
What this is: 

• The first of two lectures on quantum simulation from first principles - in other 

words, from a few-body perspective.

• An introduction to / overview of analog quantum simulation with a very  

brief introduction to the experimental platforms highlighted this week.

• A discussion of several of the “first principles” concepts needed to 

understand them. 

• A time to ask plenty of questions (perhaps to be answered tomorrow)

• … and discuss! 
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Rough outline: 

• What is analog quantum simulation, and how can we build the 

simulators?

• How to design a quantum Rydberg atom simulator. 


• What is the structure of an atom? Of a Rydberg atom?

• How do atoms interact? 


• Long-range electrostatic interactions. (break!)

• Review!

• Scattering theory: phase shifts, zero energy scattering length, time 

delay, and the Fermi / Huang-Yang pseudopotential.

• Put it all together + more. 
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• The basic solution (1982): “Let the computer itself be built of quantum mechanical elements which obey quantum 
mechanical laws.”

Key idea: find an experimental system governed by the same Hamiltonian as a 
model we want to study, and then probe that experimental system instead of doing 
the (difficult or even “impossible”) calculations. 



• Some good resources: 

• Quantum Simulation Georgescu, Ashhab, and Nori Rev. Mod. Phys. 86 (2014)

• What is a quantum simulator? Johnson, Clark, and Jaksch EPJ Quantum Tech. 1 (2014)

• Can one trust quantum simulators? Hauke, Cucchietti, Tagliacozzo, Deutsch, and Lewenstein Rep. Prog. Phys. 75 

(2012). 
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problems. This also means that the simulated models should be computationally 
very hard for classical computers (see also requirement (d))
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What is quantum simulation? 
Can one trust quantum simulators? Hauke, Cucchietti, Tagliacozzo, Deutsch, and Lewenstein Rep. Prog. Phys. 75 (2012). 

‘computationally very hard for classical computers’ may have several meanings: (i) an efficient classical 
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Can one trust quantum simulators? Hauke, Cucchietti, Tagliacozzo, Deutsch, and Lewenstein Rep. Prog. Phys. 75 (2012). 

The requirements of reliability and efficiency are interrelated. In fact, we could try to improve the precision of a 
QS by averaging more experiments, but in hypersensitive regimes (like those close to quantum-phase 
transitions) the necessary number of repetitions can grow rapidly, bringing the overall efficiency of the QS 
down to the level of classical computers.

We conclude that the answer to the question ‘Can we trust quantum simulators?’ is ...to some extent.



Questions??

We just learned what QSs are and what they should do…

…next we will see some examples!
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Quantum simulator exhibit A: 
Roushan et al Science 358 (2017) A quantum simulator of a 9-

site Bose-Hubbard model:

“Each of our qubits can be thought of as a 
nonlinear photonic resonator in the microwave 
regime…the qubit frequency, nearest-neighbor 
coupling, and nonlinearity set the on-site potential, 
the hopping rate, and the interaction, respectively”



Quantum simulator exhibit A: 
First “simulation” tests relevance, 
controllability, and reliability.

Relevance: “We simulate the problem of Bloch electrons on a 2D lattice subject to a 
perpendicularly applied magnetic field B. For typical crystals, the magnetic field required 
to“squeeze”one flux quantum through the unit cell is of the order of several tens of thousands 
of tesla, too high to be experimentally feasible. 


Reliability: “Recently ,some features associated with the Hofstadter’s butterfly were 
experimentally realized by using superlattices in graphene and cold-atom systems.”


Controllability: Is claimed; will be proven if it works!

A quantum simulator of a 9-
site Bose-Hubbard model:



Quantum simulator exhibit A: 

Experiment Theory

“The average deviation is 3.5 MHz. This implies that we can set the matrix 
elements of the Hamiltonian, which in this case includes 17 terms, with <2% 
error. This capability of controlling a large quantum system is achieved 
through careful modeling of the qubits as nonlinear resonators.”



Quantum simulator exhibit A: 



Quantum simulator exhibit A: 

Relevance: For larger numbers of qubits this will be relevant!


Reliability: ??


Efficiency: ~two days of measurements for this plot of a system with 45 states.




