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Abstract.  A stopping time T is the first time when a trajectory of a stochastic 
process satisfies a specific criterion. In this paper, we use martingale theory to 

derive the integral fluctuation relation 〈e−Stot(T )〉 = 1 for the stochastic entropy 
production Stot in a stationary physical system at stochastic stopping times T. 
This fluctuation relation implies the law 〈Stot(T )〉 � 0, which states that it is not 
possible to reduce entropy on average, even by stopping a stochastic process at a 
stopping time, and which we call the second law of thermodynamics at stopping 
times. This law bounds the average amount of heat and work a system can extract 
from its environment when stopped at a random time. Furthermore, the integral 
fluctuation relation implies that certain fluctuations of entropy production are 
universal or are bounded by universal functions. These universal properties 
descend from the integral fluctuation relation by selecting appropriate stopping 
times: for example, when T is a first-passage time for entropy production, then 
we obtain a bound on the statistics of negative records of entropy production. We 
illustrate these results on simple models of nonequilibrium systems described by 
Langevin equations and reveal two interesting phenomena. First, we demonstrate 
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that isothermal mesoscopic systems can extract on average heat from their 
environment when stopped at a cleverly chosen moment and that the second law 
at stopping times bounds the average extracted heat. Second, we demonstrate 
that the efficiency at stopping times of an autonomous stochastic heat engine, 
such as Feymann’s ratchet, can be larger than the Carnot efficiency and that the 
second law of thermodynamics at stopping times bounds its efficiency at stopping 
times. 

Keywords: fluctuation theorems, stochastic processes, stochastic 
thermodynamics
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1. Introduction and statement of the main results

Stochastic thermodynamics is a thermodynamics theory for the slow degrees of freedom 
�X(t) of a mesoscopic system that is weakly coupled to an environment in equilibrium 
[1–5]. Examples of systems to which stochastic thermodynamics applies are molecular 
motors [6, 7], biopolymers [8], self-propelled Brownian particles [9], micro-manipula-
tion experiments on colloidal particles [10–12], and electronic circuits [13–15].

The stochastic entropy production Stot(t) is a key variable in stochastic thermody-
namics. It is defined as the sum of the entropy change of the environment Senv(t) and a 
system entropy change ∆Ssys(t) [16]. In stochastic thermodynamics entropy production 
is a functional of the trajectories of the slow degrees of freedom in the system. If time 

is discrete and �X(t) is a variable of even parity with respect to time reversal, then the 
entropy production Stot(t) associated with a trajectory of a nonequilibrium stationary 

process �X(t) is the logarithm of the ratio between the stationary probability density of 
that trajectory p( �X(1), �X(2), . . . , �X(t)) and the probability density of the same trajec-

tory but in time-reversed order [4, 17–19],

Stot(t) = log
p( �X(1), �X(2), . . . , �X(t))

p( �X(t), �X(t− 1), . . . , �X(1))
, (1)

where log denotes natural logarithm. Here and throughout the paper we use dimension-
less units for which Boltzmann’s constant kB = 1. Equation (1) is a particular case of 
the general expression of stochastic entropy production in terms of probability mea-
sures that we will discuss below in equation (33). The functional Stot(t) is exactly equal 
to zero at all times for systems in equilibrium. For nonequilibrium systems, entropy 
production fluctuates with expected value larger than zero, 〈Stot(t)〉 � 0.

An interesting consequence of definition (1) is that the exponential of the negative 

entropy production e−Stot(t) is a martingale associated with the process �X(t) [20–22]. 
Historically the concept of martingales has been introduced to understand fundamental 
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questions in betting strategies and gambling [23]. Martingale theory [24–26], and in 
particular Doob’s optional stopping theorem, provides an elegant resolution to the 
question whether it is possible to make profit in a fair game of chance by leaving the 
game at a cleverly chosen moment. We can distinguish unfair games of chances, where 
the expected values of the gambler’s fortune decreases (or increases) with time, from 
fair ones, where such expected values are constant in time on average. In probability 
theory, these categories correspond to supermartingales (or submartingales) and mar-
tingales, respectively. In a nutshell, the optional stopping theorem for martingales 
states that a gambler cannot make profit on average in a fair game of chance by quit-
ting the game at an intelligently chosen moment. The optional stopping theorem holds 
as long as the total amount of available money is finite. A gambler with access to an 
infinite budget of money could indeed devise a betting strategy that makes profit out of 
a fair game; the St. Petersburg game provides an example of a such a strategy, see [27] 
and chapter 6 of [28]. Nowadays martingales have various applications, for example, 
they model stock prices in ecient capital markets [29].

In this paper, we study universal properties of entropy production in nonequilib-
rium stationary states using martingale theory and Doob’s optional stopping theorem. 
In an analogy with gambling, the negative entropy production −Stot(t) of a stationary 

process �X(t) is equivalent to a gambler’s fortune in an unfair game of chance �X(t) and 
the exponentiated negative entropy production e−Stot(t) is a martingale associated with 
the gambler’s fortune. In stochastic thermodynamics, Doob’s optional stopping theo-
rem implies

〈e−Stot(T )〉 = 1, (2)

where the expected value 〈·〉 is over many realizations of the physical process �X(t), and 
where T is a stopping time. A stopping time T is the first time when a trajectory of 
�X satisfies a specific criterium; it is thus a stochastic time. This criterium must obey 
causality and cannot depend on the future. The relation (2) holds under the condition 
that either T acts in a finite-time window, i.e. T ∈ [0, τ ] with τ  a positive number, 
or that Stot(t) is bounded for all times t ∈ [0,T ]. We call (2) the integral fluctuation 
relation for entropy production at stopping times because it is an integral relation, 

〈e−Stot(T )〉 =
∫
dP e−Stot(T ) = 1, that characterises the fluctuations of entropy produc-

tion. Here, P is the probability measure associated with �X(t).
The fluctuation relation at stopping times (2) can be extended into a fluctuation 

relation conditioned on trajectories �XT ′
0  of random duration [0,T ′], namely,〈

e−Stot(T )| �XT ′

0

〉
= e−Stot(T ′), (3)

with T ′ a stopping time for which T ′ � T , and where �Xs
0 =

{
�X(t′)

}
t′∈[0,s]

 denotes a trajectory 

in a finite-time window. Notice that for T ′ = 0 we obtain 〈e−Stot(T )| �X(0)〉 = e−Stot(0) = 1, 
since in our definition Stot(0) = 0. The fluctuation relation (3) implies thus (2).

There are two important implications of the integral fluctuation relations (2) and 
(3). First, it holds that

〈Stot(T )〉 � 0, (4)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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or in other words, it is not possible to reduce the average entropy production by stop-

ping a stochastic process �X(t) at a cleverly chosen moment T that can be dierent for 
each realisation. The relation (4) is reminiscent of the second law of thermodynamics, 
and therefore we call it the second law of thermodynamics at stopping times. A second 
implication of the integral fluctuation relations (2) and (3) is that certain fluctuation 
properties of entropy production are universal. In what follows, we discuss in more 
detail these two consequences of the integral fluctuation relations.

We first discuss the second law at stopping times equation (4). Remarkably, this 
second law holds for any stopping time T defined by a (arbitrary) stopping criterium 
that obeys causality and does not use information about the future of the physical 
process; first-passage times are canonical examples of stopping times. Interestingly, the 
inequality (4) bounds the average amount of heat and work a system can perform on 
or extract from its surroundings at a stopping time T. For isothermal systems, equa-
tion (4) implies

〈Q(T )〉 � Tenv〈∆Ssys(T )〉. (5)
Relation (5) states that the average amount of heat 〈Q(T )〉 a system can on average 
extract at a stopping time T from a thermal reservoir at temperature Tenv is smaller 
or equal than the average system entropy dierence 〈∆Ssys(T )〉 between the initial 
state and the final state at the stopping time. Similar considerations allow us to derive 
bounds on the average amount of work that a stationary heat engine, e.g. Feynman’s 
ratchet, can extract from its surrounding when stopped at a cleverly chosen moment. 
Consider a system in contact with two thermal reservoirs at temperatures Th and Tc 
with Th � Tc. We define the stopping-time eciency ηT  associated with the stopping 
time T as

ηT := − 〈W (T )〉
〈Qh(T )〉

, (6)

where 〈W (T )〉 is the average work exerted on the system in the time interval [0,T ], and 
〈Qh(T )〉 is the average heat absorbed by the system from the hot reservoir within the 
same time interval. If 〈Qh(T )〉 > 0, then the second law at stopping times (4) implies 
that

ηT � ηC − 〈∆Fc(T )〉
〈Qh(T )〉

, (7)

where ηC = 1− (Tc/Th) is the Carnot eciency, 〈∆Fc(t)〉 = 〈∆v(t)〉 − Tc〈∆Ssys(t)〉 
is the generalised free energy change of the system at the stopping time T, and 
∆v(t) = v(X(t))− v(X(0)) is change of the internal energy of the system. Note that 
the second term in the right-hand side of (7) can be positive, and thus eciencies at 
stopping times of stationary heat engines can be greater than the Carnot eciency. 
This is because using a stopping time the system is, in general, no longer cyclic.

We now discuss universal properties of the fluctuations of entropy production. By 
applying the integral fluctuation relations (2) and (3) to dierent examples of stopping 
times T, we will derive the following generic relations for the fluctuations of entropy 
production:

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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 •	  In the simple case T  =  t, where t is a deterministic fixed time, relation (4) reads 
〈Stot(t)〉 � 0, which is a well-known second-law-like relation derived in stochastic 
thermodynamics [4, 16], and the relation (2) is the stationary integral fluctuation 
relation 〈e−Stot(t)〉 = 1 [4, 16]. The integral fluctuation relation at fixed times 
implies that in a nonequilibrium process events of negative entropy production 
must exist and their likelihood is bounded by [4]

P (Stot(t) � −s) � e−s, s � 0, (8)

 	 where P (·) denotes the probability of an event.

