Quantum simulation from first principles

Matt Eiles - MPI-PKS - IMPRS Summer School 2022 - Harnack Haus - August 28-31

What this is:

® The first of two lectures on quantum simulation from first principles - in other
words, from a few-body perspective.

® An introduction to / overview of analog quantum simulation with a very
brief introduction to the experimental platforms highlighted this week.

® A discussion of several of the “first principles” concepts needed to
understand them.

® Atime to ask plenty of questions (perhaps to be answered tomorrow)

® ... and discuss!

MAX PLANCK INSTITUTE
FOR THE PHYSICS OF COMPLEX SYSTEMS




Quantum simulation from first principles

Matt Eiles - MPI-PKS - IMPRS Summer School 2022 - Harnack Haus - August 28-31
What this is:

® The first of two lectures on quantum simulation from first principles - in other
words, from a few-body perspective.

® An introduction to / overview of analog quantum simulation with a very
brief introduction to the experimental platforms highlighted this week.

® A discussion of several of the “first principles” concepts needed to
understand them.

® Atime to ask plenty of questions (perhaps to be answered tomorrow)
® ... and discuss!

Rough outline:

® \What is analog quantum simulation, and how can we build the
simulators?
® How to design a quantum Rydberg atom simulator.
® \What is the structure of an atom? Of a Rydberg atom?
® How do atoms interact?
® | ong-range electrostatic interactions. (break!)
® Review!
® Scattering theory: phase shifts, zero energy scattering length, time

delay, and the Fermi/ Huang-Yang pseudopotential.
® Put it all together + more.
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o« What is quantum simulation?

¢ Obligatory Feynman quote (1981): "Nature isn't classical, dammit, and if you want to make a simulation of nature,
you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn’t look so easy.”
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¢ Obligatory Feynman quote (1981): "Nature isn't classical, dammit, and if you want to make a simulation of nature,
you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn’t look so easy.”

¢ The obligatory basic idea (2014, quoting many earlier papers): “As an example the standard “threshold” N = 40
[spin-1/2] frequently cited in the literature... This implies storing 2240 ~ 10712 numbers....Assuming single precision,
about ~3.2 x 10713 bits, that is 4 TB (terabytes) are required to represent the spin state of 40 particles in a computer
memory. In order to put this in perspective, the U.S. Library of Congress has almost 160 TB of data. Double the number
of spins, and ~3.8 x10725 bits (or 5 x 10712 TB) would be required. This is roughly 1074 times more than the amount
of information stored by humankind in 2007.
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elements required to simulate a large physical system is only to be proportional to the space-time volume of the
physical system. | don’t want to have an explosion.”
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ook What is quantum simulation?

¢ Obligatory Feynman quote (1981): "Nature isn't classical, dammit, and if you want to make a simulation of nature,
you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn’t look so easy.”

¢ The obligatory basic idea (2014, quoting many earlier papers): “As an example the standard “threshold” N = 40
[spin-1/2] frequently cited in the literature... This implies storing 2240 ~ 10712 numbers....Assuming single precision,
about ~3.2 x 10713 bits, that is 4 TB (terabytes) are required to represent the spin state of 40 particles in a computer
memory. In order to put this in perspective, the U.S. Library of Congress has almost 160 TB of data. Double the number
of spins, and ~3.8 x10725 bits (or 5 x 10712 TB) would be required. This is roughly 1074 times more than the amount
of information stored by humankind in 2007.

¢ Second obligatory quote (1982): “The rule of simulation that | would like to have is that the number of computer
elements required to simulate a large physical system is only to be proportional to the space-time volume of the
physical system. | don’t want to have an explosion.”

® The basic solution (1982): “Let the computer itself be built of guantum mechanical elements which obey quantum
mechanical laws.”

Key idea: find an experimental system governed by the same Hamiltonian as a
model we want to study, and then probe that experimental system instead of doing
the (difficult or even "impossible”) calculations.
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¢ Obligatory Feynman quote (1981): "Nature isn't classical, dammit, and if you want to make a simulation of nature,
you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn’t look so easy.”

¢ The obligatory basic idea (2014, quoting many earlier papers): “As an example the standard “threshold” N = 40
[spin-1/2] frequently cited in the literature... This implies storing 2240 ~ 10712 numbers....Assuming single precision,
about ~3.2 x 10713 bits, that is 4 TB (terabytes) are required to represent the spin state of 40 particles in a computer
memory. In order to put this in perspective, the U.S. Library of Congress has almost 160 TB of data. Double the number
of spins, and ~3.8 x10725 bits (or 5 x 10712 TB) would be required. This is roughly 1074 times more than the amount
of information stored by humankind in 2007.

¢ Second obligatory quote (1982): “The rule of simulation that | would like to have is that the number of computer
elements required to simulate a large physical system is only to be proportional to the space-time volume of the
physical system. | don’t want to have an explosion.”

® The basic solution (1982): “Let the computer itself be built of guantum mechanical elements which obey quantum
mechanical laws.”

® Some good resources:
¢ Quantum Simulation Georgescu, Ashhab, and Nori Rev. Mod. Phys. 86 (2014)
¢ What is a quantum simulator? Johnson, Clark, and Jaksch EPJ Quantum Tech. 1 (2014)

e Can one trust quantum simulators? Hauke, Cucchietti, Tagliacozzo, Deutsch, and Lewenstein Rep. Prog. Phys. 75
(2012).
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What is quantum simulation?

Can one trust quantum simulators? Hauke, Cucchietti, Tagliacozzo, Deutsch, and Lewenstein Rep. Prog. Phys. 75 (2012).

A QS is an experimental system that mimics a simple model, or a family of simple models of
condensed matter (or high-energy physics, quantum chemistry, etc). A QS should fulfill the following
four requirements:
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Can one trust quantum simulators? Hauke, Cucchietti, Tagliacozzo, Deutsch, and Lewenstein Rep. Prog. Phys. 75 (2012).

A QS is an experimental system that mimics a simple model, or a family of simple models of
condensed matter (or high-energy physics, quantum chemistry, etc). A QS should fulfill the following

four requirements:

(a) Relevance: the simulated

models should be of some relevance tor applications and/or our

understanding of challenges in the areas of physics mentioned above.
(b) Controllability: a QS should allow for broad control of the parameters of the simulated model,
and for control of preparation, initialization, manipulation, evolution and detection of the relevant

observables of the system.

(c) Reliability: within some prescribed error, one should be ensured that the observed physics of

the QS corresponds faithful

(d) Efficiency: the QS shoulc
classical computer.

y to that of the ideal model whose properties we seek to understand.
solve problems more efficiently than is practically possible on a
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Can one trust quantum simulators? Hauke, Cucchietti, Tagliacozzo, Deutsch, and Lewenstein Rep. Prog. Phys. 75 (2012).

