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OPTIMAL INFORMATION USAGE IN BINARY SEQUENTIAL
HYPOTHESIS TESTING∗

M. DÖRPINGHAUS† , I. NERI‡ , É. ROLDÁN§ , AND F. JÜLICHER¶

Abstract. An interesting question is whether an information theoretic interpretation can be
given of optimal algorithms in sequential hypothesis testing. We prove that for the binary sequen-
tial probability ratio test of a continuous observation process, the mutual information between the
observation process up to the decision time and the actual hypothesis conditioned on the decision
variable is equal to zero. This result can be interpreted as an optimal usage of the information on the
hypothesis available in the observations by the sequential probability ratio test. As a consequence,
the mutual information between the random decision time of the sequential probability ratio test
and the actual hypothesis conditioned on the decision variable is also equal to zero.
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1. Introduction. Sequential hypothesis tests are used to make fast and reliable
decisions. These tests should use the available measurements in an optimal way such
that the average time to make a decision is minimized. Binary sequential hypoth-
esis testing was first mathematically formulated in the seminal work by Wald, who
introduced the sequential probability ratio test—a particular realization of a binary
sequential hypothesis test [18]. The sequential probability ratio test takes binary
decisions on two hypotheses based on sequential observations of a stochastic process.
The sequential probability ratio test accumulates the likelihood ratio given by the
sequence of observations and makes a decision as soon as this cumulative likelihood
ratio exceeds or falls below two given thresholds which depend on the required relia-
bility of the decision. A key characteristic of such a sequential probability ratio test
is that its termination time is a random quantity depending on the actual realization
of the observation sequence.

For independent and identically distributed (i.i.d.) observations the sequential
probability ratio test yields minimum mean decision times for decisions with a given
probability of error and a given hypothesis [19]. Moreover, for continuous observation
processes it was proved that the sequential probability ratio test is optimal in the sense
of minimizing the Kullback–Leibler divergences between the two measures describing
the statistics of the observation process up to the decision time under the two hypothe-
ses [16, section 3.3]. The sequential probability ratio test was applied to non-i.i.d.
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observation processes and to nonhomogeneous and correlated continuous-time pro-
cesses and was generalized for multiple hypotheses [16]. However, optimality has not
been proved for most of these cases. Nevertheless, a weaker statement of asymptotic
optimality (in the sense of minimum mean decision times) for the case when proba-
bilities of errors tend to zero was proved for a broad class of stochastic processes; see,
e.g., [9], [17], [15], [5], [16].

Here, we ask whether we can develop an understanding of optimality in terms of
information usage of sequential hypothesis testing. In this regard, intuition lets us
conjecture that an optimal decision contains all information on the actual hypothesis
given by the observation process. However, this would imply that the observation
process up to the decision time does not contain any additional information on the
hypothesis beyond the information given by the decision itself. As a consequence, this
would also mean that the random time at which a decision is made does not contain
any additional information on the hypothesis beyond the information given by the
decision itself. In the following we formalize these statements.

We consider a sequential probability ratio test which takes as input the realization
of a continuous stochastic process corresponding to either hypothesisH1 or hypothesis
H2 and gives as output a binary decision variable Dw ∈ {1, 2} (corresponding to
hypotheses H1 and H2, respectively) at the random decision time Tw elapsed since
the beginning of the observations. We show that for the sequential probability ratio
test, the mutual information

(1.1) I(H;XTw
0 |Dw) = 0,

where H ∈ {1, 2} (corresponding to hypothesesH1 andH2) denotes the random binary
hypothesis and XTw

0 is the observation process from time t = 0 until the decision
time Tw. Equation (1.1) implies that the observation process XTw

0 up to the deci-
sion time Tw does not contain any information on which hypothesis is true beyond
the decision outcome Dw.

