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The cell cortex, a thin film of active material assembled below the cell membrane, plays a key role in
cellular symmetry-breaking processes such as cell polarity establishment and cell division. Here, we
present a minimal model of the self-organization of the cell cortex that is based on a hydrodynamic theory
of curved active surfaces. Active stresses on this surface are regulated by a diffusing molecular species. We
show that coupling of the active surface to a passive bulk fluid enables spontaneous polarization and the
formation of a contractile ring on the surface via mechanochemical instabilities. We discuss the role of
external fields in guiding such pattern formation. Our work reveals that key features of cellular symmetry
breaking and cell division can emerge in a minimal model via general dynamic instabilities.
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The cortex of animal cells is a dynamically cross-linked
polymer network located beneath the cell membrane [1]. It
is involved in many important cellular symmetry-breaking
events, such as the establishment of cell polarity [2,3] and
cell division [4]. These processes typically involve cortical
flows and cell shape changes, such that the cortex has to
interact with material that surrounds it. Towards the inside
of the cell, it is in contact with the cytoplasm, a crowded
viscous fluid. By manipulating the cytoplasm mechani-
cally, it has been shown that cytoplasmic flows can directly
affect the dynamics of the cortex and the distribution of
proteins within it [5]. The reverse scenario, in which active
cortical flows set the cytoplasmic fluid into motion, has
also been observed [6]. This suggests that the cytoplasmic
fluid is coupled to the dynamics of the cell cortex and
vice versa.
The cell cortex has been successfully described as a thin

active fluid film [7]. Many aspects of the cortex’ emergent
dynamics can be accounted for by considering its generic
mechanochemical organization [8]: The concentration of a
diffusible chemical species regulates the amplitude of
active stress, but also changes dynamically due to advection
of the stress regulator by material flows. Spontaneous
pattern formation in such self-organized active fluids has
been studied on fixed domains with and without substrate
friction [8–14] and on deforming surfaces in an environ-
ment with a homogeneous pressure [15].
In this Letter, we study a minimal model for the self-

organization of an active surface that encloses a passive
viscous fluid. A diffusing molecular species that regulates
active tension on the surface provides a mechanochemical

feedback. We show that the coupling of the surface to the
enclosed fluid gives rise to a hydrodynamic screening
length that guides mechanochemical instabilities to gen-
erate well-defined patterns on the surface. These patterns
can govern shape changes and they can be oriented by
external inhomogeneous signaling cues, which captures
key features of symmetry-breaking events during important
cellular processes.
We base our work on a simple hydrodynamic theory of a

thin active fluid layer on a closed surface geometry [15].
The surface Γ is represented by a parametrization of surface
position vectorsXðs1; s2Þwith two generalized coordinates
s1, s2. Tangent vectors and unit surface normal are given
by ei ¼ ∂iX (∂i ¼ ∂=∂si) and n ¼ e1 × e2=je1 × e2j,
respectively. Furthermore, we define the metric tensor
gij ¼ ei · ej, the Levi-Civita tensor ϵij ¼ n · ðei × ejÞ,
and the curvature tensor Cij ¼ −n · ∂i∂jX.
The force and torque balance on the surface read [16]

∇iti ¼ −fext; ð1Þ

∇imi ¼ ti × ei: ð2Þ

Here, we have introduced the surface stress ti ¼ tijej þ tinn,
the surface momentmi ¼ mijej þmi

nn, and∇i denotes the
covariant derivative. The external force per unit area is
denoted fext ¼ fexti ei þ fextn n. We do not include inertial
forces and external torques. For simplicity, we do not
consider deviatoric contributions to the moments. The
tension and moment tensors in the surface can then be
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written as tij ¼ teij þ tdij, mij ¼ me
ij, tin ¼ ti;en þ ti;dn , and

mi
n ¼ mi;e

n , where the superscripts e and d refer to equilib-
rium and deviatoric contributions, respectively.
Equilibrium contributions can be obtained by consider-

ing a passive membrane with bending rigidity κ, sponta-
neous curvature C0, and passive surface tension γ as
described by the Helfrich energy of a fluid membrane
[15,17]. In this case [18]:

teij ¼ γgij þ κðCk
k − 2C0Þ½ðCk

k − 2C0Þgij − 2Cij�; ð3Þ

me
ij ¼ 2κðCk

k − 2C0Þϵij: ð4Þ

For the deviatoric part of the tension tensor, we consider
contributions from an isotropic active fluid film. In-plane
material flows vk ¼ viei and surface deformations v⊥ ¼
vnn contribute to the center-of-mass velocity v ¼ vk þ v⊥
of the active fluid film. The deviatoric tension tensor is
given by [15,18]

