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1

Introduction

For a long time condensed matter physics was based on the notion that most
elementary physical phenomena in solids can be understood in terms of a
single-particle description. This has changed considerably over the last few
decades. It has become increasingly obvious that electron correlations play a
much larger role than originally thought. Accounting for them has developed
into an active field of research. The aim of this book is to describe a number of
the most important recent developments at a level which enables students to
follow. Although the main emphasis is on the theory of correlated electrons,
we have included here numerous examples concerning its applications.

The electron-correlation problem appeared for the first time when in 1927
Heitler and London aimed at describing chemical bonding of a H2 molecule by
using Schrödinger’s equation. Their ansatz for the two-electron wavefunction
(Heitler-London wavefunction) did not contain any ionic contribution, i.e., it
assumed that there is always one electron centered at atom 1 while the other
is centered at atom 2. The wavefunction is then written as

ψHL(r1, r2) =
1

2
[χ1(r1)χ2(r2) + χ2(r1)χ1(r2)](α1β2 − β1α2) , (1.1)

where the functions χ1,2(r) are centered on atoms 1 and 2, and the spin
functions α and β denote spin up and down states, respectively. Avoiding
ionic configurations, i.e., those in which both electrons are centered at one
atom, has the advantage that the Coulomb repulsion of the two electrons is
kept low because they are well separated. However, this is at the expense of
their kinetic energy, which is being lowered if the above restriction is dropped.
Therefore, the implicit assumption of the Heitler-London approach is that the
mutual Coulomb repulsion of the electrons is more important than their energy
gain due to delocalization. In present day terminology, we speak in that case
of strongly correlated electrons.

Quite an opposite point of view is taken by the molecular-orbital approach
for which the names of Hückel, Hund, Mulliken, Slater and others stand. The
molecular orbital theory describes the H2 molecule within the independent
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electron approximation. Within that scheme a bonding molecular orbital is
determined for the H2 molecule

φ(r) =
1√
2
(χ1(r) + χ2(r)) . (1.2)

This orbital is occupied by two electrons of opposite spin, i.e., the anti-
symmetric total wavefunction is

ψSMO(r1, r2) =
1

23/2
[χ1(r1)χ1(r2) + χ1(r1)χ2(r2) + χ2(r1)χ1(r2)

+χ2(r1)χ2(r2)](α1β2 − β1α2) . (1.3)

The electrons move independently of each other and the chance to find
both of them at the same atomic site (ionic configuration)is 50%. Their kinetic
energy is optimally lowered, but their Coulomb repulsion remains relatively
large.

In reality, a H2 molecule is between the two limits just described. It is
closer though to an independent electron description than to the Heitler-
London limit of strong correlations. Therefore, it is more suitable to start
from an independent electron or molecular-orbital wavefunction and improve
it than to start from a Heitler-London wavefunction. This changes when one
artificially pulls apart the two protons. The larger the distance between them
the more we have to suppress the ionic configurations in the ground-state
wavefunction. In the limit of complete separation we end up with two inde-
pendent hydrogen atoms. Expressed differently, with increasing bond length
the electronic correlations become more and more important until we end up
in the Heitler-London or strong correlation limit.

Why are we stressing so much the simple case of a H2 molecule and what
has this to do with solids? The same competition between kinetic energy gain
and Coulomb repulsion energy observed in the case of a H2 molecule is found
in other molecules, small and large. It governs also the electronic properties of
solids. Here we find a rich variation in the strength of electron correlations at
equilibrium distance of the ions forming a solid. The kinetic energy gain due to
delocalization depends on how strong is the overlap of electronic wavefunctions
of neighboring atoms. Therefore we expect that in a solid s and p electrons of
the valence shell are less correlated in their motions than, e.g., f electrons of
an incomplete f shell because they are closer to the nuclei. In fact, 4f electrons
are the strongest correlated electrons we have to deal with. Describing them
within an independent electron approximation makes no sense. Instead, their
behavior is like in an atom. The only modifications that arise are due to a
weak hybridization with the electrons of the neighboring atoms.

Various methods and techniques have been applied to deal quantitatively
with the electron correlation problem or, more generally, with the electronic
structure of solids. The one most commonly used is density functional the-
ory and approximations to it as developed by Hohenberg, Kohn and Sham.
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Strictly speaking this theory applies to the ground state. It avoids calculat-
ing many-electron wavefunctions. Instead, ground-state properties such as the
energy, the electron density distribution, magnetization etc. are directly cal-
culated. Although originally not designed for it, the highly successful theory
has also been applied to excited states, i.e., energy-band calculations. Yet the
approximations are uncontrolled and therefore it is no surprise that there are
a number of cases where they fail, in particular when correlations are strong.
Even then, by taking a pragmatic attitude and giving up a strict ab initio
treatment of correlations one can often make reasonable improvements. The
LDA+U serves as an example here. It combines a local density approxima-
tion (LDA) to density functional theory with a heuristic separate treatment
of a local Coulomb interaction U . In any case, this development has resulted
in a good understanding of the electronic structure of many different mate-
rials which in former times were considered as not accessible to quantitative
computations.