A QS is an experimental system that mimics a simple model, or a family of simple models of

condensed matter (or high-energy physics, quantum chemistry, etc). A QS should fulfill the following
four requirements:

(a) Relevance: the simulated models should be of some relevance for applications and/or our
understanding of challenges in the areas of physics mentioned above.

(b) Controllability: a QS should allow for broad control of the parameters of the simulated model,
and for control of preparation, initialization, manipulation, evolution and detection of the relevant
observables of the system.

(c) Reliability: within some prescribed error, one should be ensured that the observed physics of
the QS corresponds faithfully to that of the ideal model whose properties we seek to understand.

(d) Efficiency: the QS should solve problems more efficiently than is practically possible on a
classical computer.

We should demand that the mimicked models are not purely of academic interest
but that they rather describe some interesting physical systems and solve open
problems. This also means that the simulated models should be computationally
very hard for classical computers (see also requirement (d))
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A QS is an experimental system that mimics a simple model, or a family of simple models of
condensed matter (or high-energy physics, quantum chemistry, etc). A QS should fulfill the following

four requirements:

(a) Relevance: the simulated

models should be of some relevance tor applications and/or our

understanding of challenges in the areas of physics mentioned above.
(b) Controllability: a QS should allow for broad control of the parameters of the simulated model,
and for control of preparation, initialization, manipulation, evolution and detection of the relevant

observables of the system.

(c) Reliability: within some prescribed error, one should be ensured that the observed physics of

the QS corresponds faithful

(d) Efficiency: the QS shoulc
classical computer.

't is in particular desirable to be able to

model becomes tractable by classical si
elementary instance of validating the QS.

y to that of the ideal model whose properties we seek to understand.
solve problems more efficiently than is practically possible on a

set the parameters in a regime where the
mulations, because this provides an
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‘computationally very hard for classical computers’ may have several meanings: (i) an efficient classical
algorithm to simulate the model might not exist / be known; (ii) the efficient scalable algorithm is known, but
the required size is too large to be simulated. ALSO: it is desirable to realize QSs to simulate and to observe
novel phenomena that so far are only theoretically predicted. Simulating and actually observing in the lab is
more than just simulating abstractly on a classical computer.

What is quantum simulation?

Can one trust quantum simulators? Hauke, Cucchietti, Tagliacozzo, Deutsch, and Lewenstein Rep. Prog. Phys. 75 (2012).

A QS is an experimental system that mimics a simple model, or a family of simple models of
condensed matter (or high-energy physics, quantum chemistry, etc). A QS should fulfill the following
four requirements:

(a) Relevance: the simulated models should be of some relevance for applications and/or our
understanding of challenges in the areas of physics mentioned above.

(b) Controllability: a QS should allow for broad control of the parameters of the simulated model,
and for control of preparation, initialization, manipulation, evolution and detection of the relevant
observables of the system.

(c) Reliability: within some prescribed error, one should be ensured that the observed physics of
the QS corresponds faithfully to that of the ideal model whose properties we seek to understand.

(d) Efficiency: the QS should solve problems more efficiently than is practically possible on a
classical computer.
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ook What is quantum simulation?

Can one trust quantum simulators? Hauke, Cucchietti, Tagliacozzo, Deutsch, and Lewenstein Rep. Prog. Phys. 75 (2012).

A QS is an experimental system that mimics a simple model, or a family of simple models of

condensed matter (or high-energy physics, quantum chemistry, etc). A QS should fulfill the following
four requirements:

(a) Relevance: the simulated models should be of some relevance for applications and/or our
understanding of challenges in the areas of physics mentioned above.

(b) Controllability: a QS should allow for broad control of the parameters of the simulated model,
and for control of preparation, initialization, manipulation, evolution and detection of the relevant
observables of the system.

(c) Reliability: within some prescribed error, one should be ensured that the observed physics of
the QS corresponds faithfully to that of the ideal model whose properties we seek to understand.

(d) Efficiency: the QS should solve problems more efficiently than is practically possible on a
classical computer.
The requirements of reliability and efficiency are interrelated. In fact, we could try to improve the precision of a

QS by averaging more experiments, but in hypersensitive regimes (like those close to quantum-phase

transitions) the necessary number of repetitions can grow rapidly, bringing the overall efficiency of the QS
down to the level of classical computers.

We conclude that the answer to the question ‘Can we trust quantum simulators?’ is ...to some extent.
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. ook Questions??

We just learned what QSs are and what they should do...
...next we will see some examples!
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ks Quantum simulator exhibit A:

euantumsimutation  Roushan et al Science 358 (2017)

Spectroscopic signatures of
localization with interacting photons

in superconducting qubits

P. Roushan,'*t C. Neill,>+ J. Tangpanitanon,®t V. M. Bastidas,’} A. Megrant," R. Barends,’
Y. Chen,! Z. Chen,? B. Chiaro,> A. Dunsworth,? A. Fowler,! B. Foxen,> M. Giustina,’

E. Jeffrey,' J. Kelly,' E. Lucero,' J. Mutus,! M. Neeley,! C. Quintana,? D. Sank,’

A. Vainsencher,! J. Wenner,> T. White,! H. Neven,' D. G. Angelakis,>** J. Martinis"?

A
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.oeks Quantum simulator exhibit A:

o
o
e euantumsimuation  Roushan et al Science 358 (2017) A quantum simulator of a 9-
Spectroscopic signatures of site Bose-Hubbard model:
localization with interacting photons
in superconducting qubits - U
Hpy = E W,a, @y + — E a a,(a a, —1)

P. Roushan,'*t C. Neill,>+ J. Tangpanitanon,®t V. M. Bastidas,’} A. Megrant," R. Barends,’ y)
Y. Chen,! Z. Chen,? B. Chiaro,? A. Dunsworth, A. Fowler,! B. Foxen,”Z M. Giustina,! n=1 n=1

E. Jeffrey,' J. Kelly,' E. Lucero,' J. Mutus,! M. Neeley,! C. Quintana,? D. Sank,’
A. Vainsencher,! J. Wenner,> T. White,! H. Neven,' D. G. Angelakis,>** J. Martinis"?

8
+J E a  an+ a i (2)
n=1

“Each of our qubits can be thought of as a
nonlinear photonic resonator in the microwave
regime...the qubit frequency, nearest-neighbor
coupling, and nonlinearity set the on-site potential,
the hopping rate, and the interaction, respectively”

\NQ 0 0 O O O 0,

1cm
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.oeks Quantum simulator exhibit A:

o
. First “simulation” tests relevance, A quantum simulator of a 9-
controllability, and reliability. site Bose-Hubbard model:
9 9 9
+ H _ T U T T 1
HHarper = A E oos(2nnb)anan BH — 1 Hn @y Qn 9 1 anan(anan o )
n=1 n—= n—=

8
8
+J E a)  1an + aany (2)
‘i i n+1 n
+J E @, 10 + Q,Qn 1 —
n=1

Relevance: "we simulate the problem of Bloch electrons on a 2D lattice subject to a

perpendicularly applied magnetic field B. For typical crystals, the magnetic field required
to"squeeze”one flux quantum through the unit cell is of the order of several tens of thousands

of tesla, too high to be experimentally feasible.
Reliability: “Recently ,some features associated with the Hofstadter's butterfly were

experimentally realized by using superlattices in graphene and cold-atom systems.”

