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Abstract
Wecalculate theCasimir stresses in a thin layer of activefluidwithnematic order. Byusing a stochastic
hydrodynamic approach for an activefluid layer offinite thicknessL, we generalize theCasimir stress for
nematic liquid crystals in thermal equilibrium to active systems.We show that the activeCasimir stress
differs significantly from its equilibriumcounterpart. For contractile activity, the activeCasimir stress,
although attractive like its equilibriumcounterpart, diverges logarithmically asL approaches a threshold
of the spontaneousflow instability frombelow. In contrast, for small extensile activity, it is repulsive, has
nodivergence at anyL andhas a scalingwithLdifferent from its equilibriumcounterpart.

Introduction

It is well-known that although the zero-point energy of the electromagnetic field inside a cavity bounded by
conductingwalls is formally diverging, its variation upon displacements of the boundaries remains finite. It
corresponds to aweak butmeasurable attractive force, known as theCasimir force [1]. For example, in the case
of two parallel conducting plates at a distance L, the attractive Casimir force per unit area, or theCasimir stress is

given by CF
h c

L240

22

4= - p p [1]. It is of purely quantumorigin.

Subsequently, thermal analogs of the Casimir stress associated to various fluctuating fields at afinite
temperatureT have been studied. In nematic liquid crystals confined between two parallel plates, the thermal
fluctuations of the director field that describes the nematic order, play the role of the electromagnetic
fluctuations in the electromagnetic Casimir effect. In all such classical systems, the boundary conditions on the
relevantfields (e.g. the director field for nematic liquid crystals) constrain their thermal fluctuations and lead to a
thermal analog of theCasimir stress. For instance, for a nematic liquid crystal between parallel confining plates
separated by a distance Lwith the director field rigidly anchored to them, one again obtains an attractive Casimir
stress that varies with the thickness L of the liquid crystal film as 1/L3 [2].

Studies on non-equilibrium analogs of thermal Casimir stresses are relatively new. In [3], Casimir stresses
between two parallel plates due to non-thermal noises are calculated. Further, embedding objects or inclusions
in a correlated fluid are shown to generate effective Casimir-like stresses between the inclusions [4]. In amore
recent study, [5]numerically examined run-and-tumble activematter particles inCasimir geometries composed
of twofinite parallel walls and found an attractive Casimir force depending, rather unusually, exponentially on
the plate separation. There are direct biologically relevant examples as well: recently [6], studied theCasimir-like
forces felt by inclusions in activefluids, in particular their dependence on active noise and hydrodynamic
interaction. Subsequently, [7] studied the role of active Casimir effects on the deformation dynamics of the cell
nucleus and showed the appearance of a fluctuationmaximumat a critical level of activity, a result in agreement
with recent experiments [8]. The activefluidmodels considered by [6, 7] are effectively one-dimensional and
hence do not include any soft orientational fluctuations.More recently,[9] studied one-dimensional
suspension of active particles, and uncovered aCasimir-like attractive forcemediated by the active suspension.
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In this article, we calculate theCasimir stress between two parallel plates confining a layer of an active
nematicfluidwith a uniformmacroscopic orientation [10–14]. The activefluid is driven out of equilibriumby a
local constant supply of energy. Ourwork directly generalizes thermal Casimir stresses in equilibriumnematics
[2] into the nonequilibriumdomain.

The hydrodynamic activefluidmodel [10, 11] has been proposed as a generic coarse-grainedmodel for a
driven orientable fluidwith nematic or polar symmetry. One of themain features of an activefluid is the
existence of an active stress, resulting from the constant energy consumption driving the systemout of
equilibrium.Due to its very general nature, the active fluidmodel is able to describe a broad range of
phenomena, observed in very different physical systems and at very different length scales [10–12]. Notable
examples include the dynamics of actinfilaments in the cortex of eukaryotic cells or birdflocks and bacterial
biofilms. In particular, in the case of actinfilament dynamics, the active stress results from the release of free
energy due to the chemical conversion of Adenosine-Triphosphate (ATP) to Adenosine-Diphosphate.

In this article, we studyCasimir stresses using a stochastically driven coarse-grained hydrodynamic
approach for active fluids [10–12]with a nematic order, described by a unit directorfield pα,α=x, y, z. Thefilm
is infinite along the x, y plane, but has afinite thickness L in the z-direction. A typical example of ordered active
nematic where our resultsmay apply is the cortical actin layer in a cell where the orientation of the actin
filaments can have a component parallel to the cellmembrane. It has been recently shown that a liquid
contractile active film of thickness Lwith polarization either parallel or perpendicular to its surface has a
spontaneousflow instability, above a critical value of the activity [15, 16]. This is the nonequilibrium analog of
the ‘Frederiks transition’ in equilibrium classical nematic liquid crystals, inwhich a uniformmagnetic fieldwins
over the direction imposed by boundaries, above a critical value depending on sample thickness [17]. It is driven
by the coupling between the director orientation and the active stress.We here calculateCact, the active analog of
the thermal equilibriumCasimir stress, that we formally define below.