A rather different approach is pursued by wavefunction methods, which
aim at determining the (many-electron) ground-state wavefunction of a solid
similarly as done before for the H2 molecule. They have the advantage that
one can learn more about the different aspects of electron correlations. The
reason is that the correlation hole of the electrons is explicitly constructed.
This holds true for the ground state as well as for excited states if a system.
Starting point is a self-consistent field (SCF) calculation. When the corre-
lations are relatively weak, a Hartree-Fock calculation serves that purpose.
Correlations are included with the help of local excitation operators. They
take optimal advantage of the fact that the correlation hole of an electron is a
rather local object. When correlations are strong the corresponding electrons,
e.g., d electrons, define an active space and the SCF calculation is done by in-
cluding all configurations of this active space (CASSCF). This way the strong
correlations are accurately treated while the remaining weak correlations are
included by standard methods. How a CASSCF calculation and a correspond-
ing wavefunction for an infinite solid can be formulated and executed will be
discussed in detail in this book. Cumulants prove very useful here in setting
up a clean theoretical frame for calculations of this kind.

Although wavefunction-based electronic structure calculations are presently
more time consuming and require more program development compared with
density functional based computations, they deserve special attention in the
future. In fact, both approaches should be developed in parallel; there will
be always systems which are too large to be handled by wavefunction based
methods, but for which density functional calculations are possible. For other
systems, nevertheless, may it be the computation of an energy gap of a semi-
conductor or the energy dispersion of holes in a Cu-O plane, wavefunction-
based methods are clearly preferable due to their controlled approximations.

When dealing with electronic correlations in solids, one finds that they
often resemble those in corresponding molecules or clusters. Hence one would
expect quantum chemistry and solid-state theory to be two areas of research
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with many links and cross fertilization. Regrettably this is not the case. The
two fields have diverged to such an extent that it is frequently difficult to find
even a common language, something we hope will change in the future. In
particular it has become clear that the various methods applied in chemistry
and in solid-state theory are simply different approximations to the same set
of cumulant equations.

Usually the effects of electron correlations on excited states are even more
important than those on the ground state. The excitation energy of a system is
often the difference between two large energies, i.e., the one of the excited state
and that of the ground state. When electron correlations influence those two
energies differently, the excitation energy may be dominated by correlation
effects. For example, the energy gap of a semiconductor is strongly influenced
by correlations. Consider a semiconductor like Si with covalent bonding. While
in the ground state correlations lead to van der Waals type of interactions
between different bonds, the correlation hole of an added electron includes
a long-ranged polarization cloud. The latter has no analogy in the ground
state and contributes significantly to reducing the excitation energy, hence
the energy gap, from its Hartree-Fock values. An ab initio calculation of the
energy gap of a semiconductor must therefore account for both, the relaxation
effects in the vicinity of the added electron or hole as well as the long-ranged
polarization cloud.

It was Wigner who first posed the question regarding the ground state of
an electron system in which the mutual Coulomb repulsion is more impor-
tant than the kinetic-energy gain due to delocalization. The answer he gave
was that in that case the electrons would form a lattice because it would
reduce most efficiently their mutual repulsion. A lattice keeps electrons well
apart from each other. What are the conditions for such a dominance of the
Coulomb repulsion? For the homogeneous electron gas which he considered,
the crucial condition is that the gas must have a very low density. Due to
Pauli’s principle electrons in their ground state fill momentum k states up
to a maximum momentum. The latter depends on the electron density. Let
2rS denote the average distance between electrons. Then it is easy to show
that the Coulomb repulsion dominates the kinetic energy when rS is suffi-
ciently large. Sophisticated Monte Carlo calculations show that rS must be at
least of the order of 70aB where aB is Bohr’s radius or 0.53 Å, in order for a
Wigner crystal to form. This condition may be fulfilled in inversion layers of
doped semiconductors and there are indications that Wigner crystallization
may indeed take place.

The condition for electron crystallization is dramatically improved if, in-
stead of a homogeneous electron gas, one considers electrons located near the
center of atoms. When the overlap between atomic wavefunctions of neighbor-
ing sites is small, the electrons cannot gain much kinetic energy by delocaliza-
tion. Therefore their Coulomb repulsion may dominate even at high densities.
It was pointed out before that the valence electrons which are closest to the
nuclei and therefore have small overlap with the surrounding atoms are the



1 Introduction 5

4f electrons of rare-earth ions. Provided that in a system there are more rare-
earth sites than 4f electrons (or holes), we expect electron crystallization or
charge ordering to take place. Indeed, Yb4As3 is a prominent example for this
type of charge order. Here we have one quarter of a 4f hole per Yb site.

The theory of metals has been strongly influenced by Sommerfeld and
Bethe who treated conduction electrons like free electrons. They successfully
explained a number of thermodynamic and transport properties with the help
of the Fermi distribution function and its temperature derivatives. It was Lan-
dau who put that theory on firmer ground by introducing the concept of quasi-
particles for the low-energy excitations of a system of conduction electrons.
The former behave like weakly interacting electrons but with renormalized
mass, Fermi velocity etc. A quasiparticle can be thought of as a bare electron
together with its correlation hole which keeps the other electrons away. So the
largest part of the electron interactions is taken into account by working with
renormalized quantities. A quasiparticle, i.e., a bare electron plus its correla-
tion hole has internal degrees of freedom. When they are excited they may
lead to satellite structures or peaks in the density of states. These excitations
are obtained from the incoherent part of the one-particle Green’s function.