Controllability: s claimed; will be proven if it works!
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ks Quantum simulator exhibit A:

0 0.2

Experiment

(zHW) |A108y)-E1EP| O

(&)

0.4 0.6 0.8 | 0 0.2 0.4 0.6 0.8 1

b (fnagnetic field) b (magnetic field)

117

elements of the K

error. This capabi

through careful modeling of the qubits as nonlinear resonators.”

'he average deviation is 3.5 MHz. This implies that we can set the matrix

amiltonian, which in this case includes 17 terms, with <2%
ity of controlling a large quantum system is achieved
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Fig. 3. Level statistics in a disordered potential. In Eqg. 2, we set for various values of disorder A/J is presented as a color plot. (C) The
hopping to J/2n = 50 MHz, which fixes U/J = 3.5. To obtain a disordered measured histogram P(r) of {r,} for A/J =1 and 5. The dashed lines are
potential, we set p, = Acos(2nnb) with four different irrational values of plots of Ppyisson @nd Pgoe according to Eq. 4, and the solid lines are
be[0,1] chosen and the results averaged over b. (A) The schematic of numerical simulations (21). The change from the GOE toward the Poisson

energy levels shows how r, is defined. (B) The histogram of P(r) measured distribution is indicative of vanishing of level repulsion with increase in A.

9 9
U
Hpy = E W, Q. an + 5 E a a,(a a, —1)
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potential, we set p, = Acos(2nnb) with four different irrational values of plots of Ppyisson @and Pgoe according to Eq. 4, and the solid lines are
be[0,1] chosen and the results averaged over b. (A) The schematic of numerical simulations (21). The change from the GOE toward the Poisson
energy levels shows how r, is defined. (B) The histogram of P(r) measured distribution is indicative of vanishing of level repulsion with increase in A.
9 9
Hpy = E W, @, +g E a' an(a’a, — 1) Relevance: ror larger numbers of qubits this will be relevant!
n=1 n=1

Reliability: -

Efficiency: ~two days of measurements for this plot of a system with 45 states.
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ks Quantum simulator exhibit B:

nature Vol 463|7 January 2010|doi:10.1038/nature08688

| ETTERS

Quantum simulation of the Dirac equation

R. Gerritsma'?, G. Kirchmair"?, F. Zahringer"?, E. Solano*, R. Blatt"* & C. F. Roos"?

The Dirac equation for a spin-1/2 particle with rest mass m is given
by’
oy

ih Frie (cop + Bmc* )y

Here c is the speed of light, p is the momentum operator, «; (j = 1,
2,3; (a); = oj) and f§ are the Dirac matrices (which are usually given
in terms of the Pauli matrices, gy, g, and ¢,), the wavefunctions i are
four-component spinors and # is Planck’s constant divided by 2x. A
general Dirac spinor can be decomposed into parts with positive and

negative energies E= *,/p?>c?+ m?c*. Zitterbewegung is under-

“One of the most astonishing predictions of the single free-
particle solutions of the Diracequation is the fast quivering
motion called Zitterbewegung. It is unexpected because it
predictsan oscillatory motion of a freely propagating electron.
The Zitterbewegung phenomenon has not been observed so
far for a real relativisticelectron, given that the predicted
frequency, 10A21 Hz, and amplitude, 107-11 cm, are difficult
to access experimentally.”
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ks Quantum simulator exhibit B:

Vol 463|7 January 2010|doi:10.1038/nature08688

Quantum simulation of the Dirac equation

R. Gerritsma'?, G. Kirchmair?, F. Zéhringerl’z, E. Solano®*, R. Blatt'* & C.

For the simulation, we trapped a single “°Ca™ ion in a linear Paul
trap®* with axial trapping frequency w,, = 21 X 1.36 MHz and radial
trapping frequency w.,q =21 X 3 MHz. Doppler cooling, optical
pumping and resolved sideband cooling on the S, ,, <> Ds,, transition
in a magnetic field of 4 G prepare the ion in the axial motional ground
state and in the internal state |S;,,, m; = 1/2) (m;, magnetic quantum
number). A narrow-linewidth laser at 729 nm couples the states
(%) =812 my=1/2) and (}) = |Ds, my = 3/2), which we identify
as our spinor states. A bichromatic light field resonant with the upper
and lower axial motional sidebands of the (3) <> (%) transition with
appropriately set phases and frequency realizes the Hamiltonian’

Hp =2n4Q0,p+#hQa, (1)

Here A4 = \/#1/2m,y is the size of the ground-state wavefunction,
with m the ion’s mass (not to be confused with the mass, m, of the

4%

ot — HD‘:” — (Ci)o-x + mCzaz)lp

F. Roos'?
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Figure 1| Expectation values, (x(t)), for particles with different masses.
The linear curve (squares) represents a massless particle (€2 = 0) moving at
the speed of light, which is given by c = 2yQA = 0.0524 ps ™~ ' for all curves.
From the top, the other curves represent particles of increasing masses. Their
Compton wavelengths are given by Ac = 2nQA/Q2 = 5.44 (down triangles),
2.54 (diamonds), 1.24 (circles) and 0.64 (up triangles), respectively. The
solid curves represent numerical simulations. The figure shows
Zitterbewegung for the crossover from the relativistic limit, 272> €, to the
non-relativistic limit, 2nQ< Q. Inset, fitted Zitterbewegung amplitude, Rz
(squares), and frequency, wzg (circles), versus the parameter /12 (which is
proportional to the mass). Error bars, 1o.
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ook What are quantum simulators?

o
o
®
s Lots of platforms have been proposed / exist to do analog (and sometimes digital as well) guantum simulation.
The four you will hear about this week are...
Trapped ions Superconducting qubits Neutral atoms
Joshi Manoj, Wednesday Andreas Wallraff, Tuesday Optical lattices / Rydberg atoms

quantum gases

Waseem Bakr, Tuesday Shannon Whitlock, Today

y. Pt e Q= O — O ——+—+—

-\
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o
: e Georgescu, Ashhab, and Nori “Quantum Simulation”: RMP 86 (2014)

TABLE II. Potential applications of quantum simulators and the physical systems in which they could be implemented, along with relevant

references. We note that this 1s not an exhaustive list.

