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As we discussed previously, we want

to solve leach of the radial Schrodinger
V(r)

equations -

#+et-t-Ene) Une=
to obtain the energy

He
of hydrogen. Thislevels

involves solving the (in principle infinitely
many) ID problems subject to boundary
conditions -

Une - pl
+

,
ne0

umo int
with potential energies

virl - espec->r

R

FiI
We were gonna do this usinga

slightly exotic method : SuSy Q-Mech .



Let us begin with the generic ID Hami

(1) (1)
H =- x2 + V(x) Q

where j"(x) has been shifted so that the

ground state of H"sits at zero energy
(1)

i- e . v (x) = V(X) - Eo.
This is a nice trick , since Yo(x) , the ground
state , is modeless -> so we have no pesky
poles when trying to evaluate the following :

H"% =0

-Do"V4 =
-> G# That's cool

What other weird ways can we write V"(x) ?
How about -

V"(x) = W(X)2 = = Wi(x)
&

where W(X) is the OPER potential !
-

-- But why ?



It's simple - we can use to define :

* = + W(x)

At = -Ex + W(X) .

And these have the groovy property that :

H" = A+ A !
-

How? Just check :

HI y = (ex +W)(d +we
=-I-(we +) +Ewal +wi/
= ( - Yxz + Wh -EW)lWu

this was how we defined VII

A has allowed us to factor any Ham
!

-
-

But there's more !Check out :

(2)H = AAt
.

H2 has an eigenspectrum
:

H(24m : Ener Amazing !!
-> AAten : EnenS H"H'" have

-> #A(AYn) = En (A
+

en) degenerate
-> AtAn =Ent ectra !!-



Why does it matter ? Notice that :

AA
+ 4 = (E +w) (- x +W)Y

=-EU" + :(wil +well- zwn' + way/ &
=

-
" + +whe = - 24" + Vic

W
--
And this is not the someas

will !
Cl C 2)

-> H = - dYx2 &V and He - dYx2 + 04
minim

Little a side :

Since v"(x)= &and UK (x) = W + W (X),
we havea

to" /40 = -VEW' + 2 W(

hool trick : (404) %01/0/ I-

So : & is : 2

l= (w)w
⑧

1W --
So:(x)

= - 40% 0
= EenMo) ·LWe can solve for all En , In of V", Then use to

to get W, then Who get VI, and its spectrum
for free!!!!'



to the
degenerate !
spectrum

↓
The one exception is the zero-energy state.

Notice that if AA4o = 0
,
+ Alo = 0.

This is a 1 - order DE,

%+ WWo
= 0

,
with an easy
L solution !

- Ho= exp[(Wy)dy]
This can be normalized

as long as (Wlydy goes to o as Xen.

So far
, so good- so why can't AAMo = 0 too?

This would require 40(x) = expl+ S- Wyldy]
↑

now at
,
not- !!

These cannot be simultaneously normalized !
- A

-

PUNCHLINE :
(2)

(1)CandH= Art have

The same spectrum even though they
correspond to very different potentials !

And : to is always obtained from a simple
first order DE !



Let's do some examples. First , take

W(x) = aX 3.
This gives :

1
= a2x6 - BaxoV"x

· Vilx1 = a2x - " x*
*

(x)
& Yo = Nexp[Eay" (n J

- Ne
-A

exp( : Eaxy)-
normalization

· W=- = --Euxe/e
= ax3 -

v()(x)
3 u"((x)

2+ c . -

2
,

of
val En of VI)

soofuk a ,
of Ull

Ed

This shows that two very different pots can have
-

the same spectrum ! But a little abstract...



For something a bit more down to earth,
consider the infinite square well.

Y
this has solution
~ sin (kx) where

k =/ - E=
a

The SUPERPOT isThus :

W(x) =- cott) . Ise+ a = +o

make the
And this gives 2 potentials... rest easy .)

((4)(x) = W"FEW'(x)
I Ecot(x) = E( - ci(x))

= (
=-or 112 (4) -10.

-> the first term gives the inf . sa well , shifted

by 50 . Cool ! And the second is something
else - something weird-but something
c) spectrum n2π2

,
n = 2

,
4, ...

-

2a2
-



Here we see

the states of

both systems...

This is a -

good review article

if
you want to

learn more !

e
. g .

how to solve

wachy susy systems
like this !



But now it's time to get back to our

goal of solving the hydrogen atom :

He Ye = Ente
,

where He = - +e

First off
, let's figure out our SUPPOT !