The concept of Landau seems to work to a reasonable extent even when
the electron correlations are so strong that quasiparticles become heavy. The
latter involve in most cases rare earth or actinide ions and are character-
ized by extremely large renormalized masses at low temperatures which may
become several hundred times the free electron mass. Only recently have sys-
tematic deviations from the quasiparticle concept become the subject of in-
tense investigations. This development was in part initiated by work on the
high-temperature superconducting cuprates. The claim has been made that
in the normal state of these materials Landau’s Fermi liquid theory may be-
come inapplicable. However, this subject is far from being resolved. Yet, in
one-dimensional systems the Fermi liquid description is breaking definitely
down. We are dealing here with a Tomonaga and Luttinger theory instead. A
characteristic feature of a Luttinger liquid is a separation of spin and charge
degrees of freedom, a phenomenon which can also occur in trans-polyacetylene
with kinks or solitons present. It has been found that not only the dimension
is important for the occurrence of spin-charge separation but also the lattice
type plays an important role. Geometrically frustrated lattices are particularly
amenable to deviations from Landau’s quasiparticle approach.

Strongly correlated electron systems are frequently studied by means of
model Hamiltonians. The multiband Hubbard models play a prominent role
here. They can be diagonalized exactly for small clusters or in case of one-
dimensional systems treated very accurately by means of the density-matrix
renormalization group method (DMRG). The availability of powerful comput-
ers has initiated much research interest in those brute force techniques. Their
impact on many-body theory has been steadily increasing. The same holds
true for Monte Carlo calculations which belong in the same category.
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Hund’s rule or intra-atomic correlations play a distinctive role in many
materials. They are important not only in rare-earth systems with incom-
plete 4f shells, but also in transition metals, in their oxides as well as in
actinide compounds. Often they compete with crystalline electric field effects.
For example, in transition metal oxides, whether d electrons are in a high-
or low-spin state is effected by this competition. To what extent Hund’s rule
correlations are operative depends on the degree of delocalization of the elec-
trons. The larger the hybridization matrix elements between atomic orbitals
of neighboring sites, the less intra-atomic spin alignment can be established.
In some of the 5f systems the strong intra-atomic correlations cause a par-
tial localization of f electrons. Their dual character shows up in a number of
experiments.

A characteristic feature of strong correlations is the generation of new
low energy scales, something that has led to a large number of new physical
phenomena. Examples are metals with heavy quasiparticle masses. They can
be of different physical origin. The Kondo effect is one of them. Equally im-
portant are Hund’s rule correlations, partial charge ordering, frustrations, or
the Zeeman effect, to mention a few. The behavior of doped Mott-Hubbard
insulators is also strongly affected by the characteristic low-energy scales.

The kinetic energy of electrons can also be efficiently reduced by applying
a magnetic field. This forces the electrons into cyclotron orbits. Particularly
interesting is the case of a two-dimensional electron system at low density. It
can be realized, e.g., by epitaxial growth of GaAs/GaAl/GaAs heterostruc-
tures with carrier densities as low as ρ ≃ 1011 cm−2. When a sufficiently
high magnetic field is applied to the layers, electrons occupy only the lowest
Landau orbital and their kinetic energy is reduced to zero-point fluctuations.
In that case Coulomb repulsion becomes crucial, in particular when the Lan-
dau orbital is only partially filled. Yet instead of forming a Wigner crystal, a
new quantum state described by the Laughlin wavefunction is established at
appropriate filling factors. It turns out that this new state is a strongly corre-
lated electronic liquid with an energy lower than that of the Wigner crystal.
The fractional quantum Hall effect is a consequence of it. Its outstanding
features are excitations with fractional charges, e.g., of ± e/3, ± e/5 etc. de-
pending on the fractional filling factor of the lowest Landau level. Fractional
charges are intimately connected here with fractional statistics. Interchang-
ing two quasiparticles shows that they are neither fermions nor bosons but
anyons instead. But we can also device a simple model Hamiltonian which
leads to fractionally charged excitations in three dimensions. Therefore the
connection between fractionally charged excitations and fractional statistics
is limited to two dimensions and is not a general one. It is well known that in
three dimensions there are only fermions and bosons possible when we deal
with point-like particles.

Superconductivity is solely due to correlations, more specific to pair corre-
lations. They lead to Cooper pair formation and to an instability of the normal
state of the electronic system. It came as a surprise when Bardeen, Cooper
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and Schrieffer showed that merely pair correlations are required, which con-
tribute only a small fraction to the total correlation energy. All the remaining
ones simply renormalize parameters which enter the superconducting transi-
tion temperature, such as the Fermi velocity or an effective Coulomb repulsion
contribution. This explains why it is so difficult to calculate Tc. The situa-
tion is different in superconductors with strong electron correlations. Here the
bosonic excitations, which are responsible for a net electron-electron interac-
tion may result from electronic correlations as well. Their role is similar to the
one played by phonons in conventional superconductors like Al or Pb. There
is compelling evidence that specific bosonic excitations of the correlated elec-
tron system are acting as glue for Cooper pair formation. Therefore, good
insight into the correlation problem is a prerequisite in order to understand
superconductors with strong electron correlations like cuprates or Fe pnictides
not only in the superconducting but also in the normal state.





