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Abstract
Phase separating systems that are maintained away from thermodynamic equilibrium via 
molecular processes represent a class of active systems, which we call active emulsions. 
These systems are driven by external energy input, for example provided by an external fuel 
reservoir. The external energy input gives rise to novel phenomena that are not present in 
passive systems. For instance, concentration gradients can spatially organise emulsions and 
cause novel droplet size distributions. Another example are active droplets that are subject to 
chemical reactions such that their nucleation and size can be controlled, and they can divide 
spontaneously. In this review, we discuss the physics of phase separation and emulsions and 
show how the concepts that govern such phenomena can be extended to capture the physics 
of active emulsions. This physics is relevant to the spatial organisation of the biochemistry in 
living cells, for the development of novel applications in chemical engineering and models for 
the origin of life.

Keywords: active emulsions, liquid phase separation, droplet ripening in concentration 
gradients, positioning of droplets, driven chemical reactions in emulsions,  
suppression of Ostwald-ripening
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1.  Introduction: from passive to active emulsions

The formation and dynamics of condensed phases such as 
droplets represent ubiquitous phenomena that we all experi-
ence in our daily life. Examples are droplets condensing on the 
petals of flowers and leaves of trees due to the supersaturated 
fog in the morning of some autumn day, or the ‘ouzo effect’, 
where the oil droplets in Ouzo grow in size and cloud the liq-
uid. These transitions from a homogeneous mixture to a sys-
tem with coexisting phases can be controlled by temperature 
or by changing the composition of the mixture. The physical 
conditions under which a mixture phase separates are well-
understood. The interactions that favour the accumulation of 
components of the same type must exceed the entropic ten-
dency of the system to remain mixed [1–3]. After drops have 
been nucleated, they undergo ripening. Droplets either fuse, or 
larger droplets grow at the expense of smaller ones, which then 
disappear. The latter phenomenon is referred to as Ostwald 
ripening [4]. During ripening, the droplet size distribution con-
tinuously broadens. In the case of Ostwald ripening the droplet 
size distribution exhibits a universal scaling, where the mean 
droplet size scales as t1/3 with time t, which was derived by 
Lifschitz and Slyozov [5–7]. However, at large times-scales, 
droplet growth saturates, and ripening stops as there is only 
one droplet left in the system. This condensed droplet stably 
coexists with a surrounding minority phase of lower solute 
concentration.

The behaviour of droplets can change in more complex 
environments. For instance, liquid condensed phases can 
interact with surfaces by wetting [8–10]. Droplets embed-
ded in a gel matrix interact such that the droplet size can be 
tuned by changing the mechanical properties of the gel [11]. 
Droplets can also behave differently in transient systems, 
which have not yet reached equilibrium. For instance, sur-
factants exchanging with the surrounding solvent can induce 
Marangoni flows, which can propel droplets [12–16] and even 
lead to spontaneous division [17]. Generally, more complex 
behaviour can be expected when multiple phases of different 
composition come in contact and exchange material [18–22].

Liquid condensed phases are also influenced by external 
‘forces’ such as gravitation, concentration or temperature 
gradients, magnetic or electric fields [23, 24]. In industrial 
manufacturing and processing, temperature gradients and sed-
imentation are explicitly taken advantage of, e.g. for extract-
ing crude oil [25]. Moreover, concentration [26, 27] and 
temperature gradients [28, 29] are commonly used to assem-
ble synthetic membranes for electro-optical devices. Recently, 
the equations  governing the ripening dynamics of droplets 
derived by Lifschitz and Slyozov have been extended to 
account for the presence of a concentration gradient [30, 31]. 
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It has been theoretically shown that droplets can be positioned 
along the concentration gradient and that the universal scaling 
of droplet ripening with time breaks down.

Liquid condensed phases are also ideal compartments to 
organise chemical reactions since they can enrich specific 
chemical components. In particular, chemical agents mix rap-
idly in small droplets and thus control the timing of chemi-
cal reactions [32, 33]. Moreover, the interface of droplets 
can serve to concentrate reactants, resulting in a speed up of 
the reaction [34]. Liquid droplets in the presence of chemi-
cal reactions can even propel across a solid substrate [14, 15, 
35–36] or flow past a chemically patterned substrate leading 
to unique morphological instabilities [37]. They also provide 
model systems to study interactions of pattern forming sys-
tems. For example, droplets containing agents undergoing 
oscillatory Belousov–Zhabotinsky reactions have been con-
sidered as coupled phase oscillators [38, 39]. Recently, it had 
been suggested that phase separated liquid-like compartments 
composed of oppositely charged molecules, called coacer-
vates, could be ideal seeds for prebiotic life [40]. In particular, 
RNA catalysis is viable within these coacervate droplets and 
they even provide a mechanism for length selection of RNA 
[41]. In all these systems, the droplet material does not partici-
pate in the chemical reaction.

If the phase separated material undergoes a chemical reac-
tion itself, new physical behaviours can emerge. In passive 
systems, where phase separation and chemical reactions are 
in thermal equilibrium, coexisting phases cannot be stable. 
These systems settle in a homogeneous state that corresponds 
to the free energy minimum [42]. Conversely, if the chemi-
cal reaction is driven away from equilibrium, phase separa-
tion can be maintained. Under some conditions an arrest of 
the ripening dynamics has been observed in numerical sim-
ulations [43–56] and in experiments where chemical reac-
tions are induced by light [57–64] or proceed spontaneously  
[65–72]. Recently, it has been shown that the chemical reac-
tion between the droplet material can indeed suppress Oswald 
ripening leading to an emulsion composed of drops of identi-
cal size [73–75]. Driven chemical reactions can initiate droplet 
formation as a response to external stimuli [76] and they can 
even trigger the division of droplets [77]. Recent experiments 
on droplets in the presence of non-equilibrium turnover reac-
tions showed the assembly of supramolecular structures with 
a tuneable lifetime [78] and serve as a model for molecular 
selection of reaction products and their assemblies [79]. These 
examples highlight the rich phenomenology emerging from 
the interplay of phase separation with chemical reactions.

Phase separated systems in the presence of external forces 
and chemical reactions actively driven away from thermal 
equilibrium are a novel class of physical systems. Many 
physical properties known from passive emulsions are altered 
and novel phenomena emerge. Since energy input is typically 
necessary to generate external forces, and to drive chemical 
reactions away from equilibrium, we refer to these systems as 
active emulsions.

An intriguing example where the physics of these active 
emulsions is relevant are living cells. Biological function 
inside cells is attained by the spatial-temporal organisation 

of biomolecules and the control of their chemical reactions. 
For this purpose, the interior of the cell is divided into com-
partments, referred to as organelles. Each organelle has 
a chemical identity due to a distinct composition of func-
tional biomolecules. Some organelles, such as mitochondria, 
are surrounded by membranes that are permeated by active 
channels regulating chemical potential differences across the 
membrane [80]. However, there are also organelles that do 
not possess any membrane; they are called non-membrane 
bound compartments or biomolecular condensates [81–86]. 
To maintain their chemical identity in the absence of a mem-
brane, it has been suggested that these compartments are 
liquid droplets formed by liquid–liquid phase separation 
[30, 87, 88]. Recently, many organelles have been found 
with properties reminiscent of liquid droplets [85, 89, 90]. 
Examples include mRNA-protein-condensates [88, 91], 
RNA polymerase clusters [92, 93], centrosomes [73, 94], 
and multiple nuclear subcompartments [95, 96]. These find-
ings suggest that the cytoplasm can be regarded as a multi-
component emulsion hosting a large variety of coexisting 
phases, each of distinct composition [97–100]. In contrast to 
passive emulsions, cellular droplets exist in the non-equilib-
rium environment of living cells. The associated continuous 
dissipation of energy can be used to drive chemical reactions 
or generate concentration gradients of molecular species. 
Both processes can affect the dynamics and stability of these 
active droplets and cause behaviours not observed for pas-
sive droplets [86, 101].

Here, we review recent theoretical approaches used 
to describe droplets and emulsions under conditions that 
deviate from passive phase separating systems. We start 
by discussing classical theories of phase separation in sec-
tion 2. Using statistical mechanics, we obtain the thermo-
dynamic quantities describing phase separation of a binary 
mixture. We consider both liquid condensed phases in the 
thermodynamic limit and droplets of finite size. Next, we 
discuss the dynamics of phase separation and derive the 
equations describing droplet growth. We conclude the sec-
tion by discussing the effects of surface tension and dem-
onstrating the classical coarsening of emulsions via droplet 
coalescence and Ostwald ripening. In section 3, we review 
phase separation of liquid condensed phases in external 
gradients. Such systems reveal a discontinuous phase trans
ition in the position of the condensed phase relative to a 
regulator gradient that affects phase separation. Moreover, 
we show that condensed phases, such as droplets, can be 
positioned via droplet drift or position-dependent disso-
lution and growth. During the positioning dynamics, the 
universal behaviour of droplet coarsening in homogeneous 
systems is replaced by a narrowing droplet size distribu-
tion. In section 4, we present the derivation of a thermody-
namically consistent description of phase separation with 
chemical reactions that are driven away from thermody-
namic equilibrium. Following the procedures established 
in section  2, we discuss the dynamics of droplets driven 
by chemical reactions. In such systems, droplet coarsen-
ing can be suppressed completely, and droplets can divide 
spontaneously.
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2.  Liquid–liquid phase separation of binary 
mixtures

Phase separation refers to the spontaneous partitioning of a 
system into subsystems with distinct macroscopic properties. 
Examples include the cellular compartments mentioned in the 
introduction, but also many everyday phenomena that range 
from fog in the morning to oil droplet formation in salad dress-
ings. In this section, we will discuss the physical principles 
and derive the equations  describing the dynamics of phase 
separation and the ripening of droplets in liquid emulsions.

2.1.  Statistical mechanics of a binary mixture

We start by considering a binary, incompressible mixture con-
sisting of two types of molecules on a lattice with M sites. 
Each lattice site is occupied by either molecule A or B, with 
NA and NB representing their total numbers in the system, so 
NA + NB = M. The system is at thermal equilibrium with a 
heat bath at temperature T. The thermodynamic properties of 
the system are thus dictated by the partition function [102]

Z =
∑
Ω

exp

(
−H(σ1, ...,σM)

kBT

)
,� (2.1)

where the Hamiltonian H(σ1, ...,σM) denotes the energy of 
a particular arrangement σ1, ...,σM  of the molecules on the 
lattice and kB is the Boltzmann constant. Here, we encode 
the arrangements using a binary variable σn , where σn = 1 if 
the lattice site n is occupied by molecule A and σn = 0 if it 
is occupied by B. Ω refers to the set of all possible arrange-
ments considering that the molecules A are indistinguishable 
from each other; the same applies to molecules B [103]. For 
simplicity, we only consider nearest neighbour interactions, 
which are described by the following Hamiltonian [104]

H({σ}) = 1
2

∑
(m,n)

(
eAAσmσn + eBB(1 − σm)(1 − σn)

+ eAB
[
σm(1 − σn) + σn(1 − σm)

])
,

�

(2.2)

where the summation is over all nearest neighbour pairs (m, n) 
on the lattice and the factor 1

2 avoids the double counting of 
interaction pairs. Here, the interaction parameters eij deter-
mine what particle types tend to be next to each other. For 
instance, if eAA  <  0, two A molecules on neighbouring sites 
lower the total energy, making this configuration more prob-
able. In general, these interaction parameters can arise from 
various physical interactions that may include dipolar and 
van der Waals interactions, screened electrostatic interactions 
between charged molecular groups or entropy-driven hydro-
phobic interactions [104–106].

2.1.1. Thermodynamics of a homogeneous mixture.  Within 
the canonical ensemble, a homogeneous binary mixture of 
volume V  can be characterised by the Helmholtz free energy 
F  =  E  −  TS, which combines the internal energy E and the 
entropy S of a system. This free energy can be expressed by 
the partition function (2.1) [102, 107, 108]

F(T , V , NA, NB) = −kBT ln Z(T , V , NA, NB).�
(2.3)

Derivatives of the free energy F are related to thermodynamic 
quantities that are relevant in our discussion of phase separa-
tion. In particular, the entropy is given as S = −∂F/∂T|V ,NA,NB, 
the pressure is p = −∂F/∂V|T ,NA,NB and the chemical poten-
tials read µA = ∂F/∂NA|T ,V ,NB and µB = ∂F/∂NB|T ,V ,NA.

For simplicity, we focus on an incompressible binary 
system of constant volume V = νM  and constant molecular 
volume ν  of the two components. In this case, adding an A 
molecule to the system corresponds to removing a B mole-
cule. Consequently, the relevant thermodynamic quantities are 
the exchange chemical potential µ̄ and the osmotic pressure Π 
[104, 109]:

µ̄ =
∂F
∂NA

∣∣∣∣
T ,V

= − ∂F
∂NB

∣∣∣∣
T ,V

= ν
∂f
∂φ

∣∣∣∣
T

,� (2.4a)

Π = − ∂F
∂V

∣∣∣∣
T ,NA

= −f + φ
∂f
∂φ

∣∣∣∣
T

,� (2.4b)

where the number of lattice sites M is slaved to the total vol-
ume by M = V/ν . Here, we used the homogeneity of the sys-
tem, F = Vf (φ), where f (φ) is the free energy density as a 
function of the volume fraction φ = NAν/V  of A molecules.

The homogeneous state for a given volume is a stable 
thermodynamic state if it corresponds to a minimum of the 
free energy F. This requires that the curvature of the free 
energy density as a function of volume fraction is convex, i.e. 
f ′′(φ) � 0. The link between stability and curvature of the 
free energy density can be understood qualitatively: conserva-
tion of molecule numbers implies that raising the volume frac-
tion in one spatial region requires lowering it in another. If the 
free energy density is convex, any such perturbation increases 
the overall free energy. This can be shown rigorously by con-
sidering spatially inhomogeneous perturbations that conserve 
molecule numbers. We will discuss this approach after intro-
ducing the free energy functional in section 2.1.5.

The stability of the homogenous state can also be shown 
using an ensemble where the particle number NA is fixed and 
the volume V  can change. This ensemble is governed by the 
thermodynamic potential G(NA,Π) = F(NA, V) + VΠ, where 
Π is the osmotic pressure given by equation  (2.4b) and the 
volume V = ∂G/∂Π. A homogeneous state with the osmotic 
pressure Π is stable if the free energy G as a function of Π 
is concave, ∂2G/∂Π2 < 0. The concavity of G with respect 
to variations of the osmotic pressure can be seen by writing 
∂2G/∂Π2 = ∂V/∂Π = −Vκ, where κ is the osmotic com-
pressibility κ = −V−1∂V/∂Π. For the homogeneous state to 
be stable, the osmotic pressure should increase as the volume 
decreases, i.e. κ > 0, to push the system back to its thermody-
namic state after a perturbation in volume. This condition is 
satisfied if the free energy density is convex, f ′′(φ) > 0, since 
κ = (φ2f ′′(φ))−1. In the thermodynamic limit, ensembles 
become equivalent and thus the convexity of the free energy 
density determines the thermodynamic stability of the homo-
geneous state, not only in the ensemble (NA,Π) where the 
osmotic pressure is imposed but also in the ensemble (NA, V) 
where the volume is fixed.

Rep. Prog. Phys. 82 (2019) 064601
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2.1.2.  Mean field free energy density of an incompressible 
mixture.  To determine the relevant thermodynamic quanti-
ties for phase separation, we need to evaluate the free energy 
and the partition function given in equation (2.3). Since this is 
generally difficult, we discuss a mean-field approximation for 
the homogeneous case of the incompressible binary mixture 
on a lattice characterised by the Hamiltonian given in equa-
tion (2.2). This approximation neglects the spatial correlations 
between the molecules and is typically a good approximation 
far away from the critical point where correlations are very 
short-ranged [110, 111]. Within the mean field approximation, 
the probability that lattice site n is occupied by A, is given by 
〈σn〉 = NA/M, where 〈. . .〉 denotes the average in the canoni-
cal ensemble and φ = NA/M  is the volume fraction of A mol-
ecules in the system. Due to incompressibility the probability 
of the site being occupied by B is NB/M = 1 − φ. The parti-
tion function hence is

Z � |Ω| exp
(
−E(φ)

kBT

)
� (2.5)

with the internal energy given as

E(φ) =
zM
2

[
eAAφ

2 + 2eABφ(1 − φ) + eBB(1 − φ)2] ,� (2.6)

where z is the number of neighbours per lattice site (e.g. z  =  6 
for a cubic lattice), and zM/2 is the total number of distinct 
nearest neighbours. The number |Ω| of all possible arrange-
ments on the lattice appearing in equation (2.5),

|Ω| =
(

M
NA

)
=

(
M
NB

)
=

M!

NA!NB!
,� (2.7)

determines the entropy S = kB ln |Ω| for the incompressible 
binary mixture on a lattice, which is also referred to as mix-
ing entropy. Using equation (2.3), we obtain the free energy 
density

f (φ) � z
2ν

[
eAAφ

2 + 2eABφ(1 − φ) + eBB(1 − φ)2]

+
kBT
ν

[
φ lnφ+ (1 − φ) ln(1 − φ)

]
,

�
(2.8)

where we have used Stirling’s approximation, lnN! �  
N lnN − N , to evaluate the factorials. The free energy  
density can also be written as f (φ) = φf (1) + (1 − φ)f (0)+  
fmix(φ), which separates the contribution of the pure systems 
from the free energy of mixing [104, 106],

fmix(φ) =
kBT
ν

[
φ lnφ+ (1 − φ) ln(1 − φ) + χφ(1 − φ)

]

� (2.9)
where

χ =
z

2kBT
(2eAB − eAA − eBB)� (2.10)

is the Flory–Huggins interaction parameter [2, 3]. fmix 
captures the competition between the mixing entropy 
S = −kB(V/ν) [φ lnφ+ (1 − φ) ln(1 − φ)] and the molecu-
lar interactions characterised by the single parameter χ. In 
the next section, we will see that both the free energy density 

(equation (2.8)) and the free energy density of mixing (equa-
tion (2.9)) lead to the same phase separation equilibrium. 
However, the difference will become apparent when we dis-
cuss chemical reactions in section 4.

The free energy density fmix is a symmetric function with 
respect to φ = 1

2. This symmetry stems from considering 
equal molecular volumes of components A and B and the sub-
traction of the free energy before mixing. Conversely, if the 
molecules A and B have different molecular volumes nAν and 
nBν, the free energy of mixing is not symmetric [2, 3]:

f̃mix(φ) =
kBT
ν

[
φ

nA
lnφ+

(1 − φ)

nB
ln(1 − φ) + χφ(1 − φ)

]
,

�

(2.11)

where nA and nB denote the non-dimensional molecular size  
in multiples of the volume ν  of a single lattice site.

Homogeneous states governed by the free energy density 
f (φ) are only stable when the free energy density is convex, 
f ′′(φ) > 0; see section 2.1.1. For the expression given in equa-
tion (2.8) this is the case for all φ in the absence of interactions 
(eij  =  0 for i, j = A, B) and when entropic effects dominate. In 
the presence of interactions however, the free energy density 
of the homogeneous system can become concave ( f ′′(φ) < 0) 
within a range of volume fractions φ; see figure 1(a). Within 
this range, the homogeneous state is not stable, implying that 
the thermodynamic equilibrium state is inhomogeneous.

Figure 1.  (a) Sketch of an asymmetric free energy density f (φ) 
for an incompressible binary mixture as a function of volume 
fraction φ, e.g. equation (2.11) for the case nB > nA and χ > 2. 
In the presence of interactions, there can be a range of volume 
fractions where the free energy density is concave with f ′′(φ) < 0. 
At equilibrium, the Maxwell tangent construction modifies the 

free energy within the volume fraction range [φ(0)
1 ,φ(0)

2 ] (orange 

line). As a result, the free energy density becomes convex for all 

volume fractions. The equilibrium volume fraction of the coexisting 

phases are φ(0)
1  and φ(0)

2 . The impact of surface tension increases the 
equilibrium volume fractions slightly (blue dots, see section 2.5.1). 
(b) Phase diagram as a function of the Flory–Huggins interaction 
parameter χ and volume fraction φ. For large enough interaction 
parameters, phase separation can occur. The corresponding region 
in the phase diagram is bordered by the binodal line. The tie lines 
(green) connect the equilibrium volume fractions of two coexisting 
phases on the binodal line (solid black line). The dashed line 
refers to the spinodal. Within the spinodal lines, the mixture can 
undergo a spontaneous partitioning into two phases, while between 
the spinodal and the binodal, only large enough phase separated 
domains can grow. This regime is referred to as nucleation & 
growth. The red dot marks the critical point.
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2.1.3.  Phase coexistence.  The simplest inhomogeneous 
state corresponds to two subsystems of different volume frac-
tions, also referred to as phases. The associated free energy 
can be written as

F � V1f (φ1) + V2f (φ2) ,� (2.12)

where φα and Vα denote the volume fraction and volume of 
phase α, with α = 1, 2. The incompressibility assumption 
combined with conservation of particles implies V1 + V2 = V  
and V1φ1 + V2φ2 = Vφ. Consequently, there are only two 
independent variables in the free energy above, e.g. φ1 and V1. 
In equation (2.12) we neglected the energetic contribution of 
the interface region that separates the two phases. This is valid 
in the thermodynamic limit where the system and the volumes 
of the phases are infinitely large, so the energetic contribution 
of the interface is negligible relative to the contribution of the 
phases. We will have to refine equation (2.12) when discuss-
ing finite systems in section 2.2.