Active Casimir stress

Weconsider a thin film of active fluidwith afixed thickness L along the z-direction confined between the planes
z=0 and z=L. In the passive case, i.e. without any activity, the Casimir stressCeq is defined as [2]

C . 1zz z L zz zeq
eq eqs s= á ñ - á ñ= =¥∣ ∣ ( )

Here, zz
eqs is the normal component of the equilibrium stress that diverges for all z (or, all L);Ceq however isfinite

for any non-zero L[2]. Here, ..á ñ implies averages over thermal noise ensembles (see below).
The average total normal stress zz

totsá ñdepends a priori on the slab thickness L. It also has a piece independent
of L.We define the L dependent part as the ‘Casimir stress’.We show below that this allows us to extract an active
Casimir effect Cact by

C , 2zz z L zz z Lact
tot tot

0,s s= á ñ - á ñ m= D = =∣ ∣ ( )

where the L-independent parts of the stresses are ignored.Here,Δμ is the chemical potential difference between
ATP and its hydrolysis products. It is the thermodynamic force conjugate to the rate of hydrolysis of the number
of ATPmolecules per unit time and per unit volume. Further, zz zz

tot
0

eqs s=mD =∣ , the normal component of the
equilibrium stress.

For simplicity, we assume a one Frank constant descriptionwithK as the Frank constant (inwhich the Frank
constants for the splay, bend and twistmodes are equal). The Frank free energy density in three dimensions is
given by p K 22¶a b( ) , whereα,β=x, y, z. By using stochastic hydrodynamic descriptions for orientationally
ordered activefluids, we showbelow that, for a given reference orientation state pz=1 and up to the quadratic
order in orientation fluctuations,Cact as given by (2) reduces to

C
K

p
K

p
2 2

, 3z i z L z i z Lact
2 2

0,= - á ¶ ñ + á ¶ ñ m= D = =( ) ∣ ( ) ∣ ( )

where i, j=x, y. The quantityCact is difficult tomeasure directly. However changes ofCact due to changes in L
can in principle bemeasured.

When the thickness L of a contractile activefluid layer approaches the critical thickness Lc for the
spontaneousflow instability frombelow [15], we show thatCact remains attractive, though it does not scale like
its equilibrium counterpart: there is a log correction to the equilibrium result as L approaches Lc frombelow.We
also calculateCact for extensile activity, and contrast it withCact for the contractile case: in this case,Cact is found
be repulsive unlike the contractile case, has no divergence at anyfinite L, and scales with L differently from the
equilibrium result.
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Steady state stresses in afluctuating activefluid

Weconsider an incompressible viscous activefluid filmwith nematic order. Our analysis below closely follows
the physical discussion of [18], where the diffusion coefficient of a test particle immersed in an activefluidwith
nematic order is calculated. The force balance in an incompressible active fluid is given by

P 0, 4a es s d s¶ + - + =b ab ab ab ab( ˜ ) ( )

where fluid inertia is neglected [10, 19]. Here, sab˜ denotes the traceless part of the symmetric deviatoric stress
and the antisymmetric deviatoric stress is given by

p h p h
1

2
. 5as = -ab a b b a( ) ( )

Here hα=−δF/δpα is the orientational field conjugate to the nematic director pα, where F rfd3ò= denotes
the nematic director free energy with a free energy density f. Furthermore,P denotes the hydrostatic pressure.
Note that in a nematic system the equilibrium stress includes the Ericksen stress

f

p
p K p p . 6es = -

¶
¶ ¶

¶ = - ¶ ¶ab
b g

a g a g b g( )
( )( ) ( )

Here,α,β=x, y, z. The total normal stress is thus given by

P ; 7a etots s s d s= + - +ab ab ab ab ab˜ ( )

see equation (4) above.
In the following, we impose for simplicity a constant amplitude of the nematic director pγpγ=1. The

constitutive equations of a single-component activefluid then read [19]

q p h p h p h v
2

2

3
2 , 81s z m

n
d h x+ D + + - = +ab ab a b b a g g ab ab ab

s⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭˜ ( )

D

Dt
p h p v

1
, 9

1
1

g
n x= - +a a b ab a^˜ ( )

where q p p 1

3
d= -ab a b ab( ) is thenematic tensor.The symmetric velocity gradient tensor is v v v 2= ¶ + ¶ab a b b a˜ ( ) ,

where vα is the three-dimensional velocityfieldof the activefluid (α=x, y, z). The termζΔμqαβ in (8) is the traceless
partof theactive stress.The term p h p h p h

2

2

3
1 d+ -n

a b b a g g ab( ) is the traceless symmetricpartof a stress contribution

that originates in theorientationfluctuations and is required tobepresentdue to theOnsager symmetry relations.The
shear viscosity is denotedbyη,γ1 is the rotational viscosity andν1 theflowalignmentparameterwhich is anumberof
orderone.Noises xab

s and ξ⊥α are assumed tobe thermalnoisesof zero-meanandvariances givenby

t t k T t tx x x x, , 2
2

3
, 10Bx x h d d d d d d d dá ¢ ¢ ñ = + - - ¢ - ¢ab

s
gd
s

ag bd ad bg ab gd⎜
⎡
⎣⎢
⎛
⎝

⎤
⎦⎥( ) ( ) ( ) ( ) ( )

t t x
k T

p p t t xx x, , 2 , 11B

1

x x
g

d d dá ¢ ¢ ñ = - - ¢ - ¢a b ab a b^ ^( ) ( ) [ ] ( ) ( ) ( )

where kB is Boltzmann constant andT denotes temperature. Notice that the noises ξ⊥α (t, x) aremultiplicative in
nature (see noise variance (11)). However, sincewe are interested in a linearized description about uniform
ordered states (see below), themultiplicative nature of these noises do not affect our calculations. Furthermore,
we do not consider any athermal or active noises for simplicity.We consider an incompressible system imposed
by the constraint∂αvα=0.