 •	  Our second choice of stopping times are first-passage times 
Tfp = inf {t : Stot(t) /∈ (−s−, s+)} for entropy production with two absorbing 
boundaries at −s− � 0 and s+ � 0. As we show in this paper, the integral fluctuation 
relation equation (2) implies that the splitting probabilities p− = P [Stot(T ) � −s−] 
and p+ = P [Stot(T ) � s+] are bounded by

p+ � 1− 1

es− − e−s+
, p− �

1

es− − e−s+
. (9)

 	 If the trajectories of entropy production are continuous, then [21]

p+ =
es− − 1

es− − e−s+
, p− =

1− e−s+

es− − e−s+
. (10)

 •	  Global infima of entropy production, Sinf = inft�0 Stot(t), quantify fluctuations of 
negative entropy production. The cumulative distribution P [Sinf � −s] is equal 
to the splitting probability p − in the limit s+ → ∞. Using (9) we obtain [21]

P [Sinf � −s] � e−s, s � 0, (11)

 	 which implies the infimum law 〈Sinf〉 � −1 [21]. It is insightful to compare the 
two relations (8) and (11). Since Sinf � Stot(t), the inequality (11) implies the 
inequality (8), and (11) is thus a stronger result. Remarkably, the bound (11) is 
tight for continuous stochastic processes. Indeed, using (10) we obtain the prob-
ability density function for global infima of the entropy production in continuous 
processes [21],

pSinf
(−s) = e−s, s � 0. (12)

 	 The mean global infimum is thus 〈Sinf〉 = −1.

 •	  The survival probability psur(t) of the entropy production is the probability that 
entropy production has not reached a value s0 in the time interval [0, t]. For 
continuous stochastic processes we obtain the generic expression

psur(t) =
e−s0 − 1

e−s0 − 〈e−Stot(t)〉sur
, (13)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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 	 where 〈. . . 〉sur is an average over trajectories that have not reached the absorbing 
state in the interval [0, t].

 •	  We consider the statistics of the number of times, N×, that entropy production 
crosses the interval [−∆,∆] from −∆ towards ∆ in one realisation of the process 
�X(t). The probability of N× is bounded by

P(N× = 0;∆) � 1− e−∆,

P(N× > n) � e−∆(2n+1).
 (14)

 	 In other words, the probability of observing a large number of crossing decays at 
least exponentially in N×. For continuous stochastic processes we obtain a generic 
expression for the probability of N× [22], given by

P(N× = n×) =

{
1− e−∆ n× = 0,

2 sinh(∆)e−2n×∆ n× � 1. (15)

Remarkably, all these results on universal fluctuation properties are direct conse-
quences of the integral fluctuation relation for entropy production at stopping times, 
equation (2), and its conditional version, equation (3).

Some of the results in this paper have already appeared before in the literature or 
are closely related to existing results. A fluctuation relation analogous to (2) has been 
derived for the exponential of the negative housekeeping heat, see equation (6) in [30]. 
Since for stationary processes the housekeeping heat is equal to the entropy production, 
the relation (6) in [30] implies the relation (2) in this paper. The relations (10)–(12) 
and (15) have been derived before in [21] and [22]. Instead, the relations (3), (5), (7), 
(9), (13), and (14) are, to the best of our knowledge, derived here for the first time. 
Moreover, we demonstrate that all the results (3), (5), (7), (9)–(13) and (15) descend 
from the integral fluctuation relation fluctuation relations (2) and (3) in a few simple 
steps, and we discuss the physical meaning of the results derived in this paper on 
examples of simple nonequilibrium systems.

The paper is organised as follows. Section 2 introduces the notation used in the 
paper. In section 3, we revisit the theory of martingales in the context of gambling. In 
section 4, we briefly recall the theory of stochastic thermodynamics, focusing on the 
aspects we will use in this paper. These two sections only contain review material, and 
can be skipped by readers who want to directly read the new results of this paper. In 
section 5, we derive the first important results of this paper: the integral fluctuation 
relations at stopping times (2) and (3). In section 6, we derive the second law of ther-
modynamics at stopping times (4), and we discuss the physical implications of this law. 
In section 7, we use the integral fluctuation relation at stopping times to derive univer-
sal properties for the fluctuations of entropy production in nonequilibrium stationary 
states, including the relations (9)–(15). In section 8, we discuss the eect of finite statis-
tics on the integral fluctuation relation at stopping times, which is relevant for exper-
imental validation. In section 9, we illustrate the second law at stopping times and the 
integral fluctuation relation at stopping times in paradigmatic examples of nonequilib-
rium stationary states. We conclude the paper with a discussion in section 10. In the 
appendices, we provide details on important proofs and derivations.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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2. Preliminaries and notation

In this paper, we will consider stochastic processes described by d degrees of freedom 
�X(t) = (X1(t),X2(t), . . . ,Xd(t)). The time index can be discrete, t ∈ Z, or continuous, 

t ∈ R. We denote the full trajectory of �X(t) by ω =
{
�X(t)

}
t∈(−∞,∞)

 and the set of all 

trajectories by Ω. We call a subset Φ of Ω a measurable set, or an event, if we can 
measure the probability P [Φ] to observe a trajectory ω in Φ. The σ-algebra F  is the 
set of all subsets of Ω that are measurable.

The triple (Ω,F ,P) is a probability space. We denote random variables on this 
probability space in upper case, e.g. X,Y ,Z , whereas deterministic variables are writ-
ten in lower case letters, e.g. x, y, z. An exception is the temperature Tenv, which is a 
deterministic variable. Random variables are functions defined on Ω, i.e. X : ω → X(ω). 
For simplicity we often omit the ω-dependency in our notation of random variables, 

i.e. we write X = X(ω), Y = Y (ω), etc. For stochastic processes, �X(t) = �X(t,ω) is a 
function on Ω that returns the value of �X at time t in the trajectory ω. The expected 
value of a random variable X is denoted by 〈X〉 or E[X] and is defined as the integral 
〈X〉 = E[X] =

∫
Ω
dPX(ω) in the probability space (Ω,F ,P). We write p X(x) for the 

probability density function or probability mass function of X, if it exists. We denote 
vectors by �x = (x1, x2, . . . , xd) and we use the notation t ∧ τ = min {t, τ}.

We will consider situations where an experimental observer does not have 
instantaneously access to the complete trajectory ω but rather tracks a trajectory {
�X(s)

}
s∈[0,t]

= �X t
0 in a finite time interval. In this case, the set of measurable events 

gradually expands as time progresses and a larger part of the trajectory ω becomes 

visible. Mathematically this situation is described by an increasing sequence of σ-alge-

bras {Ft}t�0 where Ft contains all the measurable events Φ associated with finite-time 

trajectories �X t
0. The sequence of sub σ-algebras {Ft}t�0 of F  is called the filtration 

generated by the stochastic process X(t) and (Ω,F , {Ft}t�0 P) is a filtered probabil-

ity space. If time is continuous, then we assume that {Ft}t�0 is right-continuous, i.e. 

Ft = ∩s>tFs; this implies that the process �X(t) consists of continuous trajectories 

intercepted by a discrete number of jumps.
We denote by E[M(t)|Fs](ω) the conditional expectation of a random variable M(t) 

given a sub-σ-algebra Fs of F  [25, 26]. Note that conditional expectations E[M(t)|Fs](ω) 
are random variables on the measurable space (Ω,Fs). Since E[M(t)|Fs](ω) is an 
expectation value we also use the physics notations E[M(t)|Fs] = 〈M(t)|Fs〉 and 

E[M(t)|Fs] = 〈M(t)| �Xs
0〉.

3. Martingales

In a first subsection, we introduce martingales within the example of games of chance, 
to illustrate how fluctuations of a stochastic process can be studied with martingale 
theory. The calculations in this subsection are similar to those for the stochastic entropy 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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production presented in sections 5 and 7, with the dierence that games of chance 
are simpler to analyse, since they consist of sequences of independent and identically 
distributed random variables. In a second subsection, we present a definition of mar-
tingales that applies to stochastic processes in continuous and discrete time, and we 
discuss the optional stopping theorem.

3.1. Gambling and martingales

Games of chance have inspired mathematicians as far back as the 17th century and 
have laid the foundation for probability theory [31]. A question that has often been 
studied is the gambler’s ruin problem: Consider a gambler that enters a casino and 
tries his/her luck at the roulette. The gambler plays until he/she has either won a pre-
determined amount of money or until the initial stake is lost. We are interested in the 
probability of success, or equivalently in the ruin probability of the gambler.

The roulette is a game of chance that consists of a ball that rolls at the edge of a 
spinning wheel and falls in one of 37 coloured pockets on the wheel: 18 pockets are 
coloured in red, 18 pockets are coloured in black, and one is coloured in green. Before 
each round of the game, the gambler puts his/her bet on whether the ball will fall in 
either a red or a black pocket. If the gambler’s call is correct, then he/she wins an 
amount of chips equal to the bet size, otherwise he/she looses the betted chips. The 
gambler cannot bet for the green pocket. The presence of the green pocket biases 
the game in favour of the casino: if the ball falls in the green pocket, then the casino 
wins all the bets. We are interested in the gambler’s ruin problem: what is the prob-
ability that the gambler loses his/her initial stake before reaching a certain amount 
of profit? 

A gambling sequence at the roulette can be formalised as a stochastic process X(t) 
in discrete time, t = 1, 2, 3, . . . We define X(t) = 1 if the ball falls in a red pocket and 
X(t) = −1 if the ball falls in a black pocket in the t-th round of the game. If the ball 
falls in a green pocket we set X(t) = 0. We denote the bets of the gambler by the pro-
cess Y (t): if the gambler calls for red we set Y (t) = 1 and if the gambler calls for black 
we set Y (t) = −1. The gambler does not bet on green. Finally, we assume the bet size 
of the gambler b is constant.

For an ideal roulette, the random variables X(t) are independently drawn from the 
distribution

pX(t)(x) =
18

37
δx,1 +

18

37
δx,−1 +

1

37
δx,0, (16)

where δx,y is the Kronecker’s delta. The gambler’s bet Y (t) = y(X(0),X(1), . . . ,X(t− 1)) 
with y  a function that defines the gambler’s betting system. The gambler’s fortune at 
time t is the process

F (t) = n+ b
t∑

s=1

(Y (s)X(s) + |X(s)| − 1), (17)

where F (0) = n is the initial stake.
The duration of the game is random. The gambler plays until a time Tplay when the 

gambler is either ruined, i.e. F (Tplay) � 0, or the gambler’s fortune has surpassed for the 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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first time a certain amount m, i.e. F (Tplay) � m. Clearly we require that m > n = F (0), 
since otherwise Tplay = 0. The ruin probability

pruin(n) = P [F (Tplay) � 0] (18)
is the probability that the gambler loses the game.

The gambler’s fortune is a supermartingale because it is a bounded stochastic pro-
cess satisfying

E [F (t)|X(0),X(1), . . . ,X(s)] � F (s), (19)
for all s � t and all t � 0. Relation (19) means that on average the gambler will inevi-
tably lose money, irrespective of the betting system he/she adopts.