Application

Proposed implementation

Condensed-matter physics:
Hubbard models

Spin models

Quantum phase transitions

Atoms (Jaksch et al., 1998; Greiner et al., 2002)"

Ions (Deng, Porras, and Cirac, 2008)

Polar molecules (Ortner et al., 2009)

Quantum dots (Byrnes et al., 2008)

Cavities (Greentree et al., 2006; Hartmann, Brandao, and Plenio, 2006;
Angelakis, Santos, and Bose, 2007)

Atoms (Jané et al., 2003; Garcia-Ripoll, Martin-Delgado, and
Cirac, 2004, Simon et al., 2011; Struck et al., 2011)

Ions (Jané et al., 2003; Porras and Cirac, 2004b; Deng, Porras, and Cirac, 2005;
Bermudez, Porras, and Martin-Delgado, 2009; Edwards et al., 2010; Lanyon
et al., 2011"; Kim et al., 2011; Britton et al., 2012)"

Cavities (Cho, Angelakis, and Bose, 2008a; Chen et al., 2010)

Nuclear spins on diamond surface (Cai et al., 2013)

Superconducting circuits (Tsokomos, Ashhab, and Nori, 2010)

Electrons on helium (Mostame and Schiitzhold, 2008)

Atoms (Greiner et al., 2002)

Polar molecules (Capogrosso-Sansone et al., 2010; Pollet et al., 2010)

Ions (Retzker et al., 2008; Friedenauer et al., 2008)";

Ivanov et al., 2009; Giorgi, Paganelli, and Galve, 2010

NMR (Peng, Du, and Suter, 2005; Roumpos, Master,
and Yamamoto, 2007; Zhang et al., 2008)

Superconducting circuits (van Oudenaarden and Mooij, 1996)

continued...
Spin glasses

Disordered systems

Frustrated systems
High-T', superconductivity

BCS pairing

BCS-BEC crossover
Metamaterials
Time-symmetry breaking
Topological order
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ook For what do we need quantum simulators?

DQS (Lidar and Biham, 1997)
Superconducting circuits (Tsomokos, Ashhab, and Nori, 2008)
Atoms (Schulte et al., 2005; Fallan1 et al., 20077
Billy et al., 2008; Roati et al., 2008)
Ions (Bermudez, Martin-Delgado, and Porras, 2010)
Superconducting circuits (Garcia-Ripoll, Solano,
and Martin-Delgado, 2008)
NMR (Alvarez and Suter, 2010; Banerjee et al., 2013)’
Ions (Porras and Cirac, 2006b; Kim et al., 2010)
Photons (Ma et al., 2011)
DQS (Yamaguchi and Yamamoto, 2002)
Quantum dots (Manousakis, 2002)
NMR (Yang et al., 2006)
Atoms (Regal, Greiner, and Jin, 2004; Zwierlein et al., 2005)
Superconducting circuits (Rakhmanov et al., 2008)
Superconducting circuits (Koch et al., 2010)
Atoms (Aguado et al., 2008)
Polar molecules (Micheli, Brennen, and Zoller, 2006)
Linear optics (Lu et al., 2009)
Superconducting circuits (You et al., 2010)
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ook For what do we need quantum simulators?

o
: e Georgescu, Ashhab, and Nori “Quantum Simulation”: RMP 86 (2014)

TABLE III. Continuation of Table II, but focused on applications other than condensed-matter physics. As in Table II, this is not an

exhaustive list.

Application

Proposed implementation Chemistry:

High-energy physics:
Lattice gauge theories

Dirac particles

Nucleons
Cosmology:

Unruh effect

Hawking radiation

Universe expansion

Atomic physics:
Cavity QED
Cooling
Open systems:

DQS (Byrnes and Yamamoto, 2006)
Atoms (Biichler et al., 2005)

Ions (Lamata et al., 2007; Casanova et al., 2010, 2011;
Gerritsma et al., 2010°; Rusin and Zawadzki, 2010)
Atoms (Goldman et al., 2009; Hou, Yang, and Liu, 2009;
Cirac, Maraner, and Pachos, 2010)
Photons (Semiao and Paternostro, 2012)

Quantum chaos:

: : , Interferometry:
Ions (Alsing, Dowling, and Milburn, 2005)

Atoms (Giovanazzi, 2005)
Ions (Horstmann et al., 2010)

Superconducting circuits (Nation et al., 2009)
BEC (Fischer and Schiitzhold, 2004)

Ions (Schiitzhold and Mostame, 2005; Other applications:

Menicucci, Olson, and Milburn, 2010)

Superconducting circuits (You and Nori, 2003; Wallraff et al., 2004)
Superconducting circuits (Grajcar et al., 2008)"; You and Nori, 2011)

NMR (Tseng et al., 2000)
Ions (Piilo and Maniscalco, 2006; Barreiro et al., 2011)"
Superconducting circuits (L1 ef al., 2013)

continued...

Thermal rate calculations
Molecular energies

Chemical reactions

Schrédinger equation
Quantum thermodynamics

MAX PLANCK INSTITUTE
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DQS (Lidar and Wang, 1999)

DQS (Aspuru-Guzik et al., 2005)
Linear optics (Lanyon et al., 2010)
NMR (Du et al., 2010)

DQS (Kassal et al., 2008)

Quantum dots (Smirnov et al., 2007)

NMR (Weinstein et al., 2002)
Linear optics (Howell and Yeaze, 1999)

Ions (Leibfried et al., 2002"; Hu, Feng, and Lee, 2012;
Lau and James, 2012)
Photons (Aaronson and Arkhipov, 2011; Broome et al., 20137
Crespi et al., 2013; Spring et al., 2013; Tillmann et al., 2013)
Superconducting circuits (Zhou, Dong et al., 2008; Liao et al., 2010)

DQS (Boghosian and Taylor, 1998a)
Superconducting circuits (Quan et al., 2006, 2007)




For what do we need theorists?

A QS is an experimental system that mimics a simple model, or a family of simple models.

(a) Relevance: the simulated models should be of some relevance for applications and/or our
understanding of challenges in the areas of physics mentioned above.
(b) Controllability: a QS should allow for broad control of the parameters of the simulated model,

and for contro
observables of

of preparation, initialization, manipulation, evolution and detection of the relevant

-the system.

(c) Reliability: within some prescribed error, one should be ensured that the observed physics of
the QS corresponds faithfully to that of the ideal model whose properties we seek to understand.
(d) Efficiency: the QS should solve problems more efficiently than is practically possible on a

classical comp

uter.
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«s For what do we need theorists?

A QS is an experimental system that mimics a simple model, or a family of simple models.

(a) Relevance: the simulated models should be of some relevance for applications and/or our
understanding of challenges in the areas of physics mentioned above.

(b) Controllability: a QS should allow for broad control of the parameters of the simulated model,
and for control of preparation, initialization, manipulation, evolution and detection of the relevant

observables of the system.
(c) Reliability: within some prescribed error, one should be ensured that the observed physics of
the QS corresponds faithfully to that of the ideal model whose properties we seek to understand.
(d) Efficiency: the QS should solve problems more efficiently than is practically possible on a
classical computer.

