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Abstract— Synchronization is one of the most challenging
aspects of distributed systems in terms of their scalability.
Minimal uncertainties can lead to problems or failures regard-
ing data consistency in globally operating data centers or in
distributed sensor arrays. Existing approaches to address these
challenges are based on hierarchical synchronization concepts
which are well understood and have reached technical maturity,
but have the disadvantage of having a single point of failure.
However, especially for critical infrastructure or backup more
resilient solutions are required. Mutual synchronization where
oscillators in a network are coupled bidirectionally without
a reference have been considered. Due to the flat hierarchy
such systems do not have a single point of failure. This work
studies how hierarchical synchronization can be combined with
architectures implementing mutual synchronization. A network
of three mutually coupled 24 GHz oscillators is used to study
how injecting a reference signal into one oscillator affects the
dynamics. This can be quantified by analyzing in which range
of frequencies the network of mutually coupled oscillators can
follow the reference frequency. Measurements on a ring and chain
network topology forced by an external reference oscillator shown
here are in good agreement with the predictions of a nonlinear
dynamical model.

Index Terms— Delays, phase noise, frequency synchroniza-
tion, frequency measurement, phase locked loops, propagation
delay, communication systems, stability criteria, synchronization,
mutual synchronization, oscillator.

I. INTRODUCTION

S INCE the 1960s, the synchronization of distributed loca-
tions has been an important challenge in the implemen-

tation of many technical systems. For example, the potential
for synchronization of pulse coded modulation in telephone
networks [1], [2], [3], [4], [5], [6], [7], [8] or early digital com-
munication networks [9], [10], [11] was discussed thoroughly.
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In this context, phase averaging has become a popular method
for synchronization. Each node receives signals dedicated
to synchronization from other nodes, averages their phases,
compares the result with the phase of the local oscillator and
adjusts its frequency according to predefined rules [1], [2], [3].

This concept is referred to as mutual synchronization
and synchronized states can emerge through self-organized
dynamics. In such systems, network synchronization is unaf-
fected by the failure of individual nodes and perturbations
to synchronized states decay within the boundaries of their
basin stability [8], [9], [12]. In addition, the network can
achieve synchronization at an optimal operating point for all
nodes [13]. However, this depends on the characteristics of
the network and in particular the time delays between coupled
nodes [12], [14], [15], [16].

Another commonly used concept for synchronization is hier-
archical primary-secondary synchronization. This approach is
a very simple, straightforward concept [14], [17]. A signal
derived from a precise primary reference clock is distributed
directly or indirectly to at least one secondary oscillator via
a clock tree. In this way, very tight control of all clocks can
be ensured. This approach leads to frequency synchronization
with the primary clock and is stable by definition. Thus this
approach is used in many existing systems [18], [19], [20],
[21]. Note that transmission time delays between the primary
and secondary clock do not affect the stability of synchroniza-
tion but introduce phase-differences [22].

The research presented here investigates the combination
of these synchronization concepts to achieve a robust and
easy-to-implement synchronization layer. For many spatially
distributed applications, such as sensor networks, financial
transactions, or globally distributed data centers, a reliable
time reference is necessary to allow for robust data process-
ing [23], [24], [25], [26]. For example, when accessing data in
data centers, an uncertainty in clock synchronization of only
10 µs can lead to failures [26]. For such large systems, the
complexity of implementing a synchronization layer that relies
entirely on mutual coupling is challenging. Hence, it may be
more efficient to combine established hierarchical concepts
with mutually coupled topologies [12], [27]. The stability
of such hybrid concepts has been investigated in simulation,
e.g. in a network of unidirectional coupled nodes in a ring
arrangement [28], [29].

Similar structures, where a fixed reference is used to entrain
a network of coupled oscillators can be found in system-on-
chip architectures for distributed clock generation [30]. Due
to the increasing integration of synchronous digital circuits,
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the clock distribution remains a key challenge. Approaches
to address them can be found in globally asynchronous,
locally synchronous (GALS) synchronization schemes or in
networks of coupled phase-locked loops (PLLs). In GALS,
individual blocks are decoupled by asynchronous connections
between clock domains, while coupled PLLs are used to
achieve global synchronization between them [31], [32], [33].
However, due to the small physical distances within integrated
circuits, delays between individual clocks are negligible or
compensated, so that they have no significant impact on the
coupling dynamics. The research presented here considers
significant time delays of the order of the intrinsic periods
of the oscillators and larger which cannot be neglected.

To gain a better understanding of the concept of mutual
synchronization in the presence of cross-coupling time delays,
Section II provides details about the dynamical model and
existing phase-locked synchronized states in case of mutual
coupling and entrainment. Due to the mutual coupling, partic-
ular focus is given to the limits of stability, which are different
compared to the conventional PLL literature. In Section III,
the design of a PLL node used for mutual coupling, as well
as the measurement setup are presented. The results for
mutual coupling with and without entrainment are shown and
discussed in Section IV.

II. MODEL OF COUPLED OSCILLATORS

In [7] a linear model for mutual synchronization of an
arbitrary number of geographically separated oscillators was
presented and studied for zero time delays between indi-
vidual nodes. However, no specific statement is made about
the characteristics of the phase or frequency detection used.
Reference [34] studies the dynamics and derives stability
conditions for this linear model with delays between individual
nodes. In [35] the analysis was extended to include component
nonlinearities. An approach using feedback time delays to
eliminate the dependence of the stability of synchronized states
on the cross-coupling time delay has been proposed introduc-
ing the equational timing system (ETS) in [36]. However its
dynamical response is more complicated and can not be solved
analytically [36].