A gambler whose fortune is expected to decrease may still be tempted to play if 
the probability of winning is high enough. The probabilities to win or loose the game 
depend on the fluctuations of X(t). In the roulette game, the gambler’s fortune F (t) 
can be represented as a biased random walk on the real line [0,m], which starts at the 
position n, and moves each time step either a distance  −b to the left or a distance b 
to the right. The probability to make a step to the left is q = 19/37 ≈ 0.51 and the 
probability to make a step to the right is 1− q = 18/37 ≈ 0.49. Hence, the gambler’s 
fortune is slightly biased to move towards the left where F (t) < 0. The ruin probability 
pruin(n) = P [F (Tplay) � 0] solves the recursive equation

pruin(n) = q pruin(n− b) + (1− q) pruin(n+ b), n ∈ [0,m], (20)
with boundary conditions pruin(0) = 1 and pruin(m) = 0. Instead of solving the relations 
(20) we bound the ruin probability pruin(n) using the theory of martingales [32]. We 
define the process

M(t) =

(
q

1− q

)F (t)/b

. (21)

The processes M(t) is a martingale relative to the process X(t) [25, 26]. Indeed, we say 
that a bounded process M is a martingale if

E [M(t)|X(0),X(1), . . . ,X(s)] = M(s), (22)
for all s  <  t.

An important property of martingales is that their expected value evaluated at a 
stopping time T of the process X equals their expected value at the initial time [24–26],

E [M(T )] = E[M(0)]. (23)
Equation (23) is known as Doob’s optional stopping theorem and will constitute the 
main tool in this paper to derive fluctuation properties of stochastic processes. In the 
present example, since

E [M(0)] =

(
q

1− q

)n/b

, (24)

and since for q � 0.5

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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pruin(n) + (1− pruin(n))

(
q

1− q

)m/b+1

� E [M(Tplay)] � pruin(n) + (1− pruin(n))

(
q

1− q

)m/b

,

 (25)
Doob’s optional stopping theorem (23) implies that

(
q

1−q

)m/b+1

−
(

q
1−q

)n/b

(
q

1−q

)m/b+1

− 1

� pruin(n) �

(
q

1−q

)m/b

−
(

q
1−q

)n/b

(
q

1−q

)m/b

− 1

. (26)

Hence, Doob’s optional stopping theorem bounds the gambler’s ruin probability.
The formula (26) provides useful information for the gambler. If we start the game 

with an initial fortune of 10£, if we play until our fortune reaches 50£ and if we bet 
each game 1£, then the chance of loosing our initial stake is in between 94.8 and 95.2 
percent. If, on the other hand, we bet each game 10£, then the ruin probability is in 
between 82 and 85.6 percent. Hence, the probability of winning increases as a function 
of the betting size. Indeed, since the game is biased in favour of the casino, the best 
strategy is to reduce the number of betting rounds to the minimal possible and hope 
that luck plays in our favour. After all, the outcome of a single game is almost fair, 
since the odds of winning a single game are q = 19/37 ≈ 0.51.

3.2. Martingales and the optional stopping theorem

We now discuss martingales and the optional stopping theorem for generic stochastic 

processes �X(t) in discrete or continuous time. A martingale process M(t) with respect 
to another process �X(t) is a real-valued stochastic process that satisfies the following 

three properties [25, 26]:

 •	  M(t) is Ft-adapted, which means, in a loose sense, that M(t) is a function on 
trajectories �X(0, . . . , t); 

 •	  M(t) is integrable,

E [|M(t)|] < ∞, ∀t � 0; (27)
 •	  the conditional expectation of M(t) given the σ-algebra Fs satisfies the property

E[M(t)|Fs] = M(s), ∀s � t, and ∀t � 0. (28)
 	 The conditional expectation of a random variable M(t) given a sub-σ-algebra 

Fs of F  is defined as a Fs-measurable random variable E[M(t)|Fs] for which ∫
ω∈Φ E[M(t)|Fs] dP =

∫
ω∈Φ M(t) dP for all Φ ∈ Fs [26].

If instead of the equality (28) we have an inequality E[M(t)|Fs] � M(s), then we 
call the process a submartingale. If E[M(t)|Fs] � M(s), then we call the process a 
supermartingale.

Fluctuations of a martingale M(t) can be studied with stopping times. Stopping 

times are the random times when the stochastic process �X(t) satisfies for the first time 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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a given criterion. Stopping times do not allow for clairvoyance (the stopping criterion 
cannot anticipate the future) and do not allow for cheating (the criterion does not have 
access to side information). Aside these constraints, the stopping rule can be an arbi-

trary function of the trajectories of the stochastic process �X(t).
Formally, a stopping time T (ω) ∈ [0,∞] of a stochastic process �X is defined as a 

random variable for which {ω : T (ω) � t} ∈ Ft for all t � 0. Alternatively, we can also 

define stopping times as functions on trajectories ω = �X∞
0  with the property that the 

function T (ω) does not depend on what happens after the stopping time T.
An important result in martingale theory is Doob’s optional stopping theorem. There 

exist dierent versions of the optional stopping theorem, which dier in the conditions 
assumed for the martingale process M(t) and the stopping time T. We discuss the ver-
sion of the theorem presented as theorem 3.6 in the book of Liptser and Shiryayev [26].

Let M(t) be a martingale relative to the process �X and let T be a stopping time on 
the process �X. If M is uniformly integrable, then

E [M(T )] = E [M(0)] . (29)
If time is continuous we also require that M(t) is right-continuous. A stochastic process 
M(t) is called uniformly integrable if

lim
m→∞

supt�0

∫
|M(t)|I|M(t)|�m dP = 0, (30)

where IΦ(ω) is the indicator function defined by

IΦ(ω) =

{
1 if ω ∈ Φ,

0 if ω /∈ Φ, (31)

for all ω ∈ Ω and Φ ∈ F . If M(t) is not uniformly integrable, then (29) may not 
hold. For example if M(t) = B(t) with B(t) a Wiener process on [0,∞) and 
T = inf {t � 0 : M(t) = m}, then E [B(T )] = m �= E [B(0)] = 0, where we have used the 
convention that 0 · ∞ = 0 [33].

An extended version of the optional stopping theorem holds for two stopping times 
T1 and T2 with the property P[T2 � T1] = 1,

E [M(T1)|FT2 ] (ω) = M(T2(ω),ω), (32)
where the σ-algebra FT2 consists of all sets Φ ∈ F  such that Φ ∩ {ω : T2(ω) � t} ∈ Ft.

4. Stochastic thermodynamics for stationary processes

In this section, we briefly introduce the formalism of stochastic thermodynamics in 
nonequilibrium stationary states; for reviews see [1–4]. We use a probability-theoretic 
approach [21, 34, 35], which has the advantage of dealing with Markov chains, Markov 
jump processes, and Langevin process in one unified framework. It is moreover the 
natural language to deal with martingales.

The stochastic entropy production Stot(t) is defined in terms of a probability measure P 
of a stationary stochastic process and its time-reversed measure P ◦Θ. The time-reversal 
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map Θ, with respect to the origin t  =  0, is a measurable involution on trajectories ω with 
the property that Xi(t, Θ(ω)) = Xi(−t,ω) for variables of even parity with respect to 
time reversal and Xi(t, Θ(ω)) = −Xi(−t,ω) for variables of odd parity with respect to 

time reversal. We say that the measure P is stationary if P = P ◦ Tt for all t ∈ R, with Tt 

the time-translation map, i.e. �X(t′, Tt(ω)) = �X(t′ + t,ω) for all t′ ∈ R. In order to define 

an entropy production we require that the process �X(t,ω) is reversible. This means that 

for all finite t � 0 and for all Φ ∈ Ft it holds that P [Φ] = 0 if and only if (P ◦Θ) [Φ] = 0. 
In other words, if an event happens with zero probability in the forward dynamics, then 
this event also occurs with zero probability in the time-reversed dynamics. In probability 
theory, one says that P and P ◦Θ are locally mutually absolute continuous.

Given the above assumptions, we define the entropy production in a stationary 
process �X by [17, 21, 34, 35]

Stot(t,ω) := log
dP|Ft

d(P ◦Θ)|Ft

(ω), t � 0, ω ∈ Ω, (33)

where we have used the Radon–Nikodym derivative of the restricted measures P|Ft
 and 

(P ◦Θ)|Ft
 on F . The restriction of a measure P on a sub-σ-algebra Ft of F  is defined 

by P|Ft
[Φ] = P[Φ] for all Φ ∈ Ft. If t is continuous, then Stot(t,ω) is right-continuous, 

since we have assumed the rightcontinuity of the filtration {Ft}t�0. Local mutual 
absolute continuity of the two measures P and P ◦Θ implies that the Radon–Nikodym 
derivative in (33) exists and is almost everywhere uniquely defined. The definition (33) 
states that entropy production is the log of the probability density of the measure P 
with respect to the time-reversed measure P ◦ Θ; it is a functional of trajectories ω of 
the stochastic process X and characterises their time-irreversibility.

The definition (33) of the stochastic entropy production is general. It applies to 
Markov chains, Markov jump processes, diusion processes, etc. For Markov chains, 
the relation (33) is equivalent to the expression (1) for entropy production in terms of 

probability density functions of trajectories. Consider for example the case of �X(t) ∈ Rd 
and t ∈ Z and let us assume for simplicity that all degrees of freedom are of even parity 

with respect to time reversal. Using dP|Ft
= p( �X(1), �X(2), . . . , �X(t)) dλ|Ft

, with λ|Ft
 

the Lebesgue measure on Rtd, the entropy production is indeed of the form given by 
relation (1). However, formula (33) is more general than (1) because it also applies to 
cases where the path probability density with respect to a Lebesgue measure does not 
exist, as is the case with stochastic processes in continuous time.

For systems that are weakly coupled to one or more environments in equilibrium, 
the entropy production (33) is equal to [4]

Stot(t) = ∆Ssys(t) + Senv(t), (34)
where Senv(t) is the entropy change of the environment, and where

∆Ssys(t) = − log
pss( �X(t))

pss( �X(0))
 (35)

is the system entropy change associated with the stationary probability density func-

tion pss( �X(t)) of �X(t).
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5. Integral fluctuation relations at stopping times

In this section we initiate the study of the fluctuations of the entropy production in sta-
tionary processes. We follow an approach similar to the one presented in section 3 for 
the fluctuations of a gambler’s fortune, namely, we first identify a martingale process 
related to the entropy production, which is the exponentiated negative entropy e−Stot(t), 
and we then apply Doob’s optional stopping theorem (29) to this martingale process. 
Since e−Stot(t) is unbounded, we require uniform integrability of e−Stot(t) in order to apply 
Doob’s optional stopping theorem (29). Therefore, we obtain two versions of the int-
egral fluctuation relation at stopping times: a first version holds within finite-time win-
dows and a second version holds when Stot(t) is bounded for all times t � T . These two 
versions represent two dierent ways to ensure that the total available entropy in the 
system and environment is finite. Note that when we applied Doob’s optional stopping 
theorem in the gambling problem, we also required that the gambler’s fortune is finite. 
Finally, we obtain conditional integral fluctuation relations by applying the conditional 
version (32) of Doob’s optional stopping theorem to e−Stot(t).