Condition (1.1) readily implies that

(1.2) I(H;Tw |Dw) = 0,

which states that the distribution of the decision time Tw given a certain decision
outcome is independent of the actual hypothesis. In other words, equation (1.2)
states that the decision time Tw of the sequential probability ratio test does not
contain any information on which hypothesis is true beyond the decision outcome Dw.
As a consequence, the sequential probability ratio test for continuous observation
processes, which is optimal in the sense of minimizing Kullback–Leibler divergences
(as stated above), minimizes the mutual information I(H;Tw |Dw). Note that the
mutual information criterion in (1.2) is not a sufficient condition for minimizing the
mean decision time. This can be easily verified by adding a constant time delay tdelay
to the actual decision time for which we still have I(H;Tw + tdelay |Dw) = 0.

Relation to other work. For the case of i.i.d. observations, low error probabili-
ties α1 and α2 of the first and second kinds, α1 = α2, and equally likely hypotheses H1

andH2, conditions for optimal usage of information were derived in [4]. Namely, it was
shown that a condition similar to I(H;Tw |Dw) = 0 holds for a certain model for the
observation process; see [4, Theorem 1]. Moreover, the relations given in Corollary 3.1
in the present paper share similarities with equalities on the first-passage-time dis-
tributions of the stochastic entropy production derived in [13], [12] and equalities for
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first-passage-time distributions in random walks [8]. In addition, in communication
theory, relations reminiscent of Corollary 3.1 were found to show that the probabil-
ity of cycle slips to the positive/negative boundary in phase-locked loops used for
synchronization is independent of time [10, eq. (74)].

Notation. We denote random variables (r.v.’s) by uppercase sans serif letters,
e.g., X. All random quantities are defined on the measurable space (Ω,F) and are
governed by the probability measure P. Mathematical expectation with respect to P
is denoted by E( · ). For discrete r.v.’s, PY=y(X = x) denotes the probability of X = x
given Y = y, and EY=y( · ) is the expectation conditioned on Y = y; analogously, we
use PY(X = x) for the probability of X = x given Y, and EY( · ) for the expectation
conditioned on Y. The restriction P|G of the measure P to a sub-σ-algebra G ⊆ F is
defined by

(1.3) P|G(Φ) =

{
P(Φ) if Φ ∈ G,
0 if Φ ∈ F \ G.

We write
∫
Φ
XdP|G for an integral on the set Φ of the r.v. X over the probability

measure P|G . We denote the Radon–Nikodým derivative of the measure P with
respect to the measure Q by dP/dQ. In addition, ln denotes the natural loga-
rithm. The mutual information and the conditional mutual information are defined by
I(X;Y) = E

(
ln(dPY|F(X)/dP|F(X))

)
and I(X;Y |Z) = E

(
ln(dPY,Z|F(X)/dPZ|F(X))

)
,

respectively, where Y and Z are discrete r.v.’s, and F(X) is the sub-σ-algebra of F
generated by the r.v. X.

Organization of the paper. In section 2 we describe the system setup in detail.
Subsequently, in section 3 we state the main theorems and corollaries regarding the
optimal information usage of the sequential probability ratio test. In section 4, we
discuss the given results. Finally, the proofs are presented in the appendix.

2. System setup. We consider a sequential binary decision problem based on
an observation process Xt with continuous time index t ∈ R+. The stochastic process
Xt is generated by one of two possible models corresponding to two hypotheses H1

and H2. To describe the statistics of the process Xt, we consider the filtered proba-
bility space (Ω,F , {Ft}t⩾0,P) with {Ft}t⩾0, the natural filtration generated by the
observation process Xt and the hypothesis H. We consider H to be a time independent
r.v. The statistics of the observation process under the two hypotheses are described
by the conditional probability measures given the hypothesis PH=l (Φ) = EH=l(1Φ)
with l ∈ {1, 2} corresponding to the hypotheses H1 and H2, respectively; here 1Φ(ω)
is the indicator function on the set Φ ∈ F . We assume that P(H = 1) > 0 and
P(H = 2) > 0 and that the filtered probability space (Ω,F , {Ft}t⩾0,P) is complete,
which means that F contains all sets Φ ⊂ Ω for which there exist sets Φ1 ∈ F and
Φ2 ∈ F such that Φ1 ⊂ Φ ⊂ Φ2 and P(Φ2) = P(Φ1), and F0 contains all Φ ∈ F with
P(Φ) = 0 [11, Chap. 1]. Here and in what follows, we use the shorthand notation
P(H = 1) = P({ω ∈ Ω: H(ω) = 1}) for probabilities of sets. We consider the filtration
{Ft}t⩾0 to be right-continuous [11, Chap. 1], i.e., Ft =