Theoretical studies of the probability density of the
phase error for two mutually coupled oscillators using the
Fokker-Plank equation are given in [37]. This analysis is
continued in terms of the stochastic behavior of the oscillator’s
phase in [38] and [39]. Initial analysis of the hold-in and lock-
in range of two coupled PLL systems are shown in [40]. There,
a critical detuning is identified, for which a bifurcation to
chaotic dynamics takes place. This is further elucidated in [41]
and [42], defining the limit of synchronization for two coupled
oscillators. In [43] and [44], the phase noise of an array of
coupled oscillators is studied experimentally.

In recent years, the number of theoretical studies on mutual
synchronization of oscillators has increased significantly, pro-
viding new insights into the complex dynamics of networks
with time-delayed, nonlinear interactions [45], [46], [47],
[48], [49]. Particularly, the analysis of networks of coupled
PLLs has received increasing attention, resulting in theo-
retical frameworks for modeling such networks including

Fig. 1. Block diagram of the PLL node for mutual synchronization. Two of
the in- and output channels are used, other unused channels are disabled and
indicated by gray dots.

their complete nonlinear coupling characteristics [16], [52],
[50], [51].

The dynamical model of one PLL node for mutual syn-
chronization presented here is based on the simplified block
diagram shown in Fig. 1. This block diagram consists of
several phase detectors (PDs) that compare the phase of the
PLLs output signal vout to those of other connected PLL
nodes, denoted by vin,i , where i numbers the PDs. The output
signals of the PDs are then summed to vadd and shifted by
a constant calibration voltage Vbias. This is used to com-
pensate for possible component heterogeneities and to tune
the phase differences of a synchronized state. Subsequently,
filtering is realized using a loop filter (LF). The resulting
filtered signal tunes the voltage controlled oscillator (VCO).
The frequency-divided oscillator signal serves as the output
signal and reference signal for the phase detectors. Since
the output signal is the input signal to all other connected
nodes, the reference of a single node can be interpreted as the
average frequency of all incoming signals in comparison to a
conventional hierarchical concept [13], [15], [17].

In the following sections, the basic dynamical model of
coupled PLL nodes is discussed. Here, the nonlinear nature of
the oscillator is taken into account. Based on this theoretical
framework, the procedure for determining the existence of
possible mutually synchronized states is given. Subsequently,
the entrainment of networks in ring and chain topologies
consisting of three coupled PLLs is studied. In particular,
the range in which the network mutually coupled oscillators
can follow and lock to a reference signal, originated from a
primary clock, is addressed.

A. Dynamical Model

The instantaneous output frequency ϕ̇(t) of the VCO is a
function of its nonlinear frequency response g(·), which is a
function of the tuning voltage vtune(t)

ωVCO(t) = ϕ̇(t) = g (vtune(t)) . (1)

The characteristics of the frequency response g(·) depend
on the topology of the oscillator which is defined in [53].
A functional representation is shown in [54]. The tuning
voltage vtune(t) represents the control voltage vctrl which is
filtered by the loop filter with impulse response p(u). The
control voltage vctrl consists of a constant calibration voltage
Vbias as well as the weighted sum vadd(t) of all phase detector
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Fig. 2. Representation of a network of three mutually coupled PLL nodes in
ring topology. As an example, the propagation time delays between the nodes
C and B are given for this connection.

output voltages

vtune(t) =

∞∫
0

p(u) (Vbias + vadd(t − u))︸ ︷︷ ︸
=vctrl(t−u)

du. (2)

For each PLL k in the network, vadd(t) is the weighted sum
over its external inputs, equal to the number of PDs,

vadd(t) =
1

Ek

M∑
i=1

dki vin,i (t) ⊕ vout(t). (3)

Here, Ek denotes the number of oscillators connected to
node k, M the total number of oscillators in the network,
vout(t) is the feedback and output signal and vin,i (t) corre-
sponds to the external input signal to the phase detector from
input i . This input is the time-delayed output of PLL i in
the network. The phase detector performs an XOR operation,
denoted by ⊕. The frequency of the output signal vout(t)
is equivalent to the VCO frequency ωVCO(t) divided by the
frequency division factor N. The coupling parameter dki is
either zero or one depending on whether there is a connection
between node k and i , respectively.

B. Synchronized States in Mutually Coupled Oscillators

A network of three mutually coupled PLL nodes is studied
to address the effects of open and periodic boundary con-
ditions. Fig. 2 shows an example of a ring topology with
periodic boundary conditions. Unlike traditional hierarchical
clock trees, there is no reference clock present. As a result,
the synchronization dynamics in such networks self-organize
according to the properties of the nodes and the network.
This can lead to so-called mutually synchronized states. Such
states are characterized by the asymptotic frequencies of the
oscillators being equal and the phase differences between
nodes being constant in time [16], [55]. Hence, the theoretical
ansatz to study the existence of synchronized states is

ϕk(t) = �NET t + ϕk, (4)

where �NET is the angular network frequency in the coupling
path and the synchronized output frequency of each coupled
node. ϕk denotes the initial phase-offset of node k.

Assuming that in a synchronized state all perturbations have
decayed and that all nodes in the network are identical, the
ansatz in Eq. 4 inserted into the dynamic model in Eq. (1-3)

results in the following set of implicit expressions

N �NET = g
(

GLF
(

Vbias +
GPD

Ek

×

M∑
i=1

dki △
[
−�NET τdelay,ki − ϕmode,ki

]
.
))

(5)

GLF denotes the LF steady state gain, including the PD
gain GPD, △ (·) the normalized triangular phase-error transfer
function of an XOR based PD with an amplitude of one,
τdelay,ki the effective time delay and ϕmode,ki = ϕk − ϕi the
phase difference between node k and i . This constant phase
difference is the so-called mode locking phase difference and
is induced by the periodicity of the PD’s phase error transfer
function and depends on the network topology [16], [46], [56].

