
Lecture 4 27 May ,'24

In Lecture 3 we focussed a lot
-

on obtaining appropriate solutions to the

Coulomb problem which were "smooth"

functions of energy. This is vital if we

want to see how to connect scattering
physics to spectroscopy. The beautiful
result at the end of this process was

that we obtained the Rydberg formula,
Ene = -zame)

directly from this approach ,
where Me : Selit

is the quantum defect. This formula is

so incredible because it :

1) Connects a scattering quantity-

(the phase shift Se) with the
bound state energies.-

2) Shows how the effect of short-range

interactions in a non-hydrogenic
Rydberg atom can be collapsed into

a small set of parameters , Me.



However
, some of the key physical aspects

of this formula and its derivation may

have been obscured by the mathematical

complexity of the Coulomb problem.

So
,
let's review the whole concept and

approach ,
but for a simpler system with

only short-ranged interactions. In addition

to being mathematically simpler , this also

gives the hey formalism for treating a

vast number of problems in ultracold

physics.

So here is the problem : What are the

scattering + bound states of a potential
/che

. complicated ; R= Ro
V(R) & ↓
-RILeague +

e + 1
-I 2R2



keep in mind that this very simple spherical

square well problem is a stand-in for the

following type of single channel problem :

· Spherically symmetri=> only solve radial

equation
for each 1.

· Bound + continuum states considered

together - and linked when possible.

· known-"simple" long-range potential
= > typically of the form

Vr(n) =
CH + Cr/m

zmp2 -

-> Here we have n=o so the longest-range
interaction is the centrifugal potential.

-> We already studied N = I cose.

o Complicated short-range behavior.
-> goal : formulate the theory so that

this is
,

at most ,
a numerical

annoyance.



Since we have Very =P+)
at large r

zv2

outside the range
of the potential , we

need a different set of solutions than

in the Coulomb problem , namely :

"regular at r=o" : far) = Enk-seller)
hrcl : -> Fre
krli -> En sin(kr - +(2)

"irregular at r =" : gae(r) = EnerMelkr)
Krl : > En-14r)9(21-1) !!
krsl : - En-cos(lr-lit(e)

Coulomb compare + contrast :

10-r behavior : same-E-ret , you
t

longer behavior :

some fire : Sin
,

- cos

diff phase : 0 us. Wet Glazer
all-r behavior :

Bessels vs. ConfHypGeo !
For all problems LR potential determines
f
, g !



,

Check : this (E ,g) "base pair is the

energy-normalized one :

1."dee feledr = SCE-El).

The introduction of phose shifts is the some

as in the Coulombrose : for re to the sol'n

is

WeCr = Allfeecobe - See singe]
&

-> Ae En sin (kr-12 + Se)
.

Similarly
,

we match this outer solution to

the inner one
, Felr) (for revol ,

to obtain

the phage shift :
&

I
- be: Fricose-gene In-

fEl (r) cosSe-gEe(r) Singe

->
tube =WFE (vero

fie + bee fal Ivero
.

= Tie therSee



We have introduced a special aucutity
here

, the logarithmic desinative - bes .

-

Wigner provedthat this is a meromorphic
function of eregy-analytic in E except

for simple poles . That means that we could

easily interpolate its energy dependence, or

even do crazy things like analytic continuation

to obtain be ,
ECO from be

,
Eco ! But for now,

notethatfer a ment energanall
be seen at low positive energy :

tanbelE) ~(+ /Reed !! (kr) in + beelbr)e/12e+!!
-

+ (20-1) !! / (kneer-bee (21-17 !! /unle

~ · [H+ 1)re + bre +]8
l + 1

&e+ ) !!

e [er-b/re]
(21-1) !!

k2l + 1

~ de(l + GE + CE4 ..]
↑
this is the Wegner Threshold Law !
-

and it is y useful !



-> Take core : this is only valid for

short-range potentials .

It definitely
-

does not apply to the Coulomb potential -

To test out when it's applicable,
we

can use the Born Approxi &
- eN/po

tan Ser = -#9. fer(Vir) fre Indr
- -

regular solius for free particle
f = Erie/kr)

=
u-

In # EngurlJeTurA
X = hr

=am-2.e ex

k-dependance constant= A

From this we might think that the Wigner
threshold low should be replaced by

tan See ~kN-2,
removing all l-dependence. But this isn't quite

true since theIntegral A diveges as reo :

Fee yzen
So : 2l - N + 2 mustbec-1



This implies that this threshold
low

is only valid if

=N-2.

So we would expect the threshold law

to be different than Wigner's in some

situations. For example,
the polarization

potential for e-atom interactions is

Upol = L
254

:

Fora partial waves or higher we

expect deviations from the Wigner

threshold law there !

(l+1)
-4/4

+
l
zr2

=II,&
-

0e

-
%r411mbeA ,
RN-2+ A2k2

+

->We will return to this later...



These threshold lowes one highly useful-

just a couple of my favorite examples are :

1) The effect of short-ranged potentials
in a collision are suppressed of

small k -> 100-energy physics
ultracold physics is dominated

-

by s-ware collisions !

2) Behavior of cross-sections near

thresholds say a lot about the

details of that process - especially
due to the rapid and even

"cuspy" nature of the threshold

behauter
.

Here's a few points to keep in mind as

we think about threshold behavior over the

next week or two·

1) Just because the WTL predicts
-goa -0,

this does not
-

-



mec that the scattering potential
is invisible or has no effect of zero songs

We'll see this shortly when we consider the

zero-ensgg warefaction
.