tdij ¼ 2ηs

�
vij −

1

2
vkkgij

�
þ ηbvkkgij þ ξij: ð5Þ

Here, ηs and ηb denote shear and bulk viscosity of the two-
dimensional material, respectively, and ξij denotes an active
tension. The strain rate tensor vij ¼ ð∇ivj þ∇jviÞ=2þ
Cijvn captures the shear rate and area expansion of the thin
material.
With Eqs. (3) and (4), the torque balance Eq. (2) implies

mi;e
n ¼ 0, ti;dn ¼ 0 and ti;en ¼ ϵij∇kmkj;e, and we can express

the force balance Eq. (1) as

∇it
i;d
j ¼ −fextj ; ð6Þ

Cijtdij þ fen ¼ fextn : ð7Þ

Here, we have defined fen ¼ Cijteij −∇it
i;e
n as the normal

force exerted by a passive membrane [19,20]. With the
deviatoric tension tensor tdij from Eq. (5), Eqs. (6) and (7)
yield the hydrodynamic equations for the tangential and
normal flow velocity, vk and v⊥, respectively.
The active surface encloses a passive bulk fluid. We

describe the latter as an incompressible Stokes fluid
(∇ · u ¼ 0) obeying the force balance

ηΔu ¼ ∇p; ð8Þ

where u denotes the passive flow field, η is the shear
viscosity, and p denotes the hydrostatic pressure. To solve
Eq. (8), we impose no-slip and impermeability boundary
conditions at the surface:

ei · ujΓ ¼ vi; ð9Þ

n · ujΓ ¼ vn: ð10Þ

The forces fext in Eqs. (6) and (7) result from viscous shear
stresses that the passive fluid exerts on the surface. They are
given by fext ¼ −n·σjΓ, where σ ¼ ηð∇uþ∇uTÞ − pI is
the stress tensor of the enclosed fluid.
The equations for the active surface and the bulk fluid

are combined with an advection-diffusion equation for
stress regulator molecules of area concentration c on the
surface [18]:

∂tcþ∇iðcviÞ þ Ck
kvnc −DΔΓc ¼ Jn: ð11Þ

Here,ΔΓ ¼ ∇i∇i denotes the Laplace-Beltrami operator,D
is a diffusion coefficient, and Jn describes the exchange of
molecules between the thin film and the enclosed fluid. It is
given by

Jn ¼ konc̄jΓ − koffc; ð12Þ

where kon and koff denote rates for the recruitment of the
stress regulator to and detachment from the surface,
respectively. c̄ is the volume concentration of molecules
in the enclosed bulk fluid. For simplicity, we consider the
case where the diffusion of the stress regulator in the
enclosed fluid is fast compared to its exchange with the thin
film. Then, the concentration c̄ is homogeneous with
dc̄=dt ¼ −V−1 H

Γ dAJn, where V is the volume of the
enclosed bulk fluid.
Finally, the system is completed by a mechanochemical

feedback [15]: The active tension ξij in Eq. (5) depends on
the local surface concentration c of the stress regulator
molecules. We consider an active tension ξij ¼ ξfðcÞgij
that is isotropic within the surface, and the contractility ξ is
modulated by a function fðcÞwith ∂cfðcÞ > 0 [8]. Because
of the mechanical coupling between the thin film and the
enclosed fluid, given in Eqs. (9) and (10), self-organized
surface flows and deformations generated by active tension
set the passive bulk fluid into motion.
Together, Eqs. (6), (7), (8), and (11) represent a minimal

model for cortical flows that are coupled to the cellular
cytoplasm [5]. This model has a simple stationary state in
which the surface is given by a sphere of radius R0, the
surface concentration is homogeneous (c ¼ c0), and no
flows exist (v ¼ 0;u ¼ 0). Two important timescales in this
system are the timescale τc ¼ ηb=ξ describing the advection-
driven accumulation of stress regulator, and the diffusion
timescale τD ¼ R2