The pressure P plays the role of a Lagrangemultiplier used to impose the incompressibility constraint
∂αvα=0. The incompressibility leads to the following equation forP:

P p h p h p pp h
2

2

3
. 12e2 1n d z m s x = - ¶ ¶ + - - D ¶ ¶ + ¶ ¶ + ¶ ¶a b a b b a ab a b a b a b ab a b ab

s⎜ ⎟⎛
⎝

⎞
⎠· ( ) ( )

Weconsider a film of the activefluidwith afixed thickness L along the z direction, confined between the
planes z=0 and z=L.We consider a quiescent reference state together with pz=1, which is a steady state
solution of (4) and (9).We study smallfluctuations δp=(px, py,0) around this state; p pd d= ∣ ∣ (fluctuations ofp
along the z direction, δpz is quadratic in δp: p p p 2z x y

2 2d = +( ) ).We impose boundary conditions (px, py)=0

and vanishing shear stress at z=0 and z=L. See figure 1 for a schematic diagramof the system.
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The total average normal stress on the surface at z=L, zz z L
totsá ñ = reads:

v

z
p p h p h

P

3 3

, 13

zz z L
z

z L
z z L i i z L z z z L

zz
e

z L z L

tot 2 1 1s h z m
n n

s

á ñ =
¶
¶

- D á ñ - á ñ - á ñ

+ á ñ - á ñ

=
=

= = =

= =

∣ ∣

( )

where K pzz
e

z i
2s = - ¶( ) . Here, i, j=x, y are the coordinates along the film surface. Using, for simplicity and

analytical convenience, a single Frank elastic constantK for the nematic liquid crystals, the Frank free energy
density is given by f K p 22= a b( ) . Belowwe evaluate the pressure Pwhich obeys equations (12). The
remaining terms in (13) are also to be evaluated using the relevant equations ofmotion and then averaging over
the various noise termsThe contributions to the stress that are linear in smallfluctuations (px, py) vanish upon
averaging; therefore, a non-vanishing Casimir stress is obtained from contributions to the stress quadratic in δp
in (13). It is instructive to analyze the different contributions in (13) toCtot termby term. Thiswill allow us to
considerably simplify (13) as wewill see below.

Wefirst consider the contribution v

z z L

zh ¶
¶ =

in (13). Using the condition of incompressibility v 0 =· ,

thismay bewritten as

v

z
v v 0, 14z

z L
z L z Lh h h ¶

¶
= - á ñ = - á ñ =

=
^ ^ = ^ ^ =· · ( )

since there is noflowon average.Here, ,
x y

 =^
¶
¶

¶
¶

( ) is the two-dimensional gradient operator and v⊥=(vx,
vy) is the in-plane component of the three-dimensional velocity v.

Secondly, p h 0i i z Lá ñ == since pi=0 at z=L. Further, p h hz z z Lá ñ = á ñ=  , since pz=1 at z=L. Here, hP is a
Lagrangemultiplier, whichmust be introduced to impose p2=1, or to the leading order pz=1 in the geometry

thatwe consider. Using pz=1 in equation (9) and linearizing around pz=1, we obtain h v

z
z~ ¶

¶ at all z [19].
Using the incompressibility condition, v z vz ¶ ¶ = - ^ ^· . This then gives h 0zá ñ = to the leading order in
fluctuations.

To evaluate the pressure P, we consider the equation for the velocity field vα that obeys the generalized Stokes
equation

v P p p p h p h p h p h
2

1

2
. 15e2 1h z m

n
s x = ¶ + D ¶ - ¶ + - ¶ - - ¶ - ¶a a b a b b b a a b b a b b a b ab b ab

s( ) ( ) ( ) ( )

We focus on the in-plane velocity vi,α=i=x, y in (15) above. Now consider the different terms in (15)with
α=i at z=L and note that (i) pi=0 at z=L, (ii) in the absence of anymeanflow and consistent with the in-
plane rotational invariance, velocity fluctuations+vi and−vi should be equally likely in the statistical steady
state, i.e. the steady state average of any function odd in vi should be zero. This implies that v v0i z i

2á ñ = = á¶ ñ in
steady states. Similarly, in an oriented state having nematic order with pz=1,fluctuations+pi and−pi should
be equally likely in the steady state, i.e. any function odd in pimust have a vanishing average in the steady states.
Furthermore, since hi is odd in pi, wemust have h 0iá ñ = at steady state. This gives

p h p h

p h p h

0,

0 .

i z z i

i z i z

á¶ ñ = á¶ ñ =

á¶ ñ = á¶ ñ=
b b

b b

( ) ( )
( ) ( )

