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Scope of today’s lecture

At the core of quantum simulation with Rydberg atoms: 150 years of spectroscopy
® From Rydberg to Pauli/Schrodinger to present day

As billed, it is a “lecture”:
® . .expectsome equations...
® slides: https://www.pks.mpg.de/correlations-and-transport-in-rydberg-matter

What are Rydberg atoms?
® Quantum defect theory: alkali atoms

® Key properties of Rydberg atoms

® Multichannel quantum detect theory:
many-electron atoms
What are they good for?
® Rydberg-Rydberg interactions
® van der Waals / Rydberg blockade
® dipole-dipole / "tlip-tlop” interactions
® Rydberg-ground-state-atom interactions

It's just to get your attention
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ooeks Alittle pre-history

®
®
: What can the emission and absorption of light tell us about the structure of matter?
1868: Angstrom publishes study of hydrogen spectrum //'E'f"‘-/.:/"’;'l/ TAALEL Yy CAFFINAL AR
/ ' Lo A~ 7
.,‘ ‘;' /‘/ .LJ ‘ ' ;‘ :z ,’./,’ (. : / /7 \)’ "
1885: Johann Balmer discovers a relationship between these observed lines. A vy AL A Laadl — ] it
(,}" +. {/’ ’ — d"
»
1888: Johannes Rydberg synthesizes empirical results, fully generalizing Balmer’s ' :
formula and kicking this all off. 4P : /
Y ‘;““‘r)c’ R 12
7 OGN o (7 ) (' 7) ' -~
1911: Rutherford presents his model of the atom: a compact, positive core with a ' h L’ /1/. ‘ L/ ' (/ 7L 3 by
cloud of electrons around it - no more plum pudding!
our goal: to derive this formula that Rydberg
1913: Bohr and Rutherford present a semiclassical, “old quantum theory” figured out 30 years before quantum mechanics

argument. This fails for every atom with more than one electron.
17 January 1926: Pauli solves the quantum Kepler problem for the hydrogen atom.

27 January 1926: Schrodinger solves the quantum Kepler problem for the
hydrogen atom.
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.;oeks Lightning review

Before we can understand the rest of the periodic table, we need to understand H

Schrédinger equation: O=| ————FE |y(r) ..in atomic units where 1 = ¢ = m, = |
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«oonks Lightning review

Before we can understand the rest of the periodic table, we need to understand H

2
Schrédinger equation: () = _7 — — —F W(?) ..in atomic units where 1 = ¢ = m, = |
r
This separates in
spherical coordinates ~ uEbﬂ(r) A | .
(among many others - ]/j(}/‘) — Yfm(r ...where £ and m are the eigenvalues of L~ and L,

try it in parabolic
coordinate in your vast
spare timel)
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«oonks Lightning review

Before we can understand the rest of the periodic table, we need to understand H

2
Schrédinger equation: () = _7 — — —F w(?) ..in atomic units where 1 = ¢ = m, = |
r
This separates in
spherical coordinates ~ uEbﬂ(r) A | .
(among many others - w(}/’) — Yfm(r) ...where £ and m are the eigenvalues of L~ and L,

try it in parabolic r

coordinate in your vast
spare timel)

"All” we have to do is to solve the radial equation in each angular momentum channel:

£C+1) 1

//

0= ——ug/(r)+ —— —E Jug,(r).

P 2r? r
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... From hydrogen atoms to Rydberg atoms

o The hydrogen atom solution admits an infinite series of highly degenerate bound states

2 3 4 5 There is no restriction on n:
- — — - -infinite series of states

converging to threshold atE =0
n —> o0 -SO(4) symmetry: high

d
- © o o egeneracy
I I D NN — 5
_A\—112
( 2E) — — 7 — /] Rydberg atoms get huge:
1
E=T+V = =
- 2n?
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. ooks A little bit of motivation

Why should you care about Rydberg physics?
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. ooks A little bit of motivation

Why should you care about Rydberg physics? | o vaye s Deon
® Fundamental:

® beyond a “measure zero” set of ground o

states, all spectroscopy is Rydberg physics. aify it all Rydberg states?