0=D. Then, Pe ¼ τD=τc ¼ ξR2
0=ðDηbÞ can

be identified as Péclet number characterizing the activity in
the system [8,11].
We now discuss the linear stability of the homogeneous

stationary state in which the active surface is given by a
sphere. Using spherical harmonics Ylmðθ;φÞ (l ¼ 0;
1;…;∞; m ¼ −l;…; l), where θ and φ denote polar angle
and azimuthal, respectively, as well as vector spherical
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harmonics ΨðlmÞ ¼ R0∇ΓYlm and ΦðlmÞ ¼ r̂ ×ΨðlmÞ,
we express shape, concentration, and flow perturbations
as δR ¼ P

l;m δRlmYlm, δc ¼ P
l;m δclmYlm, and δvk ¼P

l;mðδvð1ÞlmΨðlmÞ þ δvð2ÞlmΦðlmÞÞ [15].
We expand Eqs. (6), (7), (8), and (11) to linear

order in these fields [20,27]. After eliminating the flow
fields, the dynamics of each mode has the form
ðd=dtÞðδRlm; δclmÞT ¼ J lðδRlm; δclmÞT , where J l is the
Jacobian. Its eigenvalues λl are the growth rates of
eigenmodes δlm ¼ ðδRlm; δclmÞT . For a vanishing or small
Péclet number Pe, we have ReðλlÞ < 0, and the steady state
is stable [Fig. 1(a)]. For an increasing Péclet number and
independently of the azimuthal mode number m, modes
with l ≥ 1 become unstable at Pe ¼ Pe�l , where

Pe�l ¼
1

c0∂cfðc0Þ
�
1þ τDkoff

lðlþ 1Þ
�

×

�
lðlþ 1Þ þ ν

�
ðl − 1Þðlþ 2Þ þ ð1þ 2lÞR0

Lh

��

ð13Þ

is the critical Péclet number for a mode l [20]. Here, we
have defined the surface viscosity ratio ν ¼ ηs=ηb, as well
as the hydrodynamic length Lh ¼ ηs=η. Remarkably, Pe�l is
independent of bending rigidity κ, spontaneous curvature
C0, and surface tension γ. Therefore, Eq. (13) equals the

expression found in the limit of large κ, where the surface
becomes a rigid sphere [20].
We now discuss Eq. (13) and key properties of the

unstable modes in more detail. For small viscosities of the
passive fluid η≲ ηs=R0, the mode l ¼ 1 becomes unstable
first for increasing Péclet number. The instability of l ¼ 1
corresponds to a vectorial (polar) symmetry breaking. In
the limit of large Lh the viscosity of the surrounding passive
fluid can be neglected and we recover the result reported in
[15]. Interestingly, for finite turnover koff > 0 the nematic
mode l ¼ 2 can become unstable, while l ¼ 1 is still stable
[Fig. 1(a), bottom]. It follows from Eq. (13) that this can
only occur for a small hydrodynamic length, Lh ≲ R0,
corresponding to a regime where the stresses exerted by the
enclosed passive fluid are significant. This implies that the
hydrodynamic screening length Lh plays a crucial role in
selecting a specific wavelength for patterns on the surface.
For finite surface tension γ and bending rigidity κ, the
eigenmode associated with this instability is given by an
ingression of the spherical surface along a ring of high
stress regulator concentration. Critical eigenmodes δ�lm and
a stability diagram of the spherical state as a function of the
Péclet number and hydrodynamic length are shown in
Fig. 1(b). The homogeneous sphere is unstable in the gray
shaded region. The polar (l ¼ 1) and nematic (l ¼ 2)
instabilities, depicted by the gray and black curves,
respectively, are given by Eq. (13). For l ≥ 2, critical
eigenmodes depend on the bending rigidity κ and the
surface tension γ. In particular, contributions from defor-
mations δR�

lm=R0 to the eigenmode vanish for large surface
tension or bending rigidity [Fig. 1(c)] [20].
To study the nonlinear dynamics beyond the discussed