The inhomogeneous state is stable if it corresponds to 
a minimum of the free energy (2.12) consistent with the 
imposed constraint of particle number conservation and 
absence of vacancies. To find this minimum, we differentiate 
F with respect to φ1 and V1, respectively, use the relationship 
φ2 = (φV − φ1V1)/(V − V1), and set each expression to zero:

0 = f ′(φ(0)
1 )− f ′(φ(0)

2 ) ,� (2.13a)

0 = f (φ(0)
1 )− f (φ(0)

2 ) +
(
φ
(0)
2 − φ

(0)
1

)
f ′(φ(0)

2 ) ,
�

(2.13b)

where φ(0)
1  and φ(0)

2  denote the equilibrium volume fractions. 
The first equation  is a balance of the exchange chemical 

potentials between phases, µ̄1 = µ̄2, with µ̄α = µ̄|
φ=φ

(0)
α

 for 
α = 1, 2; see equation  (2.4a)). The second equation  corre-
sponds to the balance of the osmotic pressures between the two 

phases, Π1 = Π2, with Πα = Π|
φ=φ

(0)
α

; see equation (2.4b).
Obviously, the equations (2.13) are satisfied for homogene-

ous systems with φ(0)
1 = φ

(0)
2 . To see that there also exist solu-

tions with φ(0)
1 �= φ

(0)
2 , the two conditions can be represented 

by a graphical tangent construction using the free energy den-
sity f (φ); see figure 1(a). Here, condition (2.13a) implies that 

the slopes at the equilibrium volume fractions φ(0)
1  and φ(0)

2  are 
the same and condition (2.13b) states that they are also equal 

to the slope of the line connecting the points (φ(0)
1 , f (φ(0)

1 )) 
and (φ(0)

2 , f (φ(0)
2 )). Taken together, these conditions can only 

be satisfied by a common tangent to the two points. This pro-
cedure of finding the equilibrium volume fractions is known 
as Maxwell’s tangent construction or construction of the con-
vex hull. The orange line in figure 1(a) shows the result of such 
a construction. In fact, inserting condition (2.13b) into equa-
tion (2.12) (and using conservation of A particles) shows that 
this line corresponds to the volume weighted average of the 
free energy density of the two subsystems. Consequently, the 
corresponding demixed system has a lower free energy than 
the mixed system described by the black line in figure 1(a). 

Clearly, a separation into two phases with volume fractions 

φ
(0)
1  and φ(0)

2  is only possible when the average volume frac-
tion φ obeys φ(0)

1 < φ < φ
(0)
2 . Outside this region, phase 

separation is not possible and only the homogeneous is stable 
because f ′′(φ) > 0.

The parameter region where phase separation is possi-

ble can be determined from the solutions φ(0)
1  and φ(0)

2  as a 
function of the interaction parameter χ; see figure 1(b). The 
corresponding line is called the binodal line. In the simple 
case of the symmetric free energy of mixing (equation (2.9)), 

fmix(φ
(0)
1 ) = fmix(φ

(0)
2 ) and f ′mix(φ

(0)
1 ) = f ′mix(φ

(0)
2 ) = 0. The 

binodal line is then given by χb(φ) = ln(φ/(1 − φ))/(2φ− 1) 
and phase separation occurs only for χ > χb. In particular, the 
minimal interaction parameter is χmin

b = 2, which is obtained 
at the critical point φ = 1

2 (figure 1(b)). Near the critical point, 
the equilibrium volume fractions inside each phase obey 

φ
(0)
1 � 1

2 − [ 3
8 (χ− 2)]1/2 and φ(0)

2 � 1
2 + [ 3

8 (χ− 2)]1/2. Note 
that the same results are obtained when equation (2.8) is used 
instead of fmix, since terms linear in φ do not alter the condi-
tions given in equation (2.13).

2.1.4.  Free energy of inhomogeneous systems.  The discus-
sion of the previous section neglected the contribution of the 
interfacial region on the equilibrium free energy. This interfa-
cial region is always present since the volume fraction is con-

tinuous in space and must thus interpolate between the values 

φ
(0)
1  and φ(0)

2  in the two phases. The additional free energy 
contribution associated with this spatial variation can be esti-
mated within our lattice model. For simplicity, we first consider 
a one-dimensional system with discrete lattice positions xn for 
which the Hamiltonian given in equation (2.2) can be written as

H({σ}) =
∑

n

[
eAB

(
σn(1 − σn+1) + σn+1(1 − σn)

)

+ eAAσnσn+1 + eBB(1 − σn)(1 − σn+1)
]

.
�

(2.14)

We proceed analogously to section 2.1 and perform a mean-
field approximation after rewriting the coupling terms 
using 2σn(1 − σn+1) = (σn − σn+1)

2 − σ2
n − σ2

n+1 + 2σn. 
Additionally, generalising to three dimensions and taking the 
continuum limit, we replace 

∑
n �→ ν−1

∫
d3r, 〈σn〉 �→ φ(r), 

and 〈σn+1 − σn〉 �→ ν
1
3 ∇φ(r). Hence,

E � kBTχ
ν

∫
d3r

[
φ(r)

(
1 − φ(r)

)
+

ν
2
3

2
|∇φ(r)|2

]

+
z

2ν

∫
d3r

[
eAA φ(r) + eBB

(
1 − φ(r)

)]
,

�

(2.15)

where χ is the Flory–Huggins parameter given in equa-
tion (2.10). The associated free energy F can be expressed as 
a functional of φ(r),

F =
1
ν

∫
d3r

[ κ

2ν
|∇φ|2 + z

2
(eAA φ+ eBB (1 − φ))

+ kBT
[
φ ln(φ) + (1 − φ) ln(1 − φ) + χφ(1 − φ)

]]
,

� (2.16)
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where

κ = kBTχ ν
5
3� (2.17)

characterises the change of free energy density due to con-
centration inhomogeneities. Since the interaction parameter 
χ > 2 in the phase separating regime, we have κ > 0 and the 
gradient term thus penalises spatial inhomogeneities. We iden-
tify the integrand of the free energy given in equation (2.16) 
as the total free energy density ftot . Expressing it in terms of 
concentrations c = φ/ν, we obtain

ftot(c,∇c) = fmix(c) + f0(c) +
κ

2
|∇c|2 ,� (2.18)

where fmix follows from equation  (2.9) and f0(c) =

(z/2)
(
eAA c + eBB

(
ν−1 − c

))
 is the free energy of the pure 

system before mixing. The free energy density (2.18) captures 
many features of phase separation, such as an interaction term 
favouring phase separation that can outcompete the mixing 
entropy. It is sometimes useful to consider simpler forms of 
the free energy avoiding the logarithmic terms in the mixing 
entropy (equation (2.9)), which are not required to discuss the 
underlying basic principles. An example for such a simplifica-
tion is the Ginzburg–Landau free energy.

2.1.5.  Ginzburg–Landau free energy.  Near the critical point, the 
physics of phase separation is fully captured by the shape of the 
free energy close to the critical concentration cc [7, 112–114], 
which is obtained by expanding the free energy to fourth order in  
(c − cc). Such an expansion is also very useful as a simplification 
away from the critical point. Expanding the total free energy at cc 
leads to the asymmetric Ginzburg–Landau free energy,

FGL[c] =
∫

d3r
(

fGL(c) +
κ

2
|∇c|2

)
,� (2.19)

with the corresponding free energy density

fGL(c) = b̃ (c − cc)−
b
2
(c − cc)

2

+
ã
3
(c − cc)

3
+

a
4
(c − cc)

4 .
�

(2.20)

This free energy density is parameterised by the coefficients 
a, ã, b, b̃, and cc. As discussed in section 2.1.3, phase separa-
tion equilibrium is not affected by the linear term, thus we 
choose b̃ = 0, and for simplicity we also consider the special 
case ã = 0. The corresponding Ginzburg–Landau free energy 
density then assumes a bi-quadratic form,

fGL(c) = −b
2
(c − cc)

2
+

a
4
(c − cc)

4 ,� (2.21)

which is symmetric around the concentration cc. This free 
energy density has a concave region if b  >  0 and the param
eter a  >  0 characterises the convex branches of the energy 
density. Using equation  (2.13a), the equilibrium concentra-
tions within each phase separated domain are

c(0)
1 = cc −

√
b/a ,� (2.22a)

c(0)
2 = cc +

√
b/a .� (2.22b)

In particular, expansion of ftot − f0(c) (equation (2.18)) around 
cc = 1/(2ν) links the parameters a and b with the molecular 
parameters of the lattice model,

a =
16
3

kBTν3, b = 2(χ− 2)kBTν .� (2.23)

Using the expressions above in equation (2.22) we consistently 
obtain the equilibrium concentration found in section 2.1.3.

2.2.  Equilibrium states of a binary mixture

In this section, we determine the equilibrium concentration 
profiles that minimise the free energy FGL. Specifically, we 
calculate the extremal solutions of FGL and discuss their sta-
bility in different regions of the phase diagram; see figure 1(b). 
An explicit expression of the interfacial profile will allow us 
to relate the free energy contribution characterised by κ to the 
surface tension between phases.

2.2.1.  Stationary states.  We start by determining the station-
ary states c∗(r) of the bi-quadratic Ginzburg–Landau free 
energy FGL given in equation  (2.19). Such states have an 
extremal free energy subjected to the constraint that the num-
ber of A and B molecules are conserved, i.e.

c̄ =
1
V

∫

V
d3r c(r),� (2.24)

where c̄ = NA/V  denotes the mean concentration of A mol-
ecules in the mixture of the finite volume V . To enforce this 
constraint, we introduce a Lagrange multiplier λ and vary the 
functional FGL − λ

∫
V d3r c(r). Here, the functional derivative 

of the free energy is the generalization of the exchange chemi-
cal potential generalized to inhomogeneous systems,

µ̄ =
δF
δc

,� (2.25)

which reads µ̄ = a (c(r)− cc)
3 − b (c(r)− cc)− κ∇2c(r) 

for FGL. Consequently, the Euler–Lagrange equation for the 
stationary state is

µ̄ = λ ,� (2.26)

where we dropped a boundary term proportional to 
κ∇c, assuming appropriate boundary conditions at the sys-
tem boundary. The stationary states thus correspond to a spa-
tially uniform exchange chemical potential µ̄, which may be 
realised for both homogeneous and inhomogeneous concen-
tration profiles c∗(r).

We start by considering the spatially homogeneous equi-
librium states c∗(r) = c0. Particle conservation implies c0 = c̄ 
(equation (2.24)) and the Euler–Langrange equations  read 
λ = a(c̄ − cc)

3 − b(c̄ − cc). The homogeneous state c(r) = c̄ 
is thus an extremal state of the free energy FGL and we will 
check whether it corresponds to a minimum in the next section.

We showed above that states with coexisting phases can 
be stable in some regions of the phase diagram shown in fig-
ure  1(b). Here, we determine the concentration profile that 
connects the two phases from extremising the free energy 
FGL. In the following, we restrict ourselves to a flat interface 
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oriented perpendicular to the x-axis at the position x  =  0 with 
a concentration c(x = 0) = cc. For simplicity, we extend the 
system to infinity while keeping the position and concentra-
tion value of the interface fixed. For the symmetric free energy 
density (equation (2.21)), this implies µ̄ = 0, thus λ = 0, at 
the interface, and in the case of an extremal inhomogeneous 
state, µ̄ = 0 at all positions. Far away from the interface, the 
concentration inside the phases should be governed by the 
equilibrium concentrations (equation (2.22)),

lim
x→−∞

c(x) = c(0)
1 , lim

x→∞
c(x) = c(0)

2 .� (2.27)

With the boundary conditions above the unique solution is 
[42]:

cI(x) = cc +

√
b
a
tanh

(√
b

2κ
x

)
.� (2.28)

Since this interfacial profile varies substantially only within 
the region |x| �

√
2κ/b, we introduce the interfacial width

w =

√
2κ
b

� ν
1
3

√
χ

χ− 2
.� (2.29)

The right-hand side relates w to the lattice model using equa-
tions (2.17) and (2.23). In the limit of strong phase separation 
(large χ) the interfacial width approaches the linear dimension 
ν1/3 of the molecules.

2.2.2.  Stability of stationary states.  The homogeneous and 
inhomogeneous stationary states of the Ginzburg–Landau 
free energy, c∗(x) = c̄ and c∗(x) = cI(x), respectively, can be 
either stable or unstable. They are stable if they correspond to 
a free energy minimum, i.e. if all small concentration pertur-
bations increase the free energy. To test this, we consider con-
centration profiles c = c∗ + ε, where ε(r) is a small, position 
dependent concentration perturbation. To quadratic order, the 
change in the free energy due to this perturbation is

∆F[c∗, ε] = FGL(c∗ + ε)− FGL(c∗)

�
∫

d3r
[ε2

2
(
3a(c∗ − cc)

2 − b
)
+

κ

2
(∇ε)

2
]
.

� (2.30)
The state c∗(r) is stable if all perturbations increase the free 
energy, i.e. if ∆F[c∗, ε] > 0 for all ε(r). In the case of the 
homogeneous state c∗(r) = c̄ both terms in the integrand are 
positive if |c̄ − cc| >

√
b/(3a) , which implies ∆F[c∗, ε] > 0. 

Conversely, ∆F[c∗, ε] can be negative for |c̄ − cc| <
√

b/(3a)  
in sufficiently large systems, e.g. for the perturbation 
ε(x) ∝ tanh(x/w), which implies that the homogeneous state 
is unstable for these parameters. Consequently, the stationary 
homogeneous state can be either stable or unstable to infini-
tesimal perturbations. In contrast, the inhomogeneous state 
c∗(x) = cI(x) given by equation (2.28) is always stable if it is 
a stationary state, i.e. when |c̄ − cc| <

√
b/a; see appendix A.

Taken together, we can distinguish three different param
eter regimes with different stable stationary states. For mean 
concentrations c̄ far away from the symmetry point cc, i.e. 

when |c̄ − cc| >
√

b/a, the homogeneous state is the only 
stable one. Conversely, when |c̄ − cc| <

√
b/(3a) , only the 

inhomogeneous state is stable and phase separation will 
thus happen spontaneously. This region is known as the 
spinodal decomposition region [115–121] which is enclosed 
by the spinodal line (dashed line in figure  1(b)). Between 
the spinodal region and the homogeneous region, for √

b/(3a) < |c̄ − cc| <
√

b/a, both states are stable to infini-
tesimal perturbations. In this case, phases can only originate 
from the homogeneous state by large fluctuations, known as 
nucleation events. Consequently, the respective region in the 
phase diagram is known as the nucleation and growth regime. 
All three phases are shown in the phase diagram in figure 1(b).

2.3.  Surface tension of interfaces

The surface tension of the interface can be determined from 
the profile cI(x). To this end, we separate the energetic contrib
utions of the bulk phases to the free energy from a contrib
ution that is related to the interface. For large volumes of the 
coexisting phases V1 and V2, the total free energy F can be 
written as

F � V1f (c(0)
1 ) + V2f (c(0)

2 ) + γA ,� (2.31)

where c(0)
1  and c(0)

2  are the corresponding equilibrium concen-
trations. Here, A is the area of the interface and γ  denotes the 
surface energy, which is also known as the surface tension 
[122]. Its value is obtained from the condition that the total 
free energy given in equation (2.31) equals the free energy of 
the interfacial profile, F = F[cI]:

γA =

∫

V
d3r

[
f (cI) +

κ

2
(∇cI)

2
]
− V1f (c(0)

1 )− V2f (c(0)
2 ) .

� (2.32)
In the simple case where a flat interface is oriented perpend
icular to the x-axis and the system is extended to infinity while 
keeping the position of the interface fixed at x  =  0, the surface 
tension reads

γ =

∫ ∞

−∞
dx

[
f (cI)−

1
2

[
f (c(0)

1 ) + f (c(0)
2 )

]
+

κ

2
(∇cI)

2
]

.

� (2.33)
Considering the Ginzburg–Landau free energy and the corre
sponding interfacial profile cI(x) (equation (2.28)), we find 

fGL(c
(0)
1 ) = fGL(c

(0)
2 ) = −b2/(4a) and thus

γ =

∫ ∞

−∞
dx

[
fGL(cI) +

κ

2
(∂xcI)

2 +
b2

4a

]

=
2
√

2κb3

3a
� kBTχ

1
2 (χ− 2)

3
2

2ν
2
3

.

�

(2.34)

In the last approximation, we have used the expressions for 
the lattice model (equations (2.17) and (2.23)), which shows 
that γ  scales like χ2 in the limit of strong phase separation 
(large χ).
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2.4.  Dynamical equations of phase separation

We next derive the dynamical equations describing how the 
binary mixture reaches its equilibrium state. Considering 
an incompressible mixture, the volume fractions obey 
φA + φB = 1, and thus ∂tφA = −∂tφB. Using φi = ciνi 
(i = A, B) and considering for simplicity the case where 
molecular volumes of the two components are equal to νi = ν, 
the incompressibility condition leads to ∂tcA = −∂tcB. The 
particle conservation of A and B molecules can be expressed 
by the continuity equations

∂tcA = −∇ · jA ,� (2.35a)

∂tcB = −∇ · jB ,� (2.35b)

where incompressibility and equal molecular volumes imply 
that the particle fluxes of component A and B read jA = vcA + j 
and jB = vcB − j, and that the volume flow velocity v obeys 
∇ · v = 0. In the following sections, we restrict ourselves to 
a reference frame where v = 0. In this case the exchange cur
rent reads j = (jA − jB) /2, which drives the time evolution of 
the concentration of components A,

∂tc = −∇ · j ,� (2.36)

where we abbreviated c  =  cA for simplicity. In the linear 
response regime, the exchange current is proportional to the 
thermodynamic force of the gradient of the exchange chemical 
potential −∇µ̄, implying j = −Λ(c)∇µ̄; see appendix B. Here, 
Λ(c) denotes a mobility coefficient, which is positive to ensure 
that the second law of thermodynamics is fulfilled, i.e. that the 
corresponding entropy production, −

∫
d3r j · ∇µ̄, is positive  

[108, 123]. The resulting dynamical equation is:

∂tc = ∇ ·
(
Λ(c)∇µ̄(c)

)
.� (2.37)

This equation is also known as the deterministic version of the 
so-called model B [114, 124] and becomes a Smoluchowski 
diffusion equation in the dilute limit [125]. Note, that by con-
sidering v = 0, we do not discuss the transport of momen-
tum and the associated couplings to fluid flow. The interested 
reader is referred to [7, 112, 113, 126].

In the simple case of the Ginzburg–Landau free energy 
functional FGL given in equation (2.19), the dynamical equa-
tion (2.37) reads

∂tc = ∇ ·
[
Λ(c)∇

(
a(c − cc)

3 − b(c − cc)− κ∇2c
)]

,�
(2.38)

which is known as the Cahn–Hilliard equation [115]. We can 
use this equation to scrutinize the stability of the homogeneous 
state, c(r) = c̄, by performing a linear stability analysis. We 
denote the perturbed state as c(r, t) = c̄ + ε exp(ωt + iq · r), 
where ω  denotes the perturbation growth rate, q the pertur-
bation wave vector, and ε the associated small amplitude, 
|ε| � c̄. To linear order, the growth rate is

ω(q) = −q2Λ(c̄)
[
3a(c̄ − cc)

2 − b + κq2] .� (2.39)

The homogeneous state is stable if all perturbations decay, 
i.e. if ω(q) < 0 for all q. However, ω(q) can become posi-
tive for small |q| if |c̄ − cc| <

√
b/3a. This parameter region 

corresponds to the spinodal decomposition that we found 
above (figure 1). The stability associated with the dynamical 
equations is therefore consistent with the one derived from the 
free energy discussed in section 2.2.2.

Beyond the linear regime, equation  (2.38) is difficult 
to solve as it is non-linear and involves fourth order spatial 
derivatives. However, inside the two coexisting phases and far 
away from the interface, concentration variations are small, so 
we can ignore the fourth order derivative and linearize equa-

tion (2.37) around the equilibrium concentrations c(0)
1  and c(0)

2  
(equation (2.22)). Hence, we arrive at two diffusion equa-
tions which are valid inside phase 1 and 2, respectively,

∂tc � Dα ∇2c ,� (2.40)

where the collective diffusion coefficient inside phase α = 1, 2 
reads

Dα = Λ(c(0)
α ) f ′′(c(0)

α ) .� (2.41)

Note that Dα is positive when phase separation occurs 

( f ′′(c(0)
α ) > 0) and that an equivalent argument leads to posi-

tive diffusivity when phase separation is absent ( f ′′(c̄) > 0). 
In the simple case of the symmetric Ginzburg–Landau free 
energy given in equation (2.21) and for a constant mobility Λ, 
the diffusion coefficients are identical in both phases and equal 
to D = 2bΛ. Using the expressions corresponding to the lat-
tice model (equation (2.23)), we obtain D � 4(χ− 2)νΛkBT  
close to the critical point, which is positive as phase separation 
occurs only when χ > 2.

2.5.  Dynamics of droplets

In this section, we focus on droplets, which are small con-
densed phases coexisting with a large dilute phase.

2.5.1.  Impact of surface tension on the local equilibrium con­
centrations.  One important difference between droplets and 
the condensed phases that we discussed so far is the curvature 
of the droplet interface, which is inevitable due to the finite 
size. The surface tension γ  of this curved interface affects 
the equilibrium concentrations inside and outside the drop-
let, which we denote by ceq

in  and ceq
out, respectively. In the fol-

lowing, we consider the case where the surface tension γ  is 
constant and independent of the interface curvature, which  
is valid for droplets large compared to the Tolman length  
[127, 128]. To derive how the equilibrium concentrations 
depend on the droplet curvature, we write equation (2.31) for 
a spherical droplet of radius R,

F = Vdf (cin) + (V − Vd)f (cout) + 4πR2γ ,� (2.42)

where Vd = 4π
3 R3 denotes the droplet volume and V  is 

the volume of the system. Using particle conservation, 
cout = (Vc̄ − Vdcin)/(V − Vd), and minimising the free 
energy with respect to cin and Vd, analogously to section 2.1.3, 
we obtain the equilibrium conditions

0 = f ′(ceq
in )− f ′(ceq

out) ,� (2.43a)
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0 = f (ceq
in )− f (ceq

out)

+
(
ceq

out − ceq
in

)
f ′(ceq

out) +
2γ
R

.
� (2.43b)

These conditions are fulfilled at the equilibrium concentra-
tions ceq

in  and ceq
out inside and outside the droplet, respectively. 

Comparing these expressions to equation (2.13) in the thermo-
dynamic limit, we find that the pressure balance (2.43b) con-
tains an additional term 2γ/R, which is known as the Laplace 
pressure. Graphically, the Laplace pressure corresponds to the 
free energy difference of the tangents in the Maxwell con-
struction; see figure 1(a). The Laplace pressure is proportional 
to the interface curvature R−1 and thus disappears in the ther-
modynamic limit (R → ∞).