® Quantum-classical correspondence, chaos g e

and quantum scarring
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. ooks A little bit of motivation

Why should you care about Rydberg physics? | L Aays esbeen
® Fundamental:
® beyond a “measure zero” set of ground 4 L
states, all spectroscopy is Rydberg physics. aifyits all Rydberg states?
® Quantum-classical correspondence, chaos 4, e
and quantum scarring
e Useful.
sensing (highly responsive to external fields)

quantum computing

quantum simulation
quantum optics

many-body quantum scars
® Versatile
® "Universal”
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. ooks Exotic Rydberg systems

®
O
. [ ]
. Heavy Rydberg states - atom-like molecules
® extremely different size / energy scales
® possible initial state for producing equal-mass plasmas
Hydrogen- (anion)
| ' | ' | ' | ”;(7'4) .
° v v v ° « v vo"g"o"mooogcgn—
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oonks Exotic Rydberg systems

®
®
. Rydberg positronium - long-lived matter/antimatter
e Annihilation of ground state Ps occurs < 1077 s. Rydberg states live > 17 s.
® Precision QED or gravity tests
25
an electron
1.0
o
o 0.6 FIf positron
H—E .
0.4 %
i
0.2
0.0
735 740 745 750 755 760 765

IR wavelength (nm)

Cassidy et al PRL 108 043401 (2012) R THE PSS OF CONPLE Sy TEm



. ooks Exotic Rydberg systems

Rydberg excitons - bound electron-hole pairs in materials.
® particle + quasiparticle
® Not perfectly spherically symmetric - still living in a lattice!

electron

[2A9] ASa9u’y

Wave vector

Kazimierczuk et al Nature 514 343 (2014) s MAX PLANCK INSTITUTE




.oeks Exotic Rydberg systems

Rydberg excitons - bound electron-hole pairs in materials.
® particle + quasiparticle
® Not perfectly spherically symmetric - still living in a lattice!
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®

. Exotic Rydberg systems

Rydberg molecules
® Frederic Merkt (ETH) / Tilman Ptfau (Stuttgart) / Ed Grant (UBC) / Stephen Hogan (UCL) + more...
Circular Rydberg states
® Michel Brune (CNRS) / Florian Meinert (Stuttgart) + more...

e atomswithl=m=n-—1 ;’

Circular Rydberg states + antimatter + matter + ....
® Sotér et al Nature 603 411 (2022)
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| (n,8=37,35 | (n, &) = (38, 34)
= 1l :
C&: 0.05- D Het* i &
LA I’H S, | MM
0 /%t‘f\‘*r‘&?n /}jJ \ “e‘.“g.
0 50 100 150 0 50 100 150 o1 kpa .
Radial distance (pm) \ 1 Ryd be rg transitions
b © 3 e orobe background
n =139 -c% 140+ \ .
........... S 231 kPa 11 density
© - A
,\(\6‘ _% 100 ™ ‘ 343 kPa \ Af
> n =38 c R 424 kPa [
> B 60 '-ans b [, | | 1, f | £
SR b e slinn, AT AR A T
< 1.0 1.4 18 22 2.6 e B :
£=234 £=35 Time (us) 412,840 412,860 412,880

Laser frequency (GH2)

MAX PLANCK INSTITUTE
FOR THE PHYSICS OF COMPLEX SYSTEMS




.oons How to go beyond hydrogen

"All” we have to do is to solve the radial equation in each angular momentum channel:

212 r

2

| C(C+ 1 |
A llsif(r)_l_( ( i )___I_Vsr(r)_E) uEf(r)-

V..(r)

Complicated... Coulomb...
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.oons How to go beyond hydrogen

"All” we have to do is to solve the radial equation in each angular momentum channel:

1 £C+1) 1
— EME/(F) T ( 7,2 - 7 + V(1) — E) UpAT) .

QUANTUM DEFECT THEORY:
A powerful framework for
7 analyzing these (and much
more complex) problems, built
on two realizations:
® At large r we know the
solution to this problem.
® At small r the solution is
nearly energy-
independent.

V..(r)

Complicated... Coulomb...
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Ve r r

QUANTUM DEFECT THEORY:
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7 analyzing these (and much
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solution to this problem.
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nearly energy-
independent.

V..(r)

Complicated... Coulomb...

MAX PLANCK INSTITUTE
FOR THE PHYSICS OF COMPLEX SYSTEMS



.oons How to go beyond hydrogen

®
. "All” we have to do is to solve the radial equation in each angular momentum channel:
1 £C+1) 1
— EME/(F) T 7,2 o 7 T Vsr(r) — L uEf(r) '
V(r)

Fr 1) g (1) ~ COS Op(E)fp 1) — sIn 0, (E)gE,(7) QUANTUM DEFECT THEORY:

A powerful framework for
7 analyzing these (and much

more complex) problems, built
/\I\I—\ 1 on two realizations:
—— ® Atlarge r we know the
r solution to this problem.