2) A lot of the physics of the WTL :s just
a statement about the centrifugal
barrler. A particle with zero angular

momentum can "see" the short range
vir) S
--- potential
-> r

S starting

immediately fromThresholdI When >O
,
the particle has to turne

through the centrifuged banler at

arbitrarily small enerys · Only the

& experiental fail That perivates can

virl
-

-S be responsible---a

- r
for the phaseIShift



3)the WTL is strongly connected to

normalization- recall that these

powers ofK come from our explicit
cholce of (f ,g) -> and in the next

section we will eve change this
to remove this non-malytic behauler.

Basically ,
since we demand

O fri"2s (dr + S) -
y -El cos(kr +5)

,

this exes a normalization for our

excect base pair , fr erjeler)
guhur recert

And this ,
in turn

, fexes their low-l behavi,

If we abundan I
,
like in the analytic

(f0 , 9% pair we define next
,
then we

con redative everything to not have his
threshold behavior.

Point is : be coretel not to confuse
-

relevatPermally things (like Se)
of theoretically useful concepts
(like Se).



Finally
,

hereone some examples of theutility
of the Wigner threshold low

,
here meantmore

generally to apply to the behavior of the

photo detachment cross section near threshold,
Talk) ~42l

+

~ El
+ "

2.

Picture the photodetachment experiment :

↓
kion : there is

er
one 'S bound state1) inprice --

-- :
o

approx ~
. JeV belowk+

J The K + e threshold

........-2) ↳

e
in a photodetachment expt : if tW) .

Ser
,

an electron pops out !

So if you plot something like counts us
.

r

---
-

You would get : -
bound

state elections corry

-sno
absorption ↑... away excess

no
other energy

& Ethreshold law ?
=-

........

E-
O lectron~

affinity
: EA =. Sel



The EA is a nice property to know: but not so

easy to measure. How do
you precisely-

measure when you go
from O courts to

& courts ? -> Threshold las !
-

Note that , when the electron has l= 1,
the WTL predicts a casp at threshold !

aT

- & A IN of rE)
to the WTL will
="I be unsacuase ?EA

Specifically ,
J = (E-Ezal"2

In the experiment ,
this is done by using

enough photo energy to kich off one electron

and excite the other !



1
ti ·De->

↓ 22 possibilities
·
-4p

2)
·zig O

& moving slow !

e
moving" 8
fast -Fah

Exp
with% excess

energy
:

So : if photodetachment is done
,
and the

part eu cross sections reported by detecting
-

also the state of the residual aton /often by

exciting it yet again to a Rydberg state ! ),

then the cross section looks like :

From Andersson et al

112

& dE-FEA) PRA 22 022503 (2000

--



This car and has

Walter
exal

,
202d

been doe in many

PRA Le
osusl

species ! Even

exotic ones with

multiple negative
-

For bound States

lehe Thallium !

indium
!

or
terexal2Wal -

pRA so7
032 (2010)



Bismuthern ?!
Wolter etal PRL

126 083001 (2021)

compare
/ Fig

of

↓ pr Braucous
d

-

1 .

46S

und EA
=

10.
00S

And was high precision in
·

-

-> now!EA = 1
. 461112972(87) ev

Kristicusson etal Not . Comm . 13 3906

(2022)



We want to understand the energy
dependence of our scattering problem
new zero energy in a systematic way.

First
,

we notice that our fig sollus that

we wanted to use are noancely + >2 at

small k.

face ~ bl
+ 162

Jae + h-l
- "

this suchs for the ANALYTIC

CONTINUATION that

we love to do ! But
,
if we just pick

two different

everying butstevald,Got,a b

fo = (Kro]-e-12 faeEQ

9a = (kro)e
++2

Isr
↑

a characteristic length
scole-arbitrary-ish.



Not only does this care the nonanalytic
behavior as hrew

,

but one can prove

that they are analytic and entire function

of
energy for all r.

-> (fae
, sae) -> energy normalized base pain

-> (fa
, gie) - analytic base pair

And naturally - since we defined taubse

using (fae
, gael - we can define on

energy-analytic phaseshift using (fae ,ge)

This defines on analytic solution

Meri =
Wi

,
wa voE Ecosse-ge(r) sinsie

,
wor

(note : Se
And clearly tor Se = ten See is not

- &

22a+ measurable

So is now also a smooth function of
-

cross +o we can analytically
continue



Let's do this ! The crucial thing to determine

the discrete spectrum is
,

as always ,
to

construct solins where the exponential

grow th at neO is killed off . This dependence

is found from :

urso

k-l-"2 (lm)He sincer-ltlefiecr -

*ar E=
= (2 * (e) (eihr-t -evince-

T
eix ( ****"(e

Fr -( -1)(e 4)

We do the same for yel to get :

gir - -El ke(1-119ce
*

)

So
,

we have : Sar
,
gar

,

und fas all as

smooth functions of E
.

-

=>> We have cie !

Mier) to "Ge*

(ostr + Sin See (e)
3er(-1-Ilcossett-e+ sense (1)

most vanish this term !!!



So : ton Se + (-1)9(kro)-2 = 0

This gives us the crucial quantity,-

themmmescattering length

Aro = len (-rotated
E-0-= Mo ber = o

-

K

And the quantization condition reads

I
a = E

Iso as o naturally ! )

And this In turn implies that the bound
state has energy Es = -2

-

Thus : a scottering parameter, A
determines a spectroscopy value· En !



This is only approximate since a is theEo

limit of tube/1. But if we make a

energy-dependent, then the quantization
-

condition reads

ALE) - * =0

-> E=E
where alE) = -rotanS