Eq. 5 can be used to find all existing states and their
properties {�NET, ϕmode,ki }. Whether or not these are stable
has to be determined studying the response of a state to phase
perturbations. If a state is asymptotically stable, it can be
observed in a system, e.g. during measurements. The set of
Eq. 5 reveals that the synchronized state depends not only
on the intrinsic parameters of each node, such as the loop
bandwidth and loop gain, but also on the network topology
and the effective time delay between coupled nodes.

C. Entrainment of Mutually Synchronized States

In order to study whether self-organized synchronized states
can be entrained by a reference oscillator, a fixed angular
reference frequency ωREF is injected to one node of the
network of the mutually coupled PLLs. If the entrainment is
successful, all nodes of the network will oscillate with the
frequency of the reference, which is formally expressed by

�NET = ωREF. (6)

Therefore, possible stable states can be predicted inserting
Eq. 6 into Eq. 5. Then, the properties of existing entrained
synchronized states are obtained by evaluating

g−1 (N ωREF) − g−1 (N ω0)

GFF

=
1

Ek

M∑
i=1

dki △
[
−ωREF τdelay,ki − ϕmode,ki

]
. (7)

GFF = GPD GLF denotes the steady state gain of PD and
LF in the feed-forward path and ω0 is the divided closed
loop free-running frequency of each PLL node, assuming that
there is no external signal. g−1 (·) denotes the inverse of the
frequency response function of the VCO. Evaluation for a
given frequency yields the corresponding tuning voltage.

1) Chain Topology: When entraining a network of mutually
coupled nodes in chain topology, illustrated in Fig. 3, the
cross-coupling output frequency of node A is forced towards
the reference frequency ωREF. Node A affects the frequency
of node B, and so on. If the entrainment is successful, the
frequencies of all nodes become equal asymptotically. Then,
the phase differences can be calculated from Eq. 7 starting
with the equation for the last oscillator of the chain – in the
case presented here, node C. For the following analysis, it is
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Fig. 3. Representation of a network with three mutually coupled PLL nodes
in chain topology. Node A is entrained by an external reference and all
cross-coupling delays between the nodes are identical.

assumed that the time delay between all nodes is identical for
the bidirectional coupling, so that τdelay = τdelay,ki for any
k and i . Thus, for the reverse direction, the phase difference
is reversed so that ϕmode,ki = −ϕmode,ik applies. The phase
differences between the coupled PLL nodes C, B and A are

ϕmode,CB = −ωREF τdelay

− △
−1

[
g−1 (N ωREF) − g−1 (N ω0)

GFF

]
, (8)

ϕmode,BA = −ωREF τdelay

− △
−1

[
2

(
g−1 (N ωREF) − g−1 (N ω0)

)
GFF

− △
(
−ωREF τdelay + ϕmode,CB

) ]
, (9)

and ϕmode,AR for the phase difference between node A and the
reference node R

ϕmode,AR = −ωREF τdelay

− △
−1

[
2

(
g−1 (N ωREF) − g−1 (N ω0)

)
GFF

− △
(
−ωREF τdelay + ϕmode,BA

) ]
. (10)

To predict the range in which a node of the mutually con-
nected network can follow the reference frequency ωREF, the
argument of the inverse phase-error transfer function △

−1 (·)

of the previously obtained phase differences between nodes is
evaluated. The set of values of △ (·) ∈ [−1, 1], becomes the
domain set of the inverse function. Hence, the argument of
△

−1 (·) in Eq. (8-10) must be in this range. In consequence,
the range of ωREF that each node individually can follow in the
chain topology can be obtained from evaluating the conditions∣∣∣∣g−1 (N ωREF) − g−1 (N ω0)

GFF

∣∣∣∣ ≤ 1,∣∣∣∣2(g−1 (N ωREF) − g−1 (N ω0))

GFF
− A

∣∣∣∣ ≤ 1,∣∣∣∣2(g−1 (N ωREF) − g−1 (N ω0))

GFF
− B

∣∣∣∣ ≤ 1, (11)

where

A = △

[
− 2 ωREF τdelay

+ △
−1

(
g−1 (N ωREF) − g−1 (N ω0)

GFF

) ]
, (12)

Fig. 4. Representation of a network with three mutually coupled PLL
nodes in ring topology. Node A is entrained by an external reference and
all cross-coupling delays between the nodes are identical.

B = △

[
− 2 ωREF τdelay

+ △
−1

(
g−1 (N ωREF) − g−1 (N ω0)

GFF
−A

) ]
. (13)

Thus, the range in which the network can follow the
reference is given by Eq. 11 for node C, B and A when all
conditions are met. Eq. 12 and Eq. 13 represent the delayed
interactions between nodes C and B from Eq. 9 and nodes B
and A from Eq. 10. This reveals that the difference between
the tuning voltage of the reference oscillator and the tuning
voltages of the free-running oscillators must be within a certain
interval so that the network of coupled oscillators is able to
follow the reference.

2) Ring Topology: The network of three mutually coupled
PLL nodes in ring configuration is shown in Fig. 4. All nodes
are connected bidirectionally with the same cross-coupling
time delay τdelay between them. The phase differences are
calculated from Eq. 7 as in the case of the chain topology
and are given by

ϕmode,CB = −ωREF τdelay

− △
−1

[
2

(
g−1 (N ωREF) − g−1 (N ω0)

)
GFF

− △
(
−ωREF τdelay − ϕmode,CB − ϕmode,BA

) ]
,

(14)
ϕmode,BA = −ωREF τdelay

− △
−1

[
2

(
g−1 (N ωREF) − g−1 (N ω0)

)
GFF

− △
(
−ωREF τdelay + ϕmode,CB

) ]
, (15)

Due to the relative phase relations, the phase difference
between nodes A and C can be determined by

ϕmode,AC = −ϕmode,BA − ϕmode,CB. (16)

The phase difference ϕmode,AR of the node A to the reference
node R is given by

ϕmode,AR = −ωREF τdelay

− △
−1

[
3

(
g−1 (N ωREF) − g−1 (N ω0)

)
GFF
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− △
(
−ωREF τdelay + ϕmode,BA

)
− △

(
−ωREF τdelay − ϕmode,CB − ϕmode,BA

) ]
.

