
Quantum many-body scars using QuSpin

The goal of this project is to study the phenomenon of quantum many-body scars and reveal the
nature of special states in the spectrum of ergodic Hamiltonians which do not obey the Eigenstate
Thermalization Hypothesis (ETH). In particular, we will consider the PXP spin chain

Ĥ(t) =
L∑

j=1

Pjσ
x
j+1Pj+2, (1)

where σα
j denote the Pauli matrices, and the projector operators Pj = (1−σz

j )/2 ensure that nearby
spins are not simultaneously in their excited state. This project is based on the paper Quantum
many-body scars by Turner et al., Nature Physics volume 14, pages745–749 (2018). This project is
mostly numerical and makes use of QuSpin.

• Make yourself familiar with the quspin implementation of the basis for the above Hamiltonian;
an example is given here. Why do we need to customize the user basis?

• reproduce the result of Fig. 2 from Nature Physics volume 14, pages745–749 (2018). Note
that it is not required to use the iTEBD algorithm used in the paper (but you should feel
free to do so if you know already how it works); instead you can focus on the small system
sizes reachable with quspin. 3
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Figure 2. Entanglement entropy displays linear growth start-
ing from various initial density-wave product states, as well
as the fully polarized |0i = | . . . ��� . . .i state. Bottom pan-
els illustrate that for |Z2i initial state entanglement oscillates
around the linear growth with the same frequency as local
correlation functions.

cal observables for long chains of up to L = 51 sites.
While this might suggest that the system is non-ergodic,
it was also observed that the initial state with all atoms
in the state |�i shows fast relaxation and no revivals,
characteristic of thermalizing systems. Given that the
model (1) is translation invariant and has no disorder,
MBL mechanism cannot be at play. Below we explain
the origin of the observed oscillations and the apparent
non-ergodic dynamics.

Dynamics.—We start by characterizing dynamical evo-
lution of the model (1) for di↵erent initial conditions.
Motivated by experiment [27], we consider a family of
density-wave states |Zki with period k = 2, 3, 4, as well as
the fully polarized state |0i. We use infinite time evolv-
ing block decimation (iTEBD) method which provides
results valid in the thermodynamic limit up to some fi-
nite time [36]. The bond dimension used is 400, which
limits the evolution time to about t ⇠ 30.

Top panel of Fig. 2 reveals linear growth of entan-
glement entropy for all considered initial states. Yet,
the slope of entanglement growth strongly depends on
the initial state, with the slowest growth observed when
the system is prepared in the period-2 density wave
state, |Z2i, in Eq. (2). In addition, the entanglement
growth has weak oscillations on top of the linear growth,
which are most pronounced for |Z2i initial state. Middle
panel of Fig. 2 illustrates the oscillations in entangle-
ment by subtracting the linear component. We note that
the oscillations are periodic with the period TZ2

⇡ 2.35,
in agreement with Ref. [27]. Similarly, periodic oscil-
lations are clearly visible in the local correlation func-
tion, hZiZi+1i. The oscillations that persist for long
times when entanglement light-cone reaches the distance
of about & 20 sites, as evidenced by the correlation func-
tion, are highly unusual. While experimental work [27]
presented a variational ansatz capturing these oscilla-

tions, below we demonstrate that the oscillations actually
arise due to the existence of special eigenstates within the
rest of the many-body spectrum.

Special states.—The special eigenstates become clearly
visible when one arranges the entire many-body spectrum
according to the overlap with the density-wave |Z2i state,
as shown in Fig. 3(a). This reveals the “Z2-band” of
special eigenstates, which are distinguished by atypically
high overlaps with the |Z2i product state. The energy
separation between states stays approximately constant
near the center of the band and equal to ⌦ ⇡ 1.33. This
energy separation matches half the frequency of the real-
time oscillations observed in iTEBD numerical simula-
tions in Fig. 2. The factor of 2 comes from the fact that
the measured correlator does not distinguish between the
|Z2i and |Z0

2i states.
Next, we show that it is possible to construct accu-

rate approximations to the entire band of special states.
This is surprising because the model in Eq. (1) is not
frustration free, hence even its ground state may not be
expressible as MPS with bond dimension equal to 2 [37].
Remarkably, the eigenstates in the Z2-band can still be
accurately described within an e↵ective tight-binding ap-
proximation. In this e↵ective description, a “site” will
turn out to be a superposition of product states at fixed
Hamming distance DZ2

from the |Z2i product state,
which is defined as the minimum number of spin flips
required to transform those states into |Z2i.

We start by splitting the Hamiltonian as H = H+ +
H�, where we have introduced the operator

H+ =
X

i2 even

Pi�1�
+
i Pi+1 +

X

i2 odd

Pi�1�
�
i Pi+1, (3)

with �+
i = |•ih�| and ��

i = |�ih•|. H+ increases DZ2 by 1
(similarly, H� lowers DZ2

). In order to derive the tight-
binding model, we follow the Lanczos procedure [38] for
the Hamiltonian expressed in terms of Eq. (1) and the
initial state |Z2i. This will formally yield an e↵ective
system corresponding to a particle hopping on the lattice
containing L + 1 sites.

Lanczos algorithm is a transformation that reduces the
Hamiltonian to a tridiagonal form. The basis vectors of
the reduced form are iteratively calculated by acting with
the Hamiltonian on a vector and then orthogonalizing
against the previous basis vectors. The simplicity of the
Lanczos procedure is in the fact that it is su�cient to
perform orthogonalization against only the last vector
added to the basis. In the jth iteration of the algorithm,
the new (unnormalized) vector in the basis is |ũj+1i =
H|uji � �j�1|uj�1i, where |uj�1i is the (j � 1)th vector
in the basis, �j�1 = huj�1|H|uji and tilde stands for the
unnormalized vector.