® At small r the solution is
nearly energy-

Vsr(’”) independer/)t

Complicated... Coulomb...
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.oons How to go beyond hydrogen

O
. "All” we have to do is to solve the radial equation in each angular momentum channel:
1 £C+1) 1
— EuEf(r) + YT + V. (r) — E ) ug,(r).
V(r) ,
Frory g (r) ~ o8 0, (L) (r) = s 0,(E)ge/r) quaNTUM DEFECT THEORY:
A powerful framework for
7 analyzing these (and much
more complex) problems, built
1 on two realizations:
—— ® Atlarge r we know the
r solution to this problem.
® At small r the solution is
nearly energy-
independent.
V..(r)
Complicated... Coulomb...
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V(r)

« How to go beyond hydrogen

"All” we have to do is to solve the radial equation in each angular momentum channel:
1 £C+1) 1
ey A1) + R + V. .(r) — E ) ug,(r).
Feer) (1) ~ COS O (L) (r) = s 0E)gAr) QuANTUM DEFECT THEORY:
A powerful framework for
7 analyzing these (and much
Fl:jf(r) leff(r) more complex) problems, built
= 1 on two realizations:
FEf(r) uEf(r) —— ® Atlarge r we know the
solution to this problem.
® At small r the solution is
tan 6,(E) i4 [FEf(r)afEf(r)] nearly energy-
dll Op — independent.
Verl) W [Fie(r), 8e()] o
Complicated... Coulomb...

”
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V(r)

« How to go beyond hydrogen

"All” we have to do is to solve the radial equation in each angular momentum channel:

1 cC+1) 1
) Ef(l”)+( 5.2 _7+Vsr(r)_E> upAT) .

QUANTUM DEFECT THEORY:
Forr) g (r) ~ cos SUEp(r) = sind,(E)gee(r) |~ (20 menal
more complex) problems, built
1 on two realizations:
—— ® Atlarge r we know the
solution to this problem.
® At small r the solution is
nearly energy-

/4 [FEf(r)afEf(r)]

tan o (E) = independent.
V..(r) ’ W |Fe(r), gge(1)] p ,t

...........

Complicated... Coulomb...

s
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A few formulas...

First - analytically continue to negative energies.
Second - obtain asymptotic expansions:

fr r) = Ar~"e "Wsinn(v — £) — Brre """ cos n(v — £)

the limitr - o©

gp (r) = — Arve" cos n(v — ¢) — Bre " sin n(v — )

MAX PLANCK INSTITUTE
FOR THE PHYSICS OF COMPLEX SYSTEMS

EVERY formula here assumes

1

E=-

207
(A and B are constants)




Ceoons A few formulas...

®
. First - analytically continue to negative energies. EVERY formula here assumes
Second - obtain asymptotic expansions: the limit 7 — oo |
fe/(r) = Ar~*e™sina(v — ) — Br¥e™""" cos n(v — £) E=— -
1%

(A and B are constants)

gp /A1) = —Ar e "Weos (v — €) — Brre ™" sin (v — £)

This means that at an arbitrary energy our solution blows up exponentially at infinity (even
single-particle quantum physics has problems with exponential growth!)

Up (1) ~ COS O L) (r) — SN O (E)gr (1)
~ Ar~e™ |cos S,(E)sin (v — £) + sin S,(E)cos n(v — £)| + O(e™)
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Ceoons A few formulas...

®
. First - analytically continue to negative energies. EVERY formula here assumes
Second - obtain asymptotic expansions: the limit 7 — oo |
fe () = Ar~Ye™ sinn(v — ) — Brte™"" cos n(v — ¢) E=— -
1%

(A and B are constants)

gp /A1) = —Ar e "W eos (v — ) — Brte " sin a(v — £)

This means that at an arbitrary energy our solution blows up exponentially at infinity (even
single-particle quantum physics has problems with exponential growth!)

Up (1) ~ €OS O, (E)fr (1) — sin 6 (E)gp (1)
~ Ar~e™ |cos S,(E)sin (v — £) + sin S,(E)cos n(v — £)| + O(e™)

04(E) S (E)

7T T

up(r) ~ Ar—"e "V sin 1 [1/ —C +
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A few formulas...

|
E=—
212
O (E
—> v—C + a )=
T

n

r
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2(n—w)?

Where y; is the quantum defect!

//t"f/ X ALY CAFFNAL ARV

1% tf .'l Ve lt | -—-—--—./} P {l{"l
‘ (’7}1,] ’Lp; J“‘ /
n / /
N, (m+C)% (M@)o
(we did it!)
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Some takeaways of quantum defect theory

KEY POINT #1: At sufficiently large r we have an analytically solved problem
KEY POINT #2: At small r the physics is nearly independent of energy

QDT does not discriminate between scattering physics (collisions) and bound state physics (spectroscopy) - this lets
us describe a whole bunch of physics in a large energy range with just a few parameters.
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Table 2. Measured frequencies for the nP;, states and respective
quantum defects. E, is measured from the centre of mass of the