“Finding the mapping in an AQS might, at first glance, look simpler than obtaining the
most efficient gate decomposition for a given Hamiltonian in DQS. Sometimes the
mapping is indeed straightforward, but this is not always the case, and quite often
clever mappings have to be devised, sometimes involving additional externally

applied fields or ancillary systems to mediate various interactions.”
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. ook Questions??

We just learned some more about what QSs are and what they do...
...now we will build one!
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.ooes Building a quantum simulator of a Rydberg atom

...and a ground state atom...

Using a Rydberg atom...

...We want to simulate the Hamiltonian of an
electron moving in a Coulomb potential!

Why? (what is the relevance??

® |arge, even infinite, Hilbert space -> "tough to simulate classically”.
® Test predictions in regimes inaccessible in typical Rydberg atoms (as long as we have
controllability)
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.ooes Building a quantum simulator of a Rydberg atom

...and a ground state atom...

Using a Rydberg atom...

...We want to simulate the Hamiltonian of an
electron moving in a Coulomb potential!

V: Z
H= — —

Why? (what is the relevance??)

® |arge, even infinite, Hilbert space -> "tough to simulate classically”.

® Test predictions in regimes inaccessible in typical Rydberg atoms (as long as we have
controllability)

¢ Because doing so will introduce many of the atomic physics topics we want for a
“first principles” lecture (and maybe in a less boring way!) and will help us think
critically about quantum simulation!
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ook A quick survey of atomic structure

®

* Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single

’ valence electron. To understand their spectra and wave functions, we (of course) begin with the best atom with a single
valence electron: hydrogen.

Schrédinger equation: O={ - ————F W(?) . (Rl) ...in atomic units where 1 = ¢ = m, = 1
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ook A quick survey of atomic structure

o
®
* Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single
’ valence electron. To understand their spectra and wave functions, we (of course) begin with the best atom with a single
valence electron: hydrogen.
2
Schrédinger equation: ) = E—— ) W(r) . (Rl) ...in atomic units where /i = ¢ = m, = 1

u,,(r)

r

Eq. R1 separates in spherical —

- w(r) =
coordinates (among many
other coordinate systems)

Y, () (R2)
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ook A quick survey of atomic structure

o
®
* Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single
’ valence electron. To understand their spectra and wave functions, we (of course) begin with the best atom with a single
valence electron: hydrogen.
2
Schrédinger equation: ) = E—— ) l//(”) . (Rl) ...in atomic units where /i = ¢ = m, = 1

Eqg. R1 separates in spherical >y uvl(r) A
coordinates (among many l//(l’) o Ylm(r) (Rz)

other coordinate systems) r
Simplifying Eq. R1 with Eq. R2 0= — lu”(r) n l(l T 1) o l | I 1 (7‘) (R3)
yields the radial Schrodinger o 9 vl ) 72 a 21/2 vl '

equation
parametrize the energy (we are
looking for negative energy bound
states, so nu is positive) =

centrifugal barrier
at nonzero angular
momentum
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«oonks A quick survey of atomic structure: hydrogen

o

®

* Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single

’ valence electron. To understand their spectra and wave functions, we (of course) begin with the best atom with a single

valence electron: hydrogen.

This is a second-order (f and g are given by
differential equation, so it has ul/l(r ) ~ fvl(r ) — lan éylgl/l(r ) ‘ (R4) hypergeometric functions...
two linearly independent lots of fun!)

solutions, and u must be a
linear combination of these.
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«oonks A quick survey of atomic structure: hydrogen

o

®

* Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single

’ valence electron. To understand their spectra and wave functions, we (of course) begin with the best atom with a single

valence electron: hydrogen.

This is a second-order (f and g are given by
differential equation, so it has uvl(r ) ~ fvl(r ) — lan 51/lg1/l(r ) ' (R4) hypergeometric functions...
two linearly independent lots of fun!)

solutions, and u must be a
linear combination of these.

The S.E. is solved by this linear combination once we apply boundary conditions!
To apply boundary conditions, we need the asymptotic behavior of f and g:

r—0: fou(r) ol g, (r) < r™0 (RS)
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«oonks A quick survey of atomic structure: hydrogen

®
* Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single
’ valence electron. To understand their spectra and wave functions, we (of course) begin with the best atom with a single
valence electron: hydrogen.
This is a second-order (f and g are given by
differential equation, so it has uyl(r ) ~ fvl(r ) — lan 51/lg1/l(r ) ' (R4) hypergeometric functions...
two linearly independent lots of fun!)

solutions, and u must be a
linear combination of these.

The S.E. is solved by this linear combination once we apply boundary conditions!
To apply boundary conditions, we need the asymptotic behavior of f and g:

r—0: fou(r) ol g, (r) < r™0 (RS)

r—oo: f (r)>Are"sina(v—1)— Br'e " cosa(v — ) (R6)

(A and B are constants)
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«oonks A quick survey of atomic structure: hydrogen

®

* Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single

’ valence electron. To understand their spectra and wave functions, we (of course) begin with the best atom with a single
valence electron: hydrogen.

u,r)~f,(r)—tano, g (r). (R4)

Feynman said, “l don’t want to

have an explosion”, and the 5,/1 — O, v— 1= n. + 1, En — — 5 (R8)

wave function agrees! 2n

r—0: fou(r) ol g, (r) < r™0 (RS)

r— 00 : f,./(r) — Ar~ve™sinn(v — ) — Brre " cos (v — [) (R6)

(A and B are constants)
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(_ 2E)—1/2

® /1 -5 OO

«oonks A quick survey of atomic structure: hydrogen

For hydrogen: an infinite series of highly degenerate bound states

/‘/':",-',/.:/""'l/' ALY CAF AL AT

3 4 5 ' A '-’/' LA LA "...-}-« //'.‘
YV ‘i e { ; s/ “Yyrik 4\ ‘ :"’? \Z;’i
17‘ "/,‘ :f_; ]
G ’.‘/ ’
[ > 00 N /
IS ® © O -"j;_—"s__‘—,—%';f
5 L;/Zl.*LI ) (/”L?’Lc "
I e 5
1888: Johannes Rydberg synthesizes
empirical results to obtain this formula!
E— — 4
n=>3

Each integer n supports n*2 degenerate levels with energy
n"2 and angular momentum values | = 0,...,n-1

(constant B blows up when n =1, so we could not have a
normalizable wave function...)
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oorks A quick survey of atomic structure: excited states of H

®
. Because Rydberg’s formula predicts an infinite series of excited bound states in hydrogen, we call
' atoms — of any species — which have been excited to high principal quantum numbers (n>10 or

so) Rydberg atoms.

Such atoms are fascinating because their properties are extreme!