To derive approximate expressions of the equilibrium con-

centrations ceq
in  and ceq

out, we expand ceq
in/out = c(0)

in/out + δcin/out 

in equation  (2.43) to linear order in δcin/out. Here, c(0)
in  and 

c(0)
out denote the equilibrium concentrations in the thermody-

namic limit in the condensed and dilute phase, respectively, so 
δcin/out captures the effects of Laplace pressure. We find

δcout �
2γ(

c(0)
in − c(0)

out
)
f ′′
(
c(0)

out
)
R

,� (2.44a)

δcin �
f ′′
(
c(0)

out
)

f ′′
(
c(0)

in

)δcout,� (2.44b)

which are known as the Gibbs–Thomson relations. Since both 
expressions are positive, the Laplace pressure elevates the 
concentrations both inside and outside the droplet. This effect 
is stronger for smaller droplets, which becomes explicit when 
writing the equilibrium concentrations as

ceq
out = c(0)

out

(
1 +

�γ,out

R

)
,� (2.45a)

ceq
in = c(0)

in

(
1 +

�γ,in

R

)
,� (2.45b)

where we defined for both phases the capillary lengths

�γ,out =
2γ(

c(0)
in − c(0)

out
)
f ′′
(
c(0)

out
)
c(0)

out

,� (2.45c)

�γ,in =
f ′′(c(0)

out )c
(0)
out

f ′′(c(0)
in )c(0)

in

�γ,out.� (2.45d)

In the following, we are interested in the limit of strong phase 

separation with c(0)
in � c(0)

out and thus �γ,in � �γ,out. In this case, 

the impact of the Laplace pressure on the equilibrium concen-

tration inside the droplet can be neglected, i.e. ceq
in � c(0)

in . This 
leaves us with a single capillary length, �γ = �γ,out . When the 
phase outside is dilute, i.e. when the chemical potential can be 
written as µ̄(c) � kBT ln(νc) [129], we find

�γ � 2γ

c(0)
in kBT

.� (2.46)

If we additionally assume that the condensed phase is highly 

packed such that c(0)
in � ν−1, equation (2.46) provides a use-

ful estimate of the capillary length when the surface ten-
sion γ  is known [129]. Using equation  (2.34) from our 
lattice model, the capillary length can also be expressed as 
�γ � χ1/2 (χ− 2) 3/2ν1/3. This expression demonstrates that 
for interaction parameters not too far away from the critical 
value, χmin

b = 2, it is typically on the order of the molecu-
lar length scale ν1/3. Consequently, we have �γ � R and the 
increase of the equilibrium concentrations predicted by the 
Gibbs Thomson relations (2.45) is actually small, supporting 
the validity of the linear approximation.

2.5.2.  Growth of a single droplet in a supersaturated environ­
ment.  The dynamics of the droplet size and its shape are 
linked to the movement of its interface, which we assume to be 
thin compared to the droplet size in the following. To describe 
the dynamics of the interface, we consider a spherical coor-
dinate system (r,ϕ, θ) centered on the droplet. Assuming the 
interface does not deviate strongly from a spherical shape, we 
parameterize its shape R(ϕ, θ; t) = R(ϕ, θ; t)er  by the radial 
distance R(ϕ, θ; t) as a function of the polar angle ϕ and the 
azimuthal angle θ. The movement of the interface is most nat-
urally described in the local coordinate system spanned by the 
two tangential directions e1 = ∂R/∂ϕ and e2 = ∂R/∂θ and 
the outward normal vector n = e1×e2

|e1×e2| . Note that the drop-
let shape is only affected by the normal component vn of the 
interfacial velocity, while the tangential components transport 
material along the interface. Material conservation implies 
that this normal component is proportional to the net material 
flux toward the interface,

vn =
jin − jout

ceq
in − ceq

out
· n ,� (2.47)

where jin = limε→0 j(R − εn) and jout = limε→0 j(R + εn) 
are the local material fluxes right inside and outside of the inter-
face, respectively. Expressing the time evolution of the inter-
face in the spherical coordinate system gives ∂tR = ∂tR er , 
while in the local coordinate system of the interface,

∂tR = vnn + vt,1e1 + vt,2e2 .� (2.48)

We can use the connection between the local and the global 
coordinate system to identify the conditions ∂tR · eθ = 0 and 
∂tR · eϕ = 0, which can be used to obtain the in-plane velocity 
components vt,1 and vt,2. The radial interface velocity then reads

∂tR = vn

[
1 +

(
∂θR

R

)2

+

(
∂ϕR

R sin(θ)

)2
] 1

2

.� (2.49)

In the case where the dynamics within the phases are described 
by the diffusion equation (2.40), the material flux is given by 
j = −D∇c and equation (2.49) directly determines the time 
evolution of the interface.

Before we consider shape perturbations in the sub-
sequent sections, we focus here on a spherical droplet, 
R(ϕ, θ; t) = R(t), in a spherically symmetric system. To 
derive its growth dynamics, we employ the quasi-static 
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approximation, which assumes that the droplet radius varies 
slowly such that transients in the diffusion equation  (2.40) 
can be neglected. Within this approximation, the diffusion 
equation (2.40) reduces to a Laplace equation inside and out-
side the droplet,

0 � ∇2c(r) =
1
r2

∂

∂r

(
r2 ∂c
∂r

)
,

�
(2.50)

where we have written the Laplace operator in spherical 
coordinates considering that there is no polar and azimuthal 
dependence of the concentration field. The associated bound-
ary conditions are given by the Gibbs–Thomson relations 
(2.45) at the droplet interface and a differentiability condition 
at the droplet centre. Moreover, we consider the case where 
the droplet is embedded in a large system and the concentra-
tion far away is fixed to c∞:

∂rc(r) = 0 at r = 0 ,� (2.51a)

lim
r→∞

c(r) = c∞ .� (2.51b)

Using these boundary conditions, the solutions inside and out-
side the droplet read

c(r) = c∞ +
(
ceq

out − c∞
) R

r
, r > R ,� (2.52a)

c(r) = ceq
in , r < R ,� (2.52b)

which are illustrated in figure 2(a). These solutions imply the 
fluxes jin = 0 and jout = DR−1(ceq

out − c∞)er inside and out-
side of the interface, respectively. The growth rate of the drop-
let then follows from equation (2.47),

dR
dt

=
D c(0)

out

R c(0)
in

(
ε− �γ

R

)
,� (2.53)

where we consider the case of strong phase separation 

(c(0)
in � c(0)

out). We have defined the supersaturation

ε =
c∞
c(0)

out

− 1,� (2.54)

which measures the excess concentration relative to the equi-

librium concentration c(0)
out in the dilute phase. Equation (2.53) 

shows that the droplet only grows in sufficiently supersatur
ated environments where ε > �γR−1. The droplet dynamics 
are thus directly linked to the concentration of droplet mat
erial in its environment. In particular, we can define the criti-
cal radius Rc = �γε

−1, below which the droplet shrinks; see 
figure  2(b). Although this deterministic description cannot 
account for the spontaneous emergence of droplets, the criti-
cal radius is key to estimating the frequency of such nucle-
ation events [130, 131]. In essence, nucleation relies on large 
fluctuations that spontaneously enrich droplet material in a 
region of radius Rc. In this case, the resulting droplet starts 
growing spontaneously according to equation (2.53).

2.5.3.  Droplet coarsening by Ostwald ripening.  So far, we 
focused on a single droplet, but most phase separated sys-
tems contain many droplets. In such emulsions, large drop-
lets typically grow at the expense of smaller droplets, which 
vanish eventually. This phenomenon is referred to as Ostwald  
ripening [4].

In the following we consider the interactions of many 
droplets that are far apart from each other in a dilute system 
with small supersaturation. In this case, nucleation events are 
rare, and the surrounding of droplets can be considered to be 
spherically symmetric with a common concentration c∞ far 
away from each droplet. This implies a common supersatur
ation ε, which depends on time and mediates the interac-
tions between the droplets. As the supersaturation ε can be 
determined from the total amount of material, the state of the 
system is fully specified by the radii Ri of the N droplets in 
the system. Their dynamics follows from equation (2.53) and 
reads [5]:

dRi(t)
dt

=
D c(0)

out

Ri(t) c(0)
in

(
c∞(t)

c(0)
out

− 1 − �γ
Ri(t)

)
,� (2.55a)

c̄V = c(0)
in

N∑
i=1

4π
3

Ri(t)3 + c∞(t)

[
V −

N∑
i=1

4π
3

Ri(t)3

]
.

�

(2.55b)
Equation (2.55b) states that the material is shared between 
the droplets of radius Ri and the dilute phase of concentration 
c∞(t). In order to neglect the spatial correlations between the 

Figure 2.  (a) Illustration of the concentration field inside and outside of the droplet; see equation (2.52). These concentration fields can 
be obtained from solving the diffusion equation (2.40) using the quasi-static approximation and considering the case of an infinitely thin 
interface. (b) The droplet growth speed dR/dt  is shown as a function of droplet radius R. There is a critical radius Rc(t) = �γ/ε(t) above/
below which a droplet grows/shrinks. As the supersaturation ε(t) decreases with time, the critical radius increases. (c) Frequency of droplets 
as a function of droplet radius R. As the critical radius increases with time, the distribution broadens. Rescaling the radius by Rc(t) ∝ t1/3 
leads to a collapse of all droplet radius distributions.
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droplets [132, 133], we assumed that the system volume V  is 
large compared to all droplets, V �

∑
i Vi with Vi =

4π
3 R3

i . 
In this limit, equation  (2.55b) can also be approximated as 

c̄V � c(0)
in

∑N
i=1 Vi(t) + c∞(t)V .

In the limit of many droplets, the system can be described 
by a continuous droplet size distribution. Additionally, if the 
supersaturation is small, Lifshitz and Slyozov [5] demon-
strated that this size distribution converges to a universal form

P(R̃) =
4
9

R̃2
(

1 +
R̃
3

)−7/3

×
(

1 − 2R̃
3

)−11/3

exp

(
1 − 3

3 − 2R̃

)
,

�

(2.56)

when radii are rescaled by the critical radius Rc, i.e. R̃ = R/Rc, 
irrespective of the initial size distribution; see figure 2(c). In 
such a coarsening system where droplets grow and shrink, 
the critical radius scales with the average droplet radius, 
Rc(t) � 〈R(t)〉. Moreover, a droplet radius Ri is typically in 

the order of the critical radius Rc(t) = �γ/(
c∞(t)

c(0)
out

− 1). Thus, 

equation (2.55) gives dRc(t)
dt � D�γc(0)

out

c(0)
in R2

c
 leading to the scaling

〈R(t)〉 � Rc(t) ∝

(
D�γc(0)

out

c(0)
in

t

) 1
3

,� (2.57)

which is the Lifshitz–Slyozov scaling law. In summary, the 
increasing mean droplet radius and critical radius reflect 
coarsening dynamics where large droplets grow at the expense 
of smaller ones.

2.5.4.  Droplet coarsening by coalescence.  Another coars-
ening mechanism in emulsions, besides Ostwald ripening, 
is the coalescence of droplets driven by their Brownian 
motion [116, 126]. Brownian coalescence is not included 
in the theory presented here, since we neglected momen-
tum transport due to thermal fluctuations. However, the 
evolution of the mean droplet size due to droplet coales-
cence can be determined by estimating the change in radius 
∆〈R〉 for a typical fusion event and the frequency ∆t−1 of 
inter-droplet encounters. Since the droplet volume is con-
served during fusion, two equally sized droplet of size 〈R〉 
lead to a change of the mean radius of ∆〈R〉 � (2

1
3 − 1)〈R〉. 

The frequency of inter-droplet encounters can be estimated 
by the diffusion time leading to ∆t−1 � λDR/�

2
p, where 

DR = kBT/(6πηR〈R〉) is the Stokes–Einstein diffusion con-
stant of a spherical droplet with ηR  denoting the viscos-
ity of the surrounding fluid experienced by the droplet of 
average size 〈R〉. Moreover, �p = V/(πN〈R〉2) is the mean 
free path between the droplets, where the droplet number 
can be estimated as N � Vtot/(

4π
3 〈R〉3) and the volume Vtot 

occupied by droplets is determined by particle conservation, 
i.e. Vtot/V = (c̄ − ceq

out)/(c
eq
in − ceq

out). Not every inter-drop-
let encounter leads to a coalescence event in particular in 
the presence of surfactants [134, 135]. To account for the 
stochastic initiation of a coalescence event we have intro-
duced the parameter λ ∈ [0, 1] characterising the average 

fraction of encounters that lead to coalescence. By writing 
〈R〉−1d〈R〉/dt � 〈R〉−1 ∆〈R〉/∆t � λkB TV2

tot/(V
2ηR〈R〉3) ,   

skipping the numerical prefactors, we obtain a differential 
equation for the mean radius 〈R〉, where integration gives the 
scaling for the mean radius arising from fusion of droplets:

〈R(t)〉 ∝

(
λ

(
c̄ − ceq

out

ceq
in − ceq

out

)2 kBT
ηR

t

) 1
3

.� (2.58)

Remarkably, the coarsening due to droplet coalescence has the 
same scaling with time as the growth of droplets by Ostwald 
ripening described by equation (2.57).

2.5.5.  Comparison between coarsening via Ostwald-ripening 
and coalescence.  We can use our lattice model to determine 
the relative contributions of the two coarsening mechanisms 
to the growth of droplets. In the case of Ostwald ripening, 
we have to estimate the molecular diffusion constant D, the 
capillary length �γ and the relative dilution of the minority 

phase, c(0)
out/c(0)

in . We use the Stokes–Einstein relationship to 
express the diffusivity as D � kBT/(6πηmν

1/3), where ηm 
denotes the fluid viscosity felt by the molecules of volume 
ν . Moreover, from equations  (2.34) and (2.46), the capil-

lary length is �γ � 1
2ν

1/3χ1/2(χ− 2)3/2. Finally, the binodal 

line corresponding to our lattice model with equal-size mol-
ecules A and B (see end of section 2.1.3) can be used to esti-
mate the relative dilution of the minority phase. It turns out 

that the fraction between the equilibrium concentrations is 

c(0)
out/c(0)

in ∝ exp(−χ), i.e. it decreases exponentially to zero as 
the interaction strength χ becomes large (limit of strong phase 

separation), while c(0)
out/c(0)

in � 1 −
√

(6(χ− 2)) changes only 

weakly close to the critical point (weak phase separation). By 
comparing equations  (2.57) to (2.58), we find that Ostwald 
ripening dominates coarsening if

χ
1
2 (χ− 2)

3
2

c(0)
out

c(0)
in

(
ceq

in − ceq
out

c̄ − ceq
out

)2
ηR

ηm
λ−1 � 1 ,� (2.59)

where we dropped all numerical prefactors. In the simple case 
of a size-independent viscosity, ηm = ηR, our estimates from 
the simple binary lattice model indicate that coalescence typi-
cally dominates Oswald ripening for most interaction param
eters χ. In particular, the left-hand side of equation (2.59) goes 
to zero close to the critical point (χ = 2) and in the limit of 
strong phase separation (χ → ∞). However, for intermedi-
ate χ-values, Ostwald ripening could still be the dominant 
coarsening mechanism because coalescence events may be 
suppressed by surfactants (λ � 1) or because the ratio of 
the viscosities satisfies ηR/ηm � 1. Such different viscosities 
are particularly relevant for condensed phases in polymer or 
protein solutions, as well as droplet-like compartments in liv-
ing cells. These complex, phase separated liquids can even 
show visco-elastic effects leading to a dramatic slowdown 
of the movements of large droplet-like phases [136–138]. In 
particular, inside cells, diffusion of very large compartments 
is strongly suppressed by the cytoskeleton [139], while the 
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diffusion of small molecules may experience less hinderance. 
We therefore expect that Ostwald ripening relying on evapo-
ration and condensation of small diffusing molecules is the 
dominant mechanism of droplet coarsening inside cells.

3.  Positioning of condensed phases

In this chapter, we discuss the positioning of condensed phases 
(e.g. droplets) by external fields and non-equilibrium concen-
tration gradients. We focus on the case where two components 
phase separate while a third component, referred to as regu-
lator, influences the phase separation. Here we discuss two 
scenarios of how to affect the position of condensed phases: 
(i) The position of a condensed phase can be influenced by an 
external field such as gravitation, electric or magnetic fields 
[140]. These fields position the phase of higher mass density, 
larger charge or larger magnetic moment toward regions of 
lower potential energy. The resulting stationary states corre-
spond to a minimum of the total free energy of the system and 
are inhomogeneous thermodynamic states. (ii) Positioning of 
a condensed phase can also be affected by a regulator gradi-
ent that is driven and maintained by boundary conditions. The 
presence of a regulator flux may let the system settle in (sta-
tionary) non-equilibrium states. Such a concentration gradient 
could be generated for example by concentration boundary 
conditions, or sources and sinks [91], or via position-depen-
dent reaction kinetics with broken detailed balance [141, 142].

In section 3.1, we discuss a simple system of two phase 
separating components and illustrate how an external field can 
affect the average position of the phase separated concentra-
tion profiles. The corresponding stationary states are inho-
mogeneous thermodynamic states and can thus be accessed 
through a minimisation of the free energy. Section 3.2 is then 
devoted to discussing how a concentration gradient of a regu-
lator can affect the dynamics of droplet positions.

3.1.  Positioning of condensed phases by external fields

External fields can influence the position of components in a 
mixture and thereby also the position of condensed phases. In 
this section, we investigate how external fields affect a mix-
ture that undergoes phase separation. To this end, we briefly 
review the thermodynamics with external fields.

3.1.1. Thermodynamics of binary mixtures in external 
fields.  Here we discuss the thermodynamics of binary mix-
tures in the presence of external fields such as gravitation 
with a gravitational acceleration g, and electric or magnetic, 
position-dependent potentials denoted as U(x). The presence 
of such an inhomogeneous external potential can influence the 
shape and the mean position xi of the concentration profiles 
cA(x) and cB(x), which can be defined as

xi =
1
L

∫ L

0
dx x

ci(x)
c̄i

,� (3.1)

where c̄i = L−1
∫ L

0 dx ci(x) denotes the mean concentration 
and L is the size of the system.

For a compressible system, the binary mixture is described 
by two concentration fields cA and cB. Considering the case 
where the external fields vary along the x-coordinate, the total 
free energy density reads

ftot = f (cA, cB,∇cA,∇cB)

+ ρgx + UA(x)cA + UB(x)cB .
�

(3.2)

The interactions between the components are governed by the 
free energy density f , ρ = mAcA + mBcB is the mass density, 
and mA and mB denote the molecular mass of each component. 
The contributions of the external potentials can be combined to 
ŨA(x)cA + ŨB(x)cB, where Ũi(x) = Ui(x) + migx , i = A, B.

Thermodynamic equilibrium for systems with external  
fields can be defined at each position. The position-depend-
ent equilibrium profile ci(x) is then determined by a spatially  
constant generalised chemical potential, µtot,i = µi(x) + Ũi(x), 
where µi(x) = δF/δci with F =

∫
d3xf . As an example of a 

system with such a position-dependent equilibrium profile we 
consider an incompressible system (νAcA + νBcB = 1) with  
gravitation as the only external potential and where the 
A-molecules are dilute, νAcA � 1 [140]. The generalised 
exchange chemical potential then reads µ̄tot � kBT ln(νcA)+  
νA∆ρgx with the density difference ∆ρ = mA/νA − mB/νB. At 
thermodynamic equilibrium, this gives the barometric height 
formula, cA(x) ∝ exp(−∆ρνAgx/(kBT)). Thus, gravitation 
always positions the molecules of highest mass density toward 
the lower gravitational potential. Typically, sedimentation of 
macromolecules on a mesosscopic length scale L is negligible 
because ∆ρνAgL � kBT . Soft condensed phases, however, 
are much more prone to follow the gravitational field because 
the volume of the phase Vi typically exceeds the molecular 
volumes. The corresponding condition for sedimentation to be 
relevant reads ∆ρiVigL > kBT , where ∆ρi denotes the mass 
density difference between the liquid condensed phase and the 
surrounding solvent. Note that a micron-sized protein drop-
let with about twenty percent larger mass density relative to 
the solvent can already show sedimentation on length scales 
slightly above the droplet size [143].

Gravitation acts on the condensed phase and positions it 
into the region of lower gravitational potential. In the follow-
ing sections we will discuss another positioning mechanism 
that relies on a chemical coupling. In this case the position of 
the condensed phase is affected via a gradient of macromole-
cules that in turn influences phase separation through molecu-
lar interactions. For a fixed gradient, this system may already 
change the position of the condensed phase by affecting the 
molecular interactions.

3.1.2.  Positioning of condensed phases by a regulator poten­
tial.  To explore the propensity to switch the position of 
condensed phases using such an additional component we 
propose a simple ternary model [144]. This model accounts 
for the demixing of two components, A and B, and a regula-
tor component R that interacts with the other components and 
thereby affects phase separation between A and B. The regula-
tor component R is influenced by an external potential U(x). 
Interactions between the components i and j  are captured by 
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the mean-field interaction parameters χij . The scenario of reg-
ulation of phase separation can be described by the following 
free energy density

ftot = kBT
[ ∑

i=A,B,R

ci ln(νci) + χAB ν cAcB

+ cR(χBR cB + χARcA) ν

]
+ U(x)cR

+
κR

2
|∇cR|2 +

κA

2
|∇cA|2 ,

�

(3.3)

which is a Flory–Huggins free energy density [2, 3] for 
three components. Analogously to the case of the binary 
system discussed in section  2.1, the ternary free energy 
given above can be derived from a partition sum using a 
mean-field approximation (see [145, 146] and appendix of 
[144]). In equation (3.3) we consider an incompressible sys-
tem where the molecular volumes are constant and equal 
to ν  for all components, and the concentrations thus obey 
cB = ν−1 − cR − cA. The logarithmic terms in equation (3.3) 
correspond to entropic contributions related to the number 
of possible configurations. The remaining contributions 
characterise the interactions between the three components 
with the (dimensionless) mean field interaction parameter 
χij , also referred to as Flory–Huggins interaction parameter. 
The interaction parameter between A and B, χAB, determines 
the tendency of A and B to phase separate. The two terms 
in equation (3.3) proportional to the regulator concentration 
cR describe the interactions between the regulator R and the 
demixing components A and B. To ensure that R acts as a 
regulator we choose these interaction parameters such that 
the regulator R does not demix from A or B. The terms in 
equation (3.3) with spatial derivatives represent contributions 
to the free energy associated with spatial inhomogeneities. 
We neglected a mixed term proportional to ∇cA · ∇cR since 
it has only little quantitative impact on the spatial profiles of 
the phase separated profiles [144].