2

Independent Electrons

When in a material electron correlations are not too strong, a convenient
starting point is to consider first the electrons as being independent of each
other and to add afterwards correlation corrections. The assumption of in-
dependent electrons implies that the wavefunction of the N-electron system
Φ(r1σ1, · · · , rNσN ) can be written in form of an antisymmetrized product
of single-electron wavefunctions ψi(riσi). In this case the self-consistent field
(SCF) or Hartree-Fock (HF) equations provide for the optimal wavefunction,
i.e., the one with the lowest energy. However, for solids these equations are
much too complicated to be solved without further simplifications. The most
important one is to perform all calculations with a limited set of basis func-
tions and to determine the self-consistent solution within the space spanned
by that basis. When the basis set is a complete one, we often speak of the
Hartree-Fock limit of the SCF equations. An important point is to find out
how large a basis set has to be in order to obtain SCF wavefunctions and
eigenvalues with a required accuracy.

It has been known for a long time now that unrestricted or symmetry-
broken SCF wavefunctions enable us to partially include effects of electron
correlations even within the independent-electron approximation. For exam-
ple, an antiferromagnetic SCF ground-state wavefunction keeps electrons bet-
ter apart than a paramagnetic one because electrons of different spin are
concentrated on different sublattices. Therefore, for a paramagnet with short-
range antiferromagnetic interactions, an antiferromagnetic (i.e., symmetry
broken) wavefunction yields often a lower energy than does a paramagnetic
SCF ground-state. The price for the improvement of the energy is a poor,
i.e., unphysical, symmetry broken form of the wavefunction. A better descrip-
tion is, of course, to determine a paramagnetic correlated wavefunction by
going beyond the independent-electron approximation. Such a wavefunction
preserves the spinsymmetry of the system and at the same time keeps the
electrons even better apart than a symmetry breaking SCF function.

The larger the effect of mutual Coulomb repulsion of electrons as compared
with the kinetic energy gain due to delocalization, the less is the independent
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electron approximation justified. The inclusion of correlation effects becomes
crucial. It is important to understand in a simple manner how correlations
modify the SCF wavefunction, e.g., for the ground state. That is done in
Section 2.5 where we also discusse how the correlations strength can be quan-
tified.

2.1 Many-Electron Hamiltonian

We start out by defining the Hamiltonian of a system of N electrons moving
in an external potential V (r) set up by the nuclei and the inner shells and
interacting via the Coulomb repulsion. By introducing electron field operators
satisfying anticommutation relations

[ψ+
σ (r), ψσ′ (r′)]+ = δσσ′δ(r− r′),

[ψσ(r), ψσ′ (r′)]+ = [ψ+
σ (r), ψ

+
σ′ (r

′)]+ = 0 , (2.1)

we can express the Hamiltonian in the form

H =
∑

σ

∫

d3rψ+
σ (r)

(

− 1

2m
∇2 + V (r)

)

ψσ(r)

+
e2

2

∑

σσ′

∫

d3rd3r′ψ+
σ (r)ψσ(r)

1

|r − r′|ψ
+
σ′(r

′)ψσ′(r′) . (2.2)

We try to find eigenstates of this Hamiltonian within a given set of L basis
function fj(r). These functions are generally not orthogonal to each other and
their overlap matrix is

Sij =

∫

d3rf∗
i (r)fj(r) . (2.3)

The expansion of the field operators in terms of the basis set

ψσ(r) =
L
∑

i=1

aiσfi(r) (2.4)

defines annihilation operators aiσ and similarly creation operators a+jσ, which
satisfy the relations

[a+iσ, ajσ′ ]+ = S−1
ji δσσ′ ,

[a+iσ, a
+
jσ′ ]

+
= [aiσ, ajσ′ ]+ = 0 . (2.5)

As proof, we write (2.4) in the form

aiσ =
∑

j

S−1
ij

∫

d3rf∗
j (r)ψσ(r) . (2.6)
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Expressed in terms of the operators aiσ, a
+
iσ, the Hamiltonian (2.2) becomes

H =
∑

ijσ

tija
+
iσajσ +

1

2

∑

ijkl

σσ′

Vijkla
+
iσa

+
kσ′alσ′ajσ , (2.7)

with the matrices tij and Vijkl given by

tij =

∫

d3rf∗
i (r)

(

− 1

2m
∇2 + V (r)

)

fj(r),

Vijkl = e2
∫

d3rd3r′f∗
i (r)fj(r)

1

|r− r′|f
∗
k (r

′)fl(r
′) . (2.8)

This Hamiltonian will be used very frequently. Sometimes it is advanta-
geous to introduce operators which create or annihilate electrons in states fi(r)
with spin σ. We denote these operators by â+iσ and âiσ, i.e., |fiσ〉 = â+iσ|0〉,
where |0〉 is the vacuum state. The â+iσ are related to the operators a+iσ through

â+iσ =
∑

j

Sjia
+
jσ (2.9)

and fulfill the anticommutation relations

[â+iσ, âjσ′ ]+ = Sjiδσσ′ . (2.10)

This should be compared with (2.5). The other relations remain unchanged.
It is a simple matter to check that

[â+iσ, ajσ′ ]+ = δijδσσ′ . (2.11)

2.2 Basis Sets

In deciding on a particular set of basis functions fi(r), a compromise will
have to be made between high-accuracy results, which require a large basis set,
and computational costs, which favor small basis sets. Similar arguments hold
for their functional form. Functions which are particularly suitable as far as
numerical accuracy is concerned often lack convenience from a computational
point of view.