Figure 1.A two-dimensional projection of themodel system (in light gray) on the xz-plane. Boundary conditions on the flowfield and
the orientationfluctuations are indicated. The upward arrowwithin the system indicates the orientation reference state pz=1, and
i=x, y.
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Similarly

p p p p p p p p 16i z L j i j z L z i z z L z i z z Lz m z m z m z mD á¶ ñ = D á¶ ñ + D á¶ ñ = D á¶ ñb b = = = =( ) ∣ ( ) ∣ ( ) ∣ ( ) ∣ ( )

vanishes in the steady state due to the inversion symmetry of pi. Lastly, we note that

K p p p p p
1

2
, 17i

e
z L j i j z L z i z z L i z j z L

2s¶ = - ¶ ¶ ¶ + ¶ ¶ ¶ = - ¶ ¶b b g g g g= = = =∣ [ ( )∣ ( )∣ ] ( ) ∣ ( )

wherewe have used p p p p p p 0i z z L i j z j z L i z z z z L
2 2 2¶ ¶ = ¶ ¶ + ¶ ¶ =g g = = =[( )( )] [( )( )] [( )( )] , since pj=0 and pz=1

exactly at z=L. Putting together everything and averaging in the steady states, we then obtain at z=L

P
K

p
2

, 18i i
e

i z j
2s¶ = ¶ = - ¶ ¶b b ( ) ( )

giving

P
K

p a
2

19z j
2

0= - ¶ +( ) ( )

at z=L, where a0 is a constant of integration. Then substituting P in (13)

K
p a

K
p a

2 2
, 20zz z L z i z L z i z L

tot 2
0

2
0s z má ñ = - á ¶ ñ - D + = - á ¶ ñ += = =( ) ∣ ( ) ∣ ˜ ( )

where a0˜ is another constant that in general can depend uponΔμ. Similarly in the passive case [2]

K
p a

2
, 21zz z L zz z L z i z L

tot
0,

eq 2
, 0 0

eqs sá ñ = á ñ = - á ¶ ñ +m mD = = = = D =∣ ( ) ∣ ( )

where a0
eq is a constant. The constants a0˜ and a0

eq are prescribed by boundary conditions and do not a priori
depend upon L.

Wefind that the total Casimir stressCtot at z=Lhas two distinct contributions:

C C C . 22tot eq act= + ( )

Thefirst term,Ceq is theCasimir stress contribution of an equilibriumnematic, i.e. withΔμ=0. It reads

C
k T

L

1

8
3 , 23Req

B
3p
z= - ( ) ( )

where ζR(3) is the Riemann-Zeta function [2].
The additional term is a new contribution to theCasimir effect and is of non equilibriumorigin.Wefind

C
K

p
K

p
2 2

. 24zz z L zz z L z i z L z i z Lact
tot tot

0,
2 2

0,s s= á ñ - á ñ = - á ¶ ñ + á ¶ ñm m= D = = = D = =∣ ∣ ( ) ∣ ( ) ∣ ( )

We showbelow thatCact in an ordered active nematic layer is fundamentally different from its equilibrium
counterpart, primarily because the dynamics of orientation fluctuations here is very different from its
equilibrium counterpart.

We calculateCact for smallfluctuations around the chosen reference state by using the dynamical
equations (4) and (9). Since pzz

tot 2s dá ñ ~ a , it suffices to study the dynamics after linearizing about the reference
state. Considering a contractile activefluid, i.e.Δμ<0, wefind that as thickness L approaches Lc frombelow,
where Lc is the critical thickness for the spontaneousflow instability (see [15]; see also below), akin to the
Frederiks transition in equilibriumnematics [17], the Casimir stressC diverges logarithmically.We find that as L
approaches Lc frombelow

C k T
L

L

L L2 8 1
ln

2 1 4

2
. 25c

c
act B

2

3
1

1 1
2

1 1
2

1p g
h g n

g n h g
=

- G
+ -

+ -
G -( )

[ ( ) ] ( )

Here, 2 1 41 1
2h g nG = + -( ) is a positive dimensionless number. The critical thickness Lc is determined by

the relation [19]

K

L
K

L

1

4

1

2
. 26

c c1

2

2
1

2 2

2
1

g
p n

h
p

z m
n

h
+

-
= - D

-( ) ( )

Clearly, Lc diverges as 0mD  , consistent with the fact that there are no instabilities at any thickness in
equilibrium.We further showbelow that in this limit C Ceq . CompareCact with the corresponding
equilibrium resultCeq as given in (23). Clearly,Ceq has no divergence at anyfinite L, in contrast toCact in (25). It
follows from (25) to (23) that bothCact andCeq are negative. This implies that the surfaces at z=0 and z=L are
attracted towards each other. This feature is similar to the equilibriumproblem [2]. Although both contributions
have a 1/L3-dependence, the active contribution has a log correction and hence clearly dominates the
corresponding equilibrium contribution for a sufficiently small L Lc-∣ ∣. In contrast, for an extensile active
system,C scales as ζΔγ1μ/(ηL) for small activity, and is repulsive in nature.
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In order to better understand the result given by equations (25) and (23), we first present arguments at the
scaling level using a simplified analysis of the problem that highlights the general features of the active
contributions in (25). This is similar to the scaling analysis of [18].We provide the results of the full fluctuating
hydrodynamic equations in appendix that confirm the scaling analysis and yield (25).