Quantum simulator exhibit B: 

“One of the most astonishing predictions of the single free-
particle solutions of the Dirac equation is the fast quivering 
motion called Zitterbewegung. It is unexpected because it 
predicts an oscillatory motion of a freely propagating electron.  
The Zitterbewegung phenomenon has not been observed so 
far for a real relativistic electron, given that the predicted 
frequency, 10^21 Hz, and amplitude, 10^-11 cm, are difficult


to access experimentally.”



Quantum simulator exhibit B: 



What are quantum simulators? 
Lots of platforms have been proposed / exist to do analog (and sometimes digital as well) quantum simulation. 

The four you will hear about this week are…


Neutral atoms
Trapped ions


Optical lattices / 
quantum gases


Rydberg atoms


Superconducting qubits


Joshi Manoj, Wednesday Andreas Wallraff, Tuesday

Shannon Whitlock, TodayWaseem Bakr, Tuesday



For what do we need quantum simulators?

continued…

• Georgescu, Ashhab, and Nori “Quantum Simulation”: RMP 86 (2014)
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For what do we need theorists?
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For what do we need theorists?

“Finding the mapping in an AQS might, at first glance, look simpler than obtaining the 
most efficient gate decomposition for a given Hamiltonian in DQS. Sometimes the 
mapping is indeed straightforward, but this is not always the case, and quite often 
clever mappings have to be devised, sometimes involving additional externally 
applied fields or ancillary systems to mediate various interactions.”

A QS is an experimental system that mimics a simple model, or a family of simple models.


(a)   Relevance: the simulated models should be of some relevance for applications and/or our 
understanding of challenges in the areas of physics mentioned above. 


(b)   Controllability: a QS should allow for broad control of the parameters of the simulated model, 
and for control of preparation, initialization, manipulation, evolution and detection of the relevant 
observables of the system.


(c)   Reliability: within some prescribed error, one should be ensured that the observed physics of 
the QS corresponds faithfully to that of the ideal model whose properties we seek to understand. 


(d)   Efficiency: the QS should solve problems more efficiently than is practically possible on a 
classical computer.



Questions??

We just learned some more about what QSs are and what they do…

…now we will build one!



Building a quantum simulator of a Rydberg atom

Using a Rydberg atom…


+

G

-

Rr
…and a ground state atom…

…We want to simulate the Hamiltonian of an 
electron moving in a Coulomb potential!

Why? (what is the relevance??)
• Large, even infinite, Hilbert space -> “tough to simulate classically”.

• Test predictions in regimes inaccessible in typical Rydberg atoms (as long as we have  

controllability)

• Because doing so will introduce many of the atomic physics topics we want for a 

“first principles” lecture (and maybe in a less boring way!) and will help us think 
critically about quantum simulation!

H = −
∇2

2M
−

Z
r
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A quick survey of atomic structure
Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single 
valence electron. To understand their spectra and wave functions, we (of course) begin with the best atom with a single 
valence electron: hydrogen.  
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 …in atomic units where 
ℏ = e = me = 1
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other coordinate systems)
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Schrödinger equation:
 …in atomic units where 
ℏ = e = me = 1

Eq. R1 separates in spherical 
coordinates (among many 
other coordinate systems)


Simplifying Eq. R1 with Eq. R2 
yields the radial Schrödinger 
equation


parametrize the energy (we are 
looking for negative energy bound 
states, so nu is positive)


centrifugal barrier 
at nonzero angular 
momentum




A quick survey of atomic structure: hydrogen
Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single 
valence electron. To understand their spectra and wave functions, we (of course) begin with the best atom with a single 
valence electron: hydrogen.  


This is a second-order 
differential equation, so it has 
two linearly independent 
solutions, and u must be a 
linear combination of these.


uνl(r) ∼ fνl(r) − tan δνlgνl(r) . (R4) (f and g are given by 
hypergeometric functions…
lots of fun!)
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The S.E. is solved by this linear combination once we apply boundary conditions!