The functions fi(r) are generally centered at different atoms. Slater was
the first to suggest the use of exponential functions of the form

fi(r) = Nir
n−1e−ζirYlm(θ, φ) . (2.12)

The Ylm(θ, φ) are the spherical harmonics and the Ni’s are normalization fac-
tors. The function fi(r) does not only depend on i, but also on the parameters
n, l and m, i.e., on the principal quantum number, angular momentum and
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z component of the angular momentum. Basis functions of the form (2.12)
are called Slater-type orbitals (STOs). Their advantage lies in that they ap-
proximate well the electron wavefunctions for small values of r, i.e., near the
nucleus of an atom. Their disadvantage is that integrals of the form (2.8)
are not easy to obtain when a SCF calculation is performed. Boys suggested
instead the use of Gaussian-type orbitals (GTOs) of the form

fi(r) = Nix
lymzne−ζir

2

. (2.13)

Here Ni is again a normalization factor. The advantage of using GTOs is
that all three- and four-center integrals of the two-electron integrals Vijkl can
be reduced to two-center integrals. This is so because the product of two
GTOs at different centers can be written as a GTO centered between the two
centers. The remaining two-center integrals can be easily calculated. Note
that, independent of the principal quantum number, all px orbitals are of the
form xe−ζr

2

and similarly for the other angular momentum functions (e.g.,

the form xye−ζr
2

is used for all dxy functions). The GTOs are simpler to use
than the STOs, but they are less suitable for finding accurate SCF functions.
One typically needs 3-4 times as many GTOs as STOs to achieve the same
accuracy in a SCF calculation.

It is obvious that the size of the basis set is of crucial importance if we want
to obtain results which are reasonably close to the HF limit. The simplest form
of a basis set includes as many basis functions as there are electrons. This is
called a minimal basis set and STOs must be used for it in order to obtain
sensible results. We can also resort to contracted GTOs rather than to STOs. If
one contacts n different s-GTOs into ν s-orbitals andm different p-GTOs into
µ p-orbitals, the following notation is used (ns mp/νs µp), e.g., (8s4p/2s1p).
A minimal basis set often proves insufficiently accurate for electronic structure
calculations. We may use instead a double-zeta (DZ) set, which includes twice
as many basis functions as there are electrons. In order to come close to the
HF limit, we have to include basis functions of higher angular momenta than
those of the valence electrons (e.g., d-functions in the case of carbon). The
latter are called polarization (P) functions because they enable us to describe
the polarization of an atom in a molecular field. We often use basis sets of
double-zeta plus polarization function (DZ+P) size.

2.3 Self-consistent Field Equations

We are now in a position to derive the self-consistent field equations by making
the approximation of independent electrons. It implies that the total wave-
function of the electron system Φ(r1σ1; r2σ2; ...; rNσN ) can be written in form
of an antisymmetrized product of one-electron wavefunctions φµ(rσ). They are
called spin orbitals and are a product of a spatial orbital χµ(r) and a two-
component spinor σ. The latter equals α =

(

1
0

)

for spin-up and β =
(

0
1

)

for
spin-down electrons with respect to a given axis. Therefore
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φµ(rσ) = χµ(r)σ . (2.14)

The χµ(r) are constructed from the basis functions fi(r).
In the following we consider closed shell systems. These are systems with

the property that whenever φµ(rα) is occupied so is φµ(rβ). Thus there is
complete symmetry with respect to spin-up and spin-down electrons. In that
case the antisymmetric total wavefunction can be written in form of a single
determinant

Φ(r1σ1; · · · ; rNσN ) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

φ1(r1σ1) · · · φN (r1σ1)
...

...
φ1(rNσN ) · · · φN (rNσN )

∣

∣

∣

∣

∣

∣

∣

(2.15)

often referred to as Slater determinant. Without loss of generality we may
assume the functions φν(rσ) to be orthonormal.

In second quantized form (2.15) is written as

|Φ〉 =
∏

µσ

c+µσ|0〉 , (2.16)

where the c+µσ are the creation operators of electrons in the spin orbitals
φµ(rσ). Since the latter are orthogonal, the c+µσ satisfy the anticommutation
relations

[c+µσ, cνσ′ ]+ = δµνδσσ′ ,

[c+µσ, c
+
νσ′ ]+ = [cµσ, cνσ′ ]+ = 0 . (2.17)

An important question to be answered is the best approximate ground-
state |Φ〉 of the Hamiltonians (2.7) which can be written in the form of (2.16).
It will be denoted by |ΦSCF〉 in the following. The best state |Φ〉 must minimize
the energy and therefore fulfill the requirement of stationarity

δ〈Φ|H |Φ〉 = 0 . (2.18)

This condition leads to the so-called self-consistent field or SCF equations,
which we now want to derive.