⋂
s>t Fs for all times t ∈ R+.

The two measures PH=1 and PH=2 are assumed to be locally mutually absolutely
continuous with respect to the filtration {F}t⩾0 [11].

A sequential hypothesis test makes binary decisions based on sequential obser-
vations of the process Xt and tries to infer which of the hypotheses H1 and H2 is
true. A sequential hypothesis test δ = (D,T) returns a binary output D at a random
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time T. The decision time T ∈ [0,∞] is a stopping time, i.e., a random time for which
{ω ∈ Ω: T(ω) ⩽ t} ∈ Ft holds for all t ∈ R+. The decision function D ∈ {1, 2} is
an FT-measurable r.v., where FT =

{
Φ ∈ F : Φ ∩ {ω ∈ Ω: T(ω) ⩽ t} ∈ Ft ∀ t

}
.

We now consider the following set of sequential hypothesis tests with given relia-
bilities:

C(α1, α2) =
{
δ : PH=1(D = 2) ⩽ α2, PH=2(D = 1) ⩽ α1,

EH=l(T) < ∞, l ∈ {1, 2}
}
;(2.1)

here EH=l(T) denotes the expected termination time in the case when hypothesis l
is true, and α1 and α2 are the maximum allowed error probabilities of the two error
types. We assume that α1, α2 ∈ (0, 0.5). Notice that we restrict ourselves to tests
which have a finite mean decision time. This assumption is fulfilled in many cases
like the case of i.i.d. or stationary observation processes [16]. Note that the set of
sequential hypothesis tests given by C(α1, α2) does not consider prior knowledge on
the statistics of H.

According to [16], an optimality criterion in terms of Kullback–Leibler divergences
is given by the following definition.

Definition 2.1 (optimality in terms of Kullback–Leibler divergence). An optimal
test δ∗ = (D∗,T∗) ∈ C(α1, α2) minimizes the Kullback–Leibler divergences, viz.,

inf
δ∈C(α1,α2)

EH=1

(
ln

dPH=1|FT

dPH=2|FT

)
= EH=1

(
ln

dPH=1|FT∗

dPH=2|FT∗

)
,(2.2)

inf
δ∈C(α1,α2)

EH=2

(
ln

dPH=2|FT

dPH=1|FT

)
= EH=2

(
ln

dPH=2|FT∗

dPH=1|FT∗

)
.(2.3)

Definition 2.1 states that a test is optimal if the statistics of the observation
process Xt under the two hypotheses H1 and H2 up to the decision time T∗ are more
similar (i.e., less distinguishable) than for any other tests in C(α1, α2).

For continuous observation processes Xt, optimality in terms of Definition 2.1 is
achieved by the sequential probability ratio test (Dw,Tw) ∈ C(α1, α2), which was
introduced by Wald [18], and which is known to achieve the minimum Kullback–
Leibler divergence for given reliability constraints [16]. This test observes Xt until the
cumulated log-likelihood ratio

(2.4) St = ln
dPH=1|Ft

dPH=2|Ft

, t ⩾ 0,

exceeds (falls below) a prescribed threshold L1 (L2) for the first time. Note that
S0 = 0. The test decides Dw = 1 (Dw = 2), i.e., for H1 (H2), when St first crosses
L1 (L2). The thresholds L1 and L2 are given by

L1 = ln
1− α2

α1
,(2.5)

L2 = ln
α2

1− α1
.(2.6)

In summary, the sequential probability ratio test decides at the time

(2.7) Tw = min{t ∈ R+ : St /∈ (L2, L1)}
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for the decision

(2.8) Dw =

{
1 if STw ⩾ L1,

2 if STw
⩽ L2.