In the following we consider a periodic system with a peri-
odic potential U(x) that varies solely along the x-coordinate. 
We choose a potential that affects the distribution of the regu-
lator component of the form

U(x) = −kBT ln (1 − Q sin (2πx/L)) ,� (3.4)

where 0  <  Q  <  1 characterises the strength of the potential 
and L denotes the size of the system along the x-direction.

In the case where the components A and R are dilute, 
νc̄A � 1 and νc̄R � 1, and for weak external potentials 
(κR(Q/L)2 � 1) such that the the gradient terms in free 
energy can be neglected, the profile of the regulator comp
onent is solely given by the external potential U(x) with the 
regulator profile cR(x) assuming the shape of negative sine 
function, − sin (2πx/L). Thus, the regulator profile has one 
minimum and one maximum in the periodic domain. The 
interaction of such a regulator profile with the components A 
and B causes a positional dependence of their concentration 
profiles. We would like to understand how these interactions 
affect the system if A and B phase separate.

For simplicity, we also consider a one-dimensional system 
of size L in the absence of boundaries. In this one-dimensional 
system the periodic boundary conditions are ci(0) = ci(L) and 
c′i(0) = c′i(L), where the primes denote spatial derivatives. For 
the considered case of an external potential U(x) varying only 
along the x-coordinate, the restriction to a one dimensional, 
phase separating system represents a valid approximation for 
large system sizes, where the interface between the condensed 
phases becomes flat.

3.1.3.  Minimisation of the free energy.  To find the equilibrium 
states in a phase separating system in the presence of a regulator 
gradient induced by the external potential U(x), we determine 
the concentration profiles ci(x) of all components i = A, B, R 
by minimising the total free energy (equation (3.3); see [144]). 
Due to particle number conservation, there are two constraints 

for the minimisation: c̄i = L−1
∫ L

0 dx ci(x) for i = A, R, where 

c̄i are the average concentrations and c̄B = ν−1 − c̄A − c̄R. 
Variation of the total free energy with the constraints of par-
ticle number conservation implies (i = A, R):

0 =

∫ L

0
dx

(
∂ftot

∂ci
− d

dx
∂ftot

∂c′i
+ λi

)
δci + κiδcic′i

∣∣∣∣
L

0
,� (3.5)

where λR and λA are Lagrange multipliers and the δci  is the 
variation of the concentration corresponding to component i. 
The boundary term in equation (3.5) is zero in the case of peri-
odic boundary conditions. Using the explicit form of the free 
energy density (equation (3.3)), a set of Euler–Lagrange equa-
tions  can be derived from equation  (3.5) (see [144]). These 
equations can be solved numerically using a finite difference 
solver but also approximately investigated analytically (see 
section  3.1.5). As control parameters we consider the three 
interaction parameters χAR, χAB and χBR, the strength of the 
external potential Q and the mean concentration of A-material, 
c̄A. The mean concentration of the regulator material is fixed 
to a small volume fraction νc̄R = 0.02 in all presented studies 
to avoid phase separation of the regulator. Moreover, we focus 
on the limit of strong phase segregation, where the interfa-
cial width determined by κA are small compared to the system 
size. We verified that our results depend only weakly on the 
specific values of κA and κR.

3.1.4.  Discontinuous switching of average position of phase 
separated concentration profiles in external fields.  Solving 
the Euler–Lagrange equations, we find two extremal profiles 
of the phase separating component A, c−A (x) and c+A (x), and two 
corresponding profiles of the regulator component R, denoted 
as c−R (x) and c+R (x) (the profile of B follows from number con-
servation). The phase separating material A can be accumu-
lated at larger regulator concentration and correlates (+) with 
the concentration of the regulator material (figure 3(a)). The 
corresponding solutions are c+A (x) and c+R (x). Alternatively, 
the A-material accumulates at smaller regulator concentra-
tions (c−A (x) and c−R (x)) corresponding to an anti-correlation 
(−) with respect to the regulator profile (figure 3(b)). The 
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free energies of the correlated and the anti-correlated states, 
F+ = F[c+A , c+R ] and F− = F[c−A , c−R ], are different for most 
interaction parameters. The free energies only intersect at one 
point χBR = χ∗

BR (figure 4(a)). At this point the minimal free 
energy exhibits a kink. This means that the system undergoes 
a discontinuous phase transition when switching between a 
spatially anti-correlated (−) and a spatially correlated (+) 
solution with respect to the regulator.

To study this phase transition, the appropriate set of order 
parameters can be defined from the changes of the free energy 
upon varying the interaction parameters (see figure 4):

ρij = (kBTNijνL)−1 d
dχij

∆F(ci(x), cj(x)) ,� (3.6)

where ∆F(ci(x), cj(x)) = F(ci(x), cj(x))− F(c̄i, c̄j). The 
normalisation Nij  is chosen such that −1 < ρij < 1. When 
inserting equation (3.3), the order parameter ρij  becomes the 
covariance,

ρij = (NijL)
−1

∫ L

0
dx (ci(x)cj(x)− c̄ic̄j) ,� (3.7)

which characterises the spatial correlation between the con-
centration profiles ci(x) and cj (x). If the fields are spatially 
correlated (+), ρij > 0, and if they are anti-correlated (−), 
ρij < 0, and ρij = ±1 if the concentration profiles of comp
onent i and j  follow spatially correlated or anti-correlated step 
functions. If the regulator is homogeneous, cR(x) = c̄R, the 
order parameter is zero, ρiR = 0 for i = A, B.

Varying the interaction parameter χBR (figure 4(b)), the 
order parameters ρBR and ρAR jump at the threshold value χ∗

BR. 
The jump of both order parameters in the presence of a regu-
lator gradient indicates that the spatial correlation of A and B 
with respect to R changes abruptly, which is expected in case 
of a first order phase transition.

By means of the order parameter ρBR (equation (3.7)) we 
can now discuss the phase diagrams as a function of the inter-
action parameters. In the case of a spatial correlation (+), we 
have ρij > 0, while for an anti-correlation (−), ρij < 0. We 
thus find three regions (figure 4(c)): a mixed region, where 
concentration profiles are only weakly inhomogeneous, and 

no phase separation occurs, and two additional regions, where 
components A and B phase separate and A is spatially cor-
related or anti-correlated with the regulator R, respectively. 
There exists a triple point where all three states have the same 
free energy.

In summary, the presence of a concentration gradient 
in phase separating systems leads to equilibrium states of 
different spatial correlation with the regulator profile. The 
regulator gradient creates a bias in the position of the phase 
separated concentration profiles for almost all parameters 
in the phase diagram. If the external potential acting on the 
regulator has exactly one minimum and one maximum, there 
are two stationary states with different mean positions of 
the phase separating material. One of these stationary states 
corresponds to a global minimum of the free energy while 
the other state may only be locally stable. The parameters 
characterising the interactions between the regulator and the 
phase separating material determine which of these states 
corresponds to equilibrium. There is a discontinuous phase 
transition between both states upon changing these interac-
tion parameters.

For simplicity we have discussed a phase separating sys-
tem in the presence of an external potential restricting to 
inhomogeneities in one dimension. However, preliminary 
Monte-Carlo studies in three dimensions with phase separated 
droplets in a regulator gradient suggest that the position of 
droplets can be switched in a discontinuous manner.

3.1.5.  Analytic argument of the occurrence of a discontinu­
ous phase transition.  In the previous section we have con-
sidered the numerical minimisation of a set of non-linear 
Euler–Lagrange equations derived from the free energy den-
sity (equation (3.3)). Here we give some approximate ana-
lytic arguments to understand the minimal ingredients for 
the occurrence of the discontinuous phase transition. To this 
end, we would like to simplify the system further and con-
sider the dilute limit of the regulator, i.e. νc̄R � 1 and thus 
approximate c̄B � 1 − ν−1c̄A in equation  (3.3). For such 
dilute conditions, the equilibrium concentrations (for A comp

onent) in each phase, c(0)
in  and c(0)

out, are then well described 

Figure 3.  Spatial regulation of phase separation in an external potential by a discontinuous phase transition. The regulator forms a spatially 
inhomogeneous profile due to an external potential. As the interactions with the regulator are changed, the spatial distribution of component 
A switches from a spatially correlated (left) to an anti-correlated (right) distribution with respect to the regulator. The switch corresponds to 
a discontinuous phase transition.
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by the binary A-B system. In addition, for strong enough 
external potential U(x), the regulator profile is well approxi-
mated by, cR(x) = Ã − B̃ sin (2πx/L), apart from the peaks 
(see figure 3), where Ã > 0 is some concentration offset and 
B̃ > 0 characterises the strength of the spatial modulations 
of the regulator profile. For a discussion of the relevance of 
the regulator peaks at the interface see [144]; here we simply 
neglect these peaks for simplicity. We expect that the extrema 
of the regulator profile cR(x) at x = L/4, 3L/4, determine the 
position of the A-rich condensed phase. As obtained from the 
numerical analysis presented in the last section, there are two 
solutions, either spatially correlated (+) or anti-correlated (−) 
with the regulator. These solutions can be approximated in the 
dilute limit of the regulator as:

c+A (x) � c(0)
out +

(
c(0)

in − c(0)
out

)
Θ(x − 3L/4 + x0/2)

×Θ(3L/4 + x0/2 − x) ,
�

(3.8a)

c−A (x) � c(0)
out +

(
c(0)

in − c(0)
out

)
Θ(x − L/4 + x0/2)

×Θ(L/4 + x0/2 − x) ,
�

(3.8b)

where Θ(·) denotes the Heaviside step function. These solu-
tions describe the A-rich domains either localised around the 
maximal (+) or minimal (−) amount of regulator. The domain 
size of the A-rich phase denoted as x0 is determined by conser-
vation of particles, i.e. c̄AL =

∫
dxc+A (x) =

∫
dxc−A (x), lead-

ing to x0 = L(c̄A − c(0)
out )/(c

(0)
in − c(0)

out ). Using the approximate 
solutions above we can calculate the difference in free energy 
corresponding to correlated and anti-correlated states,

F+ − F− � W kBT L (χAR − χBR) B̃ ,� (3.9)

where W = 2π−1 sin
(
π x0

L

)
> 0 is a positive constant. Note 

that all contributions apart from the A-R and B-R interaction 
vanish in the dilute limit and due to conservation of A and 
B material. Since the parameter B̃ characterises the concen-
tration modulations of the regulator profile, the free energy 

difference (F+ − F−) consistently vanishes for zero B̃ (equa-
tion (3.9)). In the case of non-zero B̃, the free energy differ-
ence is determined by the difference in the interactions of A 
and B with respect to the regulator R, ∆χ = χAR − χBR. Most 
importantly, at ∆χ = 0, the two solutions switch their ther-
modynamic stability: for ∆χ > 0, the anti-correlated state is 
favoured, while for ∆χ < 0, the correlated state is preferred; 
∆χ = 0 indicates the transition point. In addition, the slopes 
of correlated and anti-correlated free energy, F+ and F−, with 
respect to ∆χ at the transition point are not equal. The differ-
ence in slopes implies that the minimal free energy exhibits 
a kink at the transition point ∆χ = 0, which means that the 
system undergoes a discontinuous phase transition switching 
from a correlated to an anti-correlated state for increasing ∆χ. 
The discontinuous phase transition occurs at ∆χ = 0, which 
agrees with the numerical predictions shown in figure  4(c) 
(note that the corresponding volume fraction of the regulator 
is rather dilute). Our approximate analytic treatment indicates 
that the occurrence of a discontinuous phase transition solely 
relies on the existence of the position-dependent profile of the 
regulator and the interactions of the regulator molecules with 
the liquid condensed phases. It seems that the peaks of regu-
lator material at the interface of the condensed phase, which 
we neglected in this approximate analytic argument, are not 
necessary to observe the discontinuous transition. The discon-
tinuous nature may also be preserved if the regulator gradient 
is driven by boundary conditions? We leave this question to 
future research.

3.2.  Dynamics and coarsening of droplets in concentration 
gradients

In this section we discuss the dynamics of multiple droplets 
in a one-dimensional gradient of a regulator component that 
affects the phase separation of droplets. For simplicity, we 
consider the case where the regulator profile is not affected by 
the phase separating components. Given a regulator gradient 

Figure 4.  Discontinuous phase transition of a ternary phase separating systems in a periodic potential and with periodic boundary 
conditions. (a) Free energy F as a function of the B-R interaction parameter χBR. F− and F+ are the free energies of the correlated and 
anti-correlated stationary solution with respect to the regulator gradient, respectively. Lines are dashed when solutions are metastable. At 
χ∗

BR, F− and F+ intersect and the solution of minimal free energy exhibits a kink. This shows that the transition between correlation and 
anti-correlation is a discontinuous phase transition. (b) The order parameter ρBR corresponding to the solution of minimal free energy jumps 
at χ∗

BR. (c) Phase diagrams of our ternary model for spatial regulation in a periodic potential and periodic boundary conditions (νc̄A = 0.1). 
The colour code depicts the order parameter ρBR. Component B is spatially correlated (+) with the regulator profile if ρBR > 0, and anti-
correlated (−) otherwise. When the system is mixed, ρBR ≈ 0, and spatial profiles of all components are only weakly inhomogeneous 
(no phase separation). The black lines corresponds to the transition where the free energy has a kink. Parameters for (a)–(c): χAR = 1, 
νc̄A = 0.5, νc̄R = 0.02, κR/(kBTνL2) = 7.63 · 10−5, κA/(kBTνL2) = 6.10 · 10−5, Q  =  0.5. For (a) and (b), χAB = 4. For plotting, 
ν = L/256 was chosen.
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cR(x) we introduce a set of physical quantities such as the 
position dependent supersaturation, which determine the inho-
mogeneous ripening dynamics. These quantities depend on 
position and will be used to develop a generic theory of drop-
let ripening in concentration gradients. This theory extends 
the classical laws of droplet growth derived by Lifschitz & 
Slyozov [5] and can explain the positioning of droplets in con-
centration gradients by droplet drift and spatially dependent 
growth.

3.2.1.  Spatially varying supersaturation.  Here, we discuss 
the ripening dynamics of droplets in a regulator gradient that 
varies only along the x-coordinate. To this end, we modify 
the concept of a common far field concentration introduced 
in section 2.5.3 to a concentration field c∞(x) that changes on 
the length scale of the system size L.

In the absence of a regulator gradient, the concentration 
outside approaches the ‘far field’ of the droplet, c∞, as the dis-
tance to the droplet interface increases. The far field is created 
by the surrounding droplets and is well reached if the length 
scale � corresponding to the mean distance between droplets 
exceeds the droplet radius R, i.e. � � R.

In the presence of a regulator gradient varying along the 
x-coordinate, the far field c∞(x) seen by the droplet is now 
also position dependent and can be approximately written as:

c∞(x) � 1
LyLz

∫ Ly

0
dy

∫ Lz

0
dz cout(x, y, z) ,� (3.10)

where cout(x, y, z) is the concentration field outside the 
droplets and Ly  and Lz denote the system size in the y  and 
z-direction, respectively. The expression above is an approx
imation because we have neglected weak concentration per-
turbations close to droplet interfaces described by the Gibbs 
Thomson relationship (2.45). However, for the typical case of 
droplet radii exceeding the capillary length (R � �γ ) and the 
mean inter-droplet distance being larger than the droplet size 
(� � R), these concentration perturbations are very small (see 
section 2.5.1).

Finally, to make sure that the spatial variations of the 
position dependent far field are large on the system size but 
comparably small on the droplet scale, we consider the case 
where all these length scales separate, �γ � R � � � L. This 
separation of length scales will allow us to investigate weak 
perturbations of the droplet shape parallel to the concentration 
gradient and also to construct the equilibrium concentration at 
each position x along the gradient.

The separation of length scales suggests dividing the system 
into independent slices of a size corresponding to the interme-
diate length scale �. The phase separation dynamics can then 
be discussed locally for each position x corresponding to a 
slice element of linear length �. For this discussion, we con-
sider a simplified model with a free energy density given by 
equation (3.3) and calculate the corresponding phase diagram 
(figure 5(a)). If the droplet material is roughly constant, each 
position x maps on a single point in the phase diagram because 
the regulator profile is fixed. The corresponding curve in the 

phase diagram due to the spatial dependence of the regulator 
defines local values of the equilibrium concentrations inside 
and outside of the droplet (figure 5(b)). In other words, drop-

lets in the slice corresponding to the position x feel the local 

equilibrium concentrations, c(0)
in (x) and c(0)

out (x). For simplicity, 
we restrict ourselves to a special case where the equilibrium 

concentration inside is position independent, c(0)
in (x) � c(0)

in , so 
droplet growth is solely determined by the conditions outside 
of the droplet. Moreover, as concentration inhomogeneities of 

droplet material are generally weak, we do not consider weak 

transients of c(0)
out (x) due to the space and time varying c∞(x). 

The actual concentration of droplet material outside, c∞(x), 
together with the equilibrium concentration outside, c(0)

out (x), 
determine a spatially dependent supersaturation

ε(x) =
c∞(x)

c(0)
out (x)

− 1 .� (3.11)

There is a dissolution boundary located at the position x = xc 
where the supersaturation ε(xc) = �γ/R. For the considered 
case of �γ � R, this boundary approximately corresponds to a 
vanishing supersaturation ε(xc) � 0. In the illustration in fig-
ure 5(a), the fluid is mixed for x < xc, while droplets can form 
(ε > 0) for x > xc. In the absence of droplets, the concentra-
tion field c∞(x) evolves in time satisfying a diffusion equa-
tion, which we will derive in the next section. When droplets 
are nucleated, their local dynamics of growth or shrinkage is 

guided by the local supersaturation ε(x) as well as c(0)
out (x) (see 

section 2.5.3). This local droplet dynamics then in turn also 
influences the concentration field c∞(x). As time proceeds, 
diffusion of droplet material occurs on length scales larger 
than the intermediate length scale �. For this regime, we will 
derive a dynamical theory and extend the Lifschitz & Slyozov 
theory to concentration gradients.

Figure 5.  (a) Sketch of a ternary phase diagram as a function of the 
homogenous regulator concentration cR and the droplet material cA. 
The tie lines (green) connect the equilibrium concentration values 
of the coexisting phases. Each position x of a system subject to a 
different regulator gradient (e.g. blue line in (b)) may correspond to 
a point in the phase diagram along the orange line. If the position 
is inside the phase separation region, droplets can form, while 
outside phase separation is absent. The position xc, referred to 
as dissolution boundary, marks the location below which there is 
no phase separation and vice versa. (b) Sketch of a representative 
regulator gradient cR(x) (blue) and the equilibrium concentration 

c(0)
in (x) and c(0)

out (x) obtained from the phase diagram (a).
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3.2.2.  Dynamics of a single droplet in a concentration gradient.   

A regulator concentration gradient generates a position-

dependent equilibrium concentration c(0)
out (x) and a posi-

tion-dependent supersaturation ε(x) (equation (3.11)). This 
supersaturation will drive the droplet dynamics and lead 
to a position-dependent growth, drift of droplets and even 
deformations of their shape. In the following, we discuss the 
dynamics of growth of a single droplet where the equilibrium 

concentration, c(0)
out (x), and the concentration of droplet mat

erial, c∞(x), are position dependent. The case of multiple 
droplets is studied in the next section.

The concentration inside the droplet can be approximated 

by the equilibrium concentration ceq
in � c(0)

in  in the limit of 

strong phase separation (c(0)
in � c(0)

out; see section  2.5.1). 
This allows us to restrict the analysis to the concentration 
field c(r, θ,ϕ) outside of a droplet. Here, we use spherical 
coordinates centred at the droplet position x0, with r denot-
ing the radial distance from the centre, and θ and ϕ are the 
azimuthal and polar angles relative to the x-axis. Within the 
quasi-stationary approximation (see section 2.5.2) the concen-
tration outside but near the droplet obeys the steady state of 
a diffusion equation (2.50). For large r the concentration field 
approaches the ‘far field’ which in the presence of a linear 
gradient reads (figure 6):

c∞ = lim
r→∞

c(r, θ,ϕ) � α+ β r cos θ .� (3.12)

This inhomogeneous far field concentration is locally (with 
respect to inter-droplet distance �) characterised by the con-
centration α = c∞(x0) and the gradient β = ∂xc∞(x)|x0 at the 
position of the droplet x0. At the surface of the spherical drop-
let, r  =  R, the boundary condition is

c(R, θ,ϕ) = ceq
out(θ)

�
(

c(0)
out + R cos(θ)∂xc(0)

out (x)|x0

)
(1 + �γ/R) .

�

(3.13)

Here, �γ is the capillary length as introduced in section 2.5.1. 
Equation (3.13) corresponds to the Gibbs–Thomson relation 
(see section  2.5.2), which describes the increase of the 
local concentration at the droplet interface relative to the 

equilibrium concentration due to the surface tension of the 
droplet interface. The presence of spatial inhomogeneities on 
the scale of the droplet R leads to an additional term in the 
Gibbs–Thomson relation. To linear order, this contribution to 
ceq

out reads R cos(θ)∂xc(0)
out (x)|x0. The values of β and α charac-

terising the far field, c∞(x0), together with the local equilib-
rium concentration at the droplet surface, ceq

out(θ), determine 
the local rates of growth or shrinkage of the drop at x  =  x0 in 
a spatially inhomogeneous regulator gradient.

The solution to the Laplace equation with cylindrical sym-
metry is of the form c(r, θ) =

∑∞
i=0

(
Airi + Bir−i−1

)
Pi(cos θ), 

where Pi(cos θ) are the Legendre polynomials. Using the bound-
ary conditions (3.12) and (3.13), we find

c(r, θ) = α

(
1 − R

r

)
+ β cos θ

(
r − R3

r2

)

+
(

c(0)
out + R cos(θ)∂xc(0)

out (x)|x0

)(
1 +

�γ
R

)
R
r

.