The SCF ground state |ΦSCF〉 has an energy expectation value 〈ΦSCF|H |ΦSCF〉
of the form

E0 =

L
∑

ij

∑

σ

tij〈ΦSCF|a+iσajσ |ΦSCF〉

+
1

2

∑

ijkl

∑

σσ′

Vijkl〈ΦSCF|a+iσa+kσ′alσ′ajσ|ΦSCF〉 . (2.19)

The occupied spin orbitals φµ(rσ) contained in |ΦSCF〉 are expanded in terms
of the basis functions fi(r) as
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c+µσ =

L
∑

n=1

dµnâ
+
nσ (2.20)

and we aim at determining the coefficients dµn. In the following we use the
abbreviation

〈...〉 = 〈ΦSCF|...|ΦSCF〉 (2.21)

for convenience. In order to compute the first term of (2.19) we introduce the
bond-order matrix

Pij =
∑

σ

〈a+iσajσ〉 (2.22)

so that we may write

L
∑

ij

∑

σ

tij〈a+iσajσ〉 =
L
∑

ij

tijPij . (2.23)

We want to relate the Pij to the coefficients dµn and for that purpose we
use (2.20) and (2.11) in order to write

ajσ
∏

µσ′

c+µσ′ |0〉 = (±)

occ
∑

ν

dνj
∏

µσ′ 6=νσ
c+µσ′ |0〉 . (2.24)

The sum over ν refers to all occupied orbitals. The sign depends on the spin
direction, but independent of it we find

Pij = 2

occ
∑

ν

d∗νidνj . (2.25)

The second term on the right hand side of (2.19) can be treated similarly.
Applying the relation (2.24) together with the one where ajσ is replaced by
a+iσ, we find that

〈a+iσa+kσ′alσ′ajσ〉 =
{

〈a+iσajσ〉〈a+kσ′alσ′〉 if σ 6= σ′,
〈a+iσajσ〉〈a+kσalσ〉 − 〈a+iσalσ〉〈a+kσajσ〉 if σ = σ′.

(2.26)

Therefore the energy (2.19) can be expressed as

E0 =
∑

ij

tijPij +
1

2

∑

ijkl

(

Vijkl −
1

2
Vilkj

)

PijPkl . (2.27)

The coefficients dµn have to be varied so that E0 is minimized. The vari-
ation must leave the normalization of the spin orbitals φµ(rσ) unchanged,
i.e., 〈φµ|φµ〉 = 1. This condition can be included in the variation of |φµ〉 by
requiring that
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δ

(

E0 −
∑

µ

εµ〈φµ|φµ〉
)

= 0 . (2.28)

The ǫµ are Lagrange parameters. From this relation we find the following set
of equations for the coefficients dµj

L
∑

j=1

(fij − εµSij)dµj = 0 . (2.29)

They constitute one particular form of the Hartree-Fock (HF) equations for
a given basis set [386]. The matrix elements fij define the Fock matrix which
is given by

fij = tij +
∑

kl

(

Vijkl −
1

2
Vilkj

)

Pkl . (2.30)

Note that the solutions of (2.29) enter the Fock matrix through the Pkl. There-
fore self-consistency must be achieved between the two. We can satisfy (2.29)
by introducing the Fock operator

F =
∑

ijσ

fij(a
+
iσajσ − 〈a+iσajσ〉) (2.31)

and requiring that the following relations hold

F cµσ|ΦSCF〉 = −εµcµσ|ΦSCF〉
F c+iσ|ΦSCF〉 = εic

+
iσ|ΦSCF〉 . (2.32)

They are another form of the Hartree-Fock equations and apply when the
coefficients of occupied (dµn) and unoccupied (din) one-electron orbitals are
considered. The corresponding spin orbitals φµ(rσ) and φi(rσ) are the canon-
ical orbitals, i.e., molecular orbitals or Bloch states (in case of a solid).

Finally, by using (2.8), (2.14), (2.20) and (2.25) we can write the Hartree-
Fock equations also in the form

(

− 1

2m
∇2 + V (r) + e2

∫

d3r′
ρ(r′)− ρHF

µ (r, r′)

|r− r′|

)

χµ(r) = εµχµ(r) , (2.33)

where

ρ(r′) = 2

N/2
∑

ν=1

|χν(r′)|2 and (2.34a)

ρHF
µ (r, r′) =

N/2
∑

ν

χ∗
µ(r)χν(r)

|χµ(r)|2
χ∗
ν(r

′)χµ(r
′) (2.34b)
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denote the density and exchange density of the electrons, respectively. The
latter ensures that the effective potential in (2.33) does not contain interac-
tions of an electron with itself. A self-interaction contribution results from the
ρ(r′) term in the interaction potential because the orbital χµ(r) appears in
(2.34a) too. However, its contribution is canceled by the ρHF

µ (r, r′) term. The
exchange density, being vital for avoiding self-interactions, complicates con-
siderably the finding of self-consistent solutions of the Hartree-Fock equations.
It has a non-local character.

We proceed by introducing the self-consistent field Hamiltonian HSCF ac-
cording to

HSCF = F + E0 . (2.35)

From (2.31) we find that 〈F 〉 = 0 and therefore 〈HSCF〉 = 〈H〉 = E0. This
suggests to decompose H into

H = HSCF +Hres (2.36)

with Hres given by

Hres =
1

2

∑

ijkl

σσ′

Vijkla
+
iσa

+
kσ′alσ′ajσ −

∑

ijkl
σ

(

Vijkl −
1

2
Vilkj

)

Pkla
+
iσajσ

+
1

2

∑

ijkl

(

Vijkl −
1

2
Vilkj

)

PijPkl . (2.37)

One can check easily that 〈Hres〉 = 0.
When a SCF calculation is supplemented by one, which includes corre-

lations, it is advantageous to work with localized SCF orbitals instead of
molecular- or Bloch orbitals. Therefore we want to reexpress |ΦSCF〉 in terms
of optimally localized orbitals with creation operators c̃+νσ so that

|ΦSCF〉 =
N
∏

νσ

c̃+νσ|0〉 . (2.38)

We obtain the c̃+νσ from the c+µσ by a unitary transformation U within the
space spanned by the occupied canonical spin orbitals, i.e.,

c̃+νσ =

N/2
∑

µ=1

Uνµc
+
µσ . (2.39)

Several procedures have been proposed to find these optimally localized
orbitals. We mention here the one of Foster and Boys which is based on the
requirement that the sum of the quadratic repulsions of localized orbitals with
themselves be minimized,

occ
∑

µ

∫

d3rd3r′|λµ(r)|2(r− r′)2|λµ(r′)|2 = minimum . (2.40)
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We can show that this condition maximizes the distances between different
orbitals [120].