For the sequential probability ratio test of a continuous observation process, the error
probabilities are equal to the maximum allowed error probabilities as stated by the
following lemma.

Lemma 2.1. Let δ = (Dw,Tw) ∈ C(α1, α2). If St is almost surely continuous,
then

PH=2(Dw = 1) = α1,(2.9)

PH=1(Dw = 2) = α2.(2.10)

For a proof of Lemma 2.1, see the appendix.
For observation processes Xt with i.i.d. increments, optimality in the sense of

Definition 2.1 also implies that the mean decision times EH=1(T) and EH=2(T) are
minimized [16]. Therefore, for this particular case, optimality in the sense of Defi-
nition 2.1 is equivalent to optimality in the sense of minimizing the mean decision
times. To the best of our knowledge, it is not known whether there exists a test that
is optimal in the sense of minimizing mean decision times for non-i.i.d. continuous
observation processes.

3. Main results. Here we state all the main results of this paper; the proofs
can be found in the appendix.

The first main result of the present paper is a symmetry relation for the probability
of events in the σ-algebra FTw for continuous observation processes.

Theorem 3.1. Consider the sequential probability ratio test given by (2.7)
and (2.8), which is defined on the system described in section 2, and let us assume
that EH(Tw) < ∞ so that (Dw,Tw) ∈ C(α1, α2). If St is almost surely continuous,
then

PH=1,Dw=1(Φ) = PH=2,Dw=1(Φ),(3.1)

PH=1,Dw=2(Φ) = PH=2,Dw=2(Φ)(3.2)

for all Φ ∈ FTw
, where FTw

=
{
A ∈ F : A ∩ {Tw ⩽ t} ∈ Ft ∀ t

}
.

Theorem 3.1 implies the following corollary.

Corollary 3.1. Under the same conditions as in Theorem 3.1, for all t ⩾ 0,

PH=1,Dw=1(Tw ⩽ t) = PH=2,Dw=1(Tw ⩽ t),(3.3)

PH=1,Dw=2(Tw ⩽ t) = PH=2,Dw=2(Tw ⩽ t).(3.4)

In order to study the optimal information usage of the sequential probability ratio
test, we consider the mutual information between the trajectory of the observation
process XTw

0 up to the decision time Tw and the hypothesis H conditioned on the
decision variable Dw, which is given by [6]

I(H;XTw
0 |Dw) =

2∑
i=1

2∑
j=1

P(H = i, Dw = j)

×
∫
{ω∈Φ: Dw(ω)=j}

dPH=i,Dw=j |FTw
ln

(
dPH=i|FTw

dP|FTw

P(Dw = j)

PH=i(Dw = j)

)
.(3.5)
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Theorem 3.1 implies the following theorem.

Theorem 3.2. Under the same conditions as in Theorem 3.1,

(3.6) I(H;XTw
0 |Dw) = 0.

Theorem 3.2 states that the sequential probability ratio test for continuous obser-
vation processes Xt makes optimal use of the available information in the following
sense: The decision variable Dw contains all the information about the hypothesis H
in the trajectory of the observation process Xt up to the decision time Tw.

Theorem 3.2 immediately implies the following corollary.

Corollary 3.2. Under the same conditions as in Theorem 3.1, the following
equality for mutual information holds:

(3.7) I(H;Tw |Dw) = 0,

i.e., I(H;Tw,Dw) = I(H;Dw).

Corollary 3.2 states that in the case of optimal sequential hypothesis testing, the
decision time Tw does not give any additional information on the hypothesis H beyond
the decision outcome Dw. Since the mutual information is always nonnegative, this
implies that the sequential probability ratio test minimizes the mutual information
I(H;T |D). Note that in practical cases it is much harder to measure I(H;XT

0 |D) than
I(H;T |D).

