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Abstract—This paper presents the analysis and measurements
of the effects of heterogeneous cross-coupling time delays on
synchronized states in a network of mutually coupled oscillators.
In a network of three mutually coupled phase-locked loops,
operating at 24 GHz in a chain topology, the phase relations
and frequency of the synchronized state are quantified. The
measurements show that such delay heterogeneity changes the
properties of self-organized synchronized states. Specifically, it
reduces the range of frequencies over which self-organized
synchronous states form. It is observed that the frequency of
the self-organized synchronized state that would form over a
sub-network of two oscillators alone, lies within this range. The
experimental observations presented here reveal new insights into
the effects of heterogeneity on the dynamics of self-organization
in mutually delay-coupled oscillators and the implications for the
properties of synchronized states.

Index Terms—synchronization, delay effects, phase locked
loops, oscillator, delays, couplings, frequency synchronization,
delay coupling.

I. INTRODUCTION

Synchronization of distributed sensor networks plays a
critical role in various applications, including localization
and tracking with radar sensors [1]–[3], industrial automation
for monitoring and control of facilities [4], [5], and body
area sensor networks for human-machine interaction [6]. The
challenge arises in any network where sensors are wirelessly
connected, and especially when they are moving, as this
can introduce arbitrary time delays between them, making
synchronization difficult. Biologically inspired techniques,
such as those based on the flashing of fireflies [7]–[10],
can provide a flexible and robust solution for synchronizing
distributed sensor networks. One implementation of such
a technique is the mutual synchronization of time-delayed
coupled oscillators [11]–[13]. In this approach, the individual
nodes are mutually coupled in a flat hierarchy. This means
that there is no hierarchical master-slave concept and
synchronization is achieved by very complex self-organized
dynamics of the network.

The concept of mutual synchronization has been studied
extensively since the 1960s [11], [14]–[16]. Early studies
focused on the coupling of oscillators without including the
time delay between nodes [17]. Later models consider the time
delay, but use linearized models that are valid only for time
delays in the order of the coupling frequency [18]–[20]. In
more recent studies, the individual nodes are represented as

phase-locked loops (PLL) and the nonlinearity of individual
components is also taken into account [21]–[27]. Thus, it
is possible to study the complex dynamics of delay-coupled
oscillator systems.

In [28], the effect of heterogeneity as an asymmetric time
delay between two coupled oscillators was analyzed and it was
shown that the phase differences depend monotonically on the
difference of the time delays. [29] extends this analysis to four
fully digital delay-coupled PLLs connected in a ring topology.
Here, the mean of the time delays between the nodes was kept
constant so that only the phase differences are affected. By
defining a critical time delay, as presented in [30], a maximum
time delay between two coupled oscillators can be identified
at which stable synchronization can be achieved.

The goal of this paper is to investigate the effects of
heterogeneity in the time delays between three mutually
coupled PLLs. In this minimal example, all nodes are
connected in a chain topology and the mean time delay
between the nodes is varied. To understand the details of
varying time delays between coupled nodes, the model used
for delay-coupled oscillators is briefly studied with respect
to time delay heterogeneities in Section II. Section III
presents the hardware and measurement setup used for the
measurements presented in Section IV.

II. MODEL OF TIME-DELAYED COUPLED PLL NODES

In a system of mutually delay-coupled PLL nodes, a stable
synchronized state for a given time delay configuration is
characterized by equal output frequencies of the nodes and
constant phase differences over time. Such states can be
predicted using a dynamical model [13], [24]–[26]. Assuming
that in a synchronized state all perturbations have decayed
and that all nodes in the network are identical, the dynamical
model representing any node k in the network is given by the
following set of implicit expressions

NΩNET = ω0 + GPD GLF KVCO

× 1

Ek

M∑
i=1

dki △ [−ΩNET τdelay,ki −∆φki + φfb] .
(1)

Here, N denotes the frequency division factor, ΩNET the
divided angular output frequency of each node in the
synchronized state, ω0 the free-running closed-loop frequency
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of the node, GPD the steady state gain of the phase
detector (PD), GLF the steady state gain of the loop filter (LF),
KVCO the sensitivity of the voltage controlled oscillator
(VCO) at the operating point, Ek the number of external
inputs to a node k, M the number of PLL nodes in the
network, dki the adjacency matrix parameter, which is either
1 or 0 depending on whether node k and i are coupled or not,
△ (·) the normalized phase-error transfer function of an XOR
based phase detector, τdelay,ki the cross-coupling time delay,
φfb feedback path phase shift, and ∆φki denotes the phase
difference between nodes k and i in the synchronized state.