� (3.14)

The droplet could grow, drift or deform due to normal fluxes 
of droplet material at the interface leading to a movement 
of the interface. The speed normal to the interface reads 
vn = n · vn, where n denotes the normal vector to the inter-
face. In case of a spherical droplet, n = er , where er  is the 
radial unit vector in spherical coordinates. In the limit of 

strong phase separation, i.e. c(0)
in � c(0)

out, ceq
in � c(0)

in , the 

velocity normal to the interface, vn (equation (2.47)), can 

be expressed by vn � n · (jin − jout)/c(0)
in . For weak spatial 

variations inside and outside of the droplet, the local flux is 
defined as j = −D∇c. The concentration inside the droplet 
is approximately constant and for simplicity we consider it to 
be independent of the droplet position. Thus, the flux inside 
the droplet vanishes, jin = 0, while the flux outside reads 
jout = −D∇c|R .

Now we discuss how the normal speed vn can be used to 
calculate the droplet growth speed v0, the droplet drift velocity 
v1, and the rate of deformations from the spherical shape, v2. To 
this end, we parametrise the surface of the droplet in terms of 
Legendre polynomials as there is no dependence on the polar 
angle, which gives R(θ, t) =

∑
i di(t)Pi (cos θ), where di(t) are 

the expansion coefficients characterising the shape of the inter-
face. The corresponding interface velocity of an approximately 
spherical droplet is vn � ∂tR(θ, t) =

∑
i vi(t)Pi (cos θ), 

where the speeds for droplet growth, drift and deformations 
along the regulator gradient read vi(t) = ∂tdi(t). We can now 
identify the radius R as d0 = 〈R, P0〉/〈P0, P0〉, the position of 
the droplet center x0 as d1 = 〈R, P1〉/〈P1, P1〉, and the defor-
mations are characterised by d2 = 〈R, P2〉/〈P2, P2〉 Here, the 
brackets indicate the scalar product 〈h, g〉 =

∫ π

0 dθ sin θ h g 
between the functions g and h. Most importantly, we can 
identify v0 = dR/dt  as the rate of change of the radius and 
v1 = dx0/dt as the drift velocity of the droplet center.

Using equation (3.14), we find for the droplet growth speed

dR
dt

=
D

c(0)
in R

[
α− c(0)

out (x0)

(
1 +

�γ
R

)]
.� (3.15)

Figure 6.  Sketch of the concentration field inside and outside of a 
droplet in a position-dependent supersaturation field. The droplet 
centre is located at x  =  0. The equilibrium concentration inside is 
ceq

in . Right outside the droplet at ±R the concentration is given by 
the Gibbs–Thomson relation ceq

out (equation (3.12)). Far away from 
the droplet centre, the concentration approaches c∞(x) (equation 
(3.13)).
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In the presence of concentration gradients there also exists a 
net droplet drift speed

dx0

dt
=

D

c(0)
in

[
3β − ∂xc(0)

out (x)|x0

(
1 +

�γ
R

)]
,� (3.16)

where we found in contrast to [31] an additional factor of 3 
in front of the coefficient β. Note that both the growth rate 
and the drift speed are proportional to the molecular diffusion 
constant D of droplet material.

If the far field c∞(x) is well parametrised by a linear gra-
dient (equation (3.12)), there are no deformations from the 
spherical shape, v2 = 0. Deformations of the spherical shape 
can only occur if higher order polynomials Pn(cos θ) with 
n � 2 are necessary to describe the far field. If we include the 
quadratic order in the parametrisation of the far field (equation 
(3.12)), (r cos θ)2∂2

x c∞(x)|x0, the deformation speed reads 

v2 = (10/3)(RD/c(0)
in )∂2

x c∞(x)|x0. This quadratic contribution 
does not affect the droplet drift v1 but the growth law v0 is 
changed. The quadratic term gives an extra contribution inside 
the brackets of equation (3.15) of the form (5/3)R2∂2

x c∞(x)|x0. 
Thus, shape deformations and their impact on the growth law 
in the case of a non-linear far field gradient are negligible if

5∂2
x c∞(x)|x0

3c∞(x)|x0

R2 � 1 .� (3.17)

For the system under consideration where length scales sepa-
rate, i.e. R � � � L, deformations from the spherical shape 
are weak because gradients of the far field c∞(x) occurs on 
the length scale of the system size L. In recent numerical stud-
ies considering a continuous phase separating Flory–Huggins 
model in a regulator gradient maintained by sink and source 
terms, droplet deformations are indeed visible when droplets 
approach the order of the system size [91].

3.2.3.  Dynamical equation of multiple droplets in a concentra­
tion gradient.  We can now describe the dynamics of many 
droplets, i = 1, . . . , N, with positions xi and radii Ri. If drop-
lets are far apart from each other, the rate of growth of droplet 
i reads

dRi

dt
=

D
Ri

c(0)
out (xi)

c(0)
in

[
ε(xi)−

�γ
Ri

]
.� (3.18a)

The drift velocity of droplet i, v1(xi) = dxi/dt, is

dxi

dt
=

D

c(0)
in

[
3∂xc∞(x)|xi − ∂xc(0)

out (x)|xi

(
1 +

�γ
Ri

)]
.� (3.18b)

If the distance between droplets is large relative to their size, 
droplets only interact via the far field concentration field 
c∞(x, t). It is governed by a diffusion equation including gain 
and loss terms associated with growth or shrinkage of drops:

∂tc∞(x, t) = D
∂2

∂x2 c∞(x, t)

− H(t)
N∑

i=1

δ(xi − x)
4π
3

d
dt

Ri(t)3 ,
�

(3.18c)

where the time-dependent function

H(t) =
c(0)

in − c∞(t)

V −
∑N

i=1 δ(xi − x) 4π
3 Ri(t)3

� (3.19)

is approximately constant, H � c(0)
in /V , in the limit of strong 

phase separation c(0)
in � c∞(t) and for very large inter-drop-

let distances corresponding to V �
∑N

i=1 δ(xi − x) 4π
3 Ri(t)3   

with V .
Equation (3.18c) describes the effects of large scale spatial 

inhomogeneities on the ripening dynamics for the case of a 
regulator gradient varying along the x-axis. Since large scale 
variations of c∞(x, t) only build up along the x-directions, 
derivatives of c∞ along the y  and z directions do not contribute 

as c∞ and c(0)
out are constant along these directions.

In the absence of a regulator gradient, c(0)
out and c∞ are con-

stant in space implying a position-independent and common 
supersaturation level ε for all droplets (equation (3.11)). In 
this case equation  (3.18a) gives the classical law of droplet 
ripening derived by Lifschitz–Slyozov [5, 6] (also referred 
to as Ostwald ripening) and the net drift vanishes (equation 
(3.18b)). In the case of Ostwald ripening, droplets larger 
than the critical radius Rc = �γ/ε grow at the expense of 
smaller, shrinking drops, which then disappear. This com-
petition between smaller and larger drops causes an increase 
of the average droplet size and a broadening of the droplet 
size distribution with time. Ostwald ripening is characterised 
by a supersaturation that decreases with time, leading to an 
increase of the critical droplet radius Rc = �γ/ε(t) ∝ t1/3. 
The droplet size distribution P(R) exhibits a universal shape 
and is nonzero only in the interval [0, 3Rc/2] (figure 7(b), 
blue graph). In other words, there are no droplets larger than 
3Rc/2 and thus also no droplets exist beyond the maximum 
of dR/dt  at R = 2Rc where larger droplet could grow slower. 
Therefore, in homogeneous systems the broadening of P(R) 
follows from larger droplets growing at a larger rate dR/dt  
than smaller droplets and, because all droplets feel the same 
supersaturation level, droplets remain homogeneously distrib-
uted in the system. In the presence of a regulator gradient the 
droplet dynamics exhibits a different behaviour.

3.2.4.  Droplet positioning via position dependent growth 
and drift.  There are two novel possibilities of how droplet 
material is transported: there is exchange of material between 
droplets at different positions along the concentration gradient 
due to a position dependent droplet growth, and droplets can 
drift along the concentration gradient.

Droplets grow or shrink with rates that vary along 
the gradient because the local equilibrium concentra-

tion c(0)
out (x) and the far field concentration c∞(x) are posi-

tion dependent (equation (3.18a)). For a supersaturation 

ε(x) =
(

c∞(x)/c(0)
out (x)− 1

)
> �γ/R, a droplet located at 

position x grows, and shrinks in the opposite case. In other 
words, the critical droplet radius depends on position, and 
droplets with radii below or above Rc(x) = �γ/ε(x) shrink 
or grow, respectively. This position dependence implies a 
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movement of the dissolution boundary xc(t) which is defined 
by ε(xc(t)) = �γ/R (equation (3.11)). This definition can be 
simplified for the case where the capillary length, which is typ-
ically in the order of the molecular size, is small relative to the 

droplet radii, i.e. �γ � R, leading to c∞(xc(t)) � c(0)
out (xc(t)). 

Taking the derivative in time gives the speed of the dissolution 
boundary, vc(t) =

dxc(t)
dt :

vc(t) =
dc∞(x)

dt

∣∣∣∣
x=xc(t)

/
dc(0)

out (x)
dx

∣∣∣∣
x=xc(t)

.� (3.20)

We can now discuss the movement direction of the dissolu-
tion boundary. If droplets can grow in the system, the far field 

concentration should decay, dc∞
dt < 0. Thus, the dissolution 

boundary always moves toward positions corresponding to 

smaller values of c(0)
out. When the dissolution boundary moves 

through the system it dissolves all droplets on its way. The dis-
solved droplet material will diffuse and feed the growth of the 
remaining droplets. Thus, the moving dissolution boundary 
positions the phase separated material toward one boundary of 

the system corresponding to the lower values of the position-

dependent equilibrium concentration c(0)
out (x).

Another mechanism of positioning is via droplet drift 
(equation (3.18b)). The drift of a droplet results from an asym-
metry of material flux at the interface parallel to the regulator 
gradient. To be more specific, we have to distinguish between 
the scenario of many droplets and the case of a single drop-
let. In the case of many droplets, the presence of these drop-
lets keeps the position-dependent supersaturation small, thus 
dc∞

dx � dc(0)
out

dx . Using the derived equation  (3.16) for droplet 

drift, the drift of droplet ‘d’ in a system with many droplets 
roughly follows

dxd

dt
� 2

D

c(0)
in

dc(0)
out

dx
.� (3.21)

This equation implies that droplets drift into the opposite direc-
tion of the dissolution boundary. Thus, droplets are pulled 
toward dissolution making it impossible for them to escape their 
dissolution via drift. This picture can be different for a single 
droplet. When diffusion of droplet material is fast, the far field 

concentration is expected to be roughly homogeneous, dc∞
dx � 0. 

As a consequence, the droplet drifts in the same direction as the 
dissolution boundary in the case of single droplet:

dx0

dt
� − D

c(0)
in

dc(0)
out

dx
.� (3.22)

The droplet may thereby escape its dissolution by drift. The 
drift of a single droplet in a roughly homogeneous far-field 
concentration should be driven by the efflux of material at the 
back, which diffuses to the front of the droplet (droplet front is 
faced into the direction of movement of the dissolution bound-
ary). Droplet movement then arises from asymmetric drop-
let growth between the back and the front of the droplet. The 
associated time-scale of this process is roughly given by the 
time to diffuse along the droplet radii, i.e. R2/D. If this time-
scale is smaller than the time-scale R/vc necessary for the 
dissolution boundary to move the distance R, a single droplet 
may escape the dissolution boundary. Using equation (3.20) 
the condition for a single droplet to drift can thus be written as

D
dc(0)

out

dx
< R

dc∞
dt

.� (3.23)

Otherwise, the droplet would dissolve and typically recon-
dense via nucleation in domains corresponding to lower values 

of the position-dependent equilibrium concentration c(0)
out (x).

3.2.5.  Narrowing of the droplet size distribution.  Numer
ically solving equation (3.18) for a large number of droplets 
we find that the droplet size distribution narrows during the 
positioning of droplets toward one boundary of the system. 
For details on the numerics, please refer to [31]. This narrow-
ing of the droplet size distribution in a concentration gradient 
is fundamentally different from the broadening of the drop-
let size distributions during classical Ostwald ripening [5, 6]; 
see figure 7 for an illustration of the mechanism underlying 

Figure 7.  Sketch depicting the mechanism of the narrowing of 
the droplet size distribution due to the presence of concentration 
gradients. (a) The black curve depicts the droplet growth speed 
dR/dt  before the spatial quench, where the system undergoes 
Ostwald ripening with a homogenous far field c∞ and a 
homogenous equilibrium concentration c(0)

out (0). The corresponding 
droplet size distribution is shown in (b). The spatial quench 
c(0)

out (x) = c(0)
out (0) (1 − m x) with m > 0 reduces the equilibrium 

concentration at x  =  L. Therefore, the local supersaturation 
increases which amounts to a decrease of the critical radius at 
x  =  0 from Rc(0) to Rc(L) (indicated by red arrow). This change 
in supersaturation changes the droplet growth velocity dR/dt  
(orange). Subsequent to such a spatial quench almost all droplets 
at x  =  L grow. However, larger droplets typically grow less than 
smaller drops. Consequently, the size distribution will narrow. The 
narrowing is most pronounced close to the rightmost boundary at 
x  =  L since the moving dissolution boundary dissolves all droplets 
at x  <  L. In addition, the dissolution of these droplets will keep 
the far field concentration c∞(x) at x  =  L at increased level which 
maintains a small value of critical radius until the dissolution 
boundary has reached the boundary at x  =  L.
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the narrowing. Imagine we spatially quench the system 
by imposing a spatially varying equilibrium concentration 
c(0)

out (x) = c(0)
out (0) (1 − m x), where c(0)

out (0) denotes the equilib-
rium concentration before the quench and m  >  0 is the slope 
of the ‘spatial quench’. Such a spatial quench reduces the crit-
ical radius at the right boundary at x  =  L from Rc(0) (critical 
radius before the quench) to Rc(x = L) = �γ/ε(x = L) (equa-
tion (3.11)). This quench also shifts the maximum of dR/dt  
for droplets at x  =  L to smaller radii since the radius corre
sponding to the maximum occurs at R = 2Rc. After the spatial 
quench there are many droplets with radii R > 2Rc(x = L). 
According to dR/dt  (figure 7(a)) these droplets grow more 
slowly than those around R = 2Rc which leads to a narrow-
ing of the droplet size distribution P(R) at x  =  L. The criti-
cal radius Rc(x = L) remains small because dissolution of 
droplets at x  <  L leads to a diffusive flux toward x  =  L and 
thus keeps the concentration c∞(L) at increased levels. These 
conditions hold for a longer time if the spatial quench has a 
steeper slope. As a result, the distribution narrows more for 
steeper quenches. For weak enough slopes of the quench, the 
narrowing of the droplet size distribution vanishes, but droplet 
positioning still occurs as long as this slope is not zero.

When the dissolution boundary reaches the boundary close 
to x  =  L the critical radius catches up with the mean droplet 
size. Concomitantly, narrowing of the droplet size distribu-
tion stops. Because all droplets are approximately of equal 
size, the exchange of material between droplets via Ostwald 
ripening is slowed down dramatically. This slowing down of 
inter-droplet diffusion via Ostwald ripening leads to a long 
phase where droplet number and size are almost constant. 
Close to the end of this arrest phase, the droplet distribution 
begins to broaden slowly, and the dynamics approaches clas-
sical Ostwald ripening.

In summary, a concentration gradient of a regulator 
component that affects phase separation can significantly 
change the dynamics of droplet coarsening. The regulator 
gradient causes an inhomogeneity of the equilibrium con-
centration and the concentration field far away from the 
droplet. Both induce a position-dependent ripening pro-
cess where droplets can drift along the gradient and dis-
solve everywhere besides in a region close to one boundary 
of the system. During this positioning process of droplets 
to one boundary, the droplet size distribution can dramati-
cally narrow for steep enough quenches, which causes a 
transient arrest of droplet growth. After this arrest phase, 
the positioned droplets are subject to a locally homogenous 
environment and the system recovers the dynamics of clas-
sical Ostwald ripening.

4.  Droplets driven by chemical turnover

Droplets can also be controlled by chemical reactions that 
directly affect the concentrations of the segregating species. 
For instance, building blocks B that form droplets could 
emerge from precursors P by a chemical reaction. While sim-
ple conversion reactions typically suppress phase separation, 
chemical reactions that are driven by an external energy input 

allow for the control of the droplet size as well as the droplet 
count and can even lead to spontaneous droplet division. To 
describe such phenomena, we start by deriving the dynami-
cal equations from a thermodynamic consistent description of 
phase separation in the presence of chemical reactions.

4.1. Thermodynamics of chemical reactions

Before we consider the coupling of phase separation and 
chemical reactions, we review the thermodynamics of chemi-
cal reactions in homogeneous systems. To highlight the core 
concepts, we here focus on very simple chemical reactions.

4.1.1.  Chemical reactions in homogeneous systems.  We start 
by considering an isolated system where the two-chemical 
species, the building block B and the precursor P, are con-
verted into each other by the reaction

P � B.� (R1)
At constant temperature T and volume V , the system is described 
by a free energy F(NP, NB), where Ni are the particle numbers 
of type i = P, B. The thermodynamic equilibrium of the system 
corresponds to the minimum of F. The necessary condition for 
this minimum reads µPdNP + µBdNB = 0, where the chemi-
cal potentials are µP = ∂F/∂NP|NB

 and µB = ∂F/∂NB|NP
. 

Note that in contrast to phase separation without reactions, 
species can now be converted into each other and only the 
total number of particles, M = NP + NB, is conserved. This 
implies dNP = −dNB, such that the equilibrium condition 
requires µP − µB = 0. Consequently, at equilibrium, the 
chemical reaction equalises the chemical potentials of the two 
species.

The difference between the chemical potentials, µP − µB , 
also affects the relaxation rate toward equilibrium. This rate is 
quantified by the total reaction flux s = −dcP/dt = dcB/dt , 
where ci = Ni/V  denotes the concentrations in the homoge-
neous system for i = P, B. Since the reaction can proceed in 
both directions, the total reaction flux s = s→ − s← is given 
by the difference of the forward reaction flux s→ associated 
with the conversion of P to B and the reverse flux s←. As a 
consequence of detailed balance, the ratio of the two reaction 
fluxes obeys (see appendix C)

s→
s←

= exp

(
−µB − µP

kBT

)
,� (4.1)

which we call detailed balance of the rates [147]. The rela-
tion shows that the net direction in which the reaction pro-
ceeds depends on the sign of the chemical potential difference 
µB − µP . Moreover, the net reaction flux s vanishes at chemi-
cal equilibrium (µP = µB) since s→ = s←. Close to chemical 
equilibrium, equation (4.1) can be linearized and the reaction 
flux s = s→ − s← can be expressed as

s = −Λr(cP, cB) (µB − µP),� (4.2)

where the function Λr(cP, cB) determines the reaction rate. 
Λr(cP, cB) is an Onsager coefficient, which must be positive 
to ensure a positive entropy production rate [108, 123]; see 
appendix B.
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4.1.2.  Chemical reactions in inhomogeneous systems and sta­
bility of homogeneous states.  To describe chemical reactions 
in inhomogeneous systems, we assume local thermodynamic 
equilibrium, i.e. there exist local volume elements where ther-
modynamic quantities such as concentrations and temper
ature can be defined. This is possible when the local volumes 
equilibrate quickly compared to the rates of the processes that 
we want to describe. In particular, the exchange with neigh-
bouring volumes, associated with diffusive transport, and 
the conversion of particles into different species, associated 
with chemical reactions, should take place on timescales lon-
ger than the equilibration timescale of the volumes. If this is 
the case, a system of reacting and diffusing particles can be 
described by concentration fields ci(r) for all species i.

To study the interplay of the chemical reaction (R1) with 
phase separation, we first consider a binary, incompressible 
system described by the concentration of the droplet comp
onent, cB(r) = c(r), while cP(r) = ν−1 − c(r) with ν  denot-
ing the molecular volume of P and B. The behavior of the 
system is governed by the free energy F[c], which is now a 
functional of the concentration field c(r). For simplicity, we 
here consider the form

F[c] =
∫

d3r
(

f (c) +
κ

2
|∇c|2

)
,� (4.3)

which combines a local contribution of the free energy density 
f (c) with a term that accounts for the free energy costs of 
spatial inhomogeneities proportional to κ, analogous to sec-
tion 2.1.5. The exchange chemical potential µ̄ = µB − µP is 
thus given by µ̄ = δF[c]/δc. The resulting equilibrium condi-
tion of the chemical reaction is µ̄(r) = 0, which includes the 
equilibrium condition for phase separation, µ̄(r) = const.; see 
section 2.2.1.

The dynamical equation  of the system follows from the 
conservation law

∂tc +∇ · j = s,� (4.4)

where j is the diffusive flux and s is the net flux of the pro-
duction of species B by the reaction (R1). These two ther-
modynamic fluxes are driven by their respective conjugated 
forces ∇µ̄ and µ̄; see appendix B. Using linear response the-
ory, j = −Λ∇µ̄ and s = −Λrµ̄, we arrive at the dynamical 
equation

∂tc = ∇ ·
[
Λ(c)∇µ̄(c)

]
− Λr(c) µ̄(c),� (4.5)

which describes a binary system that exhibits phase sepa-
ration and chemical reactions. Note that we recover the 
Cahn–Hilliard equation  if chemical reactions are absent 
(Λr = 0); see equation (2.37). Conversely, in the limit where 
Λr  is constant and diffusive fluxes vanish (Λ = 0), we obtain 
the Allen–Cahn model [148], which is the deterministic ver-
sion of model A [124].

We study the effects of chemical reactions by first analyz-
ing the homogeneous equilibrium states c(r) = c0, which 
are governed by the equilibrium condition µ̄(r) = 0. This 
condition implies vanishing chemical reaction flux, see equa-
tion (4.2), and f ′(c0) = 0, so that c0 is a (local) extremum of 
the free energy density f (c). To assess the stability of these 

states, we consider harmonic perturbations with wave vector 
q, as described in section 2.4. In the linear regime, these per-
turbations grow with a rate

ω(q) = −
[
Λ(c0)q2 + Λr(c0)

][
f ′′(c0) + κq2].� (4.6)

The system is stable if all perturbations decay, i.e. if ω(q) < 0 
for all wave vectors q. Since Λ,Λr � 0, the stability is gov-
erned by the sign of the second bracket in equation (4.6) and 
the homogeneous state becomes unstable when f ′′(c0) < 0 
[149]. This condition is identical to the condition for the 
spinodal instability in the case without chemical reactions 
(Λr = 0). However, in the presence of chemical reactions, 
only the homogeneous states with f ′(c0) = 0 are stationary 
states because particles numbers of P and B are not conserved. 
In contrast, in the absence of chemical reactions, all homoge-
neous states are stationary with the homogeneous concentra-
tions of P and B being conserved. Particle conservation also 
implies ω(0) = 0, while the q  =  0 mode is unstable when 
chemical reactions are present; see figure 8(b).

