remaining terms in (13) are also to be evaluated using the relevant equations of motion and then averaging over
the various noise terms The contributions to the stress that are linear in small fluctuations (p,, p,) vanish upon
averaging; therefore, a non-vanishing Casimir stress is obtained from contributions to the stress quadratic in p
in (13). Itis instructive to analyze the different contributions in (13) to Cy, term by term. This will allow us to
considerably simplify (13) as we will see below.

We first consider the contribution 7 < Z—VZZ > in (13). Using the condition of incompressibility V - v = 0,
z=L

this may be written as

v,
77< ! > = —n(VL - Vi)eer = =0V - (Vi)=r =0, (14)
0z z=L

since there is no flow on average. Here, V| = (%, %) is the two-dimensional gradient operatorand v, = (v,,
v,) is the in-plane component of the three-dimensional velocity v.

Secondly, (p;h;),—; = Osincep; = Oatz = L. Further, (p h;),—; = (h)),sincep, = latz = L.Here, hisa
Lagrange multiplier, which must be introduced to impose p> = 1, or to the leading order p, = 1 in the geometry
that we consider. Using p, = 1in equation (9) and linearizing around p, = 1, we obtain iy ~ % atallz[19].
Using the incompressibility condition, dv, /0z = — V| - v,. Thisthen gives (h,) = 0 to theleading order in
fluctuations.

To evaluate the pressure P, we consider the equation for the velocity field v, that obeys the generalized Stokes
equation

1
NV = 0P + CAds(p,ps) — %@i(?gha + p hg) — Ea[J(Pahﬁ = Ppsha) — 03055 — 03875 (15)

We focus on the in-plane velocity v;, « = i = x, yin (15) above. Now consider the different terms in (15) with
« = iatz = Land note that (i) p; = Oatz = L, (ii) in the absence of any mean flow and consistent with the in-
plane rotational invariance, velocity fluctuations +v; and —v; should be equally likely in the statistical steady
state, i.e. the steady state average of any function odd in v; should be zero. This implies that (v;) = 0 = (92v;)in
steady states. Similarly, in an oriented state having nematic order with p, = 1, fluctuations +p; and —p; should
be equally likely in the steady state, i.e. any function odd in p; must have a vanishing average in the steady states.
Furthermore, since h;is odd in p;, we must have (h;) = 0 at steady state. This gives

(0s(pshi)) = (9.(p,hi)) = 0,
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Similarly
CAM <8J(P,Pg)> |z:L = CAM <5](P,P])> |z:L + <AM <8z(plpz)> |z:L = CAN <az(P,PZ)> |z:L (16)
vanishes in the steady state due to the inversion symmetry of p;. Lastly, we note that
1
8/30-‘1?/3|Z:L = _K[aj(aipyajp'yﬂz:L + 8z(aipﬁ/6zpv)|z:L] = _Eai(azpj)le:L> (17)

where we have used [(9;p,)(93p)].=1 = [(p)(92p))e=1 + [(Dip,)(D2p)].= = O,sincep; = Oandp, = 1

exactlyatz = L. Putting together everything and averaging in the steady states, we then obtainatz = L

K
OiP = Opoiy = —?31‘(@17]-)2, (18)
giving
K
P=—2@:p)* + a0 (19)
atz = L, where ais a constant of integration. Then substituting Pin (13)
K K ~
<U,tz(;t >Z:L = - E <(8zp, )2> |z:L - CAM +ap=— E <(82P1)2> |z:L + do, (20)
where d is another constant that in general can depend upon A . Similarly in the passive case [2]
K
<a.$t> |AM=0>Z:L = <U§g >Z:L = - 3 <(6zp1)2> |Z:L,A;1:0 + agqa (21)
where a;%is a constant. The constants dy and a, " are prescribed by boundary conditions and do not a priori
depend upon L.
We find that the total Casimir stress C, atz = L has two distinct contributions:
Cot = Ceq + Cact (22)
The first term, Cq is the Casimir stress contribution of an equilibrium nematic, i.e. with Ay = 0. It reads
1 kT
Ceq = ———(x(3), 23
0= GO (23)

where (z(3) is the Riemann-Zeta function [2].
The additional term is a new contribution to the Casimir effect and is of non equilibrium origin. We find

K K
Cact = <U§3t> |z:L - <0'2t> |A;L:O,2:L = _?<(azpi)2> |z:L + E((azp,)2> |Au:0,z:L- (24)

We show below that C, in an ordered active nematic layer is fundamentally different from its equilibrium
counterpart, primarily because the dynamics of orientation fluctuations here is very different from its
equilibrium counterpart.