In our modified Lanczos procedure, we introduce the
forward/backward propagation by H±|uji. If the back-
ward propagation results to approximately the same vec-
tor as the previous one in the basis, i.e., H�|uji ⇡

Figure 1: Entanglement entropy displays linear growth starting from various initial density-wave product
states, as well as the fully polarized state. Bottom panels illustrate that for |Z2⟩ initial state entanglement
oscillates around the linear growth with the same frequency as local correlation functions. (For more details,
see reference.)

• Reproduce the result of Fig. 3a,b,c from Nature Physics volume 14, pages745–749 (2018)
using your quspin code.

• Optional goals: Study what happens when deviations are added to the initial state. Explore
the deviations in the scarred quantum dynamics from ETH. Discuss the differences between
weak and strong ETH and find numerical examples to illustrate these differences

• Additional literature: https://doi.org/10.1146/annurev-conmatphys-031620-101617
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https://arxiv.org/pdf/1711.03528.pdf
https://quspin.github.io/QuSpin/examples/example14.html#example14-label
https://arxiv.org/pdf/1711.03528.pdf
https://arxiv.org/pdf/1711.03528.pdf
https://doi.org/10.1146/annurev-conmatphys-031620-101617
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Figure 3. (a) Scatter plot of the overlap of many-body eigenstates of the Hamiltonian (1) with |Z2i product state reveals
a band of special eigenstates separated from the remaining eigenstates. Crosses denote overlaps with eigenstates from the
FSA approximation, which agree very well with exact results. The density of data points (shown in the middle of the graph)
illustrates the tower structure in the overlaps. (b-c) Squared overlap between the basis vectors of FSA approximation |ni and
exact eigenstates (black) or approximate FSA eigenstates (red). Panel (b) is for the ground state whereas the lower panel is
for the state in the special band adjacent to energy E = 0. (d) Participation ratios of special eigenstates decay parametrically
slower compared to the average participation ratio of all states within the same energy range. Dashed line shows the inverse
Hilbert space dimension. All data is for L = 32 in inversion-symmetric, zero momentum symmetry sector.

�j�1|uj�1i, this implies that |ũj+1i = H+|uji =
�j |uj+1i. In general, backward propagation would take
us far from the vector |uj�1i, but in special cases like
the Hamiltonian

P
i Xi, it can result in the same vector

|uj�1i. To an excellent approximation, this is also true in
our case with the added projectors Pi�1 and Pi+1, pro-
vided that the initial state is |Z2i state. In such cases,
we can label the vectors |uni ⌘ |ni by their Hamming
distance n from the initial state. The major implication
of our modified Lanczos procedure is that there is no in-
tersection between the product state supports of di↵erent
basis vectors |ni, |mi for m 6= n, which implies that the
algorithm must close after exactly L iterations.

To summarize, the Lanczos procedure we follow here
can be understood as a forward scattering approxima-
tion (FSA) on a lattice with sites labelled by the Ham-
ming distance. The basis of the e↵ective tight-binding
model is {|0i, |1i, . . . , |Li}, where |0i ⌘ |Z2i and |ni =
(H+)n|Z2i/||(H+)n|Z2i||. The tridiagonal matrix result-
ing from this procedure is the FSA Hamiltonian,

HFSA =

LX

n=0

�n(|nihn + 1| + h.c.), (4)

where the hopping amplitude is given by

�n = hn + 1|H+|ni = hn|H�|n + 1i. (5)

This is an e↵ective tight-binding model that captures the
band of special states in Fig. 3(a).

In the usual Lanczos procedure, there is no a pri-
ori reason for Eq. (5) to hold, and we can quantify
the error per iteration of the FSA approximation by
err(n) = |hn|H+H�|ni/�2

n � 1|, where err(n) = 0 is

equivalent to H�|ni = �n�1|n� 1i. Numerically we find
that err(n) ⇡ 0.2% for L = 32 and has a decreasing
trend as we increase the system size, which is promis-
ing in terms of scaling the method to the thermody-
namic limit. As an additional error measure, the av-
erage energy di↵erence between the exact eigenstates in
the Z2-band and the eigenstates of HFSA for L = 32 is
�E/E ⇡ 1%, which further supports the accuracy of
this approximation scheme. Additional discussion of the
errors and benchmarks of the method will be presented
elsewhere. [39]

Finally, we compare the eigenstates of HFSA with ex-
act eigenstates from the special band obtained numeri-
cally in L = 32 chain with PBC. In Fig. 3(b) we observe
that the lowest-energy special state has exactly the same
overlaps with the basis states |ni as the FSA eigenstate.
For the special eigenstates in the middle of many-body
band, such as the one shown in Fig. 3(c), the FSA over-
estimates the overlap, yet capturing the oscillations. The
agreement between FSA and exact eigenstates is highly
surprising, and it further supports the unusual nature of
the special eigenstates. Indeed, a basis that has only L+1
states, each concentrated in small parts of the Hilbert
space, would provide an extremely poor approximation
for a generic highly excited eigenstate of a thermalizing
system of size L.

In order to provide the further insights into the struc-
ture of special eigenstates, we study their participation
ratios in the product state basis. The second participa-
tion ratio PR2 of eigenstate | i is defined as a sum of
all wave function coe�cients, PR2 =

P
↵ |h↵| i|4, where

↵ label all distinct product states in the inversion sym-
metric zero-momentum sector. For ergodic states, one

Figure 2: (a) Scatter plot of the overlap of many-body eigenstates of the Hamiltonian with |Z2⟩ product
state reveals a band of special eigenstates separated from the remaining eigenstates. (For a description of
(b) and (c), see reference.)
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