« Some takeaways of quantum defect theory

KEY POINT #1: At sufficiently large r we have an analytically solved problem

KEY POINT #2: At small r the physics is nearly independent of energy

QDT does not discriminate between scattering physics (collisions) and bound state physics (spectroscopy) - this lets

us describe a whole bunch of physics in a large energy range with just a few parameters.

lower and upper states and contains a small correction to the

wavemeter calibration. The third step data are reported exactly as

measured.
Third step E, é Error
n  (MHz) (MHz) ) (x107%)
36 236496706 1007068254 2.64187 2.3
37 236666310 1007237858 2.64179 2.5
38 236821728 1007393277 2.64170 2.7
30 236964479 1007536027 2.64175 2.9
40 237095926 1007667475 2.64177 3.2
41 237217235 1007788783 2.64173 34
42 237329406 1007900954 2.64176 3.7
43 237433360 1008004909 2.64162 4.0
44 237529853 1008101402 2.64160 43
45 237619595 1008191144 2.64156 4.6
46 237703191 1008274740 2.64163 5.0
47 237781211 1008352760 2.64151 53
48 237854117 1008425666 2.64154 5.7
49 237922362 1008493911 2.64148 6.1
50 237986322 1008557870 2.64155 6.5
51 238046352 1008617901 2.64167 6.9
52 238102791 1008674339 2.64144 7.3
53 238155879 1008727427 2.64161 7.8
54 238205906 1008777455 2.64159 8.2
55 238253103 1008824651 2.64139 8.7
56 238297662 1008869210 2.64139 9.2
57 238339780 1008911329 2.64148 0.8
58 238379637 1008951185 264158 103
59 238417400 1008988949 264141 109
60 238453197 1009024746 2.64151 11.5
61 238487172 1009058721 2.64151 12.1
62 238519445 1009090994 2.64151 12.7
63 238550123 1009121672 264165 134

I Phys Br At Mol Opi Fhs 42 2009) 165004 %pp) doi 10 1088005 3- 07547 16 1R300

Precision measurements of quantum
defects in the nP;/, Rydberg states of

SRb
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Figure 6. Quantum defects from the three different fitting methods. ] n  —
Data points for n = 5 and n = 6 were included in the calculations i HHN

but are not shown, as their quantum defects are off the scale:
2.707 178 and 2.670 358, respectively.

MAX PLANCK INSTITUTE
FOR THE PHYSICS OF COMPLEX SYSTEMS




.oons Multichannel quantum defect theory

o
* KEY POINT #3: Most atoms are multichannel in nature - this is where QDT shines

(1) ~ €08 SAE)f /(1) — sin SAE) gy (1) 0 = sinz [1/ — £+

0(E) ]

U

Complicated... Coulomb...
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;oo Multichannel quantum defect theory

KEY POINT #3: Most atoms are multichannel in nature - this is where QDT shines

0(E)

(1) ~ €08 SAE)f /1) — sin SAE) gy (1) 0=sinz |v— £+

JU
Instead of phase shifts...we get an energy- Applying boundary conditions at infinity gives either
independent Scattering matrix S or Reactance matrix K bound states or autoionizing resonances

Complicated... Coulomb...
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;oo Multichannel quantum defect theory

o
. dK,phys (1 + Kphysz)—l dK,phys
70
__ gphys K13K31 (K12 Ilc(gf%)z
y tand = K|;” = K3 e,
60 K3z + 15 K> + 15 K;:+%‘;
>0 1.4 1.0 0.5
K = 1.0 09 14
40 0.5 1.4 3.8 e—
"Bound state in the continuum” —
30 —
20 !
OJJJJJI f LL_‘AAAAJ“‘JJ‘ //
20 25 30 35 40 45 50) =—— A2

Effective quantum number v, _
Greene, C.H.(2023). Quantum Defect Theory. In: Drake, G.W.F. (eds) Springer Handbook A SIS | -

of Atomic, Molecular, and Optical Physics. FOR THE PHYSICS OF COMPLEX SYSTEMS
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® From Rydberg to Pauli/Schrodinger to present day

As billed, it is a “lecture”:
® .. .expect some equations...but hopefully not too many
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What are Rydberg atoms?
® Quantum defect theory: alkali atoms

® Key properties of Rydberg atoms
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“...ns How do Rydberg atoms interact?
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“...ns How do Rydberg atoms interact?

Vi
2u

kinetic energy of

H =

relative motion
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“...ns How do Rydberg atoms interact?

Ve Vi
2,[4 2m€ A

H =

kinetic energy of Rydberg
relative motion  atom #1
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...ns How do Rydberg atoms interact?

v: Vi o1 Vs
2u 2m, r; 2m

H =

kinetic energy of Rydberg  Rydberg
relative motion  atom #1 atom #2
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“...ns How do Rydberg atoms interact?