From V= w ? - W =-
we can guess

the solution :

WIvl = C- Dir

--=--r -

Soi do =-, = -Plu=e- -
A B C
-

-
-

From C : D=
-

-> FromBi L=
-e++

-

-> From A :

Wow ! We already found the ground
-

state energy for eachI



As a sanity check, let's compute the fi

Yoe(v) = e-farwigs de
= exp[-Coet-ar]
= exp[-Me+ 1 +(+1)dnr]
= retle-rtD up to normalization.
- - ↑
& ↑

Notice that the expected short-and long-

range behavior holds
,
and this is a

normalizable function ! Hopefully , one
we recognize from Kindergarten-QM !

Here's a nice way to visualize the g.

energies we've obtained :

M I2,
2

,
4 ...

l

5-

-2E

I
200

·3-
-

=> Eo

I-

n = 5



We've also determined

warl : -E
With W, we can compute the Aes :

= (ar + ef-E)

e = = )-ddr + it -E)

These
give us the Hams :

is
normalge-dependence

· Hi = Atte =Par+-
this is He !

= Houlomb 2)
Fol

e-dep , is

of l+ 1

-
· He = AcAet=* -Mari ++

= He
Coulomb + ①
+ 2(d+ 1)2

·

Saniy check #2 : He is the correct Ham
,

consisting of the Coulomb radial Ham

less the ground state energy.



Notice that leads us to :

coulomb

Hell I He + 1 (
(1)

-> Het,
ou

-I ②
From D and & together, we have :

3H)e() = He'll +ztex-2e+z O
-

Now we want to use these to generate
theCas yet unknown) excited states.
· Let ③ act on the gs .

of Her:

Hi
, (t + - ↓ (1)
- "(e+12 - (l+2/2 ( doe+ 1

I

----- ---

A = O
/
b/ it is the gs .

-> He do = 10 + + 2+z(2) Po e+ 1 .2(l+112-
-
*

So : # is an eval of He
So far

,

so good !!



But by JUSY
,
non-zero evals of He

one shared by He !
(17 t (17

- A
+ He Poet , =* AeR

t
↓ z I (i) /

-> Al Ar(A + toet) = He t doe+ 1 (l & C
&- V-

(c) (1]
* (1)

-> He ↳,e & 10
I

So : =w zez) S the

corresponding eigenvalue of state de!
coulomb

And thus
,
from O : Ei

, r
= -ie+22

2 S. - -

:
ii , i ,

"

I l-

5- =

4 - =4. Eos

3 - - Er We've gotten

-

I
I
&

204

2 - -2
,0

=> Eo the first excited
-- 200 state for each I'

n = 5-2E



Let's go around the loop one more time !

We act on the first excited state of Hill
with Hez) :

(1)

H =) z ezHe+ 1
nu
-

I

2(F2
- ee+s)2 , see page

above

-1= etein)Z

,

So : Hi = And,+ =L-m]
-> multiply by Act...

->Hi]=[+-zes]
H

Subtracting the offset energy gives :

(1) (
He 2C
coulomb

Kee = - Texe) 12
, e

Looks 1: he we have a pattern !



Ente+12 &

--

-,
2

,
2

, 43 l

5-
- 922

is
=>

204
4 - 04 Gos

-

I
I

200

-3 - -40 Enr

2--Eo

-
n = 5-2E

Recognize that we can
relabel n +1-1

,
an integer,

and hence recover the

same Rydberg formula
as before .

l= 0 12 3 4
->
I S- = -> - -

-24 #
FatFa

- - -

Al -
-

etc..

↳ d
,
2 Pos

& ⑭I- Aft Ar

3 - - Ao - ·
-

not 4 doz
&

Al Notice also how
2 -

90 a

I I doo we repeatedly apply A or At--

to more through the spectrum !



This procedure we just did is part of a
much larger context of 'shape invariant

potentials', a category of ID potentials
defined bythe relationship Lindep .

ofy

v()(x , a , ) = V" (x , az) +R(a)
M

az = f(a , ) .

This lets as defere a family of Hams

Hs = - +V (x , as) + Ran)
↑

as = f (f (f ... (mid)! )
....

S - 1

Who cares? Well ,
2

H s+ 1
= - E x + V

, (X , as+ 1) + R(m)
-

= Vz(x , as) - R(as)
S -1

- =
-z + Uz(x ,as) + R(u)

Is and Hs + are SUSY HAMS- so
their spective are identical except for He's

65 , wh . Es =** Rau-



Doing this for all s values gives the spectrum

En= Rand
,
2 = 0.