instabilities, we use numerical methods [20]. For simplicity,
we consider the limit of large bending rigidity κ, where
the surface is not deformed. We first discuss the case
Lh=R0 ¼ 5, where the polar mode becomes unstable first.
Using a small random concentration perturbation as the
initial condition, the instability of l ¼ 1 leads to an
axisymmetric steady-state pattern exhibiting a single patch
of high stress regulator concentration [Figs. 1(a)–1(c)].
A cross section that contains the polar axis defined by this
pattern reveals a hydrodynamic flow field with a backflow
along the symmetry axis, driven by the active surface flows
that maintain the pattern. For Lh=R0 ¼ 0.2 the mode l ¼ 2
can become unstable first for increasing Péclet number
[Fig. 1(b)]. In this case, a random perturbation leads to the
formation of a ring of high stress regulator concentration
along the equator [Figs. 2(d)–2(f)]. This ring corresponds to
a circumferential contractile ring of active tension that can
constrict a deformable sphere. In this state, the passive fluid
flow exhibits two toroidal vortex tubes, stacked orthogo-
nally to the nematic axis and rotating in opposite directions.
Further away from the instability threshold, numerical
calculations reveal the existence of oscillatory patterns in
certain regimes [20].
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FIG. 1. (a) Eigenmode growth rates τDReðλlÞ as a function of
mode number l for different Péclet numbers for larger (top)
and smaller (bottom) hydrodynamic length Lh ¼ ηs=η. Lines
serve as a guide to the eye. (b) Linear stability diagram. The
mode l ¼ 1 (l ¼ 2) becomes unstable first when moving across
the gray (black) curve [Eq. (13)]. Insets visualize unstable
modes: Arrows depict bulk flows, outlines indicate perturbed
shapes (large perturbation amplitude for visualization). The
stability diagram is independent of bending rigidity κ, sponta-
neous curvature C0, and surface tension γ. (c) Contributions
of deformations δR�

lm to a critical eigenmode δ�lm ¼
ðδR�

lm=R0; δc�lm=c0ÞT at Pe ¼ Pe�l as a function of κ [20],
shown here for l ¼ 2, m ¼ 0 (κ0 ¼ R2

0ηb=τD). Parameters: κ ¼
0 (a), C0 ¼ 0, koffτD ¼ 10, ν ¼ 1, and c0∂cfðc0Þ ¼ 1.
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The nematic instability provides a minimal model for the
self-organized formation of a contractile ring that can drive
constriction during cell division. In our model, the axis
characterizing the contractile ring is defined by a sponta-
neous symmetry-breaking event. This is different from
biological systems, where the contractile ring, and hence
the division axis, are oriented along the mitotic spindle via
biasing signaling cues [28,29]. Also cell polarization, a
process that is key to asymmetric cell divisions, depends on
the coordination between spindle orientation and the
biochemical organization of the cellular cortex [30]. In
order to include such a symmetry-breaking bias in our
model, we generalize the expression for the flux Jn given in
Eq. (12) and consider an angle dependent recruitment rate
konðθÞ of stress regulator on the surface, described by

konðθÞ ¼ kð0Þon ½1þ βð1 − 3cos2θÞ�: ð14Þ

The coefficient β determines the strength and sign of the
nematic bias. It varies in the interval ½−1; 1=2�, such that
konðθÞ ≥ 0. For β > 0 (β < 0), there is a recruitment of
stress regulator predominantly to the equator region near
θ ¼ π=2 (to the opposing poles at θ ¼ 0; π) [Fig. 3(a)].
We first consider the effects of the nematic cue on the

self-organized pattern formation in the regime where the
polar mode l ¼ 1 becomes unstable first for the increasing
Péclet number (Fig. 3). For Pe < Pe�1, the homogeneous
state is stable in the absence of the cue (β ¼ 0), while β ≠ 0

leads to the formation of a concentration pattern with the
nematic symmetry dictated by konðθÞ. For Pe > Pe�1, the
polar instability in the presence of a nematic cue leads to
more complex surface patterns that combine polar and
nematic features [Fig. 3(b)]. For β > 0 a polar surface
pattern forms, whose axis is oriented parallel to the axis of
the nematic cue. For β < 0, we can qualitatively distinguish
three regimes. If jβj is small, a single contractile patch
forms, defining a polar axis that is oriented orthogonal to
the nematic cue axis. If jβj is increased, two local concen-
tration maxima appear. If jβj is increased further, the
nematic cue dominates, leading to a pattern with two
patches of stress regulator at opposing poles aligned by
the cue. Figure 3(c) shows examples of steady-state
concentration patterns for these different cases.
We also found that in the case of an instability with

nematic symmetry (l ¼ 2), a cuewith β > 0 ensures that the
nematic axis of the emerging contractile rings is reliably
oriented parallel to the axis of the nematic cue. This captures
the effect of a mitotic spindle with nematic symmetry
orienting the contractile ring along the division axis.
In this Letter, we have studied the mechanochemical

self-organization of active fluid surfaces with spherical
geometry. We have shown that the viscous forces exerted
by a passive fluid on an enclosing active fluid film can
control the formation of patterns with different symmetries.
We have found that the active surface can undergo

spontaneous symmetry-breaking instabilities toward

(a)