Taken together, we showed that if the system settles 
in a homogeneous state it will attain minimal free energy  
[149, 150]; see figure 8(a). The major difference to the case 
without chemical reactions is that the species are not con-
served individually, and the system can thus relax by altering 
the composition locally. In the next section, we will show that 
this local conversion destabilises all inhomogeneous states 
including the ones corresponding to coexisting phases.

4.1.3.  Dissolution of droplets by chemical reactions.  We now 
investigate the stability of inhomogeneous states to see how 
chemical reactions that can relax to equilibrium (µ̄ = 0) affect 
droplets. As an example, we first discuss the Ginzburg–Landau 
free energy presented in equation (2.19). When chemical reac-
tions are present, this free energy permits two stable homoge-
neous solutions, corresponding to the two minima of the free 

Figure 8.  Schematic representation of the impact of chemical 
reactions on phase separation. (a) In chemical equilibrium, 
systems always settle in the minimum of the free energy density 
corresponding to the homogeneous concentration c0. Phase 
separated states with concentrations c1 = φ1/ν and c2 = φ2/ν are 
no more stable. (b) Growth rate as a function of the wavenumber 
q = |q| (q: wave vector) for phase separation in the absence of 
chemical reactions (grey), phase separation in the presence of a 
chemical reaction tending toward chemical equilibrium satisfying 
detailed balance of the rates (blue), and phase separation combined 
with non-equilibrium chemical reactions, which break detailed 
balance of the rates (red). The sign of s′(c0) can be adjusted by 
the chemical potential difference between fuel and waste, µ̄2, for 
example. The homogeneous concentration c0 is defined as the 
concentration at which s(c0)  =  0.
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energy density. Without chemical reactions, we have shown in 
section 2.2 that there is also a stable inhomogeneous stationary 
state, which consists of two bulk phases separated by an inter-
facial region. In the simple case of a one-dimensional system, 
the interfacial profile cI(x) is given by equation (2.28). This 
interfacial profile is also a stationary state in the case with 
chemical reactions, since the symmetric free energy implies 
vanishing chemical potentials in the two bulk phases and thus 
satisfies the equilibrium condition µ̄(r) = 0.

To scrutinise the stability of the interfacial profile in the 
presence of chemical reactions, we determine whether a small 
change δc in the concentration profile could possibly decrease 
the free energy. Mathematically, this corresponds to calculat-
ing the second variation ∆F[cI, δc] of the free energy, which 
is given by equation  (2.30). The stationary state is stable 
if ∆F[cI, δc] is positive for every nonzero variation δc. We 
show in appendix A that indeed almost all perturbations δc 
increase the free energy. The only exception is δc = ∂xcI , for 
which ∆F = 0, implying that this perturbation does not decay 
in time and the state is marginally stable. This perturbation 
corresponds to an infinitesimal translation, indicating that 
interfaces can move without changing the total free energy 
when chemical reactions are present. Note that this perturba-
tion does not conserve the mass of the individual species and 
is thus forbidden in the case without chemical reactions dis-
cussed in section 2.2.2. Taken together, we showed that the 
sigmoidal interface profile given by equation (2.28) is neither 
stable nor unstable in the special case of the Ginzburg–Landau 
free energy, where both minima have the same energy.

In the general case where the minima of the free energy 
density are at different energies (see figure 1(a)), the global 
free energy decreases when the interface moves such that the 
phase with the smaller free energy density expands [150]. 
Consequently, coexisting phases in asymmetric free ener-
gies are unstable due to the presence of chemical reactions. 
Similarly, curved interfaces are unstable (also in the case of a 
symmetric free energy density), since the associated Laplace 
pressure implies elevated concentrations on both sides of the 
interface; see equation (2.45). The Laplace pressure, and thus 
the concentrations and the free energy, decrease when the 
interface moves towards its concave side, implying that drop-
lets shrink [150]. Taken together, these arguments show that 
inhomogeneous states are generally unstable when chemical 
reactions are present, and the system attains the global free 
energy minimum everywhere; see figure 8(a).

A hint of these dynamics is visible in the simulation results 
shown in the middle column in figure 10, where the chemical 
potential difference µ̄ is very close to zero in the bulk phases 
but finite at the interfaces. In fact, the chemical potential devi-
ates from zero more strongly at interfacial regions of larger 
curvature. One consequence of this observations is that the 
local entropy production Λrµ̄

2 by the chemical reactions is 
also largest at the interfaces.

Taken together, we showed that droplets are destabilised 
by the simple conversion reaction (R1) obeying detailed bal-
ance of the rates. In particular, the system always settles in a 
homogeneous state, even if droplets appear initially due to a 
spinodal instability or nucleation. The reason for the initial 

appearance of droplets is that diffusion is fast on small length 
scales and the formation of droplets locally reduces the free 
energy density. On longer time scales, the chemical reaction 
drives the system into a homogeneous equilibrium state. To 
compensate this destabilisation of droplets due to the reac-
tion (R1) we will introduce an additional chemical reaction in 
the bulk phases. This chemical reaction is driven by fuel, and 
thereby breaks detailed balance of the rates and can prevent 
the chemical reaction to drive the system to a homogeneous 
equilibrium state. This additional chemical reaction allows 
us to control the behaviour of droplets. In particular, we will 
show that systems where droplet material is produced in one 
phase while it is destroyed in the other can lead to interest-
ing phenomena such as mono-disperse emulsions or dividing 
droplets.

4.2.  Phase separation with broken detailed balance  
of the rates

The detailed balance of the conversion reaction between the 
precursor P and the building block B can be broken effectively 
by coupling the system to an external energy supply. This can 

Figure 9.  Illustration of the fuel-driven chemical reactions and the 
diffusive fluxes relevant for an active emulsion. (a) The key feature 
required for an active emulsion is that precursor molecules P are 
turned into building blocks B by a chemical reaction that consumes 
energy. This energy could be supplied by fuel that turns into waste 
during this transition. Energy is dissipated when the building 
block of higher chemical potential spontaneously transitions to 
the precursor of lower chemical potential. The reaction rates, and 
thus also the lifetime of the building block, depend strongly on the 
chemical composition, i.e. whether the reaction takes place in a 
droplet or not [78, 151]. (b) This schematic depicts the processes 
occurring inside and outside of a building block rich droplet 
in an active emulsion considering the example of an externally 
maintained droplet. Building blocks inside such a droplet are turned 
into precursors. The resulting precursors diffusive out of the droplet 
where they may get transformed into building blocks again by the 
consumption of fuel. These building blocks may in turn diffusive 
into the droplet and replenish the spontaneously degraded building 
blocks inside the droplet.
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for instance be achieved by adding a second reaction that con-
verts P into B using additional energy supplied by fuel and 
waste components, which we respectively denote by F and W; 
see figure 9(a). The associated chemical reactions,

P � B,� (R1)

P + F � B + W,�
(R2)

will allow us to drive the system out of equilibrium by 
controlling the concentrations of F and W externally. To 
study the interplay of these reactions with phase separa-
tion, we describe the system using a free energy density 
f4(cP, cB, cF, cW). A simple choice is

f4 = kBT
[∑

i

ci log(νci) + χνcPcB

]
,� (4.7)

where the sum captures the entropic contributions of all spe-
cies i = P, B, F, W  and the last term accounts for the interac-
tion between P and B. For simplicity, we consider the case 
where the additional components F and W are dilute and do 
not interact with P and B. In this case, the additional comp
onents do not affect the phase separation of P and B. Without 
chemical reactions, this system phase separates similar to 
the binary system discussed in section  2. In particular, the 
chemical potentials µi = ∂f4/∂ci for i = P, B, F, W  are homo-
geneous throughout the system and the chemical potential dif-
ference µ̄ = µB − µP between P and B is generally non-zero 

and equal to the Lagrange multiplier fixing the conservation 
of components; see equation (2.26).

When chemical reactions are present, they are driven by 
the chemical potential differences of their products and reac-
tants. If the system is isolated, it will typically evolve toward 
a homogeneous thermodynamic equilibrium, as described in 
section 4.1.3. In contrast, this thermodynamic equilibrium may 
not be reached in open systems, for instance when the concen-
trations of the fuel and waste components are controlled at the 
boundary by coupling the system to a reservoir. In particular, 
the chemical potential difference µ̄2 = µF − µW between fuel 
and waste can be directly controlled at the boundary. To show 
that imposing µ̄2 �= 0 breaks detailed balance of the conver-
sion rates between the precursor P and the building block B, 
we next investigate the forward and backward fluxes of the 
two reaction pathways (R1) and (R2). These fluxes must obey 
conditions analogous to equation (4.1),

s(1)
→

s(1)
←

= exp

(
− µ̄

kBT

)
� (4.8a)

s(2)
→

s(2)
←

= exp

(
µ̄2 − µ̄

kBT

)
.� (4.8b)

These equations show that detailed balance of the individual 
reaction pathways can only be obtained for vanishing exchange 
chemical potentials, µ̄ = µ̄2 = 0. Moreover, the total forward 

Figure 10.  Influence of chemical reactions on phase separation. Shown are concentration profiles (upper row) and associated chemical 
potentials (lower row) of a binary system with equal amounts of P and B in different situations: without chemical reactions the system 
undergoes coarsening by diffusive transport (left column). With an additional conversion reaction between the two species, the bulk phases 
relax quickly and the interface moves due to localised reactions (middle column). If detailed balance is broken, the system is driven away 
from equilibrium everywhere and more complex dynamics can occur (right column).
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flux s→ = s(1)
→ + s(2)

→  and total reverse flux s← = s(1)
← + s(2)

←  of 
the conversion between P and B obey

s→
s←

= e−
µ̄

kBT


1 +

1

1 + s(1)
←

s(2)
←

(
e

µ̄2
kBT − 1

)

 ,� (4.9)

which is only compatible with the detailed balance of the 
rates given by equation  (4.1) in the special case µ̄2 = 0. 
Consequently, detailed balance of the rates is broken when  
µ̄2 �= 0.

The detailed balance conditions given by equation  (4.8) 
only constrain the ratios of the forward and backward fluxes 
of the two chemical reactions (R1) and (R2). Analogous to 
equation  (4.2), the total reaction fluxes s(i) = s(i)

→ − s(i)
← for 

each pathway can be expressed in the linearized regime as

s(1) = −Λ(1)
r (c) µ̄,� (4.10a)

s(2) = −Λ(2)
r (c)(µ̄− µ̄2),� (4.10b)

where Λ(1)
r  and Λ(2)

r  are Onsager coefficients that set the reac-
tion rates. These coefficients can depend on the concentra-
tions c = {cP, cB, cF, cW} but must be positive to ensure that 

the entropy productions Λ
(1)
r µ̄2 and Λ(2)

r (µ̄− µ̄2)
2 are posi-

tive; see appendix B. For simplicity, we here consider the case 
where the fuel F and the waste W are dilute and diffuse fast, 
so the local composition can be described by a single con-
centration c = cB � ν−1 − cP, where we consider the case 
of equal molecular volume ν  for precursors P and building 
blocks B. In particular, Λ(1)

r  and Λ(2)
r  mainly depend on c in 

this case and we do not need to describe the dynamics of the 
additional components F and W explicitly. However, their 
chemical energy µ̄2 affects the conversion between P and B. 
In particular, detailed balance of the conversion between P 
and B is broken in the reduced system where only these two 
components are described.

The dynamical equation of the system with broken detailed 
balance of the rates is given by the conservative diffusion 
fluxes driven by ∇µ̄ together with the non-conservative reac-
tion flux stot = s(1) + s(2) given in equation  (4.10). Using a 
conservation law analogous to equation (4.4), we obtain

∂tc = ∇ ·
(
Λ(c)∇µ̄(c)

)
+ κΛ(tot)

r (c)∇2c + s(c),� (4.11)

where Λ
(tot)
r = Λ

(1)
r + Λ

(2)
r  and we split the total reac-

tion flux stot into a contribution akin to a diffusion 
term related to surface tension and a local contribution 
s(c) = Λ

(2)
r (c)µ̄2 − Λ

(tot)
r (c) f ′(c). We will show below that 

the term s(c) can affect the dynamics significantly, while the 
additional diffusion term has only a minor influence since it 
only increases the effective diffusion constant. Note that if 
detailed balance is obeyed (µ̄2 = 0), equation (4.11) reduces 
to equation (4.5) when Λ(tot)

r  is replaced by Λr. In this case, 
the system approaches the homogeneous equilibrium states 
that we discussed in section 4.1. Conversely, more complex 
behaviour can be expected when detailed balanced of the rates 
is broken by maintaining a non-zero chemical potential dif-
ference µ̄2.

Equation (4.11) without the additional diffusion term has 
been proposed before as a simple combination of phase separa-
tion with chemical reactions [44, 49], albeit without an explicit 
breaking of detailed balance [152]. Instead, simple reaction rate 
laws s(c) have been analyzed [44, 49, 50, 58, 153]. For instance, 
it has been shown that first-order rate laws are equivalent to 
systems with long-ranged interactions of the Coulomb type  
[49, 154] and that such interactions affect pattern formation  
[51, 52, 155–157], e.g. in block copolymers [154, 158–161].

The effect of the chemical reactions with broken detailed 
balance of the rates can be highlighted by considering the 
stationary homogeneous states c(r) = c0. Equation  (4.11) 
implies that c0 must satisfy s(c0) = 0, i.e. chemical reactions 
are balanced. When detailed balance is obeyed (µ̄2 = 0), this 
condition is equivalent to the equilibrium condition f ′(c0) = 0 
that we encountered before. Conversely, the homogeneous 
stationary states are altered when detailed balance of the rates 
is broken (µ̄2 �= 0).

We examine the stability of the homogeneous states using 
a linear stability analysis, as described in section 2.4. We find 
that perturbations described by wave vectors q grow in the 
linear regime with a rate

ω(q) = s′(c0)− q2ζ(c0)− q4Λ(c0)κ,� (4.12)

where ζ(c0) = Λ(c0) f ′′(c0) + κΛ
(tot)
r (c0) and primes denote 

derivatives with respect to c. The associated stationary state 
is stable only if ω(q) is negative for all q, which is the case if 
the maximum

max
q

(
ω(q)

)
=




s′(c0) ζ(c0) � 0

s′(c0) +
ζ2(c0)

4κΛ(c0)
ζ(c0) < 0

� (4.13)

is negative. In the simple case without reactions (Λ(tot)
r (c) = 0, 

implying ζ = Λf ′′(c0) and s′(c0) = 0), we obtain the spinodal 
instability for f ′′(c0) < 0, which is discussed in section 2.4 
and shown by the grey line in figure 8(b). If the reactions obey 
detailed balance of the rates, implying s(c) = −Λrf ′(c) and 
thus s′(c0) = −Λr(c0) f ′′(c0), the homogeneous states corre
sponding to minima of the free energy density are stable; see 
section 4.1.2 and the blue line in figure 8(b).

Chemical reactions that break detailed balance of the rates 
(µ̄2 �= 0) can modify the stability of stationary states; see red 
lines in figure 8(b). Equation (4.13) implies that a homogene-
ous state can become unstable when s′(c0) > 0 [162, 163]. 
This case corresponds to an auto-catalytic reaction, since it 
implies that the production of building blocks B accelerates 
with larger concentration of B. Conversely, homogeneous 
states are generally stabilized by auto-inhibitory reactions, 
where s′(c0) < 0. In particular, these effects can be observed 
for homogeneous states close to the equilibrium states that we 
discussed before, where f ′′(c0) > 0 and thus ζ > 0. In this 
regime, our stability analysis suggests that droplets form and 
grow easily in auto-catalytic systems, while spontaneous for-
mation might be suppressed by auto-inhibitory reactions. In 
particular, the behavior can be regulated independent of the 
free energy density using the externally controlled chemical 
potential difference µ̄2.
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Although it is not directly relevant to active droplets, the 
dynamics of homogeneous stationary states with ζ < 0 is 
also interesting. It implies f ′′(c0) < 0 and the corresponding 
homogeneous stationary states are thus closer to maxima of 
the free energy density. In this case, there exists a regime with 
weakly auto-inhibitory reactions (−ζ2/(4κΛ) < s′(c0) < 0) 
where a range of finite wave vectors q becomes unstable and 
pattern formation is expected. This regime has been studied 
extensively in the literature [44, 45, 49] and typically leads to 
stripe-like patterns. Since we here focus on active emulsions, 
we exclusively consider the case ζ > 0 below.

In this section, we discussed a model system where addi-
tional fuel and waste components break the detailed balance 
of the rates of the conversion of the main components P and 
B. We showed that this combination of phase separation with 
non-equilibrium chemical reactions can suppress the instabil-
ity associated with spinodal decomposition and we will now 
analyse the impact on the dynamics of droplets.

4.2.1.  Coarse-grained description of active droplets.  We 
next discuss the dynamics of active droplets in the case of 
strong phase separation, where the interfacial width w is small 
compared to the droplet radius R. In this case, the volume 
occupied by the interface and thus the chemical reactions 
inside the interfacial region are negligible. Conversely, we 
will show that the chemical reactions producing and destroy-
ing droplet material in the bulk phases influence the droplet 
dynamics significantly. We here consider a coarse-grained 
description, where a thin interface separates the inside of 
the droplet with a high concentration of droplet material B 
from the dilute phase outside, analogous to section 2.5.2. The 
dynamics in both phases is described by equation (4.11), but 
since the concentration variations are small within the phases, 
it can be approximated by a reaction-diffusion equation [74],

∂tc � Dα∇2c + s(c),� (4.14)

where Dα = Λ(c(0)
α ) f ′′(c(0)

α ) + κΛ
(tot)
r (c(0)

α ) denotes the dif-
fusivity in the two phases α = in, out. The first term in the 
expression for Dα stems from the conservative fluxes and is 
thus equivalent to equation (2.41) while the second term cap-
tures the apparent diffusion due to chemical conversion. Note 
that the diffusivity Din inside the droplet is generally different 
than the diffusivity Dout  outside. The same approximation that 
led to equation (4.14) can also be used to linearize the reaction 
flux in the two phases,

s(c) �

{
Γin − kin(c − c(0)

in ) inside

Γout − kout(c − c(0)
out ) outside

,� (4.15)

where Γin = s(c(0)
in ) and Γout = s(c(0)

out ) are the reaction 
fluxes when the concentrations are at their equilibrium val-

ues c(0)
in  and c(0)

out in the two phases, respectively. Deviations 
from these values are accounted for by kin = −s′(c(0)

in ) and 
kout = −s′(c(0)

out ), which can be interpreted as elasticity coef-
ficients of the chemical reactions [164].

The basal fluxes Γin and Γout  need to have opposite sign for 
droplets to exist. If they had the same sign, droplet material 

would either be destroyed (Γin,Γout < 0) or produced every-
where (Γin,Γout > 0), which both implies unstable systems. 
To see under which conditions the basal fluxes have opposite 
sign, we express them as

Γin = −Λ(1)
r (c(0)

in ) µ̄− Λ(2)
r (c(0)

in )(µ̄− µ̄2),� (4.16a)

Γout = −Λ(1)
r (c(0)

out ) µ̄− Λ(2)
r (c(0)

out )(µ̄− µ̄2),� (4.16b)

using equation (4.10). To give a concrete example, we here con-
sider weak chemical reactions, so that the diffusive fluxes almost 
equilibrate the exchange chemical potential µ̄, which is therefore 
approximately homogeneous. If the building block B is of higher 
energy than the precursor P (µ̄ > 0), equation (4.16) imply that 
droplet material is produced outside the droplet (Γout > 0) and 
destroyed within (Γin < 0) if the fuel supplies sufficient energy 
(µ̄2 > µ̄ > 0) and the Onsager coefficients obey

Λ
(1)
r (c(0)

out )

Λ
(2)
r (c(0)

out )
<

µ̄2

µ̄
− 1 <

Λ
(1)
r (c(0)

in )

Λ
(2)
r (c(0)

in )
.� (4.17)

For instance, if µ̄ is equal in the two phases and the external 
energy input is given by µ̄2 = 2µ̄, reaction (R1) must be faster 

than reaction (R2) inside the droplet, Λ(1)
r (c(0)

in ) > Λ
(2)
r (c(0)

in ), 
while the opposite is true outside, Λ(1)

r (c(0)
out ) < Λ

(2)
r (c(0)

out ). In 
this case, the conversion reaction (R1) proceeds from the 
building block B to the precursor P spontaneously (s(1) < 0), 
while reaction (R2) converts fuel to waste to produce the high-
energy building block B from P (s(2) > 0); see figure 9. If the 
coefficients Λ(1)

r  and Λ(2)
r  obey equation (4.17) the total reac-

tion flux stot = s(1) + s(2) is then positive outside the droplet, 
while it is negative inside. A concrete implementation of such 
a system is discussed in the Supporting Information of [77].

We showed that droplet material can be produced in 
one phase while it is destroyed in the other when the basal 
fluxes Γin and Γout  have opposite sign. Do similar conditions 
apply to the elasticity coefficients kin and kout? We showed 
in section 4.2 that negative s′(c) has a stabilising effect and 
we would thus expect that droplets can persist if k  >  0; see 
also figure 8(b). Conversely, since positive s′(c) can destabi-
lise homogeneous phases, the active droplets we discuss here 
might be unstable if k  <  0. However, there is a smallest length 
scale q−1

max below which the instability cannot develop. This 
length scale can be determined from equation (4.12) and the 
condition ω(qmax) = 0, yielding

q−1
max �

[
ζ(c(0)

in )

s′(c(0)
in )

] 1
2

,� (4.18)

for weak reactions, s′(c(0)
in ) � ζ(c(0)

in ). In the case where 
q−1

max is large compared to the droplet radius, the instability is 
effectively suppressed, and the droplet could be stable even 
if kin < 0. Conversely, the dilute phase will typically be large 
compared to q−1

max, such that an instability would develop there 
if kout < 0. In the following, we thus consider all values of kin, 
but restrict our discussion to kout > 0.