Check all this wh Mr
.

Coulomb !

-

In conclusion
,
we used SUSY HAMS to

solve the hydrogen problem . This introduced

a wider concept of factorizable Hamiltonias

and SIPs ,
which are another way of

categorizing all analytically solvable systems !

Historically
,

Mr. Schro himself wasthe

first to factorize the Coulomb problem !

For more reading :
Looper, Khare, : Sukhatue Phy . Rep . 221

, 2671199)



Before closing the book on SUSYHAMs
,

heres

one more connection to Rydberg physics.
Consider a Rydborg atom in a dense gas,
where many ground state atoms he inside the

RydbergOrbit : O

&

The interaction

⑤

/o of de Made
T

(w/ each gs atan
&

-
- -

-

-

can be veryRy ↑
1 s well approxid by

↳
-

-

VI
, Eg) = 2 a Scie

whire a = the zero energy scattering length.

This was first struded by Fermi in 1934
-

Live will say more about this later).

To make a long story short :We want to
see

how these gs atans perfort the

Ryd atem with principal QN n.



TheI states are degenerate, so we must

diagonalize V = ziuscr-Es)

-> Unem
,ne'm'z)
=2em(R) neiml(Rg).

This is an nixn2 matrix-yikes to diagonalize !

Bwait ! Define : At = Anem(Ra(
A = quem (R&)

These are I rectangular matrices...
1 ,
2
,

n2

t

#,
All that SUSY staf) says :

V = 24a AtA

VI = <E = At

->cAI) = AAT(AI)
-

we only need this NXN matrix !



See MTE, Eisfeld, and Rost Phys. Rev. Research 5, 033032 (2023 

Now only is this numerically way easter, it is
conceptually very cool as it links two

~USY-like Hams !

H
,
= -+2 FRA)

A = 1

a la pertubered Rydberg atom)

↓
Hz = E11X11 + VeglaXe'l

1, s

la +light-binding latice !)

Anderson localization of a Rydbog et!



One more "application" :

U
. Kostelechy + M .

M. Nieto,
"Evidence for a Phenomenological
Supersymmetry :n Atomic Physics

"

PRL &32285 (1984).

The authors use the U and Ul we
deried for the Coulomb Homiltanian,
w( y(z) having the same spectrum ask' ,
minue dags.

But then they say that this is like an

atom who the is orbitals
,
i . e. Li :

Li : Is
the spectrum

of these states

should resemble those of H !

And
,
the same thing goes for

No

Na : 1s22523 .--



They claim in the end that similarities

between the excited state energies of

different atomic species imply a kind

of evidence for supersymmetry !

Con this possibly be true ? Stay turned !



In conclusion
,
in this lecture we learned :

· How toActorize a Hamiltonian

H = A
+ A

so that it s Suby-partner
F = AA +

could be found
· That Hand II have degenerate
spectral except for the ground state.

· How to use this to :

- relate one H / another to

solve I problems for the price of 1.
- Build up the solution of the

Coulomb problem directly.

Although this SuSy stuff won't be
too useful in general applications , we
car actually use it now to introduce

one major topic of this course,

Quantum Defect Theory !
-



This example comes
from :

U
. Kostelecky + M .

M
. Nieto,

"Evidence for a Phenomenological
Supersymmetry in Atomic Physics

"

PRLS3 2285 (1984)
-

These authors start from the JUST partner
potentials that we used,

V" = -
+ (+ 1) "Le+ is2

(( = -+
and them claim : since HW = - +Wil has

the same spectrum as H" =
- Id +ul but
ear

with the ground state removed , then His

describes a system with theIs orbital removed.

So : in the absence of dectron-electron

interestions, Hi is the Hamiltonian of Li !

Hi & ↑ & 2 25&· its hi :

-0
-

① = 28
1

is

&

=>

! ·

2-
↑

---



The authors then
go
on to claim that this

meas that atomic spectra contain evidence

for supersymmetry
! (And that this supersymmetry

is broken , by eve interactions
.)

How do they justify this claim ? With
experiment , of course !

---------------thos where e-e

int

zah.

·

Although agreement
between the underlined

transitions seems pretty good, you might
find this line of argument a bit fishg.
and you should

!

To see why , we'll need to solve the
Coulomb problem a few more times...