We consider a small perturbation to the non-flowing steady state with ep z= ˆ along the z-axis. To calculate
theCasimir stressCtot, we need to solve for δp from the hydrodynamic equations (8) and (9) together with the
noise variances (10) and (11), subject to the specified boundary conditions. This requires to linearize (8) and (9)
around the quiescent reference state with pz=1 and then to solve for px, pyup the linear order influctuations.
Although this is in principle straightforward, the algebra involved is cumbersome and not very illuminating. In
order to illustrate themain results and the underlying physics easily, we consider here a simplified picture. In this
simplified example, we describe the tilt of the polarity with respect to the z-axis normal to thefilm surface by a
single small angle θ. The rate of variation of the angle θ is driven by the elastic nematic torquewith a Frank elastic
constantK and couples to the the strain rate u according to equation (9)

t

K
u tx, . 27

1

2
1

q
g

q n x
¶
¶

=  - + ^
˜ ( ) ( )

Wehave added in this equation the thermal noise of the orientation fluctuations tr,x̃̂ ( ) introduced above.
Noise x̃̂ is a simplified formof t x,x a^ ( ) in equation (9). It is Gaussian-distributedwith zeromean and variance
given by

t
K T

tx x, 0, 0 2 , 28B

1

x x
g

d dá ñ =^ ^
˜ ( ) ˜ ( ) ( ) ( ) ( )

in analogywith (11).We ignore here for simplicity the tensorial character of the strain rate and represent it by a
scalar uwhich represents one of its typical components.

If the polarization angle θ does not vanish, the active stress isfinite and it is compensated by the viscous stress
in the film

u , 29h z mqD ( )

wherewe have for simplicity ignored the noise in the stress. Including this noise does not qualitatively change the
final result. The two equations (27) and (29) can be solved by Fourier expansion both in space and time, writing
the polarization angle as

t n z L t nx
q

q r q, sin d
d

2
exp i , , . 30

n
2ò òåq p w

p
w q w= -( ) ( )

( )
( · ) ˜( ) ( )

Here, the position vector is x=(r, z)where r denotes the position in the plane parallel to the film, and thewave
vector is k=(q, nπ/L)where q denotes thewave vector parallel to the plane, while n describes the discrete
Fouriermode along the z direction. The Fourier transformof the orientation angle satisfies the equation

n n
Kq

nq qi , , , , . 31c
1

2

1 1

wq w
n
h

z m z m
h
n g

q x w- = D - D - + ^

⎛
⎝⎜

⎞
⎠⎟

˜( ) ( )) ˜ ˜ ( ) ( )

Here, ζΔμ<0 for a contractile activefluid, where as ζΔμ>0 for an extensile activefluid. Equation (31)
defines the relaxation time τn(q) of q̃:

q n
Kq

. 32n c
1 1

2

1 1

t
n
h

z m z m
h
n g

= - D - D --
⎡
⎣⎢

⎤
⎦⎥( ) ( )) ( )

Clearly, the system gets unstable for cz m z mD > D∣ ∣ .We have defined here ζΔμc(n)=ηKn2/(ν1γ1π
2L2).We

further note that in the equilibrium limit, u=0 in our simplified description and hence the equilibrium
relaxation time τqe,n is given by
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The orientation angle correlation function can be directly calculated form equation (31) leading to

k T
q q q q, , 2 . 34n n

q

B 1

2 2
3q w q w

g
w t

p d d w wá ¢ ¢ ñ =
+

+ ¢ + ¢-
˜ ( ) ˜ ( ) ( ) ( ) ( ) ( )

Using equation (24), this then yields
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Equation (35) applies to both contractile and extensile activefluids.We now consider separately two distinct
cases below: (i) contractile activefluids forwhich the active component of the stress is positive along the nematic
director (and ζΔμ<0), (ii) extensile activefluids forwhich the active component of the stress is negative along
the nematic director (ζΔμ>0). [20] provides amicroscopicmodel for contractile and extensile stress
generation. A notable example of contractile activefluid is a collection ofChlamydomonas Reinhardtii, a ‘puller
swimmer’ [21], where as a collection ofBacillus subtilis, a ‘pusher swimmer’ [22], forms a good example of an
extensile activefluid.

For a contractile activefluidwith ζΔμ<0; clearly the system can get unstable for sufficiently large ζΔμ for
a given L, or equivalently, for sufficiently large L for afixed ζΔμ. The nature ofCact depends sensitively on
whether cz m z mD  D∣ ∣ frombelow (near the the threshold for spontaneousflow instability), or

cz m z mD D∣ ∣ (far away from the instability threshold). Concentrating first on the near threshold behavior of
Cact, we focus only on the n=1mode that is dominant near the instability threshold, which gets unstable first as
L approaches Lc frombelow. For ease of notations, we denoteΔμc(n=1)=Δμc, and τn=1(q)

−1=τ(q)−1,
τqe, n=1=τqewith
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Kq

, 36c
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If the active stress z mD∣ ∣ is larger than this threshold, the non-flowing steady state is unstable and thefilm
spontaneously flows. Retaining only the n=1mode,Cact for an orientationally ordered contractile activefluid
is given by