(17)

Similarly as discussed in Section II-C1, Eqs. (14)-(17) are
used to obtain the range in which each node of the network
can follow the external reference. One finds∣∣∣∣2

(
g−1 (N ωREF) − g−1 (N ω0)

)
GFF

− △
(
−ωREF τdelay + ϕmode,AC

) ∣∣∣∣ ≤ 1,∣∣∣∣2
(
g−1 (N ωREF) − g−1 (N ω0)

)
GFF

− △
(
−ωREF τdelay + ϕmode,BC

) ∣∣∣∣ ≤ 1,∣∣∣∣3
(
g−1 (N ωREF) − g−1 (N ω0)

)
GFF

− △
(
−ωREF τdelay + ϕmode,BA

)
− △

(
−ωREF τdelay − ϕmode,AR

) ∣∣∣∣ ≤ 1, (18)

Due to the periodic boundary condition of the ring topology,
there is an implicit dependence of the phase difference of each
node to its connected nodes. Hence, in contrast to a topology
with open boundary conditions, e.g. a chain, the region in
which the coupled network follows the reference cannot be
determined explicitly.

D. Discussion on Theoretical Findings

In a network of mutually coupled oscillators without
entrainment by a reference oscillator, synchronized states
self-organized in dependence of the properties of the nodes
as well as those of the network. Forcing a self-organized syn-
chronized state with a reference oscillator signal can lead to its
entrainment. As a result the notion of a self-organized synchro-
nized state breaks down. One observes, that as the reference
frequency deviates from the frequency of the self-organized
synchronized state, phase relations different to those of the
self-organized synchronized state exist. However, these phase
differences result not only from the detuned frequencies or
the presence of delays between the reference oscillator and
the oscillators as known from the classical hierarchical entrain-
ment [57]. Instead, the phase difference is a result of the delays
between the mutually coupled nodes. The detuning between
the network and reference frequency is not easy to see, since
it is assumed that τdelay,RA = τdelay.

The new architecture can be interpreted as a primary-
secondary topology, where the secondary consists of a network
of mutually delay-coupled oscillators with internal dynamics.
This in turn calls for an in-depth analysis of how the primary
or reference frequency affects the properties and stability
of the self-organized synchronized state. The non-negligible
time delays between the individual nodes of the mutually
coupled network must be considered. Furthermore, as shown

Fig. 5. Numerical solution of stable synchronized coupled network frequen-
cies fNET and hold-in range for an entrained network with three mutually
coupled nodes in chain arrangement for time delays τdelay of 12 ns to 52 ns
between the nodes. Multistable regions where in-phase and anti-phase stable
state exist simultaneously for a given time delay are denoted in orange.

in the previous analysis for the ring and chain topologies,
the range in which the network is affected by the reference
oscillator is a function of the delays in the mutual coupling
and the synchronized states. Note that this is different from
the classical case of hierarchical entrainment, where this range
depends only on the properties of the PLL.

As an example, this is shown for the network consisting
of three nodes in chain topology, see Fig. 5. The asymptotic
frequencies of linearly stable in-phase and anti-phase syn-
chronized states for a network without reference are shown
with the dashed and dotted line, respectively. With increasing
time delay, these states overlap in certain ranges of the time
delay. These so-called multistable states are shaded in orange.
Which of the two states are observable when a measurement
is performed depends on the initial phase configuration and
history of the nodes, see [52]. The area highlighted in green,
which is wrapped around the synchronized state, is the area in
which the mutually coupled network can in principle follow
the frequency of the injected reference signal. This area has
been obtained by solving Eq. 11. Comparing this range with
classical PLL theory, an analogy to the hold-in range can be
found. In particular, when considering the first condition in
Eq. 11. According to the literature, the hold-in range is defined
as the range in which the PLL can follow the reference and
track the phase [57]. Note that this is different from the lock-
in range, which is the range of stable solutions for which all
phase differences and frequencies become stationary. Due to
the mutual coupling of the oscillators in the network, there
are several conditions for the hold-in range, see Eq. 11 and
Eq. 18. These conditions are coupled. All of them have to be
fulfilled simultaneously. Consequently, the conditions that lead
to the hold range are a function of the synchronized states.

III. PLL NODE DESIGN AND MEASUREMENT SETUP

The validation of the theoretical predictions requires an
experimental setup with four identical PLL nodes. Three nodes
are used for the network of mutually coupled nodes and one as
the reference. The primary requirements for these nodes are
flexibility with respect to the network architecture in which
they are embedded, as well as mechanisms for calibration.
Since the main focus is on systems design, commercially avail-
able off-the-shelf components are used to design a modular
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Fig. 6. Minimal working example of two mutually coupled PLL nodes connected via a delay module. The PLL nodes consist of two stacked boards: The
lower one is for the PLL and high frequency circuits, the upper one is for the power supply. The cross-coupling connections of the PLL nodes are selected in
such a way that they can be connected directly to the delay module or another node without much effort. Due to the modular design, the nodes can also be
used in larger scalable networks. The high frequency connection of the VCO output is located at the upper left 45 degree edge. The board size of one PLL
node is 120 mm × 120 mm and the delay module has a size of 113 mm × 75 mm.

system specifically tailored to the requirements of mutually
coupled PLLs. Therefore, considering possible applications in
the field of precise localization or tracking [58], [59], [60],
an oscillator operating in the 24 GHz band is chosen. To study
the coupling behavior with a significant time delay between
nodes, the inputs and outputs of the nodes are compatible
with differential low-voltage positive emitter coupled logic
(LVPECL). This enables the use of cascaded delay chips as a
programmable delay between nodes, as shown in Fig. 6. The
PLL node and the delay modules provide a USB connection,
which allows important system parameters such as the time
delay to be set by a computer at runtime.