V2 V: 1 V2 1 1
- R 1 2 4
2u 2m, r, 2m, 1, R

kinetic energy of Rydberg  Rydberg
relative motion  atom #1 atom #2 ...repulsion...
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ok How do Rydberg atoms interact?

Vi Vi 1 V3 1 1 1
H = +
2 2m, r;  2m, 1 R = _ R
kinetic energy of Rydberg  Rydberg 1

| . ...attraction...
relative motion  atom #1 atom #2 ...repulsion...
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ok How do Rydberg atoms interact?

Vi Vi 1 Vs o111 1 1
M=% 2 T
", me, 1. 2m, r, R i — R 7+ R
kinetic energy of Rydberg  Rydberg  ottraction. .
relative motion  atom #1 atom #2 ...repulsion... ...attraction...
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ok How do Rydberg atoms interact?

V- SAS  B 1 1 1
H = > > > + |
o pooame noozme o R R Py + R R -7 +7
kinetic energy of Rydberg ~ Rydberg ...attraction... ...repulsion...
relative motion  atom #1 atom #2 ...repulsion... ...attraction...
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“...ns How do Rydberg atoms interact?

Vi Vi1 v | 1 !

H — 2 2 2 |+ I |

o pooEmenoame e K n R 7>+ R R —7F +7
kinetic energy of Rydberg ~ Rydberg | ...attraction... ...repulsion... :
relative motion  atom #1 atom #2  '...repulsion... ...attraction... .

Let R be much larger than the Rydberg orbits...looks like a great opportunity to do a

Taylor expansion!
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.ok How do Rydberg atoms interact?

O
. 1
V(R’rl’r2)= R
1
7 — R
1
P4+ R
| 1
R -7 +7
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.ok How do Rydberg atoms interact?

O
. 1 i
1
7 — R
1
P4+ R
| 1
R -7 +7
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ook How do Rydberg atoms interact?

o
— 1 1
1 1
. ﬁ
7f)l_R 27 - 2 | r?
R\/l RN
|
P4+ R
| 1
R -7 +7
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..o How do Rydberg atoms interact?

o
— 1 1
V(R,]/‘l,l/'z): R ﬁ R
1 1 7ot 1t 3(F 22
— —— [ ] 4 + OR™*
S R( R 2R? 2R? (™)
Vl—
1
Fo+ R
| 1
R —F +7

MAX PLANCK INSTITUTE \X§
FOR THE PHYSICS OF COMPLEX SYSTEMS \&&



..o How do Rydberg atoms interact?

— 1 1
V(R,]"l,lf'z): R ﬁ R
1 1 712 11”12 3(?12)2
— | + O(R™
7 — R R( R 2R? 2R2 (R™)
|
: — L Rt 1n 3(72°2)2>+@(R4)
P+ R R R 2R?  2R?
| 1
R -7 +7

MAX PLANCK INSTITUTE \\\X
FOR THE PHYSICS OF COMPLEX SYSTEMS Uy



..o How do Rydberg atoms interact?

O
— 1 1
V(R,]"l,lf'z): R ﬁ R
1 1 712 1 7‘12 3(?12)2
— —— [ 14 | + OR™
Ffl— R R( R 2R? 2R2 (k)
A
: ﬁ I | ?2 . 2 1 ]/'22 | 3(?2 . 2)2 1 @(R_4)
P+ R R R 2R2 2R’
1 1 1 ?1'2 | 7’2°2 —7’12+271°72—1”22
s . - > R R R OR2
R—r1+r2

3 - A
2R2 ((?l 2 = 2(F) - D)(Fy - D) + (7, - Z)2>)

”
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..o How do Rydberg atoms interact?

O
— |
V(R . ]/‘1, ]/'2) — R ﬁ
S I VA R T W A s
{ - | + O(R™)
— ! 2 2
71 — R d 2 R 2R
1 / 72 1 3(Fy-2)? .
?2 + R
1 IF2°2 —7’12+271°72—1”22
=2 = R OR2
R — It —+ )

5 (792 =27, - (- )+ (7 z>2>)

”
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O
— 1
V(R,]/‘l,l/'z): R ﬁ
I 3(7) - 2) .
7 — R
| 3(7—;22)2 _4
7y + R K
1 —7’12+271-72—1”22
— 2R?
R —I"l‘l‘l"z
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V(R,]/‘l,l/'z): R ﬁ
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. ﬁ
71— R
1
N ﬁ
7y + R
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— 1
V(R,]/‘l,l/'z): R ﬁ
1
. ﬁ
71— R
1
N ﬁ
7y + R
1
R —F +7
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“...ns How do Rydberg atoms interact?