C
L

K T q
q q q

d
1 1

, 38
c L
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3
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2 2 2
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p
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valid for all cz m z mD < D∣ ∣ . Here, we have defined thewave vector qc such that qc
2

1 1g n h= ( )
Kcz m z mD - D( ∣ ∣) and a is a small length-scale cut off. Now, in the vicinity of the spontaneousflow instability,

cz m z mD  D∣ ∣ frombelow. Then

C
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a q

a q

k T

L
aqln

1
ln , 39c

c
cact

2
B
3

2 2

2 2
B

3

p
= -

+
~ - ∣ ∣ ( )

retainingonly thedivergent contribution toCact as q 0c
2  , or equivalently, cz m z mD  D frombelowor L Lc =

c1 1hk n g z mD( ) frombelow.Wefind that the activeCasimir stress (39)diverges logarithmically as q 0c  near the
instability threshold, i.e. cz m z mD  D . The activeCasimir stress (39) is clearly attractive.Comparing thiswith (25)
abovewenote thatour simplified analysis does capture the correct sign and the logarithmicdivergencenear the
instability threshold.Compare thiswith the corresponding equilibriumresult given in (23); clearlyhas the a
1/L3-dependence asCact, buthasnodivergence at anyfiniteL.

We now consider the scaling ofCact far away from threshold ( cz m z mD D∣ ∣ ) as well. Assuming small z mD
(i.e. small qc), we expand the denominator of (35) up to the linear order in z mD∣ ∣.We obtain for

C k T
KL

40act B
1z mg

h
~ -

D ( )

to leading order in ζΔμ, valid for L=Lc. Thus far away from the threshold, the leading contribution toCact

scales as 1/Lwith L that is different fromboth its formnear the instability threshold aswell as the equilibrium
contribution toCtot. It remains attractive, however.We thus conclude thatCact remains attractive for all L<Lc
for a nematically ordered activefluid.

We nowdiscuss the extensile case, i.e. 0z mD > for which there are no instabilties at any L. The active
Casimir stressCact is still formally defined by equation (24), which yields (35)with the sign of ζΔμ reversed. The
time-scale τq is now given by

q n
Kq

41n
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c
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2

1 1
åt

n
h

z m z m
h
n g

= D + D +-
⎡
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which is positive definite implying stability. The active Casimir stress in this case now reads

C
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L
q

n Kq2
d
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. 42

n c qe n
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B
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Weexpand inΔμ, assuming small activity, and extract the leading order active contribution toCact as

C
k T

L K
, 43act

B 1g
h

z m~ D ( )

that vanishes withΔμ, scales with L as 1/L and is positive in sign. This implies thatCact for an extensile active
fluidwith nematic order is repulsive to the leading order in ζΔμ, in contrast toCact for a contractile activefluid,
or the corresponding equilibrium contributionCeq. Furthermore, it does not diverge for anyfinite L, unlikeCact

for the contractile case. Note that for an extensile active nematic, the equilibrium contribution always wins over
Cact for sufficiently small L.

We nowheuristically arguewhy the active Casimir stressCact is attractive for a contractile active nematic,
whereas it is repulsive for an extensile active nematic. For both contractile and extensile active nematics, it is
given by (3), as the difference between the values of the correlator K p 2z i

2á ¶ ñ( ) for an equilibrium (Δμ=0)
nematics and its active counterpart. Equation (35) expresses theCasimir stress as a function of the difference of
the relaxation rates of the fluctuations in the active and passive cases. Equation (32) shows that the decay time of
typical orientation fluctuations is smaller in extensile (ζ>0) active nematics than its equilibrium value, where as
in contractile (Δμ<0) active nematics it is larger. As a result, this fixes the sign of the active Casimir stress,
Cact<0 for contractile active nematics andCact>0 for extensile active nematics.

So far, we have considered amacroscopically oriented state where the reference orientation is assumed to be
perpendicular to the film. An alternative choice of boundary conditionwould be a polarization oriented parallel
to the surface of thefilm: px=1 as the reference state for orientation, and pz=0=py at z=0, L. Similar
arguments show that at the scaling level the active Casimir stressCact in these conditions is still given by
equation (39). A third choice for boundary conditions is pz=0 and py to be free at z=0, Lwith px=1 as the
ordered reference state. This is qualitatively different fromwhatwe have considered above, owing to the fact that
py is a softmode. Further, as discussed in [16], with this choice of the reference state there are no instabilities at
any given thickness of the system. Thus, the Casimir stress will be significantly different from (39).We do not
discuss this case here.