Each PLL node consists of four input/output channels
arranged on all sides of the PCB. Each channel has its own
differential output and input interface. Right behind the input
of each channel an XOR based phase-detector is placed, which
compares the outgoing phase with the incoming one. To sim-
plify the layout, the feedback signal between output and phase
detector is inverted. The PD output signal is converted from
a differential to a single-ended signal using an operational
amplifier before being fed into the adder circuit. The length
of all input and output signals are matched, thus the phase of
the corresponding signals are equal. Once these signals have
been summed up and shifted by the calibration voltage Vbias,
they are filtered by the LF. Here, a second-order RC low-pass
filter with a −3 dB cut-off frequency of 398.1 kHz is used.
The high frequency signal of the VCO is divided in frequency
by a factor of 512 before it is used as outgoing signal,
according to Fig. 1. An additional buffer amplifier enables
the measurement of the node’s tuning voltage to the oscillator
without significantly affecting the closed control loop. The
loop bandwidth of the individual PLL node is 497.7 kHz.

The calibration of the closed-loop free-running output fre-
quency of a node is performed using a spectrum analyzer and
a digital-to-analog converter (DAC). Based on a python script,
the current frequency is measured and the digital value of the
DAC is adjusted. Using a high accuracy, low noise voltage
reference for the DAC allows very precise calibration of all
closed loop free-running oscillator frequencies to 24.3 GHz.
The deviation between all nodes is below 5 MHz (0.02 %).
Moreover, the phase noise of the free-running oscillators is
reduced compared to previous work [51], allowing a more
accurate synchronization. Note, that the nodes used are not
optimized for a specific application, so that some parameters
are rather high compared to commercial PLLs.

The realization of the adjustable cross-coupling time-delays
between individual PLL nodes is achieved by a delay mod-
ule with one delay channel for each direction of the cou-
pling between nodes. Each channel consists of four cascaded
programmable delay chips, which allow a delay between
11.3 ns and 52.2 ns in total. This delay can be set dur-
ing the runtime via the USB connection mentioned earlier.
Thus, complex automated measurements of the dynamics are
possible.

The dynamic properties of the mutual coupled network
in chain or ring topology with or without entrainment are
studied using the simplified representation of the measurement
setup depicted in Fig. 7. The configuration represents the
exemplary case of an entrained chain network consisting of
three nodes, where the reference signal is injected at node A.
The measurement on the cross-coupling frequency level is
realized with two oscilloscopes and on high frequency level is
measured either with a spectrum analyzer or a real time scope
with very high bandwidth.
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Fig. 7. Sketch of the setup used to measure the chain network topology.
Oscilloscope 1 measures the output waveform and extracts its frequency and
phase relation, while oscilloscope 2 measures the peak-to-peak tuning voltage
and frequency of the individual nodes. The high frequency output signals are
measured using a broadband real time oscilloscope (RTO).

To analyze the asymptotic properties of a state, it is nec-
essary to know the frequency of the synchronized state fNET
of each node as well as the phase relation 1ϕi,k between the
nodes. This is done by capturing the output waveform vx

out of
each node with oscilloscope 1 (Rohde & Schwarz RTO 2044)
and extracting the necessary data using the oscilloscope’s
automated measurement function. Each node’s dynamical
response can be obtained by observing its tuning voltage vx

tune.
It reveals insights into the self-organized dynamics for the
given measurement conditions, e.g., time delays or entrainment
by a reference. For this study the ac component is consid-
ered by extracting the peak-to-peak voltage and a possible
frequency on the tuning voltage vx

tune with the oscilloscope 2
(Rohde & Schwarz RTO 1044). Another broadband real time
oscilloscope (RTO) Keysight UXR 1004A is used to capture
the high frequency output signals vx

vco of the oscillator of
each PLL node. This recorded time series is later used by
the instrument’s FFT function to determine the frequency
of the individual node. For the calibration routine of each
individual node, a Rohde & Schwarz FSU-67 frequency spec-
trum analyzer is used instead of the broadband RTO. During
calibration, the frequency of the node is measured and the
voltage Vbias is adjusted until the deviation from the desired
frequency of 24.3 GHz is less than 500 kHz. Note that the
frequency of the node will drift over time due to temperature
changes and remaining supply voltage fluctuations.

IV. MEASUREMENT

In the following, the experimental results for the ring and
chain topologies studied are presented and analyzed. First,
the mutually coupled oscillator networks with self-organized
synchronization dynamics are considered in Section IV-A,
followed by the cases where networks of mutually coupled
nodes are entrained by a reference in the presence of time
delays of 35 ns for the chain topology and 36.5 ns for the
ring topology in Section IV-B. Particular attention is given
to the individual dynamical responses of each node within
the mutually coupled network. The analysis of the dynamics

Fig. 8. Photo of the measurement setup in the laboratory where three nodes
are mutually coupled in a ring network topology. One of these nodes will be
entrained by another PLL node, which serves as a reference. Measurement
devices shown starting from top left: spectrum analyzer, oscilloscope 2,
oscilloscope 1, and high bandwidth RTO.

Fig. 9. Measurements of synchronized states compared to numerical results
obtained from Eq. 5 in a network of three mutually coupled nodes in chain
topology for increasing and decreasing cross-coupling time delays τdelay. The
standard deviations of the network frequency and phase difference are shown
in shaded colors.

is carried out for the entire range of time-delay as shown
in Section IV-C. The measurement setup used is depicted in
Fig. 7 and was adapted to the respective network topology.
An example of this is shown in Fig. 8 for a ring topology
with entrainment by a reference.