At this stage a comment is in order regarding open-shell systems. In con-
trast to the closed-shell systems considered until now, the latter are charac-
terized by a ground state with partially filled molecular (or atomic) energy
levels. For example, consider a C atom. Only two of the six possible 2p or-
bitals are occupied and it is generally not possible to represent a SCF state of
such a system by a single Slater determinant. The ground state of that atom
is a triplet state 3P . In this particular case it can be represented by a single
determinant, namely

Φ0 = (1s)2(2s)2(2p0σ)(2p1σ) , (2.41)

where we have characterized each atomic orbital by n, l,m, σ, i.e., the principal
quantum number, the angular momentum and its z-component, and the spin,
respectively. However, the lowest-lying singlet state 1S with wavefunction Φ1

can be written only in the form of a superposition of three Slater determinants,
i.e.,

Φ1 =
1√
3
(1s)2(2s)2[(2p0)

2 − (2p−1σ)(2p1−σ) + (2p−1−σ)(2p1σ)] . (2.42)

Even when several determinants have to be used for the construction of a
SCF wavefunction of a given symmetry, there is no difficulty in setting up
SCF equations.

Table 2.1. SCF energy for the ground state of a B atom using basis sets of different
sites with optimized GTOs. (From [197,483])

SCF ground-state energy

Basis set [a.u.]α

(2s1p) -20.7667

(4s2p) -24.3359

(5s3p) -24.4646

(7s4p) -24.5185

(9s4p) -24.5271

(10s6p) -24.5283

(11s7p) -24.5287

Estimated HF limit -24.5291

Three STOs -24.4984

α Atomic units: 1 a.u. = 27.2107 eV
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What are the accuracies which can be achieved for various physical quanti-
ties within the SCF approximation? Of course, they depend to some extent on
the size of the basis sets used. The deviations listed below refer to large basis
sets close to the HF limit. So, they originate primarily in the insufficiencies
of the SCF- or independent-electron approximation. The examples we give
concern molecules, since systematic investigations are lacking for solids. We
expect, however, that the deviations are practically the same in these cases.

Bond lengths and bond angles are obtained with an accuracy of 1 pm and
10− 20, respectively. The bond lengths usually come out too short, a minimal
basis set typically producing deviations of 3 pm and 30 - 40.

As far as harmonic force constants are concerned, we usually overestimate
the diagonal constants in SCF calculations. Typical stretching and bending
force constants are accurate to an order of 0.1 × 102N/m. This assumes the
use of at least DZ basis sets.

Binding-energy calculations yield relatively poor results within the indepen-
dent-electron approximation, even for large basis sets. For example, in the HF
limit the binding energies for the molecules H2 and N2 are found to be 3.6
eV and 5.3 eV, respectively. These values must be compared with the exper-
imental ones of 4.72 eV and 9.91 eV. The basis-set dependence of the SCF
ground-state energy is presented in Table 2.1, where we have chosen a B atom
as an example.

2.4 Unrestricted SCF Approximation

A wavefunction of a solid or a molecule must fulfill certain symmetry and
equivalence requirements. For example, a Bloch- or a molecular orbital must
be an eigenfunction of the different symmetry operators with which the Hamil-
tonian commutes, i.e., it must transform according to the irreducible repre-
sentation of the point group of the crystal or molecule. Similarly, an atomic
orbital must be an eigenfunction of the angular-momentum operator.

For an example of an equivalence restriction, consider the 1Σ+ ground
state of the CO molecule

ΦSCF = (1σ)2(2σ)2(3σ)2(4σ)2(5σ)2(1π−1)
2(1π+1)

2 . (2.43)

The orbital function of 4σ↑ has to be the same as that of 4σ↓. Another
equivalence restriction is that the orbitals 1π+1 and 1π−1 are the same, except
for a phase factor exp(iφ) and exp(−iφ) respectively, resulting from the az-
imuthal quantum number. Equivalence restrictions result from conservation
laws. For example, the requirement that orbital parts be the same for dif-
ferent spin directions results from [H,S2]− = 0. A Slater determinant with
different orbitals for different spin directions would not be an eigenfunction
of the total electron spin operator S2. Similarly, the condition on 1π+1 and
1π−1 results from the conservation of the total orbital momentum operator,
i.e., from [H,L2]− = 0.