4. Discussion. The aim of the present paper is to give an information theo-
retic interpretation for optimality of sequential hypothesis testing algorithms. In this
regard, the main result (Theorem 3.2) has the following appealing interpretation:
At the decision time the sequential probability ratio test has exploited all information
on the hypothesis available in the observation process.

Theorem 3.2 holds for continuous observation processes for which it was proved
that the sequential probability ratio test is also optimal in the sense of minimizing the
Kullback–Leibler divergence as stated in Definition 2.1 [16, section 3.3]. If, in addition,
the increments of the observation process are i.i.d. r.v.’s, the sequential probability
ratio test is optimal in the sense of minimizing the mean decision time [19], [16].
This raises the questions of whether these different optimality criteria are related
to one another, and whether optimal sequential hypothesis tests in discrete time or
for multiple hypotheses also make optimal use of the information in the observation
process. Another interesting question for future work is whether there exist sequential
hypothesis tests that satisfy (3.6) and are not sequential probability ratio tests.

The main results of this paper may also be interesting for applications. For exam-
ple, Theorem 3.1 and Theorem 3.2 can be used to determine how close to optimality
a given black box decision system operates. In this regard, note that I(H;XT

0 |D) can
be interpreted as a measure of how close the black box decision device operates to
optimality, where I(H;XT

0 |D) = 0 shows that the black box decision device optimally
uses all information on the hypothesis available in the observation process. Simi-
larly, Corollary 3.1 and Corollary 3.2 can be applied to reject the hypothesis that the
decision device operates optimally. While the latter test just provides a necessary
condition for optimality, it has the advantage that it does not require access to the
observation process XT

0 . Note that in both cases the properties of the decision-making
device, such as the allowed error probabilities α1 and α2, are not required to test
optimality of a system. In the arXiv preprint [3], preliminary results on testing
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optimality can be found. In summary, it should be feasible to use Theorem 3.1,
Theorem 3.2, Corollary 3.1, and Corollary 3.2 to test optimal information usage of
real-world systems that make decisions, e.g., human decision-making [1], decisions
made by animals [7], and cell fate decisions [14].

5. Appendix: Proofs. The following result is required in the proof of
Lemma 2.1.

Corollary 5.1 (corollary to Doob’s optional stopping theorem).
If P(Tw < ∞) = 1, then

(5.1) EH=1

(
e−STw

)
= 1.

Proof of Corollary 5.1. We decompose EH=1(e
−STw ) into three terms

(5.2) EH=1

(
e−STw

)
= EH=1

(
e−STw∧t

)
−EH=1

(
e−St1Tw>t

)
+EH=1

(
e−STw 1Tw>t

)
,

where Tw ∧ t = min{Tw, t}. The process e−Ss∧t with s ∈ [0, t] satisfies e−Ss∧t =
EXs

0,H=1(e
−St), where EXs

0,H=1( · ) is the conditional expectation with respect to the
σ-algebra Fs and H = 1. Such martingales were called regular martingales; see [11].
Hence, we can apply Theorem 3.6 in [11], which is Doob’s optional stopping theorem
for regular martingales, to the martingale e−Ss∧t and the stopping time Tw to obtain

(5.3) EH=1

(
e−STw∧t

)
= 1.

Making t → ∞ of (5.2), we find that

(5.4) EH=1

(
e−STw

)
= 1− lim

t→∞
EH=1

(
e−St1Tw>t

)
+ lim

t→∞
EH=1

(
e−STw 1Tw>t

)
.

For the second term on the right-hand side of (5.4) we obtain

(5.5) lim
t→∞

EH=1

(
e−St1Tw>t

)
⩽ e−L2 lim

t→∞
EH=1(1Tw>t) = 0,

where we used (2.7) and P(Tw < ∞) = 1. For the last term on the right-hand
side of (5.4) we used the fact that e−STw 1Tw>t is a nonnegative monotonic decreasing
sequence in t. Therefore, we can apply the monotone convergence theorem to obtain

(5.6) lim
t→∞

EH=1

(
e−STw 1Tw>t

)
= EH=1

(
e−STw lim

t→∞
1Tw>t

)
= 0.