A. Mutual Synchronization

Fig. 9 shows the measured network frequency fNET as
well as phase difference 1ϕi,k between nodes for a network
of three mutually coupled PLL nodes in a chain topology.
The time delay between all nodes is increased linearly from
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Fig. 10. Measured normalized power spectral densities and phase noise level
(PN) at an offset of 1 MHz from the carrier for three mutually coupled PLL
nodes in chain topology for a time delay τdelay of 43.97 ns between them.
The frequency of the oscillators of all nodes is at 24.666 GHz.

the minimum up to the maximum value of 52.2 ns and then
subsequently back to the initial minimum value. All delay
modules between the nodes have the same time delay τdelay
and the coupling between the nodes is always enabled during
the entire sweep.

It can be seen, that a stable synchronized state can be found
for almost all time delays. The measured network frequency
fNET of all nodes, shown in Fig. 9(a), of synchronized states
has a maximum standard deviation of 256 kHz at a delay of
51.7 ns, while the average standard deviation is 18.59 kHz
for stable synchronized states. The increase and subsequent
decrease of the time delay reveals regimes where multiple
synchronized states are stable for a given time delay. This
can be seen e.g. at a time delay τdelay of 21.5 ns.

The properties of synchronized states measured in the
experimental setups is in good agreement with the theoretical
predictions, given by Eq. 5. For such a network topology
with open boundary condition, stable states with in- or anti-
phase mode-locking phase difference ϕmode,ki can be observed,
as shown in Fig. 9(b). Moreover, it can be seen that the phase
difference 1ϕA,C between the two outer nodes A and C always
stays in an in-phase relation. For time delays greater than 40 ns
instabilities emerge.

Fig. 10 shows the measured frequency spectrum of the
high-frequency outputs of all mutually coupled PLL nodes
in chain network topology at a time delay of 43.97 ns. The
center frequency of all node’s high frequency oscillator output
is 24.666 GHz and the deviation between them is below the
resolution bandwidth of 3.8 kHz of the RTO’s FFT function.
The phase noise (PN) at a distance of 1 MHz from the center
frequency is between −44.64 dBc/Hz and −40.83 dBc/Hz.
Due to component availability, a different reference voltage
source was used for the DAC of node B in this measurement.
The phase noise is averaged over 20 samples, which are in a
span of 40 kHz around the offset of 1 MHz on both sidebands.
In this way, measurement and extraction artifacts can be
reduced. The mean phase noise of the free-running nodes is
−44.42 dBc/Hz and −38.25 dBc/Hz for node B, respectively.

The measurements in the network of three mutually cou-
pled PLL nodes in ring topology without entrainment are
carried out similarly. Due to the periodic boundary con-
dition of the ring topology, so-called m-twist states can
be observed. For these, phase differences between individ-
ual nodes arise which correspond to 1ϕi,k = 2π m/M, where
m ∈ {0, · · · , M − 1} [56]. The 0-twist corresponds to zero

Fig. 11. Measurements of synchronized states compared to numerical results
obtained from Eq. 5 in a network of three mutually coupled nodes in ring
topology for increasing and decreasing cross-coupling time delays τdelay. The
standard deviation in network frequency and phase difference are shown in
shaded colors.

Fig. 12. Measured normalized power spectral densities and phase noise level
(PN) at an offset of 1 MHz from the carrier for three mutually coupled PLL
nodes in ring topology for a time delay τdelay of 43.97 ns between them. The
frequency of the oscillators of all nodes is at 24.668 GHz.

phase differences and hence to an in-phase configuration. In a
ring with three mutually coupled nodes, the phase difference
1ϕi,k for the 1-twist are ± 120° and ∓ 120° for the 2-twist.

Fig. 11(a) shows that the predicted frequencies for syn-
chronized 1-twist and 2-twist states are in good agreement
with the measurements. The average standard deviation is
19.12 kHz for all stable synchronized states within the time
delay range analyzed. For the delay range of approximately
14 ns and 18 ns as well as between 35 ns and 39 ns m-twist
state can be observed, as shown in Fig. 11(b). Between the
stable synchronous states there are time delays where no stable
synchronization was observed.

The measured high-frequency spectrum indicates an iden-
tical center frequency of 24.668 GHz for all nodes in the
network. The difference between the nodes is also below
the resolution bandwidth of 3.8 kHz of the RTO. The phase
noise at a distance of 1 MHz from the carrier is between
−38.26 dBc/Hz and −43.51 dBc/Hz, as shown in Fig. 12.
This is in the same range as for the chain topology.
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B. Entrainment of Mutual Synchronization for Fixed Delays
This section discusses the effect of unidirectional injection

of a reference frequency into the network of mutually coupled
nodes. The time delay τdelay between the nodes in the ring or
chain topology is constant as the frequency of the reference
fREF is varied. An additional PLL node serves as the refer-
ence oscillator. Its frequency can be linearly swept using the
calibration voltage Vbias. The tuning voltage of each node in
the network is measured during this parameter sweep. Using
an automatic measurement function of the oscilloscope, the
frequency ftune and the peak-to-peak voltage Vpp,tune of these
experimentally obtained tuning voltages are extracted. From
these measures, the lock-in range of the network of mutually
coupled PLLs can be identified. Following the definition of
the lock-in range it is found where all output frequencies
are identical and both measures of the tuning voltages are
zero. In the following diagrams this is indicated by the gray
region. Note that the tuning voltage within this range still has a
constant dc voltage that determines the frequency of the VCO.