5.1. The martingale structure of the exponential entropy production

The exponentiated negative entropy production e−Stot(t) associated with a stationary 

stochastic process �X(t) is a martingale process relative to �X(t). Indeed, Stot(t) is a 

F (t)-adapted process, E
[
e−Stot(t)

]
= 1, and in appendix A we show that [20, 21]

E
[
e−Stot(t)|Fs

]
= e−Stot(s), s � t. (36)

As a consequence, entropy production is a submartingale:

E [Stot(t)|Fs] � Stot(s), s � t. (37)
Notice that we can draw an analogy between thermodynamics and gambling by identi-
fying the negative entropy production with a gambler’s fortune and by identifying the 
exponential e−Stot(t) with the martingale (21).

5.2. Fluctuation relation at stopping times within a finite-time window

We apply Doob’s optional stopping theorem (29) to the martingale e−Stot(t). We con-
sider first the case when an experimental observer measures a stationary stochastic 

processes �X(t) within a finite-time window t ∈ [0, τ ]. In this case, the experimental 
observer measures in fact the process e−Stot(t∧τ), where we have used the notation

t ∧ τ = min {t, τ} . (38)
The process e−Stot(t∧τ) is uniformly integrable, as we show in the appendix A, and 
therefore

〈
e−Stot(T∧τ)〉 = 1, (39)

holds for all stopping times T of �X(t).
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5.3. Fluctuation relation at stopping times within an infinite-time window

We discuss an integral fluctuation relation for stopping times within an infinite-time 
window, i.e. T ∈ [0,∞]. In the appendix B we prove that if the conditions

 (i)  e−Stot converges P-almost surely to 0 in the limit t → ∞
 (ii)  Stot(t) is bounded for all t � T

are met, then
〈
e−Stot(T )

〉
= 1. (40)

The condition (i) is a reasonable assumption for nonequilibrium stationary states, 
since 〈Stot(t)〉 grows extensive in time as 〈Stot(t)〉 = σt with σ a positive number. 
The condition (ii) can be imposed on T by considering a stopping time T ∧ Tfp where 
Tfp = inf {t : Stot(t) /∈ (−s−, s+)} is a first-passage time with two thresholds s−, s+ � 1, 
which can be considered large compared to the typical values of entropy production at 
the stopping time T.

5.4. Conditional integral fluctuation relation at stopping times

We can also apply the conditional optional stopping-time theorem (32) to e−Stot(t). We 
then obtain the conditional integral fluctuation relation (3) for stopping times T2 � T1, 
viz.,

〈
e−Stot(T1)|FT2

〉
= e−Stot(T2). (41)

The relation (41) is valid either for finite stopping times T1 ∈ [0, τ ] or for stopping times 
T1 and T2 for which Stot(t) is bounded for all t ∈ [0,T1].

6. Second law of thermodynamics at stopping times

Jensen’s inequality 〈e−Stot(T∧τ)〉 � e−〈Stot(T∧τ)〉 together with the integral fluctuation 
relation (39) imply that

〈Stot(T ∧ τ)〉 � 0. (42)
The relation (42) states that on average entropy production always increases, even 
when we stop the process at a random time T chosen according to a given protocol. 
This law is akin to the relation (19) describing that a gambler cannot make profit out 
of a fair game of chance, even when he/she quits the game in an intelligent manner. 
Analogously, (40) implies the law 〈Stot(T )〉 � 0 for unbounded stopping times T. We 
have thus derived the second law (4) of thermodynamics at stopping times.

When applying this second law to examples of physical processes one obtains inter-
esting bounds on heat and work in nonequilibrium stationary states. Below we first 
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discuss bounds on the average dissipated heat in isothermal processes and then bounds 
on the average work in stationary stochastic heat engines.

6.1. Bounds on heat absorption in isothermal processes

For systems that are in contact with one thermal reservoir at temperature Tenv and for 
which the entropy of hidden internal degrees of freedom is negligible, the entropy pro-
duction is given by (34) and (35), and the environment entropy takes the form [4, 36]

Senv(t) = −Q(t)

Tenv

, (43)

where Q is the heat transferred from the environment to the system. Relation (43) relates 
the stochastic entropy production (34) to the stochastic heat that enters into the first law 
of thermodynamics. Therefore, for isothermal systems the second law at stopping times 
(42) reads

〈Q(T ∧ τ)〉 � Tenv〈∆Ssys(T ∧ τ)〉 = Tenv

〈
log

pss(X(0))

pss(X(T ∧ τ))

〉
. (44)

Analogously, we obtain the relation (5) for unbounded stopping times T.
The relation (44) implies that it is not possible to extract on average heat from a 

thermal reservoir when the system state is invariant. Indeed, when X(T ∧ τ) = X(0), 
then 〈Q(T ∧ τ)〉 � 0. However, if the system entropy at the stopping time T is dierent 
than the entropy in the stationary state, then it is possible to extract on average at 

most an amount Tenv

〈
log pss(X(0))

pss(X(T∧τ))

〉
 of heat from the thermal reservoir.

For systems in equilibrium pss(x) ∼ e−v(x)/Tenv, such that the bound (44) reads 
〈Q(T ∧ τ)〉 � 〈∆v(T ∧ τ)〉. Moreover, according to the first law of thermodynamics 
〈Q(T ∧ τ)〉 = 〈∆v(T ∧ τ)〉, such that for systems in equilibrium the bound (44) is tight.

Notice that the bound on the right hand side of (44) is maximal for stopping times 
of the form

T † = inf {t � 0 : pss(X(t)) = minx∈Xpss(x)} . (45)

If X(t) is a recurrent process, i.e. P(T † < ∞) = 1, and if τ → ∞, then

〈Q(T †)〉 � Tenv

∑
x∈X

pss(x) log
pss(x)

minx′∈Xpss(x′)
. (46)

6.2. Eciency of heat engines at stopping times: the case of Feynman’s ratchet

We consider stochastic heat engines in contact with two thermal baths at temperatures 
Tc and Th with Th � Tc. A paradigmatic example is Feynman’s ratchet [37–41], which 
is composed of a ratchet wheel with a pawl that is mechanically linked by an axle to a 
vane. The ratchet wheel and the pawl are immersed in a hot thermal reservoir, and the 
vane is immersed in a cold thermal reservoir. An external mass is connected to the axle 
of the Feynman ratchet and follows the movement of the ratchet wheel. If the wheel 
turns in the clockwise direction then the axle performs work on the mass, whereas if the 
wheel turns in the counterclockwise direction then the mass performs work on the axle.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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We now perform an analysis of the Feynman ratchet at stopping times. For exam-
ple, we ask the question what is the eciency of the ratchet when the system is stopped 
right before or after the ‘main event’, i.e. the passage of the pawl over the peak of the 
ratchet wheel. The first law of thermodynamics implies that

〈Qh(T )〉+ 〈Qc(T )〉+ 〈W (T )〉 = 〈∆v(T )〉, (47)
where Qh is the heat absorbed by the ratchet from the hot reservoir, Qc is heat absorbed 
by the ratchet from the cold reservoir, v is the mechanical energy stored in the pawl, 
and W is the work performed on the external mass. For the Feynman’s ratchet, the 
second law of thermodynamics at stopping times T reads

〈Qh(T )〉
Th

+
〈Qc(T )〉

Tc

� 〈∆Ssys(T )〉, (48)

where Ssys is the entropy of the ratchet. If 〈Qh(T )〉 > 0, the first and second law of 
thermodynamics at stopping times imply the inequality (7), i.e.

ηT � ηC − 〈∆Fc(T )〉
〈Qh(T )〉

,

where we have introduced the eciency at stopping times

ηT := − 〈W (T )〉
〈Qh(T )〉

,

the Carnot eciency

ηC = 1− Tc

Th

, (49)

and the system free energy

〈∆Fc(t)〉 = 〈∆v(t)〉 − Tc〈∆Ssys(t)〉. (50)
For T  =  t, 〈∆Fc(T )〉 = 0 and we obtain the classical Carnot bound ηt � ηC. Moreover, if 
X(T ) = X(0), which implies that the process stops when it returns to its original state, 
then 〈∆Fc(T )〉 = 0 and we obtain again the classical Carnot bound ηt � ηC. Hence, it 
is not possible to exceed on the Carnot eciency when the final state equals the initial 
state and thus when the heat engine is a cyclic process in phase space.

However, for general stopping times T, 〈∆Fc(T )〉 is dierent than zero. Interestingly, 
for stopping times T for which 〈∆Fc(T )〉/〈Qh(T )〉 is negative, the second law of 
thermodynamics at stopping times implies that ηT  is bounded by a constant that 
is larger than the Carnot eciency. Note that the stopping-time eciency ηT  is 
defined as the ratio of averages, and not as the average of the ratios. In general 
〈W (T )〉/〈Qh(T )〉 �= 〈W (T )/Qh(T )〉, and the latter corresponds to the average of an 
unbounded random variable whose value at fixed times T  =  t has been previously stud-
ied in [12, 42–45].

Another interesting property of thermodynamic observables at stopping times is 
that they can take a dierent sign with respect to their stationary averages. For 
example, it is possible that at the stopping time T the fluxes of the Feynman ratchet 
have the same sign as those in a refrigerator, namely, 〈W (T )〉 > 0, 〈Qc(T )〉 > 0 and 
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〈Qh(T )〉 < 0. To evaluate the performance of this process, we introduce the coecient 
εT := −〈Qc(T )〉/〈W (T )〉 > 0, for which the second law of thermodynamics at stopping 

times reads εT �
[(

Th

Tc
− 1

)
+ 〈∆Fh(T )〉

〈Qc(T )〉

]−1

, with 〈∆Fh(T )〉 := 〈∆v(T )〉 − Th〈∆Ssys(T )〉. 
For fixed times T  =  t and for stopping times T with X(T ) = X(0), we recover the clas-
sical bound εT � Tc/(Th − Tc) [46–48].

In section 9, we illustrate the bounds (5) and (7) on simple physical models.

7. Universal properties of stochastic entropy production

We use the fluctuation relations (39)–(41) to derive universal relations about the sto-
chastic properties of entropy production in stationary processes.

All our results hold for nonequilibrium stationary states for which limt→∞ e−Stot(t) = 0 
(P-almost surely).

If entropy production is bounded for t  <  T, then we will use the optional stopping 
theorem (40) for stopping times within infinite-time windows, and if entropy produc-
tion is unbounded for t  <  T, then we will use the optional stopping theorem (39) for 
stopping times within finite-time windows.