I S ,
E=T+V = = — 1y =2n
2n? g r
n=50: 125 nm
-+ 00 @ . oo

Hydrogen atom: 1/20 nm n = 9 Hydrogen atom: 4 nm

MAX PLANCK INSTITUTE
FOR THE PHYSICS OF COMPLEX SYSTEMS




oorks A quick survey of atomic structure: excited states of H

®
. Because Rydberg’s formula predicts an infinite series of excited bound states in hydrogen, we call
' atoms — of any species — which have been excited to high principal quantum numbers (n>10 or

so) Rydberg atoms.

Such atoms are fascinating because their properties are extreme!

1 o1
E=T+V = e

n=50: 125 nm
-« o O @ ‘. ¢oo

Hydrogen atom: 1/20 nm n = 9 Hydrogen atom: 4 nm

Rydberg atoms are friendly: their properties obey robust scaling laws.

(n|r*|n)y ~n** a> 0. (R9)
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s A quick survey of atomic structure: excited states of H

For further scaling laws, we need normalized wave functions.
Easiest to do with WKB:

N sin f: k(r)dr

\/ k(1)

u(r) ~
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s A quick survey of atomic structure: excited states of H

-
O
. For further scaling laws, we need normalized wave functions.
. Easiest to do with WKB: _ :
Y , |
Nsin [* k(r)dr (e |8 J, kGdr
F< — 1 — N - _ dl”
u(r) ~ e

F<

\/ k()
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s A quick survey of atomic structure: excited states of H

o
O
. For further scaling laws, we need normalized wave functions.
. Easiest to do with WKB: _ .
Nsin " k(r)dr (> |sin],_k(dr
u(r) ~ = — IZNJ - . ——dr
\/ k(l”) F< (l")
) [~ 1
— 2=N dr

7. 12 I(I+ 1)
22 2
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s A quick survey of atomic structure: excited states of H

O
. For further scaling laws, we need normalized wave functions.
. Easiest to do with WKB: _ .
Nsin " k(r)dr (> |sin],_k(dr
u(r) ~ = — IZNJ - . ——dr
\/ k(l”) F< (l")
) [~ 1
— 2=N dr

. 1,2 ld+D
22 2

So the normalization constant is N =4/ —.
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oorks A quick survey of atomic structure: excited states of H

®
. Because Rydberg’s formula predicts an infinite series of excited bound states in hydrogen, we call
' atoms — of any species — which have been excited to high principal quantum numbers (n>10 or

so) Rydberg atoms.

Such atoms are fascinating because their properties are extreme!

1 o1
E=T+V = e

n=50: 125 nm
-« o O @ ‘. ¢oo

Hydrogen atom: 1/20 nm n = 9 Hydrogen atom: 4 nm

Rydberg atoms are friendly: their properties obey robust scaling laws.

(n|r*|n) ~n** a>0. (R9) (n|r'|n) ~n7, a>0. (R10)

Anything which depends on small r values will scales as 7~

due to the normalization constant...
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. opks  INterlude: How do two atoms interact at a distance?

-V 1 =-V5 1 1 1 1 1
H = +
2 " 2 ) R ‘R—?l‘l‘?z‘ ‘—R+?1‘ ‘R"‘?z‘

R

Since the atoms are far apart: R will be much larger than the typical distances of either electrons.
A great opportunity to do a Taylor expansion!
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. opks  INterlude: How do two atoms interact at a distance?

o
O
. Since the atoms are far apart: R will be much larger than the typical distances of either electrons.
A great opportunity to do a Taylor expansion!
T ! — - N — N — N — 2 — —
2 2 n R |R-#4+7| |-R+7| |R+%h [Pl = =2F - T+ 1y
1 B 1 e Fioo2 1rd  3(F,-2)?
K —F+7] i m R\ R 2R R
Ry/ 1 |
R R2
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.cooeis Interlude: How do two atoms interact at a distance?

O
. Since the atoms are far apart: R will be much larger than the typical distances of either electrons.
A great opportunity to do a Taylor expansion!
2 2 rnn R |R-#+%| |-R+7%| |R+75] Pl == 2F - P43
1 B 1 e Fioo2 1rd  3(F,-2)?
R-r47 e o R\TTR 2R
Ry/ 1 T : :
1 ?1‘2 7‘2°2 —I’1+271-72—I”2 3 N N N —
= — | 1- | | r-22—2r-2r-2+r-22

= s - 5 (- 92 =2, - (F - D) + (7 )
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. opks  INterlude: How do two atoms interact at a distance?

o
O
. Since the atoms are far apart: R will be much larger than the typical distances of either electrons.
A great opportunity to do a Taylor expansion!
o ! — - N — N — N — 2 — —
2 n 2 n R R-F+%| |-R+7l |IR+7] Pl =1 =27 T+ 13
1 B 1 YRR ri,  3(F, - 2)°
| R — 7;1 T ?2‘ 2Fp-2 | Th R R 2 R 2R?
Ry/ 1 |
R R2

7‘1°2 7‘2°Z —1’12+271°72—V22 | 3 (
R R 2R2 " 2R2

(P -2 = 2(F) - D)(Fy - 2) + (7, - 2)2)

> | —

N N /\/;\
! !

|
&

=
|
R
=
[
9
Ry
N>
»—?\)
= | —

1 1 LY S 117 3(F, - 2)°
| R + 7, R\/llz?’zzlrg R R 2R? 2R*
| R IR2
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. opks  INterlude: How do two atoms interact at a distance?

o
O
; After the dust settles...
HN_V% L, -V; 1 Ty Py = 3(r - 2y - )
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.ooks INnterlude: How do two atoms interact at a distance?

o
»
; After the dust settles...
HN_V% L, -V; 1 Ty Py = 3(r - 2y - )

Now, for simplicity:

I

2 I 2 I R3 —_—

H ~

Let's go to the Born Oppenheimer picture (maybe: details tomorrow) to find the interaction between these atoms

_V% 1 | _V% 1 7‘11”2

H = | |
2 I 2 I R3

Integrate out electronic degrees of freedom. What basis?
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. opks  INterlude: How do two atoms interact at a distance?

O
; Choose just two electronic states for each atom.
-> four state basis ‘ee), ‘gg), ‘eg), ‘ge) € = ‘Iflp>
A A
— g = |ns) —
- -
I )
—
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Teoonks Interlude: How do two atoms interact at a distance?

o
®
; Choose just two electronic states for each atom.
-> four state basis ‘ee>, ‘gg% ‘eg>, ‘ge) € = \np)
A A
(normally a pretty good approximation!) _— g = \ns) EE—
HN_V% 1 | _V% 1 | 7‘11’2 — —
2 " 2 I R3 rl r2
—
d,d
0 —= 0 0 R
d,d
— 2A 0 0
V(R) =
- did,
0 0 A e
d,d
0 0 — A
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Teoonks Interlude: How do two atoms interact at a distance?