The measurement and numerical results of the chain topol-
ogy at a time delay τdelay of 35 ns between all nodes are shown
in Fig. 13. The numerical results are extracted from time
domain simulations of the dynamical model Eqs. (1-3) with
an linear VCO response approximation and for ideal filtering
of intermodulation products of the PD. The upper diagram,
Fig. 13(a), depicts the network frequency fNET of each node
as a function of the frequency fREF injected by the reference.
The results of the simulations of each node are plotted using
markers. The frequencies of the synchronized states obtained
from the simulation of the dynamics, given by Eq. 5. The
simulated network frequencies are in good agreement with the
measured results. The corresponding measured phase relations
are given in Fig. 13(b).

Based on these measurements, a range can be extracted in
which the frequency of all nodes are identical to the reference
frequency. This, so called lock-in range, is between 47.43 MHz
and 47.86 MHz denoted by the gray region. All standard
deviations of phase relations 1ϕi,k between coupled nodes
is below 0.193° within this range. The standard deviation of
the network frequencies of node A is 18.4 kHz, of node B
is 20.4 kHz, and of node C is 17.0 kHz. Furthermore, it is
observed that the phase differences are close to the predicted
mutually synchronized state for a non-entrained network with
a frequency of 47.81 MHz. At this point, the phase difference
between nodes A to B and B to C are in anti-phase, and
between nodes A to C it is in an in-phase relation during
entrainment. Hence, inside the hold-in range the frequencies
of the nodes in the network of mutually coupled nodes are at
least partially pulled towards the reference frequency. Within
this range there is the lock-in range where the entrainment
is successful and all nodes have the same frequency as the
reference node.

The measured peak-to-peak voltage Vpp,tune of the tuning
voltage in Fig. 13(c) and its frequency in Fig. 13(d) confirms
this extracted lock-in range. Both, the frequency ftune and
the peak-to-peak voltage Vpp,tune are close to zero within this
range. The values of both quantities extracted from simulations
are also in good agreement with these measurements. The

Fig. 13. Entrainment of a network with three mutually coupled nodes in
chain topology at a time delay τdelay of 35 ns. The gray region denotes the
lock-in range extracted from the measurements. The standard deviation of
each measured trace is shown in shaded colors.

hold-in range in which the network is affected by the reference
frequency fREF is between 46.5 MHz and 49.1 MHz. Within
this hold-in range, dynamic interactions between the coupled
nodes are evident. Furthermore, a strong effect on the entrained
node A can be observed. Its control voltage oscillations set in
for reference frequencies outside the hold-in range and have
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Fig. 14. Entrainment of a network with three mutually coupled nodes in
ring topology at a time delay τdelay of 36.5 ns. The gray region denotes the
lock-range extracted from the measurements. The standard deviation of each
measured trace is shown in shaded colors.

a much larger peak-to-peak voltage Vpp,tune compared to node
B and C. This is most probably due to the forcing of node by
the reference node.

Fig. 14 shows the measurement results of the ring topology.
Qualitatively similar dynamics compared to the chain topology
can be observed for the frequency of the coupled nodes.

Fig. 15. Measured normalized power spectral densities (PSDs) and phase
noise level (PN) at an offset of 1 MHz from the carrier for the entrainment of
a network with three mutually coupled PLL Nodes in chain or ring topology
for time delay τdelay of 43.97 ns between nodes.

The lock-in range extracted from the measurement is between
47.23 MHz and 47.56 MHz, as denoted by the gray region
in Fig. 14(a). Within this range, the standard deviation of the
network frequencies of all coupled nodes is found to be below
20.2 kHz and the standard deviation of the phase differences
is below 0.199°. These measured deviations are determined
during a time interval of 4 s at given frequency fREF. The
point at which the phases of the nodes are in a ±120° m-twist
phase relation is close to the synchronized state in the case
without entrainment at 47.5 MHz, as shown in Fig. 14(b).

The measured frequency ftune and peak-to-peak amplitude
Vpp,tune of the tuning voltage modulation confirms the lock-in
range, shown in Fig. 14(c) and Fig. 14(d). Compared to node B
and C, the peak-to-peak voltage on the tuning signal of node A
is significantly higher. The frequency ftune of the oscillation is
identical for all nodes outside the lock-in range and increases
linearly with the distance to the lock-in range in the studied
frequency range of fREF. The simulated Vpp,tune of nodes B
and C is identical for the given fREF. The measurements
confirm the simulation results qualitatively and quantitatively.
The maximum difference between Vpp,tune of nodes B and C
is about 143 mV.

The measured normalized power spectral densities for the
ring and chain topology at a time delay τdelay of 43.97 ns
between all nodes in the network are depicted in Fig. 15. The
center frequency of the high frequency oscillator output of all
nodes is 24.638 GHz for the chain and 24.581 GHz for the
ring arrangement. In both cases, the deviation between them
is below the resolution bandwidth of 3.8 kHz. The phase noise
was also averaged in a span of 40 kHz around the offset of
1 MHz on both sidebands.

The measured phase noise at a frequency offset of 1 MHz
to the carrier is for the reference between −51.57 dBc/Hz
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Fig. 16. Measured entrainment of a network with three mutually coupled
PLL nodes in chain topology versus cross-coupling time delays τdelay. The
black lines indicate the simulated synchronized states in the case of a network
without an injected reference. The dotted line corresponds to the anti-phase
and the dashed line to the in-phase synchronized state. The red lines bound
the determined range in which the network can follow the reference.

and −50.26 dBc/Hz. The entrained node A has a phase
noise of −47.7 dBc/Hz respectively −47.37 dBc/Hz in both
network topologies studied. The other two nodes have a
phase noise of between −38.59 dBc/Hz and −40.51 dBc/Hz
in chain arrangement, as shown in Fig. 15(a) and between
−38.71 dBc/Hz and −42.84 dBc/Hz in ring topology,
depicted in Fig. 15(b).