7.1. Fluctuation properties at fixed time T  =  t

We first consider the case where the stopping time T is a fixed non-fluctuating time t, 
i.e. T  =  t. In this case the fluctuation relation (39) is the integral fluctuation theorem 
derived in [16],

〈e−Stot(t)〉 = 1, (51)

and the second law inequality (42) yields the second law of stochastic thermodynam-
ics [4]

〈Stot(t)〉 � 0. (52)
The relation (51) provides a bound on negative fluctuations of entropy production, and 
for isothermal systems bounds on the fluctuations of work [3]. Since e−Stot(t) is a positive 
random variable, we can use Markov’s inequality, see e.g. chapter 1 of [49], to bound 
events of large e−Stot(t), namely,

P
(
e−Stot(t) � λ

)
�

〈e−Stot(t)〉
λ

, λ � 0. (53)

Using the integral fluctuation relation (51) together with (53) we obtain

P (Stot(t) � −s) � e−s, s � 0,
 (54)

which is a well-known bound on the probability of negative entropy production, see 
equation (54) in [4].

The relations (39) and (42) are more general than the relations (51) and (52), since 
the former concern an average over an ensemble of trajectories of variable length xT

0  
whereas the latter concern an average over an ensemble of trajectories of fixed length xt

0.  
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Therefore, we expect that evaluating (39) at fluctuating stopping times T it is possible 
to derive stronger constraints on the probability of negative entropy production than 
(54). This is the program we will pursue in the following sections.

7.2. Splitting probabilities of entropy production

We consider the first-passage time

Tfp = inf {t � 0 : Stot(t) /∈ (−s−, s+)} (55)
for entropy production with two absorbing thresholds at  −s−  <  0 and s+   >  0. If the set 
{t : Stot(t) /∈ (−s−, s+)} is empty, then Tfp = ∞. Since entropy production is bounded 
for all values t < Tfp we can use the optional stopping theorem (40).

We split the ensemble of trajectories Ω into two sets Ω− = {Stot(Tfp) � −s−} and 
Ω+ = {Stot(Tfp) � s+}. Since Stot(Tfp) ∈ (∞,−s−] ∪ [s+,∞) and limt→∞ e−Stot(t) = 0 
(P-almost surely), the splitting probabilities p− = P [Ω−] and p+ = P [Ω+] have a total 
probability of one,

p+ + p− = 1. (56)
We apply the integral fluctuation relation (40) to the stopping time Tfp:

1 = p−〈e−Stot(Tfp)〉− + p+〈e−Stot(Tfp)〉+ (57)

where

〈e−Stot(Tfp)〉+ =

∫
ω∈Ω+

dP e−Stot(Tfp(ω),ω)

∫
ω∈Ω+

dP
, (58)

〈e−Stot(Tfp)〉− =

∫
ω∈Ω−

dP e−Stot(Tfp(ω),ω)

∫
ω∈Ω−

dP
. (59)

The relations (56) and (57) imply that

p+ =
〈e−Stot(T )〉− − 1

〈e−Stot(T )〉− − 〈e−Stot(T )〉+
, (60)

p− =
1− 〈e−Stot(T )〉+

〈e−Stot(T )〉− − 〈e−Stot(T )〉+
. (61)

Moreover, since Stot(Tfp) ∈ (∞,−s−] ∪ [s+,∞) we have that 〈e−Stot(T )〉− � es− and 
〈e−Stot(T )〉+ � e−s+ . Using these two inequalities in (60) and (61) we obtain the univer-
sal inequalities (9) for the splitting probabilities, viz.,

p+ � 1− 1

es− − e−s+
, p− �

1

es− − e−s+
,

which hold for first-passage times with s−, s+ > 0.
In the case where �X(t) is a continuous stochastic process Stot(Tfp) ∈ {−s−, s+} holds 

with probability one. Using in (60) and (61) that 〈e−Stot(T )〉− = es− and 〈e−Stot(T )〉+ = e−s+, 
we obtain
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p+ =
es− − 1

es− − e−s+
, p− =

1− e−s+

es− − e−s+
,

which are the relations (10). Hence, the splitting probabilities of entropy production are 
universal for continuous processes.

The bounds (9) apply not only to first-passage times but hold more generally for 

stopping times T of �X(t) for which Stot(T ) ∈ (∞,−s−] ∪ [s+,∞) holds with probability 
one and for which Stot(t) is bounded for all t ∈ [0,T ]. Analogously, the equalities (10) 
apply not only to first-passage times but hold more generally for stopping times T of 
�X(t) for which Stot(T ) ∈ {−s−, s+} holds with probability one and for which Stot(t) is 
bounded for all t ∈ [0,T ].

7.3. Infima of entropy production

We can use the results of the previous subsection to derive universal bounds and equali-
ties for the statistics of infima of entropy production. The global infimum of entropy 
production is defined by

Sinf = inft�0Stot(t) (62)
and denotes the most negative value of entropy production.

Consider the first-passage time Tfp, denoting the first time when entropy produc-
tion either goes below  −s− or goes above s+ , with s−, s+ � 0 and its associated splitting 
probability p − The cumulative distribution of Sinf is given by

P [Sinf � −s−] = lim
s+→∞

p−. (63)

Using the inequalities (9) we obtain the bound (11) for the cumulative distribution of 
infima of entropy production, i.e.

P [Sinf � −s−] � e−s− .

The inequality (11) bears a strong similarity with the inequality (54). However, since by 
definition Sinf � Stot(t) for any value of t, we also have that P [Stot � −s−] � P [Sinf � −s−] 
and therefore the inequality (11) is stronger.

For continuous processes �X, the inequality (11) becomes an equality. Indeed, if the 
stochastic process �X is continuous, then with probability one Stot(Tfp) ∈ {−s−, s+}, 
and therefore p − is given by (10). Using the relation (63), we obtain

P [Sinf � −s−] = e−s− . (64)
As a consequence, for continuous stochastic processes the global infimum Sinf of entropy 
production is characterised by an exponential probability density (12) with mean value 
〈Sinf〉 = −1.

7.4. Survival probability of entropy production

We analyse the survival probability

psur(t) = P
[
T̃ > t

]
, (65)
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of the first-passage time with one absorbing boundary,

T̃ = inf {t : Stot(t) = s0} , (66)

for continuous stochastic processes �X(t). If the set {t : Stot(t) = s0} is empty, then 
T̃ = ∞.

We use the fluctuation relation (39) since for first-passage times with one absorbing 
boundary Stot(t) is unbounded for t ∈ [0,T ]. Applying (39) to T̃  we obtain

1 = psur(t)〈e−Stot(t)〉sur + (1− psur(t))e
−s0 (67)

and thus also relation (13), i.e.

psur(t) =
e−s0 − 1

e−s0 − 〈e−Stot(t)〉sur
, (68)

where

〈e−Stot(t)〉sur = 〈e−Stot(t)IT̃>t〉/〈IT̃>t〉. (69)

For positive values of s0 we expect that limt→∞ psur(t) = 0. This implies that  

limt→∞〈e−Stot(t)〉sur = ∞. For negative values of s0 we expect that limt→∞ psur(t) =

P [Sinf � s0] which holds if limt→∞

〈
e−Stot(t)IT̃>t/〈IT̃>t〉

〉
= 0.

7.5. Number of crossings

We consider the number of times N× entropy production crosses an interval [−∆,∆] 
from the negative side to the positive side, i.e. in the direction −∆ → ∆. We can bound 
the distribution of N× using a sequence of stopping times.

The probability that N× > 0 is equal to the probability that the infimum is smaller 
or equal than −∆, and therefore using (11) we obtain

P(N× > 0;∆) = P [Sinf � −s−] � e−∆. (70)

Applying the conditional fluctuation relation (41) on two sequences of stopping times, 
we derive in the appendix C the inequality

P [N× � n+ 1|N× � n] � e−2∆ with n > 0, (71)

and therefore

P(N× > n) � e−∆(2n+1), (72)

which is the inequality (14). The probability of observing a large number of crossing 

decays thus at least exponentially in N×. For continuous processes �X(t) the probability 
mass function P(N× = n×) is a universal statistic given by

P(N× = n×) =

{
1− e−∆ n× = 0,

2 sinh(∆)e−2n×∆ n× � 1, (73)

which is the same relation as derived in [22] for overdamped Langevin processes.
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8. The influence of finite statistics on the integral fluctuation relation at stopping 
times

In empirical situations we may want to use the integral fluctuation relation at stopping 
times to test whether a given process is the stochastic entropy production [50–52]. In 
these cases we have to deal with finite statistics. It is useful to know how many experi-
ments are required to verify the integral fluctuation relation at stopping times with a 
certain accuracy. Therefore, in this section we discuss the influence of finite statistics 
on tests of the integral fluctuation relation at stopping times.

We consider the case where T is a two-boundary first-passage time for the entropy pro-
duction of a continuous stationary process, i.e. T = Tfp = inf {t � 0 : Stot(t) /∈ (−s−, s+)}. 
We imagine to estimate in an experiment the average 〈e−Stot(Tfp)〉 using an empirical 
average over ms realisations,

A =
1

ms

ms∑
j=1

e−Stot(Tj) = e−s+ +
N−

ms

(
es− − e−s+

)
, (74)

where the Tj  are the dierent outcomes of the first passage time Tfp and where N− is the 
number of trajectories that have terminated at the negative boundary, i.e. for which 
Stot(Tj) = −s−. The expected value of the sample mean is thus

〈A〉 = 1, (75)
and the variance of the sample mean is

σ2
A = 〈A2〉 − 〈A〉2 = (1− e−s+)(es− − 1)

ms

. (76)

Hence, for small enough values of s− a few samples ms will be enough to test the stop-
ping-time fluctuation relation. For large enough s−, we obtain 〈A2〉 − 〈A〉2 ∼ es−/ms. 
The number of required samples ms scales exponentially in the value of the negative 
threshold s−. The full distribution of the empirical estimate A of 〈e−Stot(Tfp)〉 is given by

pA(a) =
1

(es− − e−s+)ms

ms∑
n=0

δa,n es−+(ms−n)e−s+

(
ms

n

)
(1− e−s+)n(es− − 1)ms−n,

 (77)
where we have again used δ for the Kronecker delta.

Since we know the full distribution of the empirical average A, the integral fluctuation 
relation 〈e−Stot(Tfp)〉 = 1 can be tested in experiments: given a certain observed value of 
A �= 1 we can use the distribution (77) to compute its p -value, i.e. the probability to 
observe a deviation from 1 larger or equal than the empirically observed |A− 1|.