; Choose just two electronic states for each atom.
-> four state basis ‘ee>, ‘gg% ‘eg>, ‘ge) € = \np)
A A
(normally a pretty good approximation!) _— g = ‘ nS> —
H - _V% 1 | _V% 1 | 7’11’2 — —
2 " 2 I R3 rl ]/.2
—
dd
0 — 0 0 R
d\d, a b o 2 2
2A 0 0 — 2u, =(@+c)x+/4b° + (a — ¢)
_ b c -
VIR) did,
0 0 A 3 Two classes of interaction:
ddy))*1(2A
0 0 2= A u+z2A:(12)().
R _ A+ d1d2 RO
=AM (d\dy)*1(2A)
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Interlude: How do two atoms interact at a distance?

This simple two-state model shows atom interact at long-range in two different regimes:

Both atoms in same state: (dldz)z/(ZA) This non-resonant van der Waals

E, ~2AH
0 U R6 interaction is at the core of ground-state —
O o ground-state atom scattering as well as
the source of Rydberg blockade: the
A A , ultra-strong interaction between Rydberg
— — (d,d,)"1(2A) . L
F ~ ~ atoms prevents their mutual excitation!

_ 26

2A + 2(dd,)*/R°
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. opks  INterlude: How do two atoms interact at a distance?

This simple two-state model shows atom interact at long-range in two different regimes:

@ § ¢

Fach atom in a different state:

@
® d,d, This resonant dipolar interaction leads to
Uy = A R3 a “flip-flop” or exchange interaction
® between atoms; in the full picture this

e — Interaction is anisotropic!
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. opks  INterlude: How do two atoms interact at a distance?

o
O
® . . . . . .
. This simple two-state model shows atom interact at long-range in two different regimes:
3 M,
 Rb(5s) + Rb (6p) The interaction between atoms in
Reatd] | “ | the same state is characterized by
[0S + At a "Cé coefficient”
- \ (d,d,)*/(2A) C,
L:': € Rb(5s) + Rb (5p) VvdW — R6 — R6 .
®  -50575 | - - | L
0 This simple two-state calculation we just did gives Cé
e values for the ground state which are very close to
the exact values for all of the bi-alkali molecules!
- 6 L 4 Rb(5s) + Rb(5s) . . . .
b o ) For example in Rb: Cé6 in the ground state is 4691 (in
atomic units); this calculation (using experimentally
obtained dipole moments and energies) gives
~4100.
S9TE 0 20 30 40

Internuclear Distance (a.u.)

Figure 1. Calculated potential energy curves of electronic AS states in Rb,.
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. opks  INterlude: How do two atoms interact at a distance?

O
o
® . . . . . .
: The amazing thing with Rydberg atoms is how these interactions scale...
https://github.com/pairinteraction/pairinteraction
- - - A A ’ / )
1IOP Publishing Journal of Physics B: Atomic, Molecular and Optical Physics ‘ <nlsn2S ‘ rl ) rz T 3r1 ’ Zrz ’ Z ‘ nlpn2p> ‘
J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 133001 (18pp) https://doi.org/10.1088,/1361-6455/aa743a VV dw(n) e Z
R6 ro ! En’p + En’p o 2EnS
Tutorial ny,ny 1 2
Calculation of Rydberg interaction potentials We could already see from the ground state

calculation, but it's also clear here...

Sebastian Weber'-’, Christoph Tresp”°, Henri Menke*, Alban Urvoy*”,
Ofer Firstenberg®, Hans Peter Biichler' and Sebastian Hofferberth*>-’

30d,,;32p, 5

31p,i31d;,-

32s,,,,32s,, M
31p,,;31d,5

3 3.5
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. opks  INterlude: How do two atoms interact at a distance?

O
o
® . . . . . .
: The amazing thing with Rydberg atoms is how these interactions scale...
https://github.com/pairinteraction/pairinteraction
- - - A A ’ / )
1IOP Publishing Journal of Physics B: Atomic, Molecular and Optical Physics ‘ <nlsn2S ‘ rl ) rz T 3r1 ’ Zrz ’ Z ‘ nlpn2p> ‘
J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 133001 (18pp) https://doi.org/10.1088,/1361-6455/aa743a VV dw(n) e Z
R6 ro ! En’p + En’p o ZEVZS
Tutorial ny,ny 1 2
Calculation of Rydberg interaction potentials We could already see from the ground state

calculation, but it's also clear here...

Sebastian Weber'-’, Christoph Tresp”°, Henri Menke*, Alban Urvoy*”,
Ofer Firstenberg®, Hans Peter Biichler' and Sebastian Hofferberth*>-’

Ce(gs)n H

30d,,,:32p, ;. V dW(n) —
v 6
31p,i31d;,- R

32s,,,,32s,,, 4

3 3.5
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ek A quick survey of atomic structure: not-hydrogen

o
* Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single
° valence electron.

Voo .
Schrodinger equation: 0= —7 — — + VS,,(I”) —F l//(f') : (Rl 1)
r

The other electrons are tightly confined to a small region around the atom’s nucleus: the influence of these electrons can
typically be modeled by

(Z—1De ™" «a. (

V. (r) =
5r(7) r 2r4
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ek A quick survey of atomic structure: not-hydrogen

o
* Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single
° valence electron.

VZ
Schrodinger equation: O=| ———+ VS,,(V) —F l//(?) : (Rl 1)

2 r

The other electrons are tightly confined to a small region around the atom’s nucleus: the influence of these electrons can

typically be modeled by
Z—De ™" « 2
Vsr(r) — ( ) - (1 — e—(r/rc)3)

4 2rt

These screening and polarization terms fall off rapidly as a function of r, vanishing once r>r0.

| o | (I+1) 1 1
Our new radial equation is: O — 1" r) + — — 4+ V r) — — Uu r). R12
2 o) 2r2 r o) 202 ). (R22)
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.ok A quick survey of atomic structure: not-hydrogen

Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single
valence electron.

This is a second-order

differential equation, so it has I/tyl(f') ~ fvl(r) — tan évlgul(r)’ rz ro - (ng)
two linearly independent

solutions, and u must be a

linear combination of these For small r, we can solve the S. E. numerically (in principle) for the wave
FOR LARGE r!. function inside: F(r‘)
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.ok A quick survey of atomic structure: not-hydrogen

Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single
valence electron.

This is a second-order

differential equation, so it has I/tyl(f') ~ fvl(r) — lan 51/lgl/l(r)’ r2 ro - (ng)
two linearly independent

solutions, and u must be a

linear combination of these For small r, we can solve the S. E. numerically (in principle) for the wave
FOR LARGE r!. function inside: F(r‘)

Making sure the wave function and its derivative are continuous functions gives:

F'(r) Ju(r) — g (rtan o,

F(V) - fyl(r) o gvl(r)tan 51/1

r=r r=r
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Teoons A quick survey of atomic structure: not-hydrogen

° Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single

valence electron.