To apply boundary conditions, we need the asymptotic behavior of f and g:


r → 0 :

fν,l(r) → Ar−νer/ν sin π(ν − l) − Brνe−r/ν cos π(ν − l) (R6)r → ∞ :

gν,l(r) → − Ar−νer/ν cos π(ν − l) − Brνe−r/ν sin π(ν − l) (R7)
(A and B are constants)
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fν,l(r) ∝ rl+1, gν,l(r) ∝ r−l (R5)

uνl(r) ∼ fνl(r) − tan δνlgνl(r) . (R4)

r → 0 :

fν,l(r) → Ar−νer/ν sin π(ν − l) − Brνe−r/ν cos π(ν − l) (R6)r → ∞ :

gν,l(r) → − Ar−νer/ν cos π(ν − l) − Brνe−r/ν sin π(ν − l) (R7)
(A and B are constants)

Feynman said, “I don’t want to 
have an explosion”, and the 
wave function agrees!


δνl = 0, ν − l = nr + 1, En = −
1

2n2
(R8)

A quick survey of atomic structure: hydrogen



For hydrogen:  an infinite series of highly degenerate bound states 

(−2E)−1/2

n = 1

n = 2

n = 3

n = 4

n = 5

l → ∞

l = 0 1 2 3 4 5

En = −
1

2n2

Each integer n supports n^2 degenerate levels with energy 
n^2 and angular momentum values l = 0,…,n-1 
(constant B blows up when n = l, so we could not have a 
normalizable wave function…)

n → ∞

A quick survey of atomic structure: hydrogen

1888: Johannes Rydberg synthesizes 
empirical results to obtain this formula!




Hydrogen atom: 1/20 nm n = 9 Hydrogen atom: 4 nm

n=50: 125 nm

A quick survey of atomic structure: excited states of H
Because Rydberg’s formula predicts an infinite series of excited bound states in hydrogen, we call 
atoms — of any species — which have been excited to high principal quantum numbers (n>10 or 
so) Rydberg atoms. 


Such atoms are fascinating because their properties are extreme!
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⟹ r0 = 2n2
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A quick survey of atomic structure: excited states of H
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atoms — of any species — which have been excited to high principal quantum numbers (n>10 or 
so) Rydberg atoms. 


Such atoms are fascinating because their properties are extreme!
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Rydberg atoms are friendly: their properties obey robust scaling laws.

⟨n |rα |n⟩ ∼ n2α, α > 0. (R9)



A quick survey of atomic structure: excited states of H
For further scaling laws, we need normalized wave functions. 

Easiest to do with WKB:

u(r) ∼
N sin ∫ r

r<
k(r)dr

k(r)
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u(r) ∼
N sin ∫ r

r<
k(r)dr

k(r)
⟹ 1 = N2 ∫

r>

r<

[sin ∫ r′￼

r<
k(r′￼)dr′￼]

2

k(r)
dr

⟹ 2 = N2 ∫
r>

r<

1

− 1
n2 + 2

r − l(l + 1)
r2

dr

⟹ 2 = N2 ∫
2n2

0

1

− 1
n2 + 2

r

dr = πn3 .



A quick survey of atomic structure: excited states of H
For further scaling laws, we need normalized wave functions. 

Easiest to do with WKB:

u(r) ∼
N sin ∫ r

r<
k(r)dr

k(r)
⟹ 1 = N2 ∫

r>

r<

[sin ∫ r′￼

r<
k(r′￼)dr′￼]

2

k(r)
dr

⟹ 2 = N2 ∫
r>

r<

1

− 1
n2 + 2

r − l(l + 1)
r2

dr

⟹ 2 = N2 ∫
2n2

0

1

− 1
n2 + 2

r
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N =
2

πn3
.So the normalization constant is



Hydrogen atom: 1/20 nm n = 9 Hydrogen atom: 4 nm

n=50: 125 nm

A quick survey of atomic structure: excited states of H
Because Rydberg’s formula predicts an infinite series of excited bound states in hydrogen, we call 
atoms — of any species — which have been excited to high principal quantum numbers (n>10 or 
so) Rydberg atoms. 


Such atoms are fascinating because their properties are extreme!

E = T + V ⟹ −
1

2n2
=

k2

2
−

1
r

⟹ r0 = 2n2

Rydberg atoms are friendly: their properties obey robust scaling laws.