We calculate C, for small fluctuations around the chosen reference state by using the dynamical
equations (4) and (9). Since (02") ~ 6pj, it suffices to study the dynamics after linearizing about the reference
state. Considering a contractile active fluid, i.e. Ay < 0, we find that as thickness L approaches L. from below,
where L is the critical thickness for the spontaneous flow instability (see [15]; see also below), akin to the
Frederiks transition in equilibrium nematics [17], the Casimir stress C diverges logarithmically. We find thatas L
approaches L. from below

—7? I'yy In [2/v+ (n — D?*/4nlm L.

Cot = ks T .
TR 8+ e — 1)? 2T L.—L

(25)
Here, I = 21/, + (11 — 1)?/4 isapositive dimensionless number. The critical thickness L. is determined by
therelation [19]
71'2 V) — 1
—— + ——FK— = —(Ap——. (26)
ML 4n L? 2n
Clearly, L. diverges as Ay — 0, consistent with the fact that there are no instabilities at any thickness in
equilibrium. We further show below that in this limit C — C.q. Compare C, with the corresponding
equilibrium result C.q as given in (23). Clearly, C.q has no divergence at any finite L, in contrast to C,in (25). It
follows from (25) to (23) that both C,and Cq are negative. This implies that the surfacesatz = 0Oand z = Lare
attracted towards each other. This feature is similar to the equilibrium problem [2]. Although both contributions
havea 1/L’-dependence, the active contribution has alog correction and hence clearly dominates the
corresponding equilibrium contribution for a sufficiently small [L — L|. In contrast, for an extensile active
system, C'scales as (A~ u/(nL) for small activity, and is repulsive in nature.

5
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In order to better understand the result given by equations (25) and (23), we first present arguments at the
scaling level using a simplified analysis of the problem that highlights the general features of the active
contributions in (25). This is similar to the scaling analysis of [ 18]. We provide the results of the full fluctuating
hydrodynamic equations in appendix that confirm the scaling analysis and yield (25).

We consider a small perturbation to the non-flowing steady state with p = €, along the z-axis. To calculate
the Casimir stress Cy, we need to solve for op from the hydrodynamic equations (8) and (9) together with the
noise variances (10) and (11), subject to the specified boundary conditions. This requires to linearize (8) and (9)
around the quiescent reference state with p, = 1 and then to solve for p,, p, up the linear order in fluctuations.
Although this is in principle straightforward, the algebra involved is cuambersome and not very illuminating. In
order to illustrate the main results and the underlying physics easily, we consider here a simplified picture. In this
simplified example, we describe the tilt of the polarity with respect to the z-axis normal to the film surface by a
single small angle . The rate of variation of the angle € is driven by the elastic nematic torque with a Frank elastic
constant K and couples to the the strain rate 1 according to equation (9)

% _ EVZQ — v+ & (x, 1) 27
o m
We have added in this equation the thermal noise of the orientation fluctuations £ -, (r, t) introduced above.
Noise & -, isasimplified form of | (¢, x) in equation (9). It is Gaussian-distributed with zero mean and variance
given by
KgT

N

(€106 DEL(0, 0) = 2—=6(x)8(), (28)
in analogy with (11). We ignore here for simplicity the tensorial character of the strain rate and represent it by a
scalar u which represents one of its typical components.

Ifthe polarization angle  does not vanish, the active stress is finite and it is compensated by the viscous stress
in the film

nu = CApud, (29)
where we have for simplicity ignored the noise in the stress. Including this noise does not qualitatively change the

final result. The two equations (27) and (29) can be solved by Fourier expansion both in space and time, writing
the polarization angle as

0(x, t) = Zsin(mrz/L) fdwf

Here, the position vectorisx = (r, z) where r denotes the position in the plane parallel to the film, and the wave
vectorisk = (q, nm/L) where q denotes the wave vector parallel to the plane, while n describes the discrete
Fourier mode along the z direction. The Fourier transform of the orientation angle satisfies the equation

dq
(2m)