Using (5.5) and (5.6) in (5.4), we conclude the proof.

Proof of Lemma 2.1. Using the version of Doob’s optional stopping theorem given
by Corollary 5.1 on the PH=1-martingale e−St , we obtain (5.1). Since by assumption
(Dw,Tw) ∈ C(α1, α2), we have PH=1(Tw < ∞) = 1, and therefore (5.1) implies that

(5.7) PH=1(Dw = 1)e−L1 +PH=1(Dw = 2)e−L2 = 1,

where we used the fact that St is almost surely continuous. Moreover, since
PH=1(Tw < ∞) = 1, we have

(5.8) PH=1(Dw = 1) +PH=1(Dw = 2) = 1.

Equations (5.7) and (5.8) imply that

(5.9) PH=1(Dw = 2) =
1− e−L1

e−L2 − e−L1
.

Using (2.5) and (2.6) in (5.9), we obtain (2.10).
Analogously, using Doob’s optional stopping theorem on the PH=2-martingale eSt ,

we obtain (2.9). Lemma 2.1 is proved.
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Proof of Theorem 3.1. Let Φ ∈ FTw . Then

PH=1,Dw=1(Φ) =

∫
{ω∈Φ: Dw(ω)=1} dPH=1

PH=1(Dw = 1)
(5.10)

=

∫
{ω∈Φ: Dw(ω)=1} dPH=1|FTw

PH=1(Dw = 1)
(5.11)

=

∫
{ω∈Φ: Dw(ω)=1} e

STw dPH=2|FTw

PH=1(Dw = 1)
(5.12)

= eL1

∫
{ω∈Φ: Dw(ω)=1} dPH=2|FTw

PH=1(Dw = 1)
(5.13)

= eL1
PH=2({ω ∈ Φ: Dw(ω) = 1})

PH=1(Dw = 1)
(5.14)

= eL1
PH=2(Dw = 1)

PH=1(Dw = 1)
PH=2,Dw=1(Φ),(5.15)

where for (5.10) and (5.15) we used Bayes’s theorem, and (5.11) and (5.14) follow
from

(5.16) PH=i

(
{ω ∈ Φ: Dw(ω) = 1}

)
= PH=i|FTw

(
{ω ∈ Φ: Dw(ω) = 1}

)
(i ∈ {1, 2}), which is true because of the definition of PH=i|FTw

. Moreover, for (5.12)
we used the Radon–Nikodým theorem, the definition (2.4), the assumption that PH=1

and PH=2 are locally mutually absolutely continuous, and the assumption that
(Dw,Tw) ∈ C(α1, α2) such that PH=i(Tw < ∞) = 1. For (5.13) we used the fact
that eSt is with probability one a continuous process and achieves the value eL1 at
time Tw when Dw = 1.

Using Lemma 2.1, (2.5), and (5.8), we have

(5.17)
PH=2(Dw = 1)

PH=1(Dw = 1)
= e−L1 .

Substituting (5.17) into (5.15) proves (3.1). A similar analysis verifies (3.2), and
Theorem 3.1 is proved.

Proof of Corollary 3.1. Let

(5.18) Ξ(t) = {ω ∈ Ω: Tw(ω) ⩽ t}

be the set of trajectories for which the decision time does not exceed t. Since
Ξ(t) ∈ FTw , Theorem 3.1 applies to give

(5.19) PH=1,Dw=1(Ξ(t)) = PH=2,Dw=1(Ξ(t)).