⟨n |rα |n⟩ ∼ n2α, α > 0.
Anything which depends on small r values will scales as

due to the normalization constant… 

n−3

⟨n |rα |n⟩ ∼ n−3, α > 0. (R10)⟨n |rα |n⟩ ∼ n2α, α > 0. (R9)



Interlude: How do two atoms interact at a distance?
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Since the atoms are far apart: R will be much larger than the typical distances of either electrons.

A great opportunity to do a Taylor expansion! 
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After the dust settles…
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Now, for simplicity:
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Let’s go to the Born Oppenheimer picture (maybe: details tomorrow) to find the interaction between these atoms 

Integrate out electronic degrees of freedom. What basis?

Interlude: How do two atoms interact at a distance?
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Choose just two electronic states for each atom. 

g = |ns⟩

e = |np⟩|ee⟩, |gg⟩, |eg⟩, |ge⟩-> four state basis
Δ Δ
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(a b
b c) → 2u± = (a + c) ± 4b2 + (a − c)2

u± = Δ ± d1d2

R3
.

Δ

Interlude: How do two atoms interact at a distance?

Two classes of interaction:

u+ ≈ 2Δ +
(d1d2)2/(2Δ)

R6
.

u− ≈ 0 −
(d1d2)2/(2Δ)

R6
.



This simple two-state model shows atom interact at long-range in two different regimes:

Interlude: How do two atoms interact at a distance?

Both atoms in same state: 

E− ≈ −
(d1d2)2/(2Δ)

R6
.

This non-resonant van der Waals 
interaction is at the core of ground-state — 
ground-state atom scattering as well as 
the source of Rydberg blockade: the 
ultra-strong interaction between Rydberg 
atoms prevents their mutual excitation!

V(R)

E+ ≈ 2Δ +
(d1d2)2/(2Δ)

R6
.

ΔΔ

2Δ + 2(d1d2)2/R6
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This simple two-state model shows atom interact at long-range in two different regimes:

Interlude: How do two atoms interact at a distance?

Each atom in a different state:

This resonant dipolar interaction leads to 
a “flip-flop” or exchange interaction 
between atoms; in the full picture this 
interaction is anisotropic!

u± = Δ ± d1d2

R3
.



This simple two-state model shows atom interact at long-range in two different regimes:

Interlude: How do two atoms interact at a distance?

The interaction between atoms in 
the same state is characterized by 
a “C6 coefficient”

VvdW = −
(d1d2)2/(2Δ)

R6
= −

C6

R6
.

This simple two-state calculation we just did gives C6 
values for the ground state which are very close to 
the exact values for all of the bi-alkali molecules!


For example in Rb: C6 in the ground state is 4691 (in 
atomic units); this calculation (using experimentally 
obtained dipole moments and energies) gives 
~4100. 



The amazing thing with Rydberg atoms is how these interactions scale…

Interlude: How do two atoms interact at a distance?

VvdW(n) =
1
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|⟨n1sn2s | ⃗r1 ⋅ ⃗r2 − 3 ⃗r1 ⋅ ̂z ⃗r2 ⋅ ̂z |n′￼1pn′￼2p⟩ |2

En′￼1p + En′￼2p − 2Ens

We could already see from the ground state 
calculation, but it’s also clear here…

https://github.com/pairinteraction/pairinteraction
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VvdW(n) = −
C6(gs)n11

R6



A quick survey of atomic structure: not-hydrogen
Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single 
valence electron.


0 = (−
∇2

2
−

1
r

+ Vsr(r) − E) ψ( ⃗r) . (R11)Schrödinger equation:


The other electrons are tightly confined to a small region around the atom’s nucleus: the influence of these electrons can 
typically be modeled by


Vsr(r) = −
(Z − 1)e−a1r

r
−

αc

2r4 (1 − e−(r/rc)3)
2
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0 = (−
∇2

2
−

1
r

+ Vsr(r) − E) ψ( ⃗r) . (R11)

0 = −
1
2

u′￼′￼νl(r) + ( l(l + 1)
2r2

−
1
r

+ Vsr(r) − (−
1

2ν2 )) uνl(r) . (R12)

Schrödinger equation:


Our new radial equation is: 


The other electrons are tightly confined to a small region around the atom’s nucleus: the influence of these electrons can 
typically be modeled by


Vsr(r) = −
(Z − 1)e−a1r

r
−

αc

2r4 (1 − e−(r/rc)3)
2

These screening and polarization terms fall off rapidly as a function of r, vanishing once r>r0. 