2.4 Unrestricted SCF Approximation 19

Unrestricted SCF (or HF) wavefunctions break both symmetry and equiv-
alence requirements and often obtain lower energies this way. It is well known
that the ground state of an infinite system like a solid can break a symmetry
that the Hamiltonian obeys. Examples are ferromagnets or antiferromagnets
which break rotational symmetry in spin space. Clearly, in this case an unre-
stricted SCF calculation is expected to yield a lower energy than one which is
symmetry restricted, i.e., resulting in a non-magnetic ground state. However,
a lower energy may be obtained erroneously for an unrestricted ground state
even in cases when the system does not break a symmetry. The reason is that
electronic correlations are partially simulated when an unrestricted SCF cal-
culation is done. In order to demonstrate this consider the H2 molecule. The
SCF ground state is ΦSCF = (1σ)2 or

|ΦSCF〉 = c+↑ c
+
↓ |0〉 , (2.44)

where c+τ creates an electron with spin τ in the MO 1σ. In the simplest
approximation this MO is of the form

c+τ =
1√
2
[a+Aτ + a+Bτ ] , (2.45)

where a+Aτ , a
+
Bτ create electrons in atomic-like s wavefunctions centered on

atom A and B, respectively. As is well known, the product state c+↑ c
+
↓ |0〉

overrates the probability amplitude of finding both electrons at the same atom.
Stated differently, the ionic part of |ΦSCF〉 is too large, and therefore electron
repulsion costs too much energy, a consequence of having left out electronic
correlations. By breaking the symmetry and assigning different orbitals to
different spins, the ionic part of the wavefunction can be reduced compared
with that of |ΦSCF〉 = c+↑ c

+
↓ |0〉 . The spin-unrestricted SCF wavefunction

ΦUSCF is of the form
|ΦUSCF〉 = c̃+1↑c̃

+
2↓|0〉 , (2.46)

where

c̃+1↑ =
1√

1 + λ2
[a+A↑ + λa+B↑]

c̃+2↓ =
1√

1 + λ2
[λa+A↓ + a+B↓] . (2.47)

We notice that the ionic configurations a+A↑a
+
A↓|0〉 and a+B↑a

+
B↓|0〉 have

here weight λ/(1 + λ2). They are partially suppressed depending on the size
of λ. This way we can reduce the Coulomb repulsion energy of the electrons.
Clearly, |ΦUSCF〉 is not an eigenstate of S2.

Returning to the solid, the above example of H2 shows why a spin-
unrestricted SCF or HF calculation for a nonmagnetic solid may predict
erroneously, e.g., an antiferromagnetic ground state. The price paid for an
energy gain due to a reduction of the ionic configuration is a wavefunction
with incorrect symmetry properties.
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2.5 Missing Features of the Independent-Electron
Approximation

The SCF approximation is the best one when electrons are treated as inde-
pendent of each other. This implies that an electron of the system interacts
with the other ones according to their average location. In reality, however,
the electronic motion occurs according to the other electrons’ actual place-
ment. [Side remark: imagine the effect on daily traffic, if cars interacting by
hard core repulsions moved according to where the other cars are on average

and not according to their actual position]. The Coulomb repulsion between
electrons becomes sufficiently reduced only when a correlated motion of the
electrons takes place. What is missing in the SCF approximation is the corre-
lation hole which an electron carries with it in addition to the exchange hole
discussed before. It prevents electrons, in particular those with opposite spins,
to come too close to each other. The difference between the exact N -electron
wavefunction and its Hartree-Fock counterpart is therefore related to the cor-
relation aspect of the electron motion. Consequently, the correlation energy
of a system is defined as the difference between the exact energy and the SCF
or HF energy. The missing correlation hole shows up in the pair-distribution
function g(r, r′). The latter is defined by the probability of finding an electron
at point r′ provided there is one at point r relative to the one without that
constraint. An example is the homogeneous electron gas for which g(r, r′) is
discussed in the next section.

If electrons are treated as being uncorrelated, charge fluctuations at an
atomic site of the solid turn out too large. In order to illustrate this important
point in more detail, it is instructive to consider first a molecule instead of a
solid. The π electron system of the benzene molecule C6H6 is well suited in
order to explain the point we want to make. The π molecular orbitals of that
molecule have the simple form

φµ(rσ) =

6
∑

n=1

dµnpz(n)σ (2.48)

if we reduce the basis function for site n to one real function pz(n) (see Fig.
2.1). The six π electrons of C6H6 fill the lowest three energy levels with two
electrons each. Imagine the ground-state wavefunction |ΦSCF〉 decomposed
into a number of different terms (configurations), two of which are schemati-
cally shown in Fig. 2.2. They are obtained by inserting the six functions (2.48)
into the Slater determinant (2.15) and decomposing it into different products
of the functions pz(n). Notice that the Coulomb repulsions between electrons
are quite different in the two configurations shown in that figure. The one in
Fig. 2.2a is energetically less favorable than the one in Fig. 2.2b because of
the much larger Coulomb repulsions. The former contains large charge fluc-
tuations, i.e., deviations from the average charge distribution. The carbon pz
orbitals are seen to be either empty or doubly occupied, while on the average
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Fig. 2.1. pz atomic-like orbitals for the description of valence electrons in C6H6.

Fig. 2.2. Two configurations contained in the Slater determinant for the ground
state of the π electrons in C6H6: (a) unfavorable and (b) favorable configurations as
far as the Coulomb interactions are concerned.

there is one π electron per carbon atom. The important point is that unfavor-
able configurations (like the one in Fig. 2.2a) have too large a weight in |ΦSCF〉.
Electron correlations suppress them partially, thereby lowering the energy of
the system. The degree of suppression depends on the reduction of kinetic en-
ergy gain associated with it. The latter counterbalances the Coulomb-energy
gain.

Very similar arguments hold true for a solid. There are again unfavorable
and favorable configurations, two