> exp i(q-r— wt)B(n, w, qQ)- (30)

.z v Kg?)~ -
—iwl(n, w, q) = —I(CA,u — CAp.(n)) — M)H + &, (n, w, q). (31)
n i
Here, (A < 0fora contractile active fluid, where as (Ap > 0 for an extensile active fluid. Equation (31)
defines the relaxation time 7,,(g) of 0:

v Kq?
AORE ——I[CAM — (A (m) M] (32)
n im
Clearly, the system gets unstable for |[(Ap| > (Ap,.. We have defined here (Ap(n) = nKn® /(LY. We
further note that in the equilibrium limit, # = 0 in our simplified description and hence the equilibrium
relaxation time 7., is given by

_ K n?m?
Toom = 7(q2 + e ) (33)
1

The orientation angle correlation function can be directly calculated form equation (31) leading to

kg T’Yl

(04(q, w)Bu(q', W) = ———2m’0(q + ¢)é(w + W) (34)
w4+ Ty

Using equation (24), this then yields

3
C:—”kgTzfdzq[ L L ] (35)

L W@ Tem
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Equation (35) applies to both contractile and extensile active fluids. We now consider separately two distinct
cases below: (i) contractile active fluids for which the active component of the stress is positive along the nematic
director (and (Ap < 0), (ii) extensile active fluids for which the active component of the stress is negative along
the nematic director ((Ap > 0).[20] provides a microscopic model for contractile and extensile stress
generation. A notable example of contractile active fluid is a collection of Chlamydomonas Reinhardtii, a ‘puller
swimmer’ [21], where as a collection of Bacillus subtilis, a ‘pusher swimmer’ [22], forms a good example of an
extensile active fluid.

For a contractile active fluid with (A < 0; clearly the system can get unstable for sufficiently large (A for
agiven L, or equivalently, for sufficiently large L for a fixed (Ap. The nature of C,., depends sensitively on
whether [(Ap| — Ay, from below (near the the threshold for spontaneous flow instability), or
[CAp| < (Ap, (far away from the instability threshold). Concentrating first on the near threshold behavior of
C,cv we focus only on the n = 1 mode that is dominant near the instability threshold, which gets unstable first as
Lapproaches L. from below. For ease of notations, we denote A (n = 1) = Ay, and 7, 1(q)71 =7(q) L
Tge,n=1 = TgeWith

K 2
(@) = —ﬂ[éAu — CAp) — s/ ] (36)
n in
_ K 2
qul = I(qz —|— F) (37)

If the active stress |( A p|is larger than this threshold, the non-flowing steady state is unstable and the film
spontaneously flows. Retaining only the n = 1 mode, C, for an orientationally ordered contractile active fluid
is given by

3
Cact = *ﬂ-_aKBdezq ) ! 5> ! =2 I (38)
L rta ¢+

valid forall |(Apu| < (Ap,. Here, we have defined the wave vector g, such that qc2 = (w1 / n)
(CAp, — |CApl) /K and ais a small length-scale cut off. Now, in the vicinity of the spontaneous flow instability,
[CAp| — (Ap, frombelow. Then

1+ a’q’
a’q’
retaining only the divergent contribution to C, as qf — 0, orequivalently, (Ap — (Ap, frombelowor L — L, =
nk/ (1Y, (A p,) from below. We find that the active Casimir stress (39) diverges logarithmicallyas g. — 0 near the
instability threshold, i.e. Ay — (Ap.. The active Casimir stress (39) is clearly attractive. Comparing this with (25)

above we note that our simplified analysis does capture the correct sign and the logarithmic divergence near the
instability threshold. Compare this with the corresponding equilibrium result given in (23); clearly has the a
1/L*-dependence as C,, but has no divergence at any finite L.