Synchronized states that can exist in such networks fulfill
Eq. 1. However, only stable states can be observed in
measurements. Hence, their response to phase perturbations
needs to be analyzed. However, due to the nonlinear coupling
function and implicit nature of the equations, it is difficult to
obtain the unknown ∆φki and ΩNET analytically. Previous
research [20], [22], [25] has shown that for certain conditions
there can be a constant mode-locking phase difference
∆φmode,ki. For delay-coupled oscillators in a linear chain,
i.e., open boundary conditions with equal time delay between
nodes, this phase difference is either 0 or π. This is due to the
periodic characteristics of the phase detector [25], [26] and
allows the prediction of synchronized states for equal time
delays between nodes.

τdelay,AB τdelay,BC

Node A Node B Node C

Fig. 1. Three mutually time-delayed coupled PLL nodes where the time delay
between node A and B corresponds to τdelay,AB = τdelay,BA and between
node B and C to τdelay,BC = τdelay,CB.

The network considered consists of three nodes A, B, and
C connected in a chain topology as shown in Fig. 1. The time
delay between nodes A and B is τdelay,AB and between B and
C is τdelay,BC. The time delays between two nodes are equal
in both directions. From Eq. 1 an equation for each node can
be written

NΩNET = ω0 + GPD GLF KVCO

×△ [−ΩNET τdelay,AB −∆φAB] ,

(2)

NΩNET = ω0 + GPD GLF KVCO

× 1

2

(
△ [−ΩNET τdelay,AB +∆φAB]

+△ [−ΩNET τdelay,BC −∆φBC]
)
,

(3)

NΩNET = ω0 + GPD GLF KVCO

×△ [−ΩNET τdelay,BC +∆φBC] .

(4)

These implicit equations with the nonlinear phase-error
transfer function △ (·) can be solved numerically to obtain
the unknowns ΩNET, ∆φAB and ∆φBC. An inversion of the
signal in the feedback path can be accounted for by adding a
phase shift of φfb = π in the argument of △ (·).

III. HARDWARE AND MEASUREMENT SETUP

To study the effects of time delay heterogeneity between
coupled nodes, three identical PLL nodes as presented in [26],
[30] and [31] are used. These nodes have four input and output
channels that provide a low-voltage positive emitter-coupled
logic (LVPECL) interface to allow coupling to other nodes
directly, or via programmable delay line modules. These delay
modules consist of four cascaded programmable delay chips
that allow the total delay to be set between 11.2 ns and 52 ns.
These delays can be programmed at runtime via USB for each
direction and for each module individually.

1
N

vin,1

vin,2

vout

LF
fVCO

VCO

PD

PD
Vbias

Fig. 2. Block diagram of the PLL node for mutual synchronization. Here two
input and output channels are used, all other unused channels are disabled and
marked by gray dots.

The architecture of the PLL is shown in the block diagram
in Fig. 2. In this paper, only two input and output channels
are used, as indicated by the input voltages vin,i, where i
denotes the corresponding channel. Each channel consists of
an XOR-based phase detector (PD) with sensitivity of GPD =
0.8 whose output is weighted in a subsequent summing circuit.
Prior to filtering in a loop filter (LF), the summed signal
is shifted by a constant voltage Vbias. It compensates for
any component tolerances, such as different VCO tuning
characteristics or op-amp output voltages, so that each node
has approximately the same free-running frequency. The VCO
sensitivity KVCO at the operating point is 921.63MHzV−1.
A cascaded second-order RC filter with a cutoff frequency of
398.1 kHz and GLF = 1 is used for the LF. The output and
cross-coupling signal vout of the PLL is the output signal of
the VCO divided by the factor N = 512. The signal of the
node’s feedback path is inverted, i.e., φfb = π.