(d) (e) (f)

(b) (c)

FIG. 2. (a) An instability of the mode l ¼ 1 leads to a surface
pattern with polar symmetry. (b) Corresponding cross-sectional
view parallel to the axis defined by the surface patterns. Black
lines depict streamlines. (c) Schematic representation of the
global flow topology. Gray tori depict vortex rings, blue arrows
indicate their direction of rotation. (d)–(f) In regimes where l ¼ 2
is the only unstable mode, a contractile ring with nematic
symmetry forms. Parameters: Pe ¼ 20, Lh=R0 ¼ 5 (l ¼ 1);
Pe ¼ 100, Lh=R0 ¼ 0.2 (l ¼ 2); kτD ¼ 10, ν ¼ 1, κ → ∞
(l ¼ 1, 2). Active tension is regulated by fðcÞ ¼ 2c2=ðc20 þ c2Þ,
such that c0∂cfðc0Þ ¼ 1.
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FIG. 3. (a) Cross-sectional views on recruitment rate konðθÞ
[Eq. (14)]. β determines the amplitude and sign of the nematic
cue. (b) Schematic representation of surface patterns and their
orientation for varying Péclet number Pe and strength of the
nematic cue β in a regime where l ¼ 1 becomes unstable first at
Pe ¼ Pe�1 if β ¼ 0 (dotted line). Gray arrows depict the orienta-
tion and symmetry axes defined by the surface patterns. For Pe <
Pe�1 and β ≠ 0, steady-state surface patterns are dictated by
konðθÞ. For Pe > Pe�1 and β ≠ 0, spontaneously forming patterns
on the surface interact with the nematic cue. (c) Representative
steady-state concentration patterns obtained from numerical
solutions. Qualitative color code as in Figs. 1(a) and 1(d).
Parameters: Lh=R0 ¼ 5, koffτD ¼ 10, and ν ¼ 1.
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patterns of concentration, flows, and deformations with
polar or nematic symmetries, depending on the ratio Lh=R0

of hydrodynamic screening length to sphere radius. For
large ratios, polar patterns emerge, corresponding to the
mode l ¼ 1, while patterns can be nematic, corresponding
to l ¼ 2, for smaller ratios Lh=R0. When decreasing the
ratio Lh=R0 even further, stationary patterns corresponding
to higher harmonic modes l > 2 can emerge. These have a
polar symmetry for odd l and a nematic symmetry if l is
even [20].
For simplicity, we considered here an isotropic active

tension. In general, an anisotropic contribution to the active
tension of the form ξ0ij ¼ ξ0fðcÞCij exists. When taking
such anisotropies in active tension into account, the results
presented here do not change qualitatively, but the critical
Péclet number is altered for l > 1 [20].
The emergence of mechanochemical patterns presented

in this work generalizes the one-dimensional contractile
instabilities described in [8] to curved surfaces. Instabilities
on the surface of a sphere discussed here capture key
features of important cellular processes. The emergence of
polar patterns resembles the establishment of cell polarity
by active processes in the cell cortex [31–33]. The
emergence of an equatorial ring of high contractility
provides a minimal model for the formation of contractile
rings that play a key role during cell division [1,4].
Symmetry-breaking instabilities can be biased by external
chemical cues. In particular, we found the axis of a
contractile ring can be reliably aligned with the axis of a
nematic cue, similar to the alignment of a contractile ring
with the mitotic spindle axis during cell division [28,29].
Considering a passive fluid outside of the active surface

also leads to the formation of patterns via dynamic
instabilities. During the polar instability, a net flow outside
the surface is generated. Driven by active surface flows, the
sphere will therefore move relative to the laboratory frame
[20], corresponding to a swimmer that exhibits spontaneous
self-propulsion. For the case of vanishing surface viscosity
ηb ¼ ηs ¼ 0, this scenario is similar to swimmers driven by
Marangoni flows [34,35].
Our minimal model captures general features of the

contractile actomyosin cortex of cells and its mechanical
interactions with the cytoplasm. To account for more
complex features of the cell cortex [1], it could be extended,
for example, by including multicomponent descriptions of
the biochemical processes. Finally, the instabilities and
surface patterns discussed here could be studied exper-
imentally using in vitro actomyosin systems reconstituted
in vesicles or in droplets [36–38].
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