We now consider the scaling of C,, far away from threshold ((Ap| < (Ap.)as well. Assuming small Ay
(i.e. small g.), we expand the denominator of (35) up to the linear order in | A p|. We obtain for

™ sz T
L3

T
Cact = — —==In|aq,], (39)

Cua ~ —kyTERLL (40)
nKL
to leading order in (A, valid for L < L.. Thus far away from the threshold, the leading contribution to C,,
scales as 1 /L with L that is different from both its form near the instability threshold as well as the equilibrium
contribution to Cy. It remains attractive, however. We thus conclude that C,, remains attractive forall L < L.
for a nematically ordered active fluid.
We now discuss the extensile case, i.e. (Ap > 0 for which there are no instabilties at any L. The active
Casimir stress C, is still formally defined by equation (24), which yields (35) with the sign of (A reversed. The
time-scale 7, is now given by

HORES —Z[(CAu + CApm + T ] (4D
n Vim
which is positive definite implying stability. The active Casimir stress in this case now reads

Coa= —ThsT 0 Zf l ! - L ] (42)

2L3 M g CA;U' + CA/'LL‘(n) + anz/(l/l’yl) qu,n
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We expand in Ay, assuming small activity, and extract the leading order active contribution to C, as

ke T 7

o™ T

CAp, (43)
that vanishes with Ay, scales with Las 1/L and is positive in sign. This implies that C, for an extensile active
fluid with nematic order is repulsive to the leading order in (A, in contrast to C, for a contractile active fluid,
or the corresponding equilibrium contribution C.q. Furthermore, it does not diverge for any finite L, unlike C,
for the contractile case. Note that for an extensile active nematic, the equilibrium contribution always wins over
C,t for sufficiently small L.

We now heuristically argue why the active Casimir stress C,, is attractive for a contractile active nematic,
whereas it is repulsive for an extensile active nematic. For both contractile and extensile active nematics, it is
given by (3), as the difference between the values of the correlator K ((9,p;)?) /2 for an equilibrium (Ap = 0)
nematics and its active counterpart. Equation (35) expresses the Casimir stress as a function of the difference of
the relaxation rates of the fluctuations in the active and passive cases. Equation (32) shows that the decay time of
typical orientation fluctuations is smaller in extensile (( > 0) active nematics than its equilibrium value, where as
in contractile (Ap < 0) active nematics it is larger. As a result, this fixes the sign of the active Casimir stress,

Caet < 0for contractile active nematics and C,., > 0 for extensile active nematics.

So far, we have considered a macroscopically oriented state where the reference orientation is assumed to be
perpendicular to the film. An alternative choice of boundary condition would be a polarization oriented parallel
to the surface of the film: p, = 1 as the reference state for orientation, andp, = 0 = p,atz = 0, L. Similar
arguments show that at the scaling level the active Casimir stress C,, in these conditions is still given by
equation (39). A third choice for boundary conditions is p, = 0 and p, to be free atz = 0, Lwith p, = 1asthe
ordered reference state. This is qualitatively different from what we have considered above, owing to the fact that
pyisa soft mode. Further, as discussed in [16], with this choice of the reference state there are no instabilities at
any given thickness of the system. Thus, the Casimir stress will be significantly different from (39). We do not
discuss this case here.

Summary and conclusions

In this article, we have studied Casimir stresses Cy, in a thin layer of ordered nematic liquid crystals. We have
shown that it can be written as a sum of the active contribution C,; and a contribution C.q equal to that of a
passive system. We used the stochastic hydrodynamic theory of active nematics to determine C, for contractile
and extensile activities. We find that for contractile active nematics, C,, is attractive, just like its equilibrium
counterpart. However, C, is fundamentally different from its equilibrium counterpart, because it diverges
logarithmically as the threshold thickness for the spontaneous flow instability is approached from below. Thus
both the contributions conspire in attraction although with different scalings. For extensile nematics, C, is
repulsive and has a scaling with the thickness L that is different from its equilibrium counterpart, and has no
divergence at any L. In particular for extensile systems Cy,, changes sign at a critical thickness which corresponds
to an unstable situation. The signs of the active Casimir stress C,, which is attractive for contractile activity and
repulsive for extensile activity are controlled by the decay times of the orientation fluctuations. Lastly, for small
Ay one might reach large thicknesses L where the physics discussed in [23] could play a role making the passive
Casimir stress C,q repulsive; this and its potential effects on active Casimir stress are, however, outside the scope
of the present work.