Summary and conclusions

In this article, we have studiedCasimir stressesCtot in a thin layer of ordered nematic liquid crystals.We have
shown that it can bewritten as a sumof the active contributionCact and a contributionCeq equal to that of a
passive system.Weused the stochastic hydrodynamic theory of active nematics to determineCact for contractile
and extensile activities.Wefind that for contractile active nematics,Cact is attractive, just like its equilibrium
counterpart. However,Cact is fundamentally different from its equilibrium counterpart, because it diverges
logarithmically as the threshold thickness for the spontaneous flow instability is approached frombelow. Thus
both the contributions conspire in attraction althoughwith different scalings. For extensile nematics,Cact is
repulsive and has a scalingwith the thickness L that is different from its equilibrium counterpart, and has no
divergence at any L. In particular for extensile systemsCtot changes sign at a critical thickness which corresponds
to an unstable situation. The signs of the active Casimir stressCact, which is attractive for contractile activity and
repulsive for extensile activity are controlled by the decay times of the orientationfluctuations. Lastly, for small
Δμ onemight reach large thicknesses Lwhere the physics discussed in [23] could play a rolemaking the passive
Casimir stressCeq repulsive; this and its potential effects on active Casimir stress are, however, outside the scope
of the present work.

A potential biological systemwhere the active Casimir stresses could be relevant is the thin cell cortex or the
cell lamellipodium.Due to the active Casimir forces acting in the direction of the thickness of the actin layer,
because of the overall incompressibility, the active layer tends to stretch along the in-plane directions. This
causes the cellmembrane to stretch and contributes to the active tension of the cell cortex. If the thickness of the
system is close to the critical threshold of instability, the Casimir force contribution could become important.
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Appendix

Here, we discuss the full calculation of polarization fluctuations in a stochastically driven activefluid layer. The
scheme of the calculations here is very similar to the detailed calculation for the diffusion coefficient of a test
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particle immersed in an activefluid layer, as given in [18]with full details. Nonetheless, we reproduce the basic
outline here for the sake of completeness.We start from the relations (5)–(9) and determine hα, the conjugate
field to the polarity vector from a Frank free energywhich describes the energies of splay, bend and twist
deformations by parametersK1,K2 andK3. For simplicity we consider here the limit K1  ¥ (i.e. the splay
modes are suppressed, p 0 =· ).We furthermore introduce the constraints p2=1 and∇·v=0, i.e. we
ignorefluctuations of themagnitude ofp andwe treat the fluid as incompressible. The two constraints
∇·p=0 and p2=1 are imposed by twoLagrangemultipliers hPandf in the free energy functional

F x K K h pp p p
1

2
d 2 , 44z

3
2

2
3

2 2ò f=  ´ + ¶ - + [ ( ) ( ) · ] ( )

wherewe have assumed that p exhibits smallfluctuations around a reference state p ez0 = ˆ , the unit vector along
the z-axis. The incompressibility constraint is imposed via the pressure P as Lagrangemultiplier. The activefluid
is confined between two surfaces at z=0 and z=L.We impose the following boundary conditions: noflow
across the boundary surfaces vz(z=0)=0 and vz(z=L)=0 and vanishing surface shear stress at the
boundaries:∂vα/∂z=0, at z=0 and z=L forα=x, y. In additionwe impose zp e0 z= =( ) ˆ and

z Lp ez= =( ) ˆ . These boundary conditions are satisfied by the Fouriermode expansions
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where x y,a = . Here, r is a vector in the x−y plane and the corresponding wavevector is denoted by q.We
linearize the state of the system around a reference state with vα=0, vz=0 and ep z= ˆ . The force balance
equation togetherwith the incompressibility condition and the constitutive equation (8) yield equations for the
flowfield
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whereα,β=x or y. Here, we have introduced the transverse projection operatorsPzz=q2/(q2+n2π2/L2),
Pαβ=δαβ−qαqβ/(q

2+n2π2/L2)=Pβα, andPαz=−iqα (nπ/L)/(q
2+n2π2/L2)=Pzα and the pressure P

has already been eliminated. The noise terms
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whereα and x y z, ,b = .
The dynamic equation for the polarization field reads
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Note that vz
n˜ decouples from pn

ã . Equations (53), (54)maybeused to obtain expressions for thefluctuations of pn
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wherewe have identified an effective relaxation time qt̃ of the polarization fluctuations pn
ã :
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For the stability of the assumed oriented state of polarization onemust have 0qt >˜ . Time-scale qt̃ is the analog
of the time-scale tp(q) that we extract from equation (31). This allows us to calculate the correlation function of
p x y,n a =a ( ): wefind
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Thuswe obtain for the active Casimir stress in an orientationally ordered activefluid: using (24)
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This holds for both contractile and extensile activefluids and vanishes asΔμis set to zero.
For a contractile activefluidwith nematic order,Cact diverges whenΔn=0, which can happenwith afinite

Δμ<0. Theminimum thickness for which this can happen is given by the condition
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Weevaluate the active contribution in (59)near the instability threshold (for afinite ζΔμ<0), i.e. as L Lc
frombelow. In this limit, only the n=1 contribution diverges; the contributions with n>1 are all finite.
Therefore, we retain only the n=1 contribution and evaluate it; we discard all higher-n contributions. Define
L=Lc (1−δ), δ>0 is a small dimensionless number. Keeping only the divergent term contribution as 0d  ,
we obtain for the active contribution to theCasimir stressCtot as L approaches Lc frombelow
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Substituting for z mD from (60), we find
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same as (25) as above. Thus,Cact approaches-¥ as 0d  . Thus, it is attractive, similar to the equilibrium
contribution [2]. The equilibrium contributionmay be evaluated in straightforwardways by following [2]: One
finds, at L Lc
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3 . 63

c
Req

B
3p
z= - ( ) ( )

