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To figure out how to describe and

compute the properties of Rydberg molecules,
we need to figure out how to solve

nonseparable quantum mechanical
systems .

- --

One of the most efficient and conceptually
useful ways to break apart and solve

a

complicated multi-dimensional problem is to

use basic expansions to convert the

problem to the solution of many coupled
ID Schrodinger equations.

The general process is as follows :

1) Identify a fragmentation coordinate "r"

-> This is ideal for collisione
,

but

also a good way to think about

bound state calculations -> even if

it is overhell sometimes.

2) Solve the Schroed for all other
coordinates "W" to obtain a complete +

orthonormal basis for those "internal"
coordinates .



Hw4 , (2)
= < = 4 : (2)

3) Expand the total wavefunction into

this basis :

4p(r ,w)= (2) fair)
4) Act on this of with the Homiltarian

It
,
then project onto <451 to obtain

a set of coupled equations :

0= 4, 1H14p (rwK

=

= Im FatG , MVEE)f
↑
note : the eigenvalues

- fej of the w-eval

- equation determine

Wit = (w) (VIr,w)(d, (w)))· thethreshol
a

T

If we define : E : I fol
,
fill, ..., finax(v)

= ei(l) Sii
1 = Gii
-

There we have a very compact equation,



- If "H+-E)
↑

diagonaleas couplingthrough

leg . 1) off-dragonah
tems here

.

This is all just "moth tricks" unless we

choose the right basis. Some examples

night help :

1) e-H scattering. Here we work in the

rest frame ofon infinitely heavy proton
orbited by two electrons :

e- In this approximation ,
the

n00 total wave function can be
e Vi
-

written 4(5,) and it is

determined by the Hamiltonian

H = -
%

.- * -I-* + Intra
We pick 12 to be the fragmentation coordinate.
That means that Ho =-t 0 , -In t&z(lzi + 1)

2n2

w =
" 2

M
- r21

v =
- "re

(note : here we're ignoring spin andontisymmetrization)



Thus
,

it's clear that

i = 2 li , 12i ,
Mi

,
Li

,
M : S

,

-> IEiL=citzi) Li M =)

hydrogen total summed

rfs any-mo

And so eg .

I becomes ...

0-E" -W
leg.2)

E=
6 Pulcon)

Where #(,m = MisMiliM(sli, li L ;Mj)

We'll come back to this when we discuss

the dispersia/ polarization interaction between

an electron and an atom. But for now
, just

notice what we've done : replaced a complicated
GD problem where we havea insight into

the structure of the component particles
into an (infinite) set of coupled ID equations
with lots of useful structure!



What ey .

2 "Looks" like is :

I thresholds of

VIr) + Why(r) - n = 4 the Haton)

- L
&&S&

&- -

+
Was w En = 3 - ECH en .

looks
S-

-

- It he an electron

complis +
Wezk El

=...

coming in in

-officiar
cr)E

n = 2

one chanel
, with

due
to

S its own threshold- /

W
&

+
Mis= n = 1 and potential,-

&

-- the couplingto

and scattering into

other chand
.

+ This describes inelastic processes !

2) I in a magnetic field :

H = -
02- in B

-> This is a ID problem in (r
,E) that

was studied extensively in the 805-90s
,

-

and was instrumental in opening

up the Gel of QUANTUM CHANS.
-



3) e scattering offof a polar molecule

---------oO ⑦
(&o ~

V(r,)= IR)Pro

4) Rydberg molecules. Here we have

T a Rydberg aton A interactinga-O with a distant grounds tate

At
R B

atom B
. The full rare function

depends on the e-A" relative coordinate

↑ and the A.B relative coordinate &
Throwing away mass polarization terms as

usual , we are left with



H =
- m Vm2 -

↓ Vr2 + U(n) + Um(R) + W(r, R)zu
- - -

V : hinetic
energy + nucleu interaction (weak !)

V : venetic energy + atom interaction (cowloub)

W : e ground state atom interation,

i . e
.
the Fermi Pseudopotential !

Here we might have some options for

our fragmentation coordinate ,
depending

on the type of process we want to study.
We could pick I ,

and them we describe

Rydberg states of the AB molecule /

photoionization .

But now we want the Rydberg electron to

stay attached to At
,
and describe molecular

formation - is motic bounded as R-M ?

therefore we pick R as the frag-coord.
Ml+ il

- Hw = 2 + -
2n2

w = v

V = Vm(r)



Nuclear rotation
-

And, i = En,
1

,
m

,
L

,
M3

un

Rydbergato

D.
F

-> Er() = Intm)/LM).

So
, eg .

1 is :

e
. g . Um(r)

z(n -melz
- E)E(R)0 =-Infin)--

+
<nem/2na, S'CE-R2) In't'n') J(R).
~

⑳ W

To simplify the following, let's take L=M = 0 (note

thatE separates) , assure
Yert is negligible,

ignore an defects
,

and measure E relativeto 2

Then ag . 3 becomes :

0 =

- I" (m) + (W - E1) I(R).

This is usually not the eg .

we want to work

with here - especially for Rydberg volecules

where the dimension grows with !