A quick survey of atomic structure: not-hydrogen
Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single 
valence electron.

This is a second-order 
differential equation, so it has 
two linearly independent 
solutions, and u must be a 
linear combination of these 
FOR LARGE r!.


uνl(r) ∼ fνl(r) − tan δνlgνl(r), r ≥ r0 . (R13)

For small r, we can solve the S. E. numerically (in principle) for the wave 
function inside: F(r)
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This is a second-order 
differential equation, so it has 
two linearly independent 
solutions, and u must be a 
linear combination of these 
FOR LARGE r!.


uνl(r) ∼ fνl(r) − tan δνlgνl(r), r ≥ r0 . (R13)

For small r, we can solve the S. E. numerically (in principle) for the wave 
function inside:

F′￼(r)
F(r)

r=r0

=
f′￼νl(r) − g′￼νl(r)tan δνl

fνl(r) − gνl(r)tan δνl r=r0

F(r)
Making sure the wave function and its derivative are continuous functions gives:
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This is a second-order 
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solutions, and u must be a 
linear combination of these 
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=
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Making sure the wave function and its derivative are continuous functions gives:

⟹ tan δνl =
F′￼(r)fνl(r) − F(r)f′￼νl(r)
F′￼(r)gνl(r) − F(r)g′￼νl(r)

r=r0

=
W( fνl(r), F(R))
W(gνl(r), F(r))

r=r0



A quick survey of atomic structure: not-hydrogen
Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single 
valence electron.

At a given energy: we have found the phase shift characterizing the “non-Coulomb” parts of our atom. 

In fact, this phase shift barely changes as a function of energy: all Rydberg states can be characterized by this 
one number!


Next step: we just have to prevent an explosion in uνl(r) ∼ fνl(r) − tan δνlgνl(r), r ≥ r0 .
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In fact, this phase shift barely changes as a function of energy: all Rydberg states can be characterized by this 
one number!


Next step: we just have to prevent an explosion in

fν,l(r) → Ar−νer/ν sin π(ν − l) − Brνe−r/ν cos π(ν − l) (R6)r → ∞ :

gν,l(r) → − Ar−νer/ν cos π(ν − l) − Brνe−r/ν sin π(ν − l) (R7)

uν,l(r) → Ar−νer/ν sin π(ν − l)cos δνl + Ar−νer/ν cos π(ν − l)sin δνl + decaying terms

uνl(r) ∼ fνl(r) − tan δνlgνl(r), r ≥ r0 .
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At a given energy: we have found the phase shift characterizing the “non-Coulomb” parts of our atom. 

In fact, this phase shift barely changes as a function of energy: all Rydberg states can be characterized by this 
one number!


Next step: we just have to prevent an explosion in

fν,l(r) → Ar−νer/ν sin π(ν − l) − Brνe−r/ν cos π(ν − l) (R6)r → ∞ :

gν,l(r) → − Ar−νer/ν cos π(ν − l) − Brνe−r/ν sin π(ν − l) (R7)
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uν,l(r) → Ar−νer/ν sin[π(ν − l) + δνl]

⟹ ν − l +
δνl

π
= nr + 1



A quick survey of atomic structure: not-hydrogen
Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single 
valence electron.

And finally: 


Where the quantum defect is (nearly) independent of energy! 


We can insert this quantum defect into any of our previously-derived scaling laws!

Enl =
−1

2(n − μl(E))2
, μl = δl /π .



Energy spectrum of hydrogen and an alkali atom.

(−2E)−1/2

n = 1

n = 2

n = 3

n = 4

n = 5

l = 0 1 2 3 4 5

A quick survey of atomic structure: hydrogen

l → ∞
n → ∞



Quantum simulator exhibit C:
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