A potential biological system where the active Casimir stresses could be relevant is the thin cell cortex or the
cell lamellipodium. Due to the active Casimir forces acting in the direction of the thickness of the actin layer,
because of the overall incompressibility, the active layer tends to stretch along the in-plane directions. This
causes the cell membrane to stretch and contributes to the active tension of the cell cortex. If the thickness of the
system is close to the critical threshold of instability, the Casimir force contribution could become important.
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Appendix

Here, we discuss the full calculation of polarization fluctuations in a stochastically driven active fluid layer. The
scheme of the calculations here is very similar to the detailed calculation for the diffusion coefficient of a test
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particle immersed in an active fluid layer, as given in [ 18] with full details. Nonetheless, we reproduce the basic
outline here for the sake of completeness. We start from the relations (5)—(9) and determine h,,, the conjugate
field to the polarity vector from a Frank free energy which describes the energies of splay, bend and twist
deformations by parameters K, K, and K. For simplicity we consider here the limit K; — oo (i.e. the splay
modes are suppressed, V - p = 0). We furthermore introduce the constraints p> = 1and V - v = 0,i.e. we
ignore fluctuations of the magnitude of p and we treat the fluid as incompressible. The two constraints

V - p = 0and p* = 1areimposed by two Lagrange multipliers hjand ¢ in the free energy functional

F= % f Fx[K(V x p)* + K3(0:p)* — hyp® + 20V - p], (44)

where we have assumed that p exhibits small fluctuations around a reference state p, = €, the unit vector along
the z-axis. The incompressibility constraint is imposed via the pressure P as Lagrange multiplier. The active fluid
is confined between two surfaces atz = 0 and z = L. We impose the following boundary conditions: no flow
across the boundary surfaces v,(z = 0) = Oand v,(z = L) = 0 and vanishing surface shear stress at the
boundaries: 9v,/Jz = 0,atz = 0andz = Lfor a = x, y. Inaddition weimpose p(z = 0) = €, and

p(z = L) = &,.Theseboundary conditions are satisfied by the Fourier mode expansions

2

(X, £) = f(; ‘iz dw Z 7"(q, w)exp [—iwt + ir - q] cos(”Lﬂ), (45)
d?q dw nnz

1, (X, t) = f(z ¥ om Z 77(q, w)exp [—iwt + ir - q] sin(T), (46)

b 1) = f(;l q)2 dw Zpa (q, wyexp [—iwt + ir - q] sm(nLZ) 47)

where o = x, y.Here, risavector inthex — yplane and the corresponding wavevector is denoted by q. We
linearize the state of the system around a reference state with v, = 0,v, = 0 and p = é,. The force balance
equation together with the incompressibility condition and the constitutive equation (8) yield equations for the
flow field

,  nir?
-naq+

)~”(q, 1) = CApP" pf + (AP q;p; — > zz(lqﬁhs - —h )

V) nmw

~n ~n nm ~n ~o,n ~o,n
= Bl = P = igghy = SRR+ BoE 4 RE
5 (Pshy ) 2(‘1,;5 I ) 8¢5 g,

n*r?) NI =n AT = n
—77((]2 + ) n(q, 1) = CA,UPaﬂ n ICAMPO[Zq’fpj 21( ﬁThd - Th )
1% . ~n nm n 1 nm ~ o,n
- zlpaz(lqﬂhﬁ - Thz) h + aafﬂ azfz (48)

where o, 3 = xor y. Here, we have introduced the transverse projection operators P,, = q°/(q* + n*m*/L%),
Pog=0n5 — 90q5/(q" + n’n*/L%) = Psas and Pﬂz = —iq, (nm/L)/(" + n*n*/L*) = P,, and the pressure P
has already been eliminated. The noise terms 5 " have zero-mean with variance

(€@ W&, W) = znkBT(q2 + %)(zm(q + 46w + @) a6 (49)

whereavand § = x, y, z
The dynamic equation for the polarization field reads

.~ n K 22 . an ~ il
_1wp: - — _(qz + ”L72T ) _ _(h”p iq,¢") — v}, + & (50)
N ’
with i, = (—"—v +iq,7; )/ 2, (" 7+ 1qa )and noise correlations
~m 2K;
(& (@ w)g,ﬂ(q’, W) = " (27r)35(q + 46w + W) Oum (51)
1
Further, with K, = K5 = Kwehave h, = 7%‘ = KV?, + hp, + V¢ inthereal space. Elimination of the
Lagrange multipliers #jand ¢ finallyleads to [lg]
2
—77( 24 27 )v::Pzze;’sza , (52)
2.2 2.2
,  nm nmw 5 v, — larm ., nT ).y, ~o.n ~o,n
—n|q® + - A + AT 2+ |+ RE]" + RLEDT 53
n(q 2 ) = (Ap— b S (q 2 )Pa 885 £, (53)
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op" K n’m? v — lnrw = =
( o 2 ~n 1 ~n n n
—_ = - + + —V, + Py 5+ Bz . 54
ot o\ ) 2 L poL5 S &Y