9. Examples

We illustrate the bounds (5) and (7) on two simple examples of systems described by 
Langevin equations. We demonstrate that a randomly stopped process can extract work 
from a stationary isothermal process and we show that heat engines can surpass the 
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Carnot eciency at stopping times. Moreover, the mean of the extracted heat and the 
performed work are bounded by the second law of thermodynamics at stopping times.

9.1. Heat extraction in an isothermal system

We illustrate the second law (5), for the average heat at stopping times, in the case of a 
colloidal particle on a ring that is driven by an external force f  and moves in a potential 
v(y), where y ∈ [0, 2π�] denotes the position on the ring and where � is the radius of the 
ring. We ask how much heat 〈Q(T ∗)〉 a colloidal particle can extract on average from 
its environment at the time T ∗ when the particle reaches for the first time the highest 
peak of the landscape.

We assume that the dynamics of the colloidal particle is governed by an over-
damped Langevin equation of the form

dX

dt
= −µ

∂v(X(t))

∂x
+ µf +

√
2dζ(t) (78)

where X(t) ∈ R , µ is the mobility coecient, d is the diusion coecient, and ζ(t) 
is a Gaussian white noise with 〈ζ(t)ζ(t′)〉 = δ(t′ − t). We assume that the environ-
ment surrounding the particle is in equilibrium at a temperature Tenv, so that 
Einstein relation d = Tenvµ holds. The potential v(x) is a periodic function with period 
2π�, i.e. v(x) = v(x+ 2π�). The actual position of the particle is given by the variable 
Y (t) = X(t)−N(t)2π� ∈ [0, 2π�), where N(t) ∈ Z is the winding number, i.e. the net 
number of times the particle has traversed the ring. The heat Q can be expressed as 
[2, 53]

Q(t) = v(X(t))− v(X(0)) + f

∫ t

0

dX(t′), (79)

and the stationary distribution is [7]

pss(y) ∼ e−
v(y)−fy
Tenv

∫ y+2π�

y

dy′ e
v(y′)−fy′

Tenv . (80)

We simulate the model (78) for a periodic potential of the form [54],
v(x) = Tenv ln (cos(x/�) + 2) , (81)

which is illustrated in figure 1(a) for � = 1 and Tenv = 1. In this case, the time T ∗ when 
the particle reaches for the first time the highest peak of the landscape is

T ∗ = inf {t � 0 : X(t) = 0} , (82)
and the stationary distribution of X(t) is given by [54]

pss(x) =
3 (g2 (2 + cos(x/�))− g sin (x/�) + 2)

2π�
(
3g2 + 2

√
3
)
(cos (x/�) + 2)

. (83)

Hence, the bound (78) reads

〈Q(T ∗)〉 � Tenv

∫
dx pss(x) log pss(x)− Tenv log

3 g2 + 2

2π�
(
3g2 + 2

√
3
) . (84)
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In figure 1(b) we illustrate the bound (84) for 〈Q(T ∗)〉 as a function of the nonequi-
librium driving f . We find that heat absorption at stopping times is significant at small 
values of f  and in the linear-response limit of small f  the bound (84) is tight; the tight-
ness of the bound (78) holds in general for recurrent Markov processes in the linear 
response limit. For comparison we also plot the mean heat dissipation 〈Q(t)〉 at a fixed 
time t  =  1. While 〈Q(T ∗)〉 is positive at small values of f , the dissipation 〈Q(t)〉 at fixed 
times is always negative. Note that at intermediate times 〈Q(1)〉 > 〈Q(T ∗)〉, but if we 
increase f  furthermore then eventually 〈Q(1)〉 < 〈Q(T ∗)〉 (not shown in the figure).

9.2. Illustration of an empirical test of the integral fluctuation relation at stopping times

We use the the model described in section 9.1 to illustrate how the integral fluctuation 
relation at stopping times (2) with T = Tfp = inf {t � 0 : Stot(t) /∈ (−s−, s+)} can be 
tested in an experimental setup. To this aim, we will verify whether the quantity A 
defined in (74), which is the empirical average of e−Stot(T ), converges for ms → ∞ to one. 
We use the results on the statistics of the empirical average of A, described in section 8, 
to validate the statistical significance of the experimental results.

In figure 2 we plot the empirical average (74) as a function of the number of samples 
ms for ten simulation runs. We also plot the theoretical curves 1 + σA and 1− σA, with 
σA the standard deviation of A, see (76). We observe in figure 2 that all test runs lie 
within the 1± σA confidence intervals, and we can thus conclude that numerical experi-
ments are in agreement with the integral fluctuation relation at stopping times and 
thus also with the fact that e−Stot(t) is martingale.

9.3. Super Carnot eciency for heat engines at stopping times

We illustrate the bound (7) for the eciency of stationary stochastic heat engines at 
stopping times with a Brownian gyrator [55], which is arguably one of the simplest 
models of a Feynman ratchet. This system is described by two degrees of freedom x1, x2 
that are driven by an external force field f(x1, x2) and interact via a potential v(x1, x2). 
Two thermal reservoirs at temperatures Th and Tc, with Th > Tc, interact indepen-
dently with the coordinates x1 and x2 of the system, respectively. We are specifically 
interested in the eciency ηT = −〈W (T )〉/〈Qh(T )〉, which is the ratio between the work 
−W (T ) the gyrator performs on its suroundings in a time interval [0,T ], and the heat 
Qh(T ) absorbed by the gyrator in the same time interval, with T the stopping time at 
which a specific criterion is first satisfied. The eciency ηT  is a measure of the average 
amount of work the gyrator performs on its environment.

We consider a Brownian gyrator described by the two coupled stochastic dierential 
equations [55–59]

dX1

dt
= −µ

∂v(X1(t),X2(t))

∂x1

+ µ f1(X1(t),X2(t)) +
√
2d1ζ1(t), (85)

dX2

dt
= −µ

∂v(X1(t),X2(t))

∂x2

+ µ f2(X1(t),X2(t)) +
√

2d2ζ2(t). (86)

Here µ is the mobility coecient, d1 = µTh and d2 = µTc are the diusion coecients of 
the two degrees of freedom, v is a potential, and f 1 and f 2 are two external nonconservative 
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forces, whose functional form we specify below. We use the model from [57], for which 
the potential is

v(x1, x2) =
1

2

(
u1x

2
1 + u2x

2
2 + cx1x2

)
, (87)

with u1, u2, c > 0 and c <
√
u1u2 and for which the two components of the external 

nonconservative force are

f1(x1, x2) = kx2, f2(x1, x2) = −kx1. (88)
The two thermal reservoirs induce two stochastic forces with amplitudes d1 and d2, 
which appear in equations (85) and (86) as two independent Gaussian white noises ζ1 
and ζ2 with zero mean and autocorrelation (i, j = 1, 2)

〈ζ1(t)〉 = 〈ζ2(t)〉 = 0, 〈ζi(t)ζj(t′)〉 = δi,jδ(t− t′). (89)
Because of the external driving forces f 1 and f 2 and the presence of two thermal 

reservoirs at dierent temperatures, the gyrator develops a nonequilibrium stationary 
state characterised by a current in the clockwise direction, see figure 3, and a non-zero 
entropy production. At stationarity, we measure the work W that the external driving 
force exerts on the gyrator and the net heat Qh and Qc that the system absorbs from 
the hot and cold reservoirs, respectively. Following Sekimoto [39, 53], these quantities 
are, respectively,

(a) (b)

Figure 1. Heat extraction of a colloidal particle in a nonequilibrium stationary state. 
Panel (a): Illustration of a colloidal particle that is driven by a nonconservative 
f  until the time T ∗ when it reaches the highest point of the ‘hill’ denoted by the 
star, at which the process is stopped. The plotted energy function v(x) is given 
by (81) with parameters Tenv = 1 and � = 1. Panel (b): Illustration of the bound 
(5) for the absorbed heat 〈Q(T ∗)〉 at stopping times T ∗ in the model (78) with the 
energy function plotted in panel (a). The parameters used are µ = 1, Tenv = 1, 
� = 1. Markers denote empirical averages that estimate 〈Q(T ∗)〉 (blue circles) and 
〈Q(1)〉 (green squares) using 100 00 simulated trajectories. The solid orange line 
denotes the bound on the right-hand side of (84) which follows from the second 
law of thermodynamics (4) at stopping times, and the red dashed line is simply 
equal to zero.
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W (t) =

∫ t

0

f1(X1(t
′),X2(t

′)) ◦ dX1(t
′) +

∫ t

0

f2(X1(t
′),X2(t

′)) ◦ dX2(t
′), (90)

Qh(t) =

∫ t

0

∂v(X1(t
′),X2(t

′))

∂x1

◦ dX1(t
′)−

∫ t

0

f1(X1(t
′),X2(t

′)) ◦ dX1(t
′), (91)

Qc(t) =

∫ t

0

∂v(X1(t
′),X2(t

′))

∂x2

◦ dX2(t
′)−

∫ t

0

f2(X1(t
′),X2(t

′)) ◦ dX2(t
′), (92)

where ° denotes that the stochastic integrals are interpreted in the Stratonovich sense. 
When k < ks this system operates as an engine [57], i.e. 〈W (t)〉 < 0, 〈Qh(t)〉 > 0 and 
〈Qc(t)〉 > 0, with

ks := c
ηC

2− ηC
, (93)

the stall parameter and ηC Carnot’s eciency (49). The eciency of the engine in the 
nonequilibrium stationary state satisfies

η = −
〈
dW
dt

〉
〈
dQh

dt

〉 =
2k

c+ k
� ηC. (94)

Note that when k → ks, then η → ηC.
We now investigate the eciency of the Brownian gyrator at stopping times, 

ηT = −〈W (T )〉/〈Qh(T )〉. The simplest example of stopping times are the trivial stop-
ping times T  =  t, with t a fixed time, for which ηt � ηC. A more interesting example is 
the time Tme of the main event, i.e. the gyrator crosses the positive x2 axis while moving 
in the clockwise direction, occurs for the first time. Mathematically, Tme can be defined 

Figure 2. Empirical test of the integral fluctuation relation at stopping times for 
T = Tfp = inf {t � 0 : Stot(t) /∈ (−s−, s+)}. We plot the empirical average A, see (74), 
for ten simulation runs as a function of the number of samples ms. The simulation 
runs are for the model defined in section 9.1 with parameters µ = Tenv = � = 1 and 
f   =  0.1, as in figure 1. The threshold parameters that define the stopping time 
are s+   =  2 and s−  =  1. Dashed lines denote the 1± σA confidence intervals using 
formula (76). The red line denotes A  =  1.
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as follows: let z(t) = x1(t) + ix2(t) be a complex number whose real and imaginary parts 

are x1(t) and x2(t) respectively; we define z(t) = r(t)eiϕ(t), with r(t) =
√

x2
1(t) + x2

2(t) its 
modulus and with ϕ(t) = tan−1(x2(t)/x1(t)) ∈ [−π, π] its phase; the stopping time at 
the main event is defined as