We distinguish different classes of active droplets based on 
where droplet material is produced. If the reaction fluxes Γin 
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and Γout  have the same sign, droplet material is produced or 
destroyed in the entire system and such states are unstable. 
Consequently, stable droplets can only exist if Γin and Γout  
have opposite sign: we denote the case where droplet mat
erial is produced outside the droplets (Γout > 0, Γin < 0) as 
externally maintained droplets, while the opposite case where 
droplets produce their own material (Γin > 0, Γout < 0) is 
called internally maintained droplets.

4.2.2.  Droplet growth equation.  We begin by studying a sin-
gle, isolated active droplet surrounded by a large dilute phase. 
The droplet grows if there is a net flux of droplet material 
toward its surface, see equation (2.47). In the simple case of 
a spherical droplet of given radius R and volume Vd = 4π

3 R3, 
the growth rate reads

dVd

dt
� Jin − Jout

c(0)
in − c(0)

out

,� (4.19)

where we have neglected surface tension effects in the 
denominator and defined the integrated surface fluxes 

Jin/out = 4πR2 n · jin/out. These fluxes can be determined from 
the stationary solutions c∗(r) that follow from solving equa-
tion (4.14) with the boundary conditions at the interface given 
in equation (2.45), see figure 11(a).

The flux Jin inside the droplet interface can be obtained 
in the quasi-static limit, where it equals the reaction flux 
Sin =

∫
d3r s(c∗(r)) inside the droplet volume. In the typi-

cal case where the radius R is small compared to the length 
�in = (Din/|kin|)

1
2 generated by the reaction-diffusion system, 

the concentration inside the droplet is c∗(r) � c(0)
in , implying

Jin � ΓinVd.� (4.20)

Droplet material is thus transported toward the interface 
(Jin > 0) only in internally maintained droplets (Γin > 0).

The integrated flux Jout outside the droplet interface can 
also be obtained in a quasi-static approximation. In contrast to 
the passive case discussed in section 2.5.2, the supersaturation 
ε = (c∞ − c(0)

out )/c(0)
out far away from droplets is now created by 

chemical reactions. In the typical case where the dilute phase 
is large compared to the length scale �out = (Dout/|kout|)

1
2, the 

chemical reactions equilibrate far away from droplets and the 

composition thus reaches the value c∞ = c(0)
out + Γout/kout, so 

s(c∞) = 0; see figure  11(b). The associated supersaturation 

reads ε = Γout/(koutc
(0)
out ) and is thus positive if Γout > 0 

since the reaction must be auto-inhibitory outside droplets 
(kout > 0); see section 4.2.1. The resulting transport of droplet 
material can be quantified by the flux outside the droplet inter-
face, which reads

Jout � 4πDoutRc(0)
out

(
�γ
R

− ε

)
� (4.21)

in the typical case R � �out. The first term in the bracket cap-
tures the effect of surface tension, which is typically small. 
Neglecting this term, we find that droplet material is trans-
ported toward the interface (Jout < 0) if the dilute phase is 
supersaturated (ε > 0), which is the case only in externally 
maintained droplets (Γout > 0).

The droplet growth rate following from combining equa-
tion (4.19)–(4.21) reads

dR
dt

� Doutc
(0)
out

R(c(0)
in − c(0)

out )

(
ε− �γ

R
+

R2Γin

3Doutc
(0)
out

)
.� (4.22)

The first term in the bracket describes droplet growth due 
to a supersaturated environment (ε > 0) or shrinkage in 
undersaturated environments (ε < 0). The second term, which 
is only relevant for small droplets, captures the reduction of 
growth due to surface tension γ . The last term describes the 
growth of the droplet due to production of droplet material 
inside if Γin > 0 or its shrinking when Γin < 0. Note that equa-
tion (4.22) reduces to equation (2.53) if chemical reactions are 
absent (Γin = 0) and the supersaturation ε is imposed.

4.2.3.  Single droplet in an infinite system.  We begin by dis-
cussing the growth of a single droplet in an environment with 
constant supersaturation ε. This corresponds for instance to 
an infinite system where the supersaturation reaches its equi-

librium value εeq = Γout/(koutc
(0)
out ) far away from an isolated 

droplet. The stationary states of this system can be determined 
from equation (4.22) and correspond to radii R for which the 
bracket vanishes. The associated cubic equation  in R has at 
most three solutions, which we now classify. If the chemical 
reactions are too strong, there are no physical solutions. In 
particular, if |Γin| > Γmax

in  with

Γmax
in =

4c(0)
out Dout|ε|3

9�2
γ

,� (4.23)

two solutions are complex while the third one is either  
negative (if Γin < 0) or smaller than the interface width (if 
Γin > 0), which is both unphysical. Consequently, stable 
droplets can only exist for moderate chemical reactions, 
|Γin| < Γmax

in . In this case, the polynomial equation has three 
real solutions. One of the solutions is always negative and thus 
unphysical, while the other two read

Figure 11.  Schematic picture of an externally maintained active 
droplet, where droplet material is produced in the solvent phase. 
(a) Concentration c of droplet material as a function of the radial 
distance r. The chemical reactions modify the profiles compared 
to the passive droplet shown in figure 2(a). (b) Reaction flux s as 
a function of r. Droplet material is produced outside the droplet 
while it is degraded inside. The droplet dynamics can strongly 
deviate from the passive case. In particular, Ostwald ripening 
can be suppressed, and droplets even divide spontaneously (see 
sections 4.3 and 4.4).
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R(1) � �γ
ε

,� (4.24a)

R(2) �

(
3Doutεc(0)

out

−Γin

) 1
2

− �γ
2ε

,� (4.24b)

which is correct up to linear order in �γ/R. The dynamics in 
the vicinity of these states follow from a linear stability analy-
sis of equation (4.22), where the droplet radius is perturbed 
away from the stationary state and we determine whether the 
dynamics will bring the droplet back to its stationary state 
or not [74]. This gives us enough information to discuss the 
growth behavior of active droplets qualitatively.

In the case of externally maintained droplets (Γin < 0, 
ε > 0), we have 0 < R(1) < R(2), since |Γin| < Γmax

in . Here, the 
radius R(1) corresponds to an unstable state, while R(2) is 
stable, see figure 12. Droplets smaller than R(1) dissolve and 
disappear, so R(1) is a critical radius similar to the one dis-
cussed in section  2.5.2. Externally maintained droplets that 
are larger than the critical radius R(1) grow until they reach 
the stable stationary state with radius R(2). This state is not 
present for passive droplets in an infinite system and must thus 
be a consequence of the chemical reactions. This can be seen 
by analyzing the two fluxes Jin and Jout, which must be equal 
in the stationary state. However, Jin scales with the droplet 
volume, while Jout scales with its radius, see equation (4.21).
Consequently, if the droplet radius exceeds R(2), the loss due 
to Jin dominates and the droplet shrinks back to the stationary 
state. The chemical turnover inside the droplet thus stabilizes 
the stationary state. Note that the two stationary states given 
in equation (4.24) only exist if the chemical reactions are not 
too strong (|Γin| < Γmax

in ). In the limiting case Γin = −Γmax
in  

the situation is degenerated, and the two stationary states are 
identical. The corresponding radius Rext

min = (3�γ)/(2ε) can 

be determined from equation  (4.22) and corresponds to the 
smallest externally maintained droplet that can be stable.

In the case of internally maintained droplets (Γin > 0, 
ε < 0), the first solution given in equation (4.24) is negative 
and thus unphysical. The second solution is always positive, 
but unstable to perturbations. Consequently, R(2) is the critical 
droplets size of internally maintained droplets, which can be 
significantly larger than critical sizes in externally maintained 
droplets. Nucleation is thus typically suppressed efficiently, 
but it can be promoted by catalytically active particles, which 
catalyze the production of droplet material at their surface  
[73, 74]. Internally maintained droplets larger than the critical 
size grow up to the system size and there is no characteristic 
stable size. This is because such droplets grow quicker if they 
become larger and this autocatalytic growth only stops when 
the dilute phase is depleted of material P, which can only hap-
pen in a finite system [74].

4.2.4.  Single droplet in a finite syste	m.  So far, we only con-
sidered systems that are large compared to the droplet size, 
so the supersaturation ε is effectively constant. In contrast, in 
small systems a growing droplet can deplete the surrounding 
dilute phase significantly. In particular, the average concentra-
tion c of droplet material in the dilute phase evolves as

dc
dt

= s(c) +
Jout

V − Vd
,� (4.25)

where the first term on the right-hand side originates from 
the chemical reactions in the dilute phase and the last term 
accounts for the diffusive flux at the interface of the drop-
let of volume Vd. In large systems (V � Vd), the last term 
is negligible and c relaxes to c∞, where chemical equi-
librium is obeyed, s(c∞) = 0. At this point, the super-

saturation ε = (c − c(0)
out )/c(0)

out attains its equilibrium value 
εeq = Γout/(koutc

(0)
out ) and is thus independent of the droplet 

size, consistent with our assumptions in the previous subsec-
tion. In small systems, however, the last term in equation (4.25) 
is not negligible and ε depends on the droplet volume Vd. For 
instance, in the case of externally maintained droplets, we 
have Jout < 0 and the concentration c outside the droplet 
is thus lower than c∞. Consequently, the supersaturation is 
smaller for smaller systems and we would expect a reduced 
stationary droplet radius R(2), see equation  (4.24b). Indeed, 
when we solve for the stationary states of equation (4.22) and 
(4.25), we find in the simple case of large diffusion and small 
surface tension that there is a stationary state with volume

V∗ � ΓoutV
Γout − Γin

,� (4.26)

which is stable for externally maintained droplets and unstable 
for internally maintained ones. Consequently, the size of sta-
ble stationary droplets that are externally maintained depends 
on system size in small systems, while it is independent of the 
system size in large systems, see equation (4.24).

Similar to passive droplets, we find that active droplets also 
have a critical radius, below which they shrink and disappear. 
Consequently, droplets can only be nucleated spontaneously 

Figure 12.  Growth rate dR/dt  of a single droplet in an infinite 
system as a function of the droplet radius R. Shown are the 
values given by equation (4.22) for passive droplets (blue line; 
Γin = 0, ε = 0.1), externally maintained droplets (orange line; 
Γin/c(0)

out = −10−4k0, ε = 0.1), and internally maintained droplets 
(green line; Γin/c(0)

out = 10−4k0, ε = −0.1) for c(0)
in /c(0)

out = 10 where 
k0 = Dout/�

2
γ. Unstable stationary states are marked with open 

circles, while the only stable one is marked with a black disk.
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if a concentration fluctuation creates a large enough initial 
droplet. In externally maintained droplets, this mechanism 
is similar to passive droplets, where the nucleation barrier is 
higher for larger surface tension and smaller supersaturation. 
Conversely, the critical radius is generally larger for internally 
maintained droplets, but it becomes smaller for larger surface 
tension and smaller supersaturation. This is because only a 
large enough droplet can produce enough droplet material to 
balance the efflux into the dilute phase. This efflux is smaller 
for larger surface tension, so surface tension actually helps to 
nucleate internally maintained droplets.

Once droplets exceed their critical radius they grow spon-
taneously by absorbing droplet material from the surrounding 
(passive and externally maintained droplets) or by produc-
ing more droplet material (internally maintained droplets). 
In the first case, the droplet growth rate is larger for smaller 
droplets and higher supersaturation. However, the growth 
of externally maintained droplets comes to a stop at a finite 
size, at which the loss of droplet material due to the chemi-
cal reactions inside is balanced by its influx over the surface. 
Conversely, internally maintained droplets grow indefinitely 
in an infinite system, similar to passive droplets. However, in 
contrast to passive droplets, this growth accelerates because 
of its autocatalytic nature. Consequently, in the simple case 
of a binary fluid in an infinite system, only externally main-
tained droplets reach a finite droplet size, while both passive 
and internally maintained droplets grow indefinitely.

4.3.  Arrest of droplet coarsening: suppression of Ostwald 
ripening

If many active droplets are present in the same system, their 
dynamics will be coupled because they share the material in 
the dilute phase. Intuitively, this coupling will be stronger if 
the droplets are closer together. For instance, for externally 
maintained droplets, the length scale over which they deplete 
the surrounding dilute phase is given by �out  and we thus 
expect that such droplets do not interact significantly when 
they are further apart. In particular, their stationary state 
radius R(2) given in equation (4.24b) should not be affected 
much. Conversely, if externally maintained droplets are close, 
they compete strongly for the material produced in the solvent 
and might thus only reach a smaller size. This is in strong con-
trast to passive and internally maintained droplets that grow 
unbounded and will thus interact eventually, independent of 
the initial separation.

We study the interaction of multiple droplets in the sim-
ple case of sparse systems, where droplets are far apart from 
each other. In this case, the growth dynamics of the droplets 
are coupled because they all exchange material with the same 
dilute phase, but direct interactions between droplets can be 
neglected. Considering N droplets in a finite system of volume 
V , the supersaturation ε in the dilute phase evolves as

dε
dt

� Γout − koutc
(0)
outε+

1
V

N∑
i=1

Jout,i,� (4.27)

which follows by generalizing equation (4.25) to many drop-
lets in the limit that V  is large compared to the total volume 
of all droplets, V �

∑
i Vi. Here, Ri and Vi =

4π
3 R3

i  are the 
respective radii and volumes of the droplets for i = 1, . . . , N 
and Jout,i is the flux of droplet material right outside the inter-
face of the i-th droplet integrated over its surface, which fol-
lows from equation  (4.21). For simplicity, we here consider 
the quasi-static case, where the concentration profile between 
droplets relaxes quickly compared to the growth of the drop-
lets themselves, which is the typical situation [74]. In this 
case, ε will attain its stationary state value

ε∗ =
4πN�γDout +

ΓoutV
c(0)

out

koutV + 4πDout
∑

i Ri
.� (4.28)

Note that in the limit of a dilute system, V/N � �3
out,  

we recover the supersaturation at chemical equilibrium, 

εeq = Γout/(koutc
(0)
out ). Conversely, in passive or dense systems, 

the supersaturation is set by the equilibrium condition at the 
droplet surfaces, ε∗ = �γ/R∗, when all droplets have the same 
radius R∗.

The growth rate of each individual droplet is still described 
by equation  (4.22), but with the supersaturation now given 
by equation (4.28). In the simple case of two droplets in the 
same system, the growth dynamics can be illustrated graphi-
cally. Figure 13 shows that passive and internally maintained 
droplets exhibit Ostwald ripening. Conversely, a new stable 
stationary state (black dot) can emerge for externally main-
tained droplets, where both droplets coexist at the same size. 
Figure  13 thus indicates that Ostwald ripening can be sup-
pressed in active droplets.

To understand when Ostwald ripening is suppressed, we next 
analyze the state where all droplets have the same stationary 
radius R∗, which can be determined from the stationary state of 
equation (4.22). Similar to the discussion of isolated droplets 
above, we can then use a linear stability analysis to discuss the 
qualitative dynamics in the vicinity of this state. The detailed 
analysis given in [74] shows that there are two independent 
perturbation modes with qualitatively different dynamics: the 
fast mode associated with the total droplet volume describes the 
fact that all droplets quickly take up excess material from the 
dilute phase until the stationary state of the total droplet volume 
is reached. All other perturbation modes are associated with a 
slower exchange of material between droplets. These modes all 
have the same perturbation growth rate ω given by

ω =
1

c(0)
in − c(0)

out

(
�γDoutc

(0)
out

R3
∗

+
2Γin

3

)
.� (4.29)

If ω  is positive, the associated mode is unstable, and material 
will flow from smaller to larger droplets, e.g. during Ostwald 
ripening. Conversely, negative ω  indicates stable states, where 
this coarsening is suppressed.

Passive systems (Γin = 0) are always unstable (ω > 0) 
and the droplets thus exhibit Ostwald ripening as discussed in 
section 2.5.3 and shown in figure 13(a). The redistribution of 
material between droplets is driven by surface tension, which 
causes a larger concentration of droplet material right outside 
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of smaller droplets, see equation (2.45). Moreover, the asso-
ciated perturbation rate ω  is smaller for larger mean droplet 
size, such that exchange of material will be slower between 
larger droplets. This implies that the coarsening of droplets 
slows down and only stops when a single droplet remains.

Internally maintained droplets (Γin > 0) are also unsta-
ble and the associated growth rate is larger than that of pas-
sive droplets. This is because the autocatalytic growth allows 
larger droplets to outcompete smaller ones, independent of 
surface tension effects. Internally maintained droplets are thus 
more unstable than passive ones, but they can be stabilised 
by particles that catalyse the production of droplet material 
within the droplets [73, 74].

Multiple externally maintained droplets (Γin < 0) can 
coexist when ω < 0. This is the case if their radius R∗ exceeds 
the critical value

Rstab =

(
3Dout�γc(0)

out

−2Γin

) 1
3

,� (4.30)

see equation  (4.29). This expression reveals that the stabil-
ity originates from a competition of the destabilising effect 
of surface tension, which tends to increase Rstab, and the sta-
bilising effects induced by the diffusive fluxes driven by the 
chemical reactions. This is similar to the isolated droplets that 
we discussed in the previous section: the influx toward a drop-
let scales at most with the droplet radius, see equation (4.21), 
while the material loss scales with the volume. Consequently, 
multiple externally maintained droplets can stably coex-
ist when the supersaturation in the dilute phase sustains the 
influx.

We showed that multiple active droplets interact because 
they compete for the same material from the dilute phase. 
The associated diffusive fluxes between droplets are caused 
by surface tension effects and chemical reactions. The flux 
due to surface tension is generally destabilising and causes 
the classical Ostwald ripening. Conversely, the flux due to 
chemical reactions can be either destabilising (for internally 

maintained droplets) or stabilising (for externally maintained 
droplets). If the stabilising contribution of the chemical reac-
tions is stronger than the destabilising one due to surface ten-
sion, multiple active droplets can coexist in a stable state; see 
figure 13(b).

4.4.  Spontaneous division of active droplets

So far, we analyzed the growth rate of active droplets assum-
ing they maintain a spherical shape. We found that the drop-
let growth dynamics are often determined by a competition 
between surface tension effects and diffusive fluxes toward the 
droplet interface. Both effects depend on the droplet radius, 
or, more precisely, on the mean curvature of the droplet inter-
face, which is given by R−1 for spherical droplets. In contrast, 
this mean curvature varies in non-spherical droplets, which 
suggests that the competition between the two effects plays a 
role in the shape dynamics of active droplets.

The dynamics of a non-spherical droplet are described by 
the same physical principles that we discussed so far. In par
ticular, the interface velocity in its normal direction, given by 
equation (2.47), depends on the local net flux of droplet mat
erial, which follows from the reaction-diffusion equations in 
the bulk phases. Solving these equations numerically reveals 
that active droplets can show behaviours that are not present 
in passive droplets [77]. Figure  14(a) shows that externally 
maintained droplets can divide spontaneously, which can also 
happen multiple times [77]. A linear stability analysis with 
respect to the droplet shape reveals that the shape becomes 
unstable when the mean droplet radius R exceeds the critical 
value [77]

Rdiv � 11�γ
ε

,� (4.31)

which is an approximation in the limit of large diffusive length 
scales (�in, �out � R) and equal diffusivities inside and out-
side the droplet (Din = Dout). Figure 14(b) shows that there 
are typically three different regimes of externally maintained 

Figure 13.  Behavior of two droplets as a function of their radii R1 and R2, normalized with the interface width w. The black arrows indicate 
the temporal evolution of the state variables R1 and R2 following from equation (4.22), with ε given by equation (4.28). The blue and orange 
lines are the nullclines, which indicate where the growth rate of droplets 1 and 2 vanish, respectively. Their intersections are stable (disks) 
or unstable fixed points (open circles). (a) Passive droplets (Γin = Γout = 0) (b) Externally maintained droplets (Γin < 0, Γout > 0) (c) 
Internally maintained droplets (Γin > 0, Γout < 0).
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droplets for a given turnover Γin of droplet material inside the 
droplet. If the supersaturation ε that is set by the chemical 
reactions in the dilute phase is too low, droplets cannot exist 
at all. For intermediate values of ε, droplets larger than the 
critical radius grow to their stationary size as discussed in sec-
tion  4.2.2. For even larger ε, droplets at the stationary size 
become unstable (R∗ > Rdiv) and growing droplets start divid-
ing before they reach a stationary size. After division, these 
droplets can grow further and divide again. This proliferation 
continues until the system is depleted of droplet material and 
the supersaturation ε decreases to a point where the station-
ary state is stable with respect to shape changes. Whether 
externally maintained droplets divide or not depends on the 
balance between the availability of droplet material (super-
saturation ε) and the turnover inside the droplet (reaction flux 
Γin), see figure 14(c).

The instability of the shape of externally maintained drop-
lets can be qualitatively explained by a competition of sur-
face tension effects with diffusive fluxes [165], similar to the 
multiple droplets discussed in the previous section. Because 
of surface tension, interface regions of larger mean curvature 
exhibit a larger concentration of droplet material right outside 

the interface, see equation (2.45). This reduces the influx of 
droplet material and thus attenuates growth at regions of high 
curvature, stabilising the spherical shape, see figure  14(d). 
Conversely, an externally driven material influx enhances 
the growth at regions of high curvature where the influx is 
larger, which is evident from the closer isocontour lines in 
figure  14(d). This effect generally destabilises the spherical 
shape and has been described for phase separating systems by 
Mullins and Sekerka [166, 167]. In the presence of the inter-
nal turnover Γin of active droplets, the degradation of build-
ing blocks inside may balance the influx leading to a roughly 
maintained droplet volume. In this case, fast growing regions 
must be balanced by other regions that retract, implying a 
narrowing waistline. However, whether the instability can 
dominate the stabilising surface tension effects and lead to a 
pinching off and thereby the division into two drops depends 
on the parameters, as shown in figure 14(c).