—

R

Vi Vi L Ve () =33 (- D)

H — |
2u  2m, ry 2m, 1 R3
kinetic energy of Rydberg  Rydberg Dipole-dipole
relative motion atom #1 atom #2 Interaction

After the dust has settled, we are left with a dipole-dipole potential.
What next?
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ook How do Rydberg atoms interact?

Vi Vi 1 V3 1
2u 2m, r;  2m

H =

e %)

| (7”1 ' 7’2)—3(’”1 ‘2)(7”2‘2)

| R3
At the distances where this formula is valid, the
bottom row is a perturbation to the upper row.
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O
Vi Vi 1 V5]
o — R I 2
2u 2m, ry 2m, 1
N
I R3

At the distances where this formula is valid, the
bottom row is a perturbation to the upper row.
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ook How do Rydberg atoms interact?

O
Vi Vi 1 V5]
o — R I 2
2u 2m, ry 2m, 1
N
I R3

At the distances where this formula is valid, the
bottom row is a perturbation to the upper row.

— g =|ns) —— g = |ns)
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..o How do Rydberg atoms interact?

O
Vi Vi 1 V5]
o — R I 2
2u 2m, ry 2m, 1
N
I R3

At the distances where this formula is valid, the
bottom row is a perturbation to the upper row.

0= (nt|r|nt)
— g =|ns) —— g = |ns)

MAX PLANCK INSTITUTE
FOR THE PHYSICS OF COMPLEX SYSTEMS




“...ns How do Rydberg atoms interact?

»
Vi V¢ 1 Vi 1
H — R 1 2
2u 2m, r;  2m, 1y
N —
| 23 R
At the distances where this formula is valid, the When lite gets hard, make it a two level system:
bottom row is a perturbation to the upper row. = ‘ np> = ‘ np>
0= (nt|r|nt) A A
— g =|ns) —— g = |ns)
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“...ns How do Rydberg atoms interact?

»
Vi V¢ 1 Vi 1
H — R 1 2
2u 2m, r;  2m, 1y
N —
| 23 R
At the distances where this formula is valid, the When lite gets hard, make it a two level system:
bottom row is a perturbation to the upper row. = ‘ np> = ‘ np>
0= (nt|r|nt) A A
— g =|ns) —— g = |ns)

Four state basis: ‘66), ‘gg), ‘€g>, ‘g€> d = (ns ‘ I"‘I”lp)
riryleg) = (glrle)elr|g) =d
rirylee) = (gl le)(glrle) =d°
rir,|ge) =(glrlg)elrle)y=0
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O
. Vi 1 V5 1
2m, r;  2m, 1y
dd,
0 —
V(R) =
0 0
0 0

Four state basis: ‘ €€>, ‘gg), ‘ €g>, ‘g€>

L)

L)

rir

eg) = (&
ee) = (g
ge) = (g

e)e
e)(g
g){e

g)=d’
e) = d*
e) =0

—

R

When lite gets hard, make it a two level system:

e = |np)
A
— g = |ns)

d = (ns|r|np)
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po Vi Lo Vi T nn

2m, 1, 2m, 1 R3
d,d,
0 Pe 0 0 B
d,d,
V(R) = R Sl V When life gets hard, make it a two level system:
— d,d
0 0 A — e = |np) e = |np)
d A A
vV % A — g = |ns) o= |ns)

a b Two classes of interaction:
(b c> | (d,d,)*/(2A)
| R6 o

2A

2u, = (a+c) £ /46> + (a — ¢y  (dd)M2A)

(of course we're gonna Taylor expand again) ' R6
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How do Rydberg atoms interact?

This simple two-state model shows that atoms interact at long-range in two different regimes:

Both atoms in same state: (dldz)z/(ZA) This non-resonant van der Waals

E, ~2AH
0 U R6 interaction is at the core of ground-state —
O o ground-state atom scattering as well as
the source of Rydberg blockade: the
A A , ultra-strong interaction between Rydberg
— — (d,d,)"1(2A) . L
F ~ ~ atoms prevents their mutual excitation!

_ 26

MAX PLANCK INSTITUTE
FOR THE PHYSICS OF COMPLEX SYSTEMS




ook How do Rydberg atoms interact?

This simple two-state model shows that atoms interact at long-range in two different regimes:

@ § ¢

Fach atom in a different state:

d.d This resonant dipolar interaction leads to
L —_— — A+ 172 . . . .
A A Uy = A =L R3 a “flip-flop” or exchange interaction
® between atoms; in the full picture this
— ® —_— Interaction is anisotropic!

...........
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O
* The general problem is just a little bit harder:
- V The exact form of V,; .., depends on the choice of the coordinate
H (E’) o Z K1K2 systems used to label the positions of the electrons. If we
int — R+ +1 choose the coordinate systems such that the z-axis points along
Ky,k=1 R, 1.e. along the interatomic axis, we get the comparatively

simple result

"< ki + ko Wl K1 + K
Vi, = (=1) Z \/( 1 2)( | 2)p"§11;plg)q’ (7)

q:—fg< K“Jl q ,{’2 q

where we use k. = min(k;, K2) and binomial coefficients to
shorten our notation.