Tme = inf

{
t > 0 : lim

ε↓0
ϕ(t− ε) > π/2, lim

ε↓0
ϕ(t+ ε) � π/2, ϕ(t) > 0

}
. (95)

Figure 4(a) illustrates the stopping strategy defined by equation (95) with numer-
ical simulations. In figure 4(b), we compare the values of the eciency ηt at a fixed 
time t  =  5 with the eciency ηTme at the main event, both as a function of the driv-
ing parameter k. We observe that ηt is well described by equation (94) and thus is 
smaller than the Carnot eciency, whereas ηTme can surpass the Carnot eciency if the 
strength of the driving force k is large enough (figure 4(b) red circles). Interestingly, the 
observed super Carnot eciencies at stopping times are in agreement with the bound 
(7), ηTme � ηC + 〈∆Fc(Tme)〉/〈Qh(Tme)〉 and thus compatible with the second law at 
stopping times (4). Moreover, the bound (7) becomes tight when k is large, which cor-
responds to a close-to-equilibrium limit (see figure 1(b)). Hence, eciencies of stopped 
engines can surpass the Carnot bound if 〈Qh(T )〉 > 0 and 〈∆Ssys(T )〉 > Tc〈∆v(T )〉, 
which is consistent with the bound (7).
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Figure 3. Snapshots of a Brownian gyrator (green circles), described by 
equations (85) and (86), sampled from the nonequilibrium stationary distribution. 
The black arrows illustrate the non-conservative forces given by equation (88). The 
system is trapped with a potential given by equation (87) and put simultaneously 
in contact with a hot (red box) and a cold (blue box) reservoir that act on the 
x1 and x2 coordinates, respectively. Values for the parameters are: µ = 1, u1  =  1, 
u2  =  1.2, Tc = 1, Th = 7, c  =  0.9, k  =  0.23. The markers (green circles) are obtained 
from the (x1(t), x2(t)) coordinates of 104 numerical simulations of equations (85) 
and (86) evaluated at t  =  5.
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nal system energy can be converted into useful work. To better understand this feature, 
we plot in figure 5 the average energetic fluxes at stopping times, namely, 〈W (T )〉, 
〈Qh(T )〉 and 〈Qc(T )〉, together with the change of the internal system energy 〈∆v(T )〉 
and the internal system entropy change 〈∆Ssys(T )〉. At fixed times T  =  5, we observe 
the well-known features of a cyclic heat engine for which 〈∆v(t)〉 � 〈∆Ssys(t)〉 � 0 
(figure 5(a)). Although the heat and work fluxes of stopped engines have the same sign 
as those of cyclic heat engines, the 〈∆v(Tme)〉 < 0 and 〈∆Ssys(Tme)〉 < 0, which indicates 
that on average the energy and entropy of the gyrator are at Tme smaller than their 
initial values (figure 5(b)). This result suggests a recipe in the quest of super Carnot 
eciencies at stopping times, namely by designing stopping strategies that lead to a 
reduction of the energy of the system. In our example, 〈∆Ssys(Tme)〉 > 〈∆v(Tme)〉, which 
enables the appearance of super-Carnot stopping-time eciencies which are neverthe-
less compatible with the second law at stopping times. This result motivates further 
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Figure 4. Eciency at stopping times for the Brownian gyrator. (a) Illustration 
of the stopping time at the main event with stopping time Tme. A gyrator drawn 
initially from its stationary distribution (red circle) is monitored until its location 
crosses the black dashed line in the clockwise direction (red arrow). The location 
of 100 gyrators at the stopping time are shown with black filled circles whereas the 
green circles denote the location of the gyrator at time t  =  5. (b) Simulation results 
for the eciency ηt = −〈W (t)〉/〈Qh(t)〉 at fixed time t  =  5 (blue squares) and the 
eciency ηTme = −〈W (Tme)〉/〈Qh(Tme)〉 at the main event Tme (red circles), defined 
by equation (95), as a function of the parameter k/ks that quantifies the strength 
of the nonequilibrium driving, see (88). The blue line is the theoretical value of the 
eciency at large times given by equation (94), and the black circles correspond 
to the bound (7); the black line is a guide to the eye. The horizontal black dashed 
line is set at Carnot eciency. Values of the parameters used in simulations are 
µ = 1, u1  =  1, u2  =  1.2, Tc = 1, Th = 7, and c  =  0.9; markers denote average values 
estimated from 104 independent realisations initially sampled from the stationary 
state. Numerical simulations are performed with the Heun’s numerical integration 
scheme with a time step ∆t = 10−3 [2]. Error bars denote the standard errors of 
the empirical mean.
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research on so-called type-II eciencies at stopping times defined as the ratio between 
the average input and output fluxes of entropy production [44, 60, 61].

In figure 6 we illustrate the bound provided by equation (7) for a wider range of 
parameters. We observe that when k exceeds the stall parameter ks the thermody-
namic fluxes obey 〈W (Tme)〉 < 0, 〈Qh(Tme)〉 < 0 and 〈Qc(Tme)〉 < 0. This behaviour is 
still compatible with the second law of thermodynamics at stopping times. Indeed, for 
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Figure 5. Average values of thermodynamic observables (see legend) in the 
Brownian gyrator are compared for a fixed time T  =  5 (a) with those for the 
stopping time T = Tme (b), defined in equation (95). The values of the parameters 
used in the numerical simulations are the same as in figure 3.
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Figure 6. Simulation results for the stopping time efficiency ηT . Results for the 
efficiency at a fixed time T  =  5 (blue circles) are compared with those at the 
stopping time T = Tme of the main event. (a) and (b) are obtained for two dierent 
values of the parameter c (see legend), with the other simulation parameters set 
to the same values as in figure 3. The black circles correspond to the right-hand 
side of equation (7) and the black dashed line is set to Carnot eciency; the lines 
between symbols are a guide to the eye. The yellow shaded area illustrates the 
range of parameters at which the system behaves as a ‘type-III heater’ at stopping 
times [48, 62], for which the right-hand side of (7) becomes a lower bound to the 
stopping-time eciency.
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this range of parameters ηTme < 0 and the bound (7) becomes ηTme � ηC − 〈∆Fc(T )〉
〈Qh(T )〉 . This 

bound is corroborated by numerical simulations in figures 6(a) and (b). We define this 
type of operation as a ‘type III heater’, which is dierent than the type I and type II 
heaters [48, 62], that appear in stochastic thermodynamics at fixed times.

10. Discussion

We have derived fluctuation relations at stopping times for the entropy production of 
stationary processes. These fluctuation relations imply a second law of thermodynamics 
at stopping times—which states that on average entropy production in a nonequilib-
rium stationary state always increases, even when the experimental observer measures 
the entropy production at a stopping time—and imply that certain fluctuation proper-
ties of entropy production are universal.

We have shown that the second law of thermodynamics at stopping times has 
important consequences for the nonequilibrium thermodynamics of small systems. 
For instance, the second law at stopping times implies that it is possible to extract 
on average heat from an isothermal environment by applying stopping strategies to a 
physical system in a nonequilibrium stationary state; heat is thus extracted from the 
environ ment without using a feedback control, as is the case with Maxwell demons 
[63–65]. Furthermore, we have demonstrated, using numerical simulations with a 
Brownian gyrator, that the eciency of a stationary stochastic heat engine can sur-
pass Carnot’s eciency when the engine is stopped at a cleverly chosen moment. 
This result is compatible with the second law at stopping times, which provides a 
bound on the eciency of stochastically stopped engines. Note that the heat engines 
described in this paper are non cyclic devices since they are stopped at the stopping 
time T. It would be interesting to explore how stochastically stopped engines can be 
implemented in exper imental systems such as, electrical circuits [66], autonomous 
single-electron heat engines [67], feedback traps [68], colloidal heat engines [11], and 
Brownian gyrators [56].

Integral fluctuation relations at stopping times imply bounds on the probability of 
events of negative entropy production that are stronger than those obtained with the 
integral fluctuation relation at fixed times. For example, the integral fluctuation rela-
tion at stopping times implies that the cumulative distribution of infima of entropy 
production is bounded by an exponential distribution with mean  −1. Moreover, for 
continuous processes the integral fluctuation relation at stopping times implies that 
the cumulative distribution of the global infimum of entropy production is equal to 
an exponential distribution. A reason why the integral fluctuation relation at stopping 
times is more powerful than the integral fluctuation relation at fixed times—in the sense 
of bounding the likelihood of events of negative entropy production—is because with 
stopping times we can describe fluctuations of entropy production that are not acces-
sible with fixed-time arguments, such as fluctuations of infima of entropy production.

The integral fluctuation relation at stopping times implies also bounds on other 
fluctuation properties of entropy production, not necessarily related to events of nega-
tive entropy production. For example, we have used the integral fluctuation relation 
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to derive bounds on splitting probabilities of entropy production and on the num-
ber of times entropy production crosses a certain interval. For continuous processes 
these fluctuation properties of entropy production are universal, and we have obtained 
generic expressions for these fluctuation properties of entropy production.

Since martingale theory has proven to be very useful to derive generic results about 
the fluctuations of entropy production, the question arises what other physical pro-
cesses are martingales. In this context, the exponential of the housekeeping heat has 
been demonstrated to be a martingale [30, 69]. The housekeeping heat is an extension of 
entropy production to the case of non-stationary processes. We expect that all formulas 
presented in this paper extend in a straightforward manner to the case of housekeeping 
heat. Recently also a martingale related to the quenched dynamics of spin models [70] 
and a martingale in quantum systems [71] have been discovered.

There exist universal fluctuation properties that are implied by the martingale 
property of e−Stot(t), but are not discussed in this paper. For example, martingale theory 
implies a symmetry relation for the distribution of conditional stopping times [21, 72–74].  
These symmetry relations are also proved using the optional stopping theorem, but 
they cannot be seen as a straightforward consequence of the integral fluctuation rela-
tion at stopping times.

Since the integral fluctuation relation at stopping times (39) is a direct consequence 
of the martingale property e−Stot(t), testing the fluctuation relation (39) in experiments 
could serve as a method to demonstrate that e−Stot(t) is a martingale. It is not so easy 
to show in an experiment that a stochastic process is a martingale: it is a herculean 
task to verify the condition (28). A recent experiment [75] shows that the entropy 
production of biased transport of single charges in a double electronic dot behaves as 
a martingale. The inequality (64) for the infima of entropy production was shown to 
be valid in this experiment. The integral fluctuation relation at stopping times (39) 
provides an interesting alternative to test martingality of e−Stot(t), because the integral 
fluctuation relation at stopping times is an equality. Hence, the integral fluctuation 
relation at stopping times could serve as a proxy for the martingale structure of e−Stot(t) 
in experiments.