C. Parameter Space Plots of Hold- and Lock-In Range

In the next step, the analysis introduced in the last sub-
section is carried out for time delays ranging from 11.3 ns to
52.3 ns. The resulting parameter space plots show the average
value over all nodes of the frequency ftune and peak-to-peak
voltage Vpp,tune of the tuning voltage for each delay τdelay
and reference frequency fREF value in a heat map. Therefore,
both indicators of this ensemble average are color coded. The
lighter color indicates a low value and the darker color a high
value, see the color bars on top of each figure. When both
measured quantities are close to zero, no dynamic change of
the tuning voltage is detected, which means that the PLL nodes
are phase-locked to the injected reference.

Fig. 16 shows the dynamical properties of an entrained
mutual coupled network with three PLL nodes in chain topol-
ogy. From the mean frequency ftune of the tuning voltage in
Fig. 16(a) it can be seen that the frequency decreases when
fREF is close to a synchronized state. No conclusive value of

Fig. 17. Measured entrainment of a network with three mutually coupled
PLL nodes in ring topology versus cross-coupling time delays τdelay. The
black lines indicate the simulated synchronized states in the case of a network
without an injected reference. The dotted line corresponds to the anti-phase
and the dashed line to the in-phase synchronized state. The red lines bound
the determined range in which the network can follow the reference.

ftune can be detected in the ranges of the time delay where
multistability occurs, such as between 20 ns and 23.5 ns.

It can be observed that within the hold-in range the peak-
to-peak voltage Vpp,tune, shown in Fig. 16(b), shows two
qualitatively different behaviors. Close to the frequency of the
self-organized synchronized states shown by the dashed and
dotted lines, Vpp,tune tends towards zero, i.e., oscillations of
the tuning voltage are suppressed. This is the lock-in range
where the entire network locks to the reference. Outside this
lock-in range the tuning voltage oscillates and thereby affects
the high frequency output of the PLLs, see e.g., Fig. 13(d).
In regimes where multistability can occur the lock-in ranges
are decreased. Furthermore, no clear trends in the dynamics
of the tuning voltages are visible.

A qualitatively similar behavior can also be observed for
the network in ring topology, which is presented in Fig. 17.
In close proximity to the frequency of the self-organized
synchronized state, the network can lock to the frequency
of the reference. This is evident from the low Vpp,tune and
ftune values and corresponds to the lock-in range. As the
deviation between the reference frequency and that of the
synchronized state increases, the frequency of the tuning
voltage increases almost linearly, as shown in Fig. 17(a). The
peak-to-peak voltage, however, increases and then decreases
again subsequently.

Given the hold-in ranges shown for the entrainment of the
chain topology in Fig. 16(b) suggest that the boundaries of
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the hold-in range are defined by the dynamics of the tuning
voltage. Hence, in Fig. 17(b) the hold-in range is found where
the peak-to-peak voltage is zero (lock-in range), and within
the regimes where Vpp,tune is far from zero, see shoulders
in the parameter space plots. These represent where the tuning
voltage oscillates with large amplitude. Note that there is a
qualitatively different behavior around the m-twist state with
m > 0. The lock-in ranges associated to these twist states can
be seen to extend beyond regimes of time delays where twist
solutions for self-organized states exists, see e.g. Fig. 11(a)
and Fig. 17(a) at a delay of 19 ns.

V. CONCLUSION AND DISCUSSION

The research presented here studies whether hierarchical
and non-hierarchical synchronization concepts can be com-
bined to achieve a robust synchronization layer in the pres-
ence of considerable cross-coupling time delays. In general,
in hierarchical synchronization approaches, cross-coupling
time delays translate into phase-differences between indi-
vidual oscillators. This is not the case in non-hierarchical
synchronization concepts wherein oscillators in a network
are mutually coupled without a reference. As a result the
dynamics self-organize and can lead to synchronized states
with a common global network frequency and hence constant
phase relations. Given these qualitative difference between the
two approaches, this work asks how the entrainment affects a
network of mutually delay-coupled oscillators.

Using well known concepts from classical PLL theory, com-
bined with a theoretical framework for studying mutually cou-
pled oscillators, a hold-in range can be obtained analytically.
It represents the regime in which the self-organized dynamics
of the mutually coupled oscillators are affected by the external
reference. This leads to the question whether the self-organized
synchronous state can be abstracted as a secondary oscilla-
tor. This is not supported by the observations made from
the measurements. These reveal, that the hold-in range is a
function of the cross-coupling time delays within the entrained
network. Furthermore, the self-organization dynamics depend
also on the network topology as well as the characteristics
of each individual node. These factors combined lead to
complex internal dynamics in the network of mutually coupled
oscillators. Consequently, a generic abstraction of the network
as a secondary oscillator in a hierarchical synchronization
approach cannot be supported.

Measurements of the entrainment of mutual synchronization
were carried out for a network in a chain and in a ring
topology with three mutually coupled nodes. These show, how
the frequencies of self-organized synchronous states depend on
the cross-coupling time delays. Similarly, the hold-in range
becomes a function of these delays. It is bounded by a maxi-
mum detuning between the frequency of the reference and that
of the self-organized states. As a result, entrainment can only
be achieved within the hold-in range. More specifically, stable
entrainment of synchronized states with a constant global
frequency is only achieved within the lock-in range, which
lies entirely within the hold-in range. Hence, the lock-in range
specifies the range in which the frequency of the self-organized

synchronous state can be pulled sufficiently to match that of
the reference. At the same time, phase difference between the
nodes of the network arise if there is a detuning between
the frequency of the reference and that of the state. The
measurements are in good agreement with the analytical and
numerical predictions of the theory presented in this work.
Hence, this work shows that the synchronization dynamics of a
network of mutually delay-coupled oscillators can successfully
be entrained by an external reference oscillator. Note that this
can also be observed for values of the cross-coupling time
delay where no self-organized state exists or is stable.
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