And the equivalent pieces to our 7, 7, are...

A (i AK 47 9 A
p,iq) —éer - \/2KI 1 Y,ﬁq(’ﬁi, QOI)

Sebastian Weber et al J. Phys. B 50 133001 (2017) o THM’ﬁ\)/(SIIgééyC%ﬁSAF!PE§g\I/§TUEIAE




..ons How do Rydberg atoms interact?

®
* The general problem is just a little bit harder:

Instead of dipole moments d we have...

A | X . P ./
(isjm)| T 's'j'ml) = (~Di-masiiGaiesin| "7

(Usjll Trolll'si") = (— DU Tl (25 + D)’ + 1)

o
X Y
{j' 4 "3}

Sebastian Weber et al J. Phys. B 50 133001 (2017) o THM’ﬁ\)/(SIIgééyC%llsﬂF!yE§g\lgTUE-{AE
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The general problem is just a little bit harder:

Instead of dipole moments d we have...

A | X . K ./
(Isjim\Tgll's'i'ml) = (i masiliBolitsin|” "
—m; q m;

UsllTeolll's") = (= DF ATl Y2 + D' + 1)
https://qgithub.com/pairinteraction/pairinteraction l .
T ] S

30d,,,;32p,_ X ’

iU Kk

31p,:31d; -

~~
N
LD IoP Publishing Journal of Phyece B: Atomic, Molecular and Optical Phyece
S~—r
~. J. Phys. B: AL Mol. Ogt. Fhys. 50 (2017) 133001 (18pp] Mtps.//dci.ory,/10.10E8/1367-6455,/aa743a
oL 32s,,.:32s,,
1/21 1/2 .
Q Tutorial

31p1/2;31d3/2_

Calculation of Rydberg interaction potentials

— 5 (C) Sebastian Weber'”, Christoph Tresp™’, Henri Menke', Alban Urvoy>”,
! o A Ofer Firstenberg®, Hans Peter Biichler' and Sebastian Hofferberth®>’
3 3.5

Sebastian Weber et al J. Phys. B 50 133001 (2017) o THM’ﬁ\)/(SIIgééyC%ﬁSAF!PE§g\I/§TUE-{AE



ook Scope of today’s lecture

At the core of quantum simulation with Rydberg atoms: 150 years of spectroscopy
® From Rydberg to Pauli/Schrodinger to present day

As billed, it is a “lecture”:
® .. .expect some equations...but hopefully not too many
® slides: https://www.pks.mpg.de/correlations-and-transport-in-rydberg-matter

What are Rydberg atoms?
® Quantum defect theory: alkali atoms

® Key properties of Rydberg atoms

® Multichannel quantum detect theory:
many-electron atoms
What are they good for?
® Rydberg-Rydberg interactions
® van der Waals / Rydberg blockade
® dipole-dipole / "tlip-tlop” interactions
® Rydberg-ground-state-atom interactions

For more details: feel free to shoot me an email at

It's just to get your attention

meiles@pks.mpg.de

MAX PLANCK INSTITUTE
FOR THE PHYSICS OF COMPLEX SYSTEMS


https://www.pks.mpg.de/correlations-and-transport-in-rydberg-matter

... Rydberg molecules, polarons, and composites

. Two ingredients make a long-range Rydberg molecule:

Rydberg atom + A ground state atom

(X | [«

V(7, R) = 21a,5°(F — R).

(electron-atom interaction given by
Fermi’s pseudopotential)

m
m
m
m
m
m
>
1
N

(_ZE)—I/Z

0=
N
0=
0=
N
0=
>
|l
N

=
N
m
=
N
m
>
1
Lo

m
m
m
m
m
m
>
1
N\

N
o
N
=
1
e

Two types of molecules exist because there are two types of
Rydberg states: te high-| states remain hydrogenic and the

SO(4) symmetry is partially preserved!
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..o Rydberg molecules, polarons, and composites

For a quantum defect state

(s-state for example):

U(R) =2na,|¥, (R)|"

A
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..ons Rydberg molecules, polarons, and composites

For a quantum defect state The degenerate states hybridize

(s-state for example): to form a “trilobite”:

U(R) = 27a,| ¥, (R)|* Ur(R) = 27a, ) |¥,,(R)
Im
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.,oos Rydberg molecules, polarons, and composites

Rydberg molecule with a quantum defect: simple electronic
structure (no back-action on the electron);

interaction with each ground state atom in a gas is
independent of the others: polaron physics.