Testing the integral fluctuation relation at stopping times in experimental setting 
may also be advantageous with respect to testing the standard fluctuation relation at 
fixed times. The number of samples required to test the standard fluctuation relation 
increases exponentially with time, since events of negative entropy are rare. This makes 
it dicult to test the conditions of stochastic thermodynamics at large time scales with 
the standard integral fluctuation relation. Moreover, at fixed times the distribution of 
the empirical mean of the exponentiated negative entropy production is not known. 
The integral fluctuation relation at stopping times does not have these issues, since 
negative fluctuations of entropy can be capped at a fixed value  −s−, which is indepen-
dent of time t, and these negative values can be reached at any time. Moreover, we 
have derived an exact universal expression for the distribution of the sample mean of 
the exponentiated negative entropy production at stopping times, which can be used 
to determine the statistical significance of empirical tests of the integral fluctuation 
relation at stopping times. The integral fluctuation relation at stopping times is thus a 
useful relation to test the conditions of stochastic thermodynamics in a certain exper-
imental setup.
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Appendix A. The exponential of the negative entropy production is a (uniformly 
integrable) martingale

We prove that e−Stot(t) is a martingale. To this aim, we have to verify the two conditions 
(27) and (28) for M(t) = e−Stot(t). We present two proofs, one for processes in discrete 

time using the expression (1) for the entropy production, and a general proof for revers-

ible right-continuous processes �X(t) using the expression (33) for the entropy production.

A.1. Reversible processes in discrete time

In discrete time

e−Stot(t,ω) =
p̃(�x1, �x2, . . . , �xt)

p(�x1, �x2, . . . , �xt)
 (A.1)

with p̃ the probability density function associated with the time-reversed dynamics. 
We have simplified the notation a bit and used that �x(t) = �xt.

The condition (27) follows from e−Stot(t,ω) � 0 and E
[
e−Stot(t,ω)

]
= 1 for all t � 0. 

The martingale condition (28) also holds,

E
[
e−Stot(t,ω)|Fs

]
=

∫ (
t∏

n=s+1

d�xn

)
p(�x1, �x2, . . . , �xt|�x1, �x2, . . . , �xs)

× p̃(�x1, �x2, . . . , �xt)

p(�x1, �x2, . . . , �xt)

=

∫ (
t∏

n=s+1

d�xn

)
p(�x1, �x2, . . . , �xt)

p(�x1, �x2, . . . , �xs)

p̃(�x1, �x2, . . . , �xt)

p(�x1, �x2, . . . , �xt)

=

∫ (
t∏

n=s+1

d�xn

)
p̃(�x1, �x2, . . . , �xt)

p(�x1, �x2, . . . , �xs)

=
p̃(�x1, �x2, . . . , �xs)

p(�x1, �x2, . . . , �xs)

= e−Stot(s,ω).

 

(A.2)

A.2. Reversible stationary processes that are right-continuous

We assume that �X(t) is right-continuous and that the two measures P and P ◦Θ are 
locally mutually absolutely continuous, such that the entropy production (33) can be 
defined. Because of the definition of entropy production,
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e−Stot(t,ω) =
d(P ◦Θ)|Ft

dP|Ft

. (A.3)

The condition (27) follows from e−Stot(t,ω) � 0 and E
[
e−Stot(t,ω)

]
= 1 for all t � 0.

The martingale condition (28) follows readily from (A.3):

E
[
e−Stot(t,ω)|Fs

]
= e−Stot(s,ω), s � t. (A.4)

The relation (A.4) is a direct consequence of (A.3) and the definition of the Radon–
Nikodym derivative: the Radon–Nikodym derivative e−Stot(s,ω) =

d(P◦Θ)|Fs

dP|Fs
 is by definition 

a Fs-measurable random variable for which

EP

[
IΦ

d(P ◦Θ)|Fs

dP|Fs

]
= EP◦Θ [IΦ] (A.5)

for all Φ ∈ Fs. We show that E
[
e−Stot(t,ω)|Fs

]
 is a random variable with this property, 

and therefore (A.4) is valid. Indeed, for Φ ∈ Fs it holds that:

EP
[
IΦEP

[
e−Stot(t,ω)|Fs

]]
= EP

[
EP

[
IΦe

−Stot(t,ω)|Fs

]]

= EP
[
IΦe

−Stot(t,ω)
]

= EP◦Θ [IΦ] .

 
(A.6)

Note that the martingale condition (28) is consistent with the tower property of condi-
tional expectations: E [E [X|Ft] |Fs] = E [X|Fs].

A.3. Uniform integrability

We prove that the stochastic process e−Stot(t∧τ), with t ∈ [0,∞) and τ  a fixed positive 
number, is uniformly integrable. The process e−Stot(t∧τ) can be written as

e−Stot(t∧τ) = E
[
e−Stot(τ ,ω)|Ft

]
. (A.7)

Since a stochastic process Y (t) of the form Y (t) = E[Z|Ft] is uniformly integrable [26], 
we obtain that e−Stot(t∧τ) is uniformly integrable.

Appendix B. Integral fluctuation relation for entropy production within  
infinite-time windows

We derive two corollaries of the optional stopping theorem, which is theorem 3.6 in [26] 
and equation (29) in this paper.

Corollary 1. Let T be a stopping time of a stationary process �X(t) and let Stot(t) be the 
stochastic entropy production of �X(t) as defined in (33), with the two measures P and 
P ◦Θ locally mutually absolutely continuous. If t is continuous, then Stot(t) is assumed to 
be right-continuous. If the two conditions
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 (i)  P(T < ∞) = 1,
 (ii)  limt→∞ E

[
e−Stot(t)IT>t

]
= 0,

are met, then

〈e−Stot(T )〉 = 1. (B.1)

Recall that IΦ(ω) is the indicator function define in (31). We use a proof analogous 
to the discrete time proof of theorem 8.3.5 on page 222 of [76].

Proof. We decompose 〈e−Stot(T )〉 into three terms,

〈e−Stot(T )〉 = 〈e−Stot(T∧t)〉 − 〈e−Stot(t)IT>t〉+ 〈e−Stot(T )IT>t〉.

Since the right-hand side holds for arbitrary values of t we can take limt→∞. Using (39) 
and the condition (ii) we obtain

〈e−Stot(T )〉 = 1 + lim
t→∞

〈e−Stot(T )IT>t〉. (B.2)

Because of condition (i), it holds that limt→∞ e−Stot(T )IT>t = 0 in the P-almost sure 
sense. Because e−Stot(T )IT>t is a nonnegative monotonic decreasing sequence we can ap-
ply the monotone convergence theorem, see e.g. [33], and we obtain

lim
t→∞

〈e−Stot(T )IT>t〉 = 〈 lim
t→∞

e−Stot(T )IT>t〉 = 0. (B.3)
□ 

Corollary 2. Let T be a stopping time of a stationary process �X(t) and let Stot(t) be the 
stochastic entropy production of �X(t) as defined in (33), with the two measures P and 
P ◦Θ locally mutually absolutely continuous. If t is continuous, then Stot(t) is assumed to 
be right-continuous. If the two conditions

 (i)  limt→∞ e−Stot(t) = 0 in the P-almost sure sense,
 (ii)  there exist two positive numbers s− and s+ such that Stot(t) ∈ (−s−, s+) for all 

t � T ,

are met, then

〈e−Stot(T )〉 = 1. (B.4)

Proof. We show that if the conditions of the present corollary are met, then also the 
conditions of corollary 1 are met, and therefore (B.4) holds.

Because of condition (i), the stopping time T is almost surely finite: 
1 = limt→∞ P [Stot(t) > s+] � P [T < ∞] and P [T < ∞] � 1, therefore P [T < ∞] = 1.

Because of condition (i) and (ii) we obtain limt→∞ E
[
e−Stot(t)IT>t

]
= 0:  

e−Stot(t)I(T > t) � es−I(T > t) is a positive variable that is bounded from above. 

Hence, the dominated convergence theorem applies and limt→∞ E
[
e−Stot(t)IT>t

]
=  

E
[
limt→∞ e−Stot(t)IT>t

]
= 0. □ 
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Appendix C. Derivation of the bound (71) on the statistics of N×

We denote by M×(t) the number of times entropy production has crossed the inter-
val [−∆,∆] in the direction −∆ → ∆ within the time interval [0, t], and therefore 
N× = limt→∞ M×(t).

We define two sequences of stopping times Tn and T̃n, with n ∈ [0,N×] ∩ Z, namely,

Tn = inf {t : M×(t) � n} (C.1)
and

T̃n = inf {t : t � Tn,Stot(t) /∈ (−∆, s+)} , (C.2)

where s+ is considered to be a very large positive number.
We apply the fluctuation relation (41) to the two stopping times T̃n and Tn. The 

integral fluctuation relation (41) implies that

E
[
e−Stot(T̃n)|N× � n

]
= E

[
e−Stot(Tn)|N× � n

]
. (C.3)

Since e−Stot(Tn) � e−∆, the right-hand side of (C.3) is bounded by

E
[
e−Stot(Tn)|N× � n

]
� e−∆. (C.4)

The left-hand side of (C.3) can be decomposed into two terms,

E
[
e−Stot(T̃n)|N× � n

]
= E

[
e−Stot(T̃n)IStot(T̃n)�s+

|N× � n
]

+ E
[
e−Stot(T̃n)IStot(T̃n)�−∆|N× � n

]
,

 (C.5)

where I is the indicator function defined in (31). We take the limit s+ → ∞ and obtain

lim
s+→∞

E
[
e−Stot(T̃n)|N× � n

]
= lim

s+→∞
E
[
e−Stot(T̃n)IStot(T̃n)�−∆|N× � n

]

� e∆ lim
s+→∞

E
[
IStot(T̃n)�−∆|N× � n

]
.

Since

P [N× � n+ 1|N× � n] = lim
s+→∞

E
[
IStot(T̃n)�−∆|N× � n

]
 (C.6)

we obtain the inequality

lim
s+→∞

E
[
e−Stot(T̃n)|N× � n

]
� e∆ P [N× � n+ 1|N× � n] . (C.7)

The relation (C.3) together with the two inequalities (C.4) and (C.7) imply

P [N× � n+ 1|N× � n] � e−2∆ with n > 0. (C.8)

This is the formula (71) which we were meant to prove.
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