To validate the predicted synchronized states, the output
signals vout of each node are measured with an oscilloscope,
as shown in the scheme of the measurement setup in Fig. 3.
The frequency and the phase difference between the nodes

Node A Node B Node C

τdelay,AB τdelay,BC

Scope
vout

Fig. 3. Measurement setup with three mutually delay-coupled PLL nodes
for capturing the cross-coupling frequencies as well as the phase differences
between nodes.
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are extracted using the automated measurement functions of
the Rohde & Schwarz RTO 2044 oscilloscope. For calibration
of all free-running closed-loop oscillator frequencies, an
additional spectrum analyzer was used, which was connected
to the high-frequency output of the PLL node. All PLL
nodes were calibrated to a free-running frequency of 23.5GHz
by adjusting Vbias. The maximum deviation between the
individual PLL nodes is below 2MHz. The spectrum of all
coupled oscillators is measured using a time signal captured at
the high frequency outputs on a Keysight UXR1004 real-time
oscilloscope, followed by an FFT. A photo of the measurement
setup is shown in Fig. 4. When setting the delays of each
individual delay module via USB, the fixed delay is set first,
the variable delay subsequently.

PLL Node

Programmable Delay

Fig. 4. Photo of the measurement setup in the laboratory where three nodes
are mutually coupled in a chain network topology. The equipment used starting
from the left: power supply and oscilloscope.

IV. MEASUREMENT

Three aspects are analyzed quantitatively and qualitatively
to study heterogeneous time delays between mutually coupled
oscillators. First, the two time delays are linearly increased
simultaneously. Then, one of the time delays is set to a fixed
value while the other is varied linearly. This changes the
mean delay in the network. Finally, the spectrum of all three
nodes and heterogeneous time delays is measured. During the
delay-sweep over the range covered by the delay modules, all
nodes remain coupled. For each delay value visited during
the sweep, at least 150 individual measurements of phase
differences and output frequencies are captured.

Fig. 5 shows the measurement and model predictions for
equal time delays τdelay,AB = τdelay,BC = τdelay between the
three nodes. For each delay measured, a stable synchronized
state can be observed. The measured network frequency fNET

of all nodes, shown in Fig. 5(a), has a mean standard deviation
of 35.89 kHz. The theoretical predictions for the mode-locking
phase differences between nodes are in good agreement with
the measurements. The corresponding phase differences ∆φki

are plotted in Fig. 5(b). It can be seen that the phase differences
∆φAB as well as ∆φBC are close to the theoretical results with
the expected mode locking phase difference ∆φmode,ki of 0
(in-phase) or π (anti-phase). As the time delay increases, there
is a monotonically linear decrease in the phase differences
∆φAB and ∆φBC, e.g. from about 200° at 33 ns to about 160°
at 44 ns. The phase differences ∆φAC = ∆φAB + ∆φBC is
close to in-phase for all time delays analyzed.

20 30 40 50
τdelay [ns]
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T
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H
z]

Node A
Node B

Node C Model (anti-phase, stable)
Model (in-phase, stable)

(a) Network frequency fNET of all nodes.
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(b) Phase difference ∆φki between nodes.

Fig. 5. Model results and measurements of synchronized states in a network
of three mutually coupled nodes in chain topology for identical increasing
cross-coupling time delays τdelay,AB = τdelay,BC = τdelay.
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(a) Network frequency fNET of all nodes.
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(b) Phase difference ∆φki between nodes.

Fig. 6. Measured synchronized states in a network of three mutually coupled
nodes in chain topology for increasing cross-coupling time delays τdelay,AB

and fixed time delay τdelay,BC of 30ns. The standard deviation of both
quantities for a minimum of 150 measurements is shown in shaded colors.
The numerical solution to the set of implicit Eq. 2-Eq. 4 are denoted by
markers. Note that more solutions can exist and the total node gain was fitted
to the measurements using a factor of 0.25.

The measured results for heterogeneous time delays
between coupled nodes, i.e. τdelay,AB ̸= τdelay,BC are shown
in Fig. 6. Here τdelay,BC has a constant value of 30 ns and
τdelay,AB is linearly increased. The shape observed from
the measured frequency of the coupled nodes in Fig. 6(a)
is a triangular function that depends on the time delay
τdelay,AB and alternates between 45.58MHz and 45.12MHz.
The standard deviation is shown in shaded colors for each node
respectively, it’s maximum value for all delays and nodes is
36.33 kHz. From the phase difference in Fig. 6(b), it can be
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(a) Network frequency fNET of all nodes.
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(b) Phase difference ∆φki between nodes.