The probability of the set Ξ(t) with respect to the measure PH=1 or PH=2 is equal
to the cumulative distribution of the decision time Tw conditioned on the hypothesis
H = 1 or H = 2, respectively, i.e.,

PH=1,Dw=1(Ξ(t)) = PH=1,Dw=1(Tw ⩽ t),(5.20)

PH=2,Dw=1(Ξ(t)) = PH=2,Dw=1(Tw ⩽ t).(5.21)

Combining (5.19), (5.20), and (5.21) proves (3.3). Equation (3.4) can be shown simi-
larly. This concludes the proof of Corollary 3.1.
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Proof of Theorem 3.2. The mutual information I(H;XTw
0 |Dw) can be rewritten as

I(H;XTw
0 |Dw) =

2∑
i=1

2∑
j=1

P(H = i, Dw = j)

×
∫
{ω∈Ω: Dw(ω)=j}

dPH=i,Dw=j |FTw
ln

(
P(Dw = j)

PH=i(Dw = j)

dPH=i|FTw

dP|FTw

)

=

2∑
i=1

2∑
j=1

P(H = i, Dw = j)

∫
{ω∈Ω: Dw(ω)=j}

dPH=i,Dw=j |FTw
ln(Nij(ω)),(5.22)

and so the argument of the logarithm in (5.22) can be expressed as

(5.23) Nij =
P(Dw = j)

PH=i(Dw = j)

dPH=i|FTw

dPH=1|FTw
P(H = 1) + dPH=2|FTw

P(H = 2)
.

Theorem 3.1 implies that, for all Φ ∈ FTw for which Φ ⊆ {ω ∈ Ω: Dw(ω) = j},

(5.24)
PH=2|FTw

(Φ)

PH=2(Dw = j)
=

PH=1|FTw
(Φ)

PH=1(Dw = j)
.

Thus, for i = 1, Nij can be expressed as

N1j =
P(Dw = j)

PH=1(Dw = j)

×
dPH=1|FTw

dPH=1|FTw
P(H=1)+ (dPH=1|FTw

/PH=1(Dw= j))PH=2(Dw= j)P(H=2)

=
P(Dw = j)

PH=1(Dw = j)P(H = 1) +PH=2(Dw = j)P(H = 2)

= 1.(5.25)

Analogously, it can be shown that N2j = 1, and hence

(5.26) I(H;XTw
0 |Dw) = 0,

which concludes the proof.

Proof of Corollary 3.2. Note that F(Tw) is a sub-σ-algebra of FTw . Now an appeal
to Theorem 3.1 shows that PDw,H=1|F(Tw)=PDw,H=2|F(Tw). Hence I(H;Tw|Dw) can
be rewritten as

I(H;Tw |Dw) = E

(
ln

(
dPDw,H|F(Tw)

dPDw
|F(Tw

)

))
= −E

(
ln

(
PDw

(H = 1)
dPDw,H=1|F(Tw)

dPDw,H|F(Tw)
+PDw

(H = 2)
dPDw,H=2|F(Tw)

dPDw,H|F(Tw)

))
= −E

(
ln

(
PDw

(H = 1)
dPDw,H=1|F(Tw)

dPDw,H|F(Tw)
+PDw

(H = 2)
dPDw,H=1|F(Tw)

dPDw,H|F(Tw)

))
(5.27)

= −E

(
ln

(
dPDw,H=1|F(Tw)

dPDw,H|F(Tw)

))D
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= P(H = 1)E

(
ln

(
dPDw,H=1|F(Tw)

dPDw,H=1|F(Tw)

))
+P(H = 2)E

(
ln

(
dPDw,H=2|F(Tw)

dPDw,H=1|F(Tw)

))
= 0,(5.28)

where we used Corollary 3.1 for (5.27) and (5.28). Recall that F(Tw) is the sub-σ-
algebra generated by Tw, whereas FTw

= {Φ ∈ F : Φ∩{ω ∈ Ω: Tw(ω) ⩽ t} ∈ Ft ∀ t}.
Corollary 3.2 is proved.

An alternative way to prove Corollary 3.2 is to use Theorem 3.2 and the data
processing inequality [2].
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