Note that 7' decouples from p”. Equations (53), (54) may be used to obtain expressions for the fluctuations of p"":

[8 + l)ﬁ:: nTWVlz—l a@f +Pazf
n (q + 7)

n

o5
where we have identified an effective relaxation time 7, of the polarization fluctuations p":
n’n? )| n*n? 1
(qz + : (56)

2 K(, . n’m? Lz 1
L P 1 12 2 12 12 n(qurLj)
L

For the stability of the assumed oriented state of polarization one must have 7, > 0. Time-scale 7, is the analog
of the time-scale #,(g) that we extract from equation (31). This allows us to calculate the correlation function of
p) (@ = x, y):wefind

o,n

+ Paﬂzjﬂ + Paz%f’z- (55)

—1

d%q 7r w2 24T 1 (v — 1?  nPr?
< > <(azp z L — _f — + > (57)
2 2m)? L L2 A, 2 ne\ I?
@m)* L " 47,( - )
where
2.2 Y 2,2 _ 2,2
A, = K(q2 + nL72r ) 1 4 (=1 nmw i CAp(vy — 1) nim ‘ (58)

2.2 2 2 2
gl 4n(q2+%) L ZT]H(q + ”) L

Thus we obtain for the active Casimir stress in an orientationally ordered active fluid: using (24)

&g 7 n?m? 2kg TCAp(y — 1)

Qn?Le I 277K( “)An' )

K K K
Cact = _E<(6z ,')2>z:L + E<(azpi)2>z:L,Au:0 = Ef

This holds for both contractile and extensile active fluids and vanishes as Ay is set to zero.
For a contractile active fluid with nematic order, C, diverges when A,, = 0, which can happen with a finite
Ap < 0. The minimum thickness for which this can happen is given by the condition

K v — 1)? v — 1
—W—Z-FMK———CAM L
" L 4n L? 2n

(60)

We evaluate the active contribution in (59) near the instability threshold (for a finite (Ap < 0),i.e.as L — L,
from below. In this limit, only the # = 1 contribution diverges; the contributions with n > 1 are all finite.
Therefore, we retain only the n = 1 contribution and evaluate it; we discard all higher-n contributions. Define

L =1L/ (1 — 6),6 > 0isasmall dimensionless number. Keeping only the divergent term contributionas § — 0,
we obtain for the active contribution to the Casimir stress Cy, as L approaches L. from below

_ 12
Coct = kBTL CAp( — 1) In [2/7 + (1 — 1)*/4n]m 1)
2L, 8n + 1(v — 1)? 200w — 1)
Substituting for (A from (60), we find
— 2 —_1)2
Coee = s T=Z o7 n ‘ [2/7 4 @1 = D/4ni | 6
2L 8n + (v — 1)? 26T

same as (25) as above. Thus, C,.;approaches —ocoas § — 0. Thus, it is attractive, similar to the equilibrium
contribution [2]. The equilibrium contribution may be evaluated in straightforward ways by following [2]: One
finds,at L — L,

1 kgT

Coa = = 8w I

—5 (3. (63)

Thus, following the logic outlined in the main text, the total Casimir stress Cy,, for an active fluid layer of
thickness L — L. from below is given by
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2 2
C=Coq+ Coq=kgT 7T3 I'n In 2/ + (1 — D?/4nlm
2L 81 + Mm@ — 1)? 26T
1 kgT
T 64

which is, of course, overall attractive.

The scaling of C, with L changes drastically for L < L.. We use (59) and focus on the second term on the
right-hand side of it which is the active contribution. We extract the O((A ) contribution for small (A that
yields the leading order active contribution to Cy,, for small (A p. We find

act —

(65)

Ef d%q ZZ n2m? 2kg TCA (v — 1)
2 @n)?* L I?

n

)2 1 + - 1?*  n?r?