In internally maintained droplets the diffusive fluxes are 
reversed. Consequently, both the surface tension effect and 
the closer isocontour lines enhance the efflux \ of material at 
regions of higher curvature, which thus stabilizes the spherical 
shape of internally maintained droplets. We thus expect that 

Figure 14.  Spontaneous division of externally maintained droplets. (a) Sequence of shapes of a dividing droplet at different times as 
indicated (plots are produced using the model of Ref. [77]) (b) Stationary droplet radii R as a function of the supersaturation ε for three 

different turnovers (Γin/Γ0 = 0, 1, 5; from left to right, with Γ0 = −10−5c(0)
in Dout�

−2
γ ) and c(0)

in /c(0)
out = 10. Solid lines indicate stable 

stationary states, while dotted lines indicate states that are unstable with respect to size (black) or shape (orange). The radii R were 
determined from equation (4.22), assuming that droplets become unstable when R > Rdiv  given by equation (4.31). (c) Stability diagram of 

externally maintained droplets as a function of the supersaturation ε and the turnover Γin normalized by Γ0 = c(0)
out Dout�

−2
γ . Droplets dissolve 

and disappear (white region), are stable and attain a spherical shape (blue region), or undergo cycles of growth and division (orange 
region). The lines were determined analogously to (b) using the same parameters. (d) Schematics of deformed droplets and the surrounding 
concentration fields created by surface tension effects (left) and an external supersaturation (right). Material is transported from dark to light 
regions by diffusive fluxes (black arrows) perpendicular to the isocontours (black lines). Fluxes due to surface tension transport material 
from regions of high to low curvature, thus making droplets more circular (left). Conversely, the influx driven by an external supersaturation 
amplifies non-spherical shapes (right). The concentration fields have been obtained by solving the stationary diffusion equation (2.40). The 
boundary condition (2.45) at the surface of the deformed droplet accounts for surface tension effects (left) and a constant concentration c∞ 
far away from the droplet represents the external supersaturation (right).
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internally maintained droplets are more stable with respect to 
shape perturbations than passive droplets.

5.  Summary and outlook

5.1.  Summary of the physics of active emulsions

In this review we have discussed the physics of phase separa-
tion and the dynamics of droplets under conditions that devi-
ate from passive systems. In particular, we discussed demixing 
systems in the presence of a concentration gradient of a comp
onent that affects phase separation and droplets in the pres-
ence of chemical reactions that are driven away from thermal 
equilibrium, see figure 15. In both systems, the dynamics of 
phase separation is significantly affected. The systems favour 
non-equilibrium stationary states and exhibit novel phenom-
ena that are not present in phase separating systems at thermal 
equilibrium. We therefore refer to this novel class of physical 
systems as active emulsions.

The difference to passive systems becomes apparent 
already at the level of a single droplet, which can exhibit 
a qualitatively different growth speed in the case of active 
droplets, see figure  15(a). For passive systems, the growth 
speed as a function of the radius of the droplet has an unsta-
ble fixed point. The associated critical radius increases over 
time and drives the coarsening in emulsions. Actively spend-
ing energy to create and maintain a regulator gradient that 
affects phase separation can reduce the critical radius in a 
position-dependent manner. Droplets at one end of the reg-
ulator gradient grow faster than droplets at the other end. 
Eventually, the larger droplets outcompete the smaller ones, 
much like in Ostwald ripening, but the positional bias by the 
gradient effectively positions the surviving droplets toward 
one end. Concomitantly, these larger droplets all grow to a 
similar size, i.e. the droplet size distribution narrows during 
the positioning dynamics (figure 15(b)). This narrowing is 
in stark contrast to the universal size distribution of passive 
droplets undergoing Ostwald ripening. As most droplets are 
positioned to one end, the ripening arrests for a certain time 
period, thus breaking the universal growth law in passive 
systems where droplet size increases proportional to t1/3 (fig-
ure 15(c)). Besides this position-dependent dissolution and 
growth process, droplets also drift along the gradient (figure 
15(d)). During this drift, droplets can deform (figure 15(e)). 
In contrast, in passive systems, droplets maintain their spheri-
cal shape and do not drift. However, when all droplets are 
at one end of the gradient, the environment becomes locally 
homogeneous and the dynamics slowly returns to classical 
Ostwald ripening.

If the regulator concentration gradient is created by an inho-
mogeneous external potential, a phase separated system can 
favour novel equilibrium states. The condensed phase either 
sits at the minimum or the maximum of the external potential, 
i.e. the concentration profile describing the condensed phase 
is either correlated or anti-correlated with the regulator profile. 
The system can also undergo a discontinuous phase transition 
between these two states when the interactions between the 
molecules are changed. In the absence of an external potential 

there is no positional bias and each position of the condensed 
phase corresponds to the same free energy.

Droplet dynamics can also be affected by spending energy 
to drive chemical reactions involving the droplet material 
away from equilibrium. In this case, single droplets can 
exhibit a stable stationary state at a finite size, see figure 15(a). 
Consequently, all droplets larger than the critical size tend 
toward this stationary radius, leading to a suppression of 
the Ostwald ripening that would otherwise occur in passive 
systems. These dynamics lead to an infinitely sharp distribu-
tion in the absence of fluctuations (figure 15(b)) with a mean 
droplet size that is given by the stable radius (figure 15(c)). 
Chemical reactions can thus modify the dynamics of phase 
separation such that the universal broadening is replaced by 
an evolution to a non-equilibrium stationary state of a mono-
disperse, active emulsion. Moreover, in the presence of non-
equilibrium chemical reactions, droplets can also undergo 
shape instabilities triggering the division of droplets, see fig-
ure 15(e). In contrast, passive droplets only exhibit the reverse 
process of droplet fusion, which is driven by surface tension 
effects. In active droplets, this stabilising tendency of surface 
tension can be overcome by the influx of droplet material sus-
tained by the non-equilibrium chemical reactions.

5.2.  Active emulsions are relevant for biology and provide 
versatile applications

Demixing systems in the presence of external forces, like a 
maintained regulator gradient or non-equilibrium chemi-
cal reactions, share some inherent similarities. Both systems 
break the universal coarsening dynamics of Ostwald ripening 
and modify the stationary state of the system. While a regula-
tor gradient causes a bias in the position of the single station-
ary droplet, the non-equilibrium chemical reactions can select 
a state composed of multiple droplets of equal size. The break-
ing of the universal dynamics occurs via additional fluxes 
that are absent in classical phase separation. These fluxes are 
generated by the dissipation of energy, either to assemble and 
maintain a concentration gradient that in turn interacts with 
the demixing components or to drive chemical reactions of the 
demixing components away from their equilibrium.

Active fluxes are ubiquitous in living systems to keep them 
away from thermal equilibrium. In fact, if such systems were 
to reach equilibrium, they would be non-living, passive mat-
ter. At the same time, it has been shown that liquid phase sepa-
rated compartments are important for the spatial organisation 
inside a large variety of cells (see [85] and references therein). 
Such compartments can organise biomolecules in space and 
time to control chemical reactions, which is an essential 
building block for biological function. However, how these 
compartments are controlled by cells is poorly understood. 
Studying the physics of phase separation in non-equilibrium 
environments is thus highly relevant for cell biology [86].

Although several novel phenomena arising from active 
fluxes have been discovered in phase separating systems, 
many aspects have not been addressed, yet. For example, in 
order to realise an experimental system in which non-equi-
librium reactions suppress Ostwald ripening or drive the 
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division of droplets, a better understanding of the couplings 
of the chemical pathways to phase separation is necessary. To 
this end, one major challenge is to find a proper choice of 
chemicals. Promising candidates are synthetically designed 
reaction cycles including a fuel-driven reaction from a pre-
cursor component toward a building block capable to form 
liquid-like assemblies [151]. Specifically, what is the minimal 
system that can be realised experimentally that shows dividing 
droplets for example? If such experimental conditions were 
found, such systems could be used to set the droplet size in 
microfluidic devices in the context of chemical engineering 
[168] or support the potential role of phase separated liquid-
like compartments for the origin of life [40].

Droplets can also carry information encoded in their chem-
ical composition, i.e. a specific set of molecules dissolved 
inside. Controlling such droplets with non-equilibrium chemi-
cal reactions not only allows the change of the droplet size but 
also the information content. Such a system offers the oppor-
tunity to perform aqueous computing at larger-than-molecular 
scales [169, 170]. In addition, concentration gradients can 
be used to position these droplets. As droplets have reached 

their target position this chemical information can be released 
by droplet dissolution, which can be induced by modifying 
the interactions between the droplet material and the solvent. 
Such a liquid system could represent a first building block for 
aqueous computing, which allows for the processing of chem-
ical information in space.

Controlled active emulsions could also be used to physi-
cally seal or open junctions in microfluidic devices. The con-
trol over the droplet position also enables us to modify the 
physical properties of target surfaces inside devices by wet-
ting. All these tasks require a solid theoretical understanding 
of how the formation, position and composition of droplets 
can be controlled and how physical parameters should be 
chosen.

In summary, we have discussed a new class of physical sys-
tems which we refer to as active emulsions. These emulsions are 
relevant to cell biology. They may allow to develop novel appli-
cations in the field of chemical engineering or aqueous comput-
ing. Moreover active emulsions could be relevant in answering 
how life could have emerged from an inanimate mixture of sim-
ple chemically active molecules. However, the class of active 

Figure 15.  Overview of the novel behaviour and phenomena that occur in active emulsions. Curves in green correspond to droplets in a 
gradient of molecules that affect phase separation while blue curves indicate droplets in the presence of non-equilibrium chemical reactions. 
Results for passive systems are depicted as black lines. (a) Droplet growth speed and (b) droplet frequency as a function of droplet radius R. 
The (unstable) critical radius is indicated by an open red circle, while there can be a stable stationary radius in the case of non-equilibrium 
chemical reactions (red disk). (c) Mean droplet radius as a function of time t. The radius of passive droplets grows as t1/3, while active 
emulsions break this scaling law. (d) Positioning of droplets to one boundary of the system (bottom) in the presence of a regulator gradient 
(top) by droplet drift and position-dependent dissolution and growth. (e) In the presence of a regulator gradient droplet can deform (top), 
while in the presence of non-equilibrium chemical reactions droplets can even undergo a shape instability and divide (bottom).
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emulsions also challenges our theoretical understanding of spa-
tially heterogeneous systems driven away from thermal equi-
librium and can be used to refine existing theoretical concepts. 
In particular, these active emulsions are characterised by non-
equilibrium fluxes that maintain these systems away from ther-
mal equilibrium. The physics of phase separation in the presence 
of non-equilibrium chemical reactions poses several theoretical 
challenges and questions, such as the role of fluctuations, the 
couplings of diffusive and chemical fluxes, and what are the 
minimally required ingredients necessary for observing the phe-
nomena discussed in this review in experiments.
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Appendix A.  Stability of the interfacial profile

The stability of the inhomogeneous solution cI(x) given in 
equation (2.28) can be assessed by considering the change in 
free energy ∆F[cI, ε] due to an infinitesimal perturbation ε(x) 
[171]. Using equation (2.30), we have

∆F[cI, ε] =
∫

d3r
[

bε2

2

(
3 tanh2

( x
w

)
− 1

)
+

κ

2
(∂xε)

2
]

.

� (A.1)

The reference state cI(x) is stable if all perturbations increase 
the free energy, i.e. if ∆F[cI, ε] > 0 for all permissible func-
tions ε(x). Note that without chemical reactions the mass of the 
individual components is conserved, which implies that ε(x) 
are permissible only if they obey the constraint 

∫
ε dx = 0.

To see whether all perturbations lead to positive ∆F, we 
determine the perturbation ε∗(x) with the minimal ∆F. If this 
value is positive, all other perturbations also increase the free 
energy and the base state cI(x) is stable. A necessary condi-
tion for ε∗(x) is that it satisfies the Euler–Lagrange equa-
tions  corresponding to equation  (A.1). Defining the linear 
operator A(ε) = δ∆F/δε,

A(ε) = bε
[
3 tanh2

( x
w

)
− 1

]
− κ∂2

x ε,� (A.2)

the Euler–Lagrange equations can be expressed as

A(ε∗) = λ̃.� (A.3)

Here, λ̃ is a Lagrange multiplier that ensures mass conserva-
tion in the case without chemical reactions, while λ̃ = 0 in 
the case with chemical reactions. Using partial integration on 
equation (A.1), we also have

∆F[cI, ε] =
1
2

∫
d3r εA(ε),� (A.4)

where we neglected the boundary terms assuming that the per-
turbation vanishes at the boundary or the system exhibits peri-
odic boundary conditions. To evaluate ∆F, it is convenient to 
express ε∗(x) in terms of the eigenfunctions εn(x) of the opera-
tor A. The associated eigenvalue problem ζnεn = A(εn) has 
already been considered in the context of Schrödinger’s equa-
tion with a potential similar to the first term in equation (A.2) 
[172]. In particular, it has been shown that the discrete part 
of the spectrum consists of only two eigenvalues, ζ0 = 0 and 
ζ1 = 3

2 b, while the continuous spectrum obeys ζ � 2b. In the 
following, the sum symbol will denote both summation over 
the discrete and integration over the continuous part of the 
spectrum. The solution ε∗(x) can then be expressed as

ε∗(x) =
∞∑

n=0

anεn(x),� (A.5)

where an are the corresponding series coefficients, which have 
to obey 

∑∞
n=0 anζn = λ̃. Using this in equation (A.4), we find

∆F[cI, ε∗] =
A
2

∞∑
n=1

ζn

∫
dx a2

n

{
εn(x)

}2
� 0,� (A.6)

where A is the cross-sectional area A =
∫

dydz. Equation 
(A.6) implies ∆F > 0 if any an �= 0  for n � 1, so the 
base state is stable with respect to these perturbations. In 
particular, the state cI would only be unstable if there are 
perturbations with a0 �= 0  and an  =  0 for n � 1. Note that 
the term for n  =  0 does not appear in equation (A.6) since 
the eigenvalue ζ0 vanishes. The associated eigenfunction 
is ε0(x) = ∂xcI(x), which does not conserve the mass of 
the individual components since 

∫
ε0(x)dx = 2(b/a)1/2. 

Consequently, this mode is forbidden if chemical reactions 
are absent, so that all perturbations increase the free energy 
in this case. Conversely, with chemical reactions, a0 �= 0  is 
allowed and this mode is marginal since it does not change 
the free energy, ∆F(cI, ε0) = 0.

Taken together, we showed that the interfacial profile cI(x) 
given in equation (2.28) is stable in the case without chemi-
cal reactions. Chemical reactions introduce a marginal mode, 
which corresponds to a translation of the interface. However, 
for finite systems, the boundary conditions (2.27), and thus 
the interface profile cI(x), are only approximate and all inho-
mogeneous states might be unstable in small systems [42].
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Appendix B.  Entropy production of a system with 
phase separation and chemical reactions

To derive dynamical equations  for a binary fluid exhibiting 
phase separation and chemical reactions, we here consider the 
associated entropy production. For a closed, isothermal system 
of constant volume, the entropy production is related to the 
change of free energy, dS/dt = −T−1dF/dt. For simplicity, 
we here consider the free energy F[cA, cB] =

∫
d3r f (cA, cB), 

neglecting the contributions proportional to the gradients of 
the concentration fields. Hence,

dF
dt

=

∫
d3r (µA∂tcA + µB∂tcB)

= −
∫

d3r [µA (∇ · jA − s) + µB (∇ · jB + s)]

=

∫
d3r [jA · ∇µA + jB · ∇µB + s (µA − µB)]

+ boundary terms,

�

(B.1)

where we have used µA = ∂f/∂cA, µB = ∂f/∂cB, and the con-
servations laws ∂tcA = −∇ · jA + s and ∂tcB = −∇ · jB − s. 
Note that the boundary terms originating from partial integra-
tion can be neglected when appropriate boundary conditions 
are applied or an infinite system is considered.

For each component i, the flux ji can be split into a  
convective part with velocity v and an exchange current j. As 
discussed in section 2.4, incompressibility and equal molecular 
volumes then imply jA = vcA + j and jB = vcB − j. Moreover, 
changes of the intensive thermodynamic quantities are coupled, 
implying the Gibbs–Duhem relationship cAdµA + cBdµB = dp, 
where p  is the pressure. Hence,

dF
dt

=

∫
d3r (j · ∇µ̄+ p∇ · v + s µ̄) ,� (B.2)

where µ̄ = µA − µB is the exchange chemical potential. In the 
case of equal molecular volumes of A and B, incompressibility 
implies ∇ · v = 0 [140], leading to

dS
dt

=
1
T

∫
d3r (−j · ∇µ̄− s µ̄) .� (B.3)

This expression reveals that the thermodynamic fluxes j and 
s are coupled to the thermodynamic forces ∇µ̄ and µ̄, respec-
tively. Expressing the fluxes as linear functions of their forces, 
we obtain j = −Λ∇µ̄ and s = −Λrµ̄, where the Onsager 
coefficients Λ and Λr must be positive to obey the second law 
of thermodynamics (dS/dt � 0). The entropy production only 
vanishes at equilibrium, where the equilibrium conditions 
∇µ̄ = 0 and µ̄ = 0 are obeyed and the fluxes vanish.

Appendix C. Thermodynamic constraints  
on chemical reaction rates

We consider a binary system consisting of particles A and B 
with a simple conversion reaction B � A. Assuming local 
equilibrium, the system is described by the concentrations cA 
and cB of the A and B-particles. Since the particles occupy 
all the space, both concentrations are connected via the 

relationship cA = ν−1 − cB, where ν  is the molecular volume 
of both species. The concentration of A particles obeys

∂tcA = s→ − s←,� (C.1)

where s→ and s← denote the respective forward and backward 
reaction flux or the respective number of reaction events per 
unit volume and time. To derive the condition on the ratio of 
these fluxes given in equation (4.1), we here analyze the asso-
ciated lattice model introduced in section 2.1.

We consider a system of M lattice sites and focus on the 
reactions occurring at the arbitrary lattice site n. The probabil-
ities to find an A or B particle at this site are given by P(σn, t) 
or P(σ̄n, t), respectively. Here, configurations of particles  
on the lattice where lattice site n is occupied by an A  
particle (σn = 1) are denoted by σn = (σ1, ...,σn = 1, ...,σM).  
Conversely, σ̄n = (σ1, ...,σn = 0, ...,σM), are configurations 
where the n-th site is occupied by B. These probability func-
tions are related to the volume fraction φ = νcA of A particles 
and concentration fields by

φ =
∑
Ωn

P(σn, t) = 1 −
∑
Ω̄n

P(σ̄n, t),
� (C.2)

where Ωn or Ω̄n denote the set of all possible configurations 
with an A or B particle at lattice site n, respectively. The 
time evolution of the probabilities is captured by the master 
equation

∂tP(σn, t) = −∂tP(σ̄n, t)

= kn
→(σ̄n)P(σ̄n, t)− kn

←(σn)P(σn, t) ,
�

(C.3)

where kn
→(σ̄n) and kn

←(σn) denote the forward and backward 
rates, which generally depend on the configuration. The equa-
tions discussed so far also hold when the reaction is not in 
equilibrium.

When the chemical reactions are equilibrated, the probabil-
ity distribution is time independent, leading to the condition 
of detailed balance:

kn
→(σ̄n)Peq(σ̄n) = kn

←(σn)Peq(σn).� (C.4)

Here, the equilibrium distribution to find a specific configura-
tion, σ1, ...,σM , is given as

Peq(σ1, ...,σM) =
1
Z
exp

(
−H(σ1, ...,σM)

kBT

)
,� (C.5)

with the Hamiltonian H(σ1, ...,σM) defined in equation (2.2) 
and the partition function Z given by equation  (2.1). Using 
equation (C.4), we have

kn
→(σ̄n)

kn
←(σn)

=
Peq(σn)

Peq(σ̄n)

= exp

(
−H(σn)− H(σ̄n)

kBT

)
.

�

(C.6)

For the considered case of a single reaction step and for short 
ranged interactions, the forward and backward rates do not 
depend on the full configuration {σ}. Instead, the rates solely 
depend on the particle configurations in the vicinity of site n, 
which is determined by the characteristic length scale of the 
interaction. In particular, using a mean field approximation, 
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the rates solely depend on the local volume fraction φ. In 
this case, the energy difference appearing in equation  (C.6)  
simplifies to

H(σn)− H(σ̄n) =
1
M

dE(φ)
dφ

,� (C.7)

where E(φ) is the mean field energy given by equation (2.6), 
such that

dE(φ)
dφ

= zM [eAAφ+ eAB(1 − 2φ)− eBB(1 − φ)] .� (C.8)

Combining equation  (C.6) and (C.7), we find that the 
rates solely depend on the local volume fraction φ, i.e. 
kn
→(σ̄n) = k→(φ) and kn

←(σn) = k←(φ).
We now return to the case where chemical reactions are 

not equilibrated. Taking the time derivative of equation (C.2) 
and using equation (C.3), we write the time evolution of the 
composition as

∂tφ =
∑
Ωn

[
kn
→(φ)P(σ̄n, t)− kn

←(φ)P(σn, t)
]

= k→(φ) (1 − φ)− k←(φ)φ ,
�

(C.9)

where we have used that the forward and backward rate 
solely depend on φ within the mean field approximation. 
Comparing with equation (C.1), we can identify the forward 
and backward reaction flux as s→ = k→(φ)

(
ν−1 − cA

)
 and 

s← = k←(φ)cA, since φ = νcA. Hence, the ratio of the reac-
tion fluxes reads

s→
s←

=
k→(φ)

k←(φ)

(1 − φ)

φ
= exp

(
− µ̄

kBT

)
� (C.10)

where we defined

µ̄ = z [eAAφ+ eAB(1 − 2φ)− eBB(1 − φ)]

+ kBT ln

(
φ

1 − φ

)
,

�
(C.11)

which can be identified with the exchange chemical poten-

tial µ̄ = µA − µB = ν ∂f
∂φ associated with the free energy den-

sity f (φ) given in equation  (2.8). Note that equation  (C.11) 
does not contain any gradient term since we here focused on 
the simple case of homogeneous mean field. However, equa-
tion (C.12) is referred to as detailed balance of the rates [147].

Detailed balance of the rates can be generalised to any 
chemical reaction of the form 

∑
i biBi �

∑
j ajAj , where aj  

and bi denote the stoichiometric coefficients corresponding to 
the component Aj  and Bi:

s→
s←

= exp

(
∆µ

kBT

)
,� (C.12)

where the chemical potential difference between products 
and educts, called the affinity of the reaction, is given by 
∆µ =

∑
j ajµAj −

∑
i biµBi . Note that the chemical potentials 

µk  can be replaced by the exchange chemical potentials µ̄k  if 
the chemical reaction also conserves volume.
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