This is a second-order
differential equation, so it has l/tyl(f') ~ fvl(r) — lan 51/lgl/l(r)’ r2 ro - (ng)

two linearly independent
solutions, and u must be a

linear combination of these For small r, we can solve the S. E. numerically (in principle) for the wave
FOR LARGE r!. function inside: F(r‘)

Making sure the wave function and its derivative are continuous functions gives:

F'(r)  fu(r) = g (Ntan s, — tans, = F'(n)f,(r) = F(r)f, (r)
FO) | fuln) = gu(Mtan 3, _ T F(Ngu(r) — F(r)g,(r)
° ! - W), F(R))

 W(g,(r), F(r))

MAX PLANCK INSTITUTE \\\X
FOR THE PHYSICS OF COMPLEX SYSTEMS UY



o« A quick survey of atomic structure: not-hydrogen

Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single
valence electron.

At a given energy: we have found the phase shift characterizing the “non-Coulomb” parts of our atom.
In fact, this phase shift barely changes as a function of energy: all Rydberg states can be characterized by this
one number!

Next step: we just have to prevent an explosion in l/tyl(lf') ~ fyl(r) — tan 5ylgyl(lf'), r > o -
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A quick survey of atomic structure: not-hydrogen

o
* Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single
° valence electron.

At a given energy: we have found the phase shift characterizing the “non-Coulomb” parts of our atom.
In fact, this phase shift barely changes as a function of energy: all Rydberg states can be characterized by this
one number!

Next step: we just have to prevent an explosion in l/tyl(lf') ~ fyl(r) — tan 5ylgyl(r)9 r > o -

r—oo: f (r)>Are"sina(v—1)— Br'e " cosa(v — ) (R6)
g, (r) > —Ar e " cos n(v — 1) — Br’e ~"V gin n(v—10) (R7)

u, (r) > Ar—’e "W sin (v — [)cos 5, + Ar e cos n(v — [)sin §,, + decaying terms
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A quick survey of atomic structure: not-hydrogen

o
* Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single
° valence electron.

At a given energy: we have found the phase shift characterizing the “non-Coulomb” parts of our atom.
In fact, this phase shift barely changes as a function of energy: all Rydberg states can be characterized by this
one number!

Next step: we just have to prevent an explosion in l/tyl(l/') ~ f l(l/') — tan 5ylgyl(r)9 r > o -

r—oo: f (r)>Are"sina(v—1)— Br'e " cosa(v — ) (R6)
g, (r) —> —Ar e "Weos (v — 1) — Brre " sina(v — 1) (R7)

u, (r) > Ar—’e "W sin (v — [)cos 5, + Ar e cos n(v — [)sin §,, + decaying terms

yl(r) — Arve" sin[z(v — [) + o,/

51/1
—> v—Il+—=n,+1
T
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o« A quick survey of atomic structure: not-hydrogen

o
* Here we will go through a quick overview of the structure of alkali atoms: Li, Na, K, Rb, and Cs, which all have a single

valence electron.

—1

And finally:

E

Where the quantum defect is (nearly) independent of energy!

"2 (n — w(E))?

We can insert this quantum defect into any of our previously-derived scaling laws!

J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 165004 (6pp)

Precision measurements of quantum

do1:10.1088/0953-4075/42/16/165004

defects in the nP3/, Rydberg states of

85 Rb

B Sanguinetti, H O Majeed, M L Jones and B T H Varcoe

School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK

Quantum defect (n-n¥)

2.646
2.644
2.642 % :
o This Work
2.64 . Lorenzen and Niemax
— Fit
10 20 30 40 50 60 70

n

Figure 6. Quantum defects from the three different fitting methods.
Data points for n = 5 and n = 6 were included in the calculations
but are not shown, as their quantum defects are off the scale:

2.707 178 and 2.670 358, respectively.

MAX PLANCK INSTITUTE

FOR THE PHYSICS OF COMPLEX SYSTEMS

Table 2. Measured frequencies for the nP; ), states and respective
quantum defects. E, is measured from the centre of mass of the
lower and upper states and contains a small correction to the

wavemeter calibration. The third step data are reported exactly as

measured.
Third step E, 8 Error
n (MHz) (MHz) ) (x107)
36 236496706 1007068254 2.64187 2.3
37 236666310 1007237858 2.64179 2.5
38 236821728 1007393277 2.64170 2.7
39 236964479 1007536027 2.64175 2.9
40 237095926 1007667475 2.64177 3.2
41 237217235 1007788783 2.64173 34
42 237329406 1007900954 2.64176 3.7
43 237433360 1008004909 2.64162 4.0
44 237529853 1008101402 2.64160 4.3
45 237619595 1008191144 2.64156 4.6
46 237703191 1008274740 2.64163 5.0
47 237781211 1008352760 2.64151 53
48 237854117 1008425666 2.64154 5.7
49 237922362 1008493911 2.64148 6.1
50 237986322 1008557870 2.64155 6.5
51 238046352 1008617901 2.64167 6.9
52 238102791 1008674339 2.64144 7.3
53 238155879 1008727427 2.64161 7.8
54 238205906 1008777455 2.64159 8.2
55 238253103 1008824651 2.64139 8.7
56 238297662 1008869210 2.64139 9.2
57 238339780 1008911329 2.64148 9.8
58 238379637 1008951185 2.64158 10.3
59 238417400 1008988949 2.64141 109
60 238453197 1009024746 2.64151 11.5
61 238487172 1009058721 2.64151 12.1
62 238519445 1009090994 2.64151 12.7
63 238550123 1009121672 2.64165 134




oons A quick survey of atomic structure: hydrogen

O
. Energy spectrum of hydrogen and an alkali atom.
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RESEARCH ARTICLE

QUANTUM SIMULATION

Observation of a symmetry-protected
topological phase of interacting
bosons with Rydberg atoms

Sylvain de Léséleuc'*t, Vincent Lienhard'*, Pascal Scholl’, Daniel Barredo’,
Sebastian Weber?*, Nicolai Lang?*, Hans Peter Biichler?,
Thierry Lahaye', Antoine Browaeys"

SSH model for hard-core bosons

The SSH model is formulated on a one-dimensional
lattice with an even number of sites N and stag-
gered hopping of particles (Fig. 1A). It is conve-
nient to divide the lattice into two sublattices:
A ={1,3,...,N — 1}, involving odd lattice sites,
and B = {2,4,..., N}, with even sites. Then, a
particle on site 7z of one sublattice can hop to a
site 7 of the other sublattice with a hopping
amplitude J; (we do not restrict the system
to nearest-neighbor hopping). The many-body
Hamiltonian is

H=— ) J;[bt;+ bfb,] (1)
i€A,jeB

with b! (b;) being the creation (annihilation)
operator of a particle on site 7. In the original
formulation of the SSH model, the particles
are noninteracting fermions. Here we con-
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