So let's prepare an adiabatic approximation
-

to thesealose-coupling/coupled-channel

equations .

For each R value
,

we can diagonalize W:
-
-

W = Srs
+

,
where W =W(R) ,

etc.
-

Inserting this and several 1 =SS", we get

0=(s(SUs -Es)E

=-i SF (r)) + S(w - E) f(r) ,

F = 5 "f .

- 0 = so = - Ins (SERs) + (WIRL-E) EIR)
-

= Is'E + Es)' = >"5 + 2S'E + SE"

So finally ,
after this change of basis at every

& value
,

we have a new set of coupled equs :

0=F"R- El F(r) -In 12 Pin+& ) FIR)
-

diagonal ! derivative coupling !



Let's such to a slightly more familiar

notation now
,
whereEm(R) is the eigenvector

lot channel functions) corresponding to the

potential curve WaIR) ·
Then we have :

0 :[Se +Wor(R) - Esme) fr(R)
-

+ [PmEr + Qur) f(R)I
Pmw = <&r/dr/te)

- Que = < mid/de)
-

The top now describes uncoupled vibrational
motion on individual potential curves -

if we drop the bottom now entirely ,
this

is nothing more than the Born-Oppenheimer
approximation :

vima
W

,
(r)

R
->
-(r)-I~Wins U

, (R)

~ I
,

IR)



How good of an approximation is it to totally

drop the second row ?

-> Often VERT good !

To understand why ,
let's derive 2 identities :

13 dP <Hmldntn

= Qutmldrake)+oldn +e)
Qmz

This first term is :

= [crmdrtr)I
Widentity

= PmgPgr = P2

So:dPlam = Vy(r)dy()

-> b)= (aHar)k + +4) = wi't- + Med
Next we project ontocdml :



-> <4m(H'(4p) + 24m|+ 14") =Wimle) + NostalesJ

↓
- - -

Umm/ Sar Prz
<kolH'Ie) =

- War Powe + Wel-oSma + Ve Pur
-

- Prur=He en
-

These two results tell us :
the strength of

Q depends on the strength of Pe and

also on how quickly it varies 2/ R.

Furthermore
,

the strength of P depends on

now quickly the Hamiltonian changes with R and,

most crucially ,
on the separation between adtabatic

potential curves. ~
out here

, I is
&

& small and motion

U(R) - is uncoupled !

=>
we wer is sueI La

increases
!coupling



So : back to Ryd-Mols'
--

This is basically the scenario of the

Ferm pseudopotential derivation - just

with fewer atoos involved and
,
crucider,

aorcold +emperatures · Why ? We'll see soon.

· From Fermi PP derivation : whatever

the "real" electron- atom potential is
,

we can replace it with the Fermi pp I +

higher (pies) :

UIFR) = 2 as Si-i) +GrapSF-E)8 +...

Next
,
remember on coupled channe formalism.

We know the states of the Rydborgatan , so

they make an obvious choice for the channels.

4(n) = [fr) Inem ,
NM

From own derivative in Lee
.
1 .... This

leads to the coupled ears...



O= - dir) +[E- (F + 2 m)] fir)

Vi =I f , (R)
Pictorialles ,

M

E R
-

-

I-
----

301
,

123

---335

-
-1-

- 32d

-
--

--p

-
292 , ez3

Without the electron-atom interaction
,
motion

occurs along uncoupled potentials o I only

very short-range potentials.

Let's check out the electronic-state

dependant potential matrix .



-

--
>

+ 25as4*m(R) Ynems (R) + Gap↑SR4hev I in
- Mel

- +...

when Meto : we have good reason to

consider these low-l states individually.

-> Vezz = ith-meR -2nds141 +Guep14'R +...

&

-I ↑
this just mirrors the

Rydberg caretmotion Is-wave

limit)

-> Nose that this is a slightle different

perspective than usual Born-Oppenheimer,

It's actually a depatic calculation !

Since 1 = S4V = 4 Elin')",
42 ~a

- S

&

-> These potential are weak !



For high I, we con no longer orgue that

these couplings are negligible as there are no

energy separations to help out any more...

-> we
have

a coupling mately

Veel = <nemlines + Gop08"Olne'm >

to treat-

If now makes sense to more to a representation
where this is dragonal .

-> BO approx
!

We car actually use SUSY to diagonalizethis
(well , kind of) .

Nose the following :

3 CVeel = In us Q (2) ques (e) + Gi9pI(r)kne (2)+.

L-- ---
vo ur

Let : A = Vitas 46 -> Ade = Venus ne (R)
RP nR

1 *

Ar = JapOne -> At = Jotap Pres (R)

So : Vee' = Ferre -

I



That should ring some bells
.

Remember

that we showed that

H = AA
+

and H2 = AtA

have degenerate spectral
-

So : we con just diagonalize H = AtA

to get the (non-zero) eigenvalues !!!

-RVi

-Vor

II &Voo : 29s [14e0(n)/
U . = Gap El4nRS1 ?.

What about higher I ?
In amutshell : since

S
-

e h2

we know howdl of these will behave !