Fig. 7. Measured synchronized states in a network of three mutually nodes
in chain topology for increasing cross-coupling time delays τdelay,AB and
fixed time delay τdelay,BC of 40ns. Presented in the same way as in Fig. 6.

23.4 23.41 23.42 23.43 23.44 23.45
fVCO [GHz]
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Node C (PN: -34.8dBc/Hz)

Fig. 8. Measured normalized power spectral densities and phase noise
level (PN) at an offset of 1MHz from the carrier for three mutually coupled
PLL nodes in chain topology for a time delay τdelay,AB of 50ns and
τdelay,BC of 30ns. The frequency fVCO of all nodes is at 23.412GHz.

observed that ∆φBC between the two coupled nodes with fixed
delay is constant and close to in-phase for all τdelay,AB. The
difference ∆φAB is monotonically decreasing with respect
to the linearly changing time delay. The average standard
deviation of the phase difference ∆φki for all delays over
all nodes is 1.67°. The numerical results for both cases with
fixed time delay agree well with the measurements. However,
there is an additional fitting factor of 0.25 that needs to be
further analyzed to fully understand the overall dynamics.

For a fixed time delay τdelay,BC of 40 ns, the frequencies
and phase difference between nodes are plotted in Fig. 7.
Like the previous measurement, the frequency shows a similar
shape, with frequencies between 45.75MHz and 45.5MHz for
all time delays studied. The maximum standard deviation is
34.68 kHz. The phase difference ∆φBC, associated to the fixed
time delay is close to anti-phase. The phase difference ∆φAB

of the variable delay decreases again in a linear manner as the
time delay τdelay,AB increases. The average standard deviation
of the phase difference across all nodes and delays is 1.20°.

The measured spectrum of the high frequency outputs of
each node for a delay τdelay,AB of 50 ns and τdelay,BC of 30 ns
is shown in Fig. 8. The frequency of all nodes is identical

at 23.412GHz. The FFT function resolution bandwidth is
3.82 kHz. The overall form of all three spectra overlaps and
has an almost identical shape. The measured phase noise at an
offset frequency of 1MHz to the carrier is −33.63 dBc/Hz,
−34.34 dBc/Hz and −34.78 dBc/Hz for node A, B and C.
The system presented is not optimized for low phase noise.

V. CONCLUSION AND DISCUSSION

The results presented in this paper show how the
properties of self-organized synchronized states are affected
by heterogeneous time delays in a network of mutually
delay-coupled phase-locked loops (PLLs). For identical
time delays, in- and anti-phase synchronized states, i.e.,
phase difference 0 or π, can be observed in networks
with open-boundary conditions. For the three mutually
delay-coupled PLL nodes {A,B,C} in a chain topology
studied here, the phase-difference between the oscillator pair
{B,C} is – depending on the value of the fixed time delay –
either close to 0 or π, while the phase difference between the
pair {A,B} changes linearly as the cross-coupling time delay
is increased. In consequence, the phase-difference between
pair {A,C} is almost equal or shifted by π to that of
pair {A,B}. Hence, the phase-difference between the pair
{B,C} with fixed cross-coupling time delay is only slightly
affected by the change of the time delay between pair {A,B}.
If the time delays between the pairs {A,B} and {B,C}
are identical, the original state for identical time delays is
recovered. In addition, it can be observed that the frequencies
of the synchronized states for fixed time delay are in a
range around the frequency of the network with identical
time delay at that given fixed delay. For example, for a
delay of 30 ns, the synchronized state of the network with
identical time delay has a frequency of 45.35MHz. For
different time delays, the frequency is between 45.58MHz and
45.32MHz. The frequency shows a triangular characteristic
as a function of the time delay between the pair {A,B},
which can only be associated to the characteristic of the phase
detector. The measurements and observations of the effect
of time delay heterogeneity between mutually delay-coupled
oscillators raises the questions about the internal dynamics of
sub-networks with different time delays and their effect on
stable synchronized states over the entire network. However,
the results and insights presented in this paper have the
potential to inform future research and advancements in this
area, ultimately contributing to the design and optimization of
more applicable networks of mutually delay-coupled PLLs.
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