® Simple electronic dynamics, complex atomic dynamics

Rydberg molecule without a quantum defect: electronic

character is sculpted by the ground state atom; each atom

added modities the potential all of the rest feel: Rydberg

composites

® Complex electronic dynamics,
simple atomic dynamics
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O
; ¢ An impurity particle interacts with a non-interacting BEC at T=0
J JQ < J
H= )Y —d'd + Y —b'b, + V de, by ° M.
Zszk ZZMkk Z ((I) k +qk oooogo |
kk Q O OOO 9 J
o . . e o d - 271'51]3 o N e
atomic impurity: short-range V(r) =V _(r) = o(7) ° >
interactions M
e Rydberg impurity: long-ranged 27, 2
yaberg impurity: long-range V(I’) — VR d(r) — h// oo(’”)‘ .
Interactions Y "
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O
,: e An impurity particle interacts with a non-interacting BEC at T=0
| R
H = AT i i i , %\ o |
Z 2Mdkdk+ Z ZMbkbk+ D, Vd]_ db, b ¥— .
k.k'.q o QRO o
- ‘ o & OOJ 9
. : 2ra;g . 3 R o
® atomic impurity: short-ranged V(ir) =V _(r) = sy T 1 2 —
interactions M

2ra

e Rydberg impurity: long-ranged — _ e 2
Ty CDETY IMpHHEy=fong-rang V(r) = Viya(r) = | W0o(7) |
INteractions 0

0.002

In the right limit,
0.001

the Rydberg

N 0-000 _ polaron

E —0.001 behaves
—0.002 identically to
—0.003 the “normal”
—0.004

Bose polaron.

-0.20 -0.15 -0.10 -0.05 0.0

agla,l
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O
,: e An impurity particle interacts with a non-interacting BEC at T=0
= J
H = Z d'd, + Z bib+ ), Vi@, _ dib, b %\ ;
an ! 3 Q
k’k,aq J OQ J
L o © JQJ 9
.« . . 2ra Uip - e
® atomic impurity: short-ranged Viry=V, (r) = o(ry 1T f\f— ? . »
interactions M
¢ Rydberg impurity: long-ranged — 27a, 2
. . V(r) = Viya(r) = | W0o(7) |
INnteractions
o In the right limit, 0.0 ..butit can do
o the Rydberg -0.1 lots more!
N :ZS: ~ polaron g 02 A.A.T. Durstand MTE in prep
= behaves —
S Q0.3

~0.002 identically to

—0.003 the “normal”

—0.004 Bose polaron. —0.5

-0.20 -0.15 -0.10 -0.05 0.0 -1.0 -0.8 -0.6 -04 -0.2 0.0

agla,l a, )
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®
: “Rydberg composite” Hamiltonian Tight-binding Hamiltonian
VZ 1 M . M M M
Hre= ===~ 21 ) a,0%(F— R,)) e Hyp= ) E lq)ql+ ), D) Vyyla)q|
q=1 q=1 9=1 97q

MTE, A. Eisfeld, J. M. Rost PRR 5, 033032 (2023)
MTE, C. W. Wachtler, A. Eisfeld, J. M. Rost arXiv:2309.03039
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When you get a tight-binding Hamiltonian, why not study Anderson |localization and disordered systems?

Extended Mixed Localized

No disorder Disorder; band middle Disorder; ban edge

MTE, A. Eisfeld, J. M. Rost PRR 5, 033032 (2023)
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When you have disorder, why not seek out
topological protection?

++++++++ =~

L2 (34, t, (Bl (3/2)t

t;
Su-Schriefer-Heeger: Ring Rydberg composite: Rydberg spectrum and wave functions:
® Staggered hopping ® Same configuration for NN hopping ® Bulk-boundary correspondence
® Chiral symmetry ® Staggered angles—— staggered hopping ® Topologically protected

® Polyacetylene model edge states

MTE, C. W. Wachtler, A. Eisfeld, J. M. Rost arXiv:2309.03039
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At the core of quantum simulation with Rydberg atoms: 150 years of spectroscopy
® From Rydberg to Pauli/Schrodinger to present day

As billed, it is a “lecture”:
® .. .expect some equations...but hopefully not too many
® slides: https://www.pks.mpg.de/correlations-and-transport-in-rydberg-matter

What are Rydberg atoms?
® Quantum defect theory: alkali atoms

® Key properties of Rydberg atoms

® Multichannel quantum detect theory:
many-electron atoms
What are they good for?
® Rydberg-Rydberg interactions
® van der Waals / Rydberg blockade
® dipole-dipole / "tlip-tlop” interactions
® Rydberg-ground-state-atom interactions

For more details: feel free to shoot me an email at

It's just to get your attention
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