Thus, following the logic outlined in themain text, the total Casimir stressCtot for an activefluid layer of
thickness L Lc frombelow is given by
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h g n

g n h g
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p
z
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+ -

G

-

( )
[ ( ) ]

( ) ( )

which is, of course, overall attractive.
The scaling ofCact with L changes drastically for L Lc .We use (59) and focus on the second termon the

right-hand side of it which is the active contribution.We extract the z mD( ) contribution for small ζΔμ that
yields the leading order active contribution toCtot for small ζΔμ.Wefind

C
K q

L

n

L

k T

K q
2

d

2

2 1

2

. 65
n n

L q

n

L

act

2

2

2 2

2
B 1

2 2
2 1 1

4 n

L

2 2

2
1

1
2

2 2 2

2

2 2

2

ò åp
p p z m n

h

=
D -

+ +p
g

n

h

p-

+ p

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )

( )
( ) ( )

( )

This active contribution, being negative (ζΔμ<0), remains attractive and clearly scales as 1/L, different from
both the equilibrium contribution (that scales as 1/L3) and the contribution for L Lc frombelow that shows a
logarithmic divergence. This is consistent with the predictions fromour simplified analysis above, and
reminiscent of the 1/L-dependence of a similar Casimir-like force in a one-dimensional confined active particle
system studied in [9].

So far, we have considered only thermal noises abovewhile averaging over the noise ensembles, keeping the
active effects only in the deterministic parts of the dynamicalmodel. In general, however, there are active noises
present over and above the thermal noises. For simplicity, we supplement the thermal noise in (55) by an active
noise that is assumed to be δ-correlated in space and time, with a variance that should scale withΔμ. The precise
amplitude of the variance should depend on the detailed nature of the stochasticity of themotormovements.We
now refer to equation (57): then to the leading order inΔμ, the active noises should generate an additional active
contribution δCA toCact in (59) above near L=Lc. This is of the form

C
D

L
3 , 66A

c
R

0
3

d
m
z~ -

D ( ) ( )

whereD0 is a dimensional constant. Thus, this additional contribution is attractive, has the same scalingwith L
as the equilibrium contributionCeq and has no divergence as L Lc frombelow.We did not consider any
active,multiplicative noises thatmay be important in cell biology contexts as illustrated in [6].

Our analyses abovemay be extended to obtainCtot just above the the threshold of the spontaneousflow
instability for the contractile case [15]. Above the threshold, the steady reference state is given by
v A z Lcosx p= ( ), p 1z = , p z Lsinx0  p= ( ), v v p0 , 0z y y= = = , withA=4LζΔμò/[π(4η+γ1(ν1+1)2)]

and L L L L1 ,c c = - > [15].We discuss the case with 0  .We impose the same boundary conditions
as above. The viscous contribution toC continues to be zero by the same argument as above, since the
spontaneousflowvelocity vxhas no in-plane coordinate dependences. Defining δpx as thefluctuation of px
around px0, the new reference state, we note that the boundary condition on δpx is same as that on px before, i.e.
for no spontaneousflows; boundary conditions on py, having a zero value in the reference state, naturally
remains unchanged from the previous case.We, thus, conclude that δpx and py follow the same (linearized)
equations (55) for px and py as in the previous case. Hence, the solutions for δpx and py are identical to those of px
and py in the previous case. It is now straightforward to see that the expression for theCasimir stressCtot as given
in (64)nowhas an additional contribution

C
K

p p
K

L
z L

K L L

L L2 2
cos

2
. 67z x z x z L z L

c
0 0

2
2

2
2

2

2
d

p
p

p
= - á¶ ¶ ñ = - = -

-
= =∣ ( )∣ ( )

Wenote that the additional contribution δC depends on the Frank elastic constantK and has a negative sign,
displaying its attractive nature. Further and not surprisingly, it vanishes as (L−Lc) as L Lc , and hence is
small just above the threshold. Thus, even above the threshold of the spontaneousflow instability, the dominant
contribution toCtot still comes from (64), its value just below the threshold. Lastly, if we continue to use the
above reference states for LcL even for L Lc , then δC scales as 1/L2 for L Lc and forms the dominant
contribution inCtot.

In the abovewe have considered a contractile activefluid. For an extensile systemwith ξΔμ>0, there are
no divergences in (57) or (59) for any L. Expanding (59) in ζΔμ, we extract an active contribution linear in ζΔμ

that scales with L as 1/L, different from the scaling ofCact in the contractile case, or from the equilibrium
contributionCeq.Wefind for the leading order active contribution to theCasimir stress
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that scales with L as 1/L; here only. Thus, the active contribution comeswith a positive sign (ζΔμ>0), i.e.
repulsive Casimir stress, a feature obtained in our simplified analysis above. Furthermore given thatCeq<0, it
is possible thatCtot=C+Ceq changes sign as the thickness L or the activity parameter ζΔμ is varied
correspond to an unstable situation, potentially creating an intriguing crossover between a repulsive and an
attractive Casimir stress. Lastly, the differences in the active Casimir stressCact for the contractile and extensile
cases potentially open up experimental routes to distinguish contractile activity from extensile activity by
measuringCtot.
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