22

Ffz 2 n-m

277 (q + 2 5 P nZn2 L2
1 47](q + 1—2)

L

This active contribution, being negative ((Au < 0), remains attractive and clearly scales as 1 /L, different from
both the equilibrium contribution (that scales as 1/L’) and the contribution for L — L. from below that shows a
logarithmic divergence. This is consistent with the predictions from our simplified analysis above, and
reminiscent of the 1/L-dependence of a similar Casimir-like force in a one-dimensional confined active particle
system studied in [9].

So far, we have considered only thermal noises above while averaging over the noise ensembles, keeping the
active effects only in the deterministic parts of the dynamical model. In general, however, there are active noises
present over and above the thermal noises. For simplicity, we supplement the thermal noise in (55) by an active
noise that is assumed to be 6-correlated in space and time, with a variance that should scale with A pi. The precise
amplitude of the variance should depend on the detailed nature of the stochasticity of the motor movements. We
now refer to equation (57): then to the leading order in Ay, the active noises should generate an additional active
contribution 6Cy4 to C,in (59) above near L = L.. Thisis of the form

0Ch ~ =55 G3), (66)

where Dy is a dimensional constant. Thus, this additional contribution is attractive, has the same scaling with L
as the equilibrium contribution C,q and has no divergence as L — L. from below. We did not consider any
active, multiplicative noises that may be important in cell biology contexts as illustrated in [6].

Our analyses above may be extended to obtain Cy,, just above the the threshold of the spontaneous flow
instability for the contractile case [15]. Above the threshold, the steady reference state is given by
% = Acos(zn/L), p, = 1, p,, = € sin(zn/L), v, = 0 = v, p =0 with A = 4LCApe/[m(4n + vi(h + 1)D)]
ande = /1 — L./L, L > L [15]. We discuss the case with ¢ — 0. We impose the same boundary conditions
as above. The viscous contribution to C continues to be zero by the same argument as above, since the
spontaneous flow velocity v, has no in-plane coordinate dependences. Defining dp,. as the fluctuation of p,,
around p,, the new reference state, we note that the boundary condition on ép, is same as that on p, before, i.e.
for no spontaneous flows; boundary conditions on p,, having a zero value in the reference state, naturally
remains unchanged from the previous case. We, thus, conclude that 5p, and p,, follow the same (linearized)
equations (55) for p, and p, as in the previous case. Hence, the solutions for 6p, and p, are identical to those of p,.
and p, in the previous case. It is now straightforward to see that the expression for the Casimir stress C,, as given
in (64) now has an additional contribution

K KL-— L 7?

K ,m?
6C = _;<6sz082pxo>|z:L = _EEZF cos*(mz/L)|.—1 = S & (67)

We note that the additional contribution §C depends on the Frank elastic constant K and has a negative sign,
displaying its attractive nature. Further and not surprisingly, it vanishesas (L — L.)as L — L., and henceis
small just above the threshold. Thus, even above the threshold of the spontaneous flow instability, the dominant
contribution to Cy, still comes from (64), its value just below the threshold. Lastly, if we continue to use the
above reference states for L, < Leven for L >> L., then 6Cscalesas 1/ L?for L > L, and forms the dominant
contribution in C,;.

In the above we have considered a contractile active fluid. For an extensile system with EA g > 0, there are
no divergences in (57) or (59) for any L. Expanding (59) in (A, we extract an active contribution linear in (Ap
that scales with Las 1/L, different from the scaling of C,, in the contractile case, or from the equilibrium
contribution C.q. We find for the leading order active contribution to the Casimir stress
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2 2.2 _
_ Kf dq w Z n’m 2kg TCAp (v — 1) N kBTCA;wl’ 68)

act — T~ -
2J @2m)?L I? N2 L, nKL
2K (g2 + S| L
1 47]((] +L—2)

n

that scales with Las 1/L; here only. Thus, the active contribution comes with a positive sign ((Ap > 0), i.e.
repulsive Casimir stress, a feature obtained in our simplified analysis above. Furthermore given that Cq < 0, it
is possible that C,,, = C + C.q changes sign as the thickness L or the activity parameter (A is varied
correspond to an unstable situation, potentially creating an intriguing crossover between a repulsive and an
attractive Casimir stress. Lastly, the differences in the active Casimir stress C, for the contractile and extensile
cases potentially open up experimental routes to distinguish contractile activity from extensile activity by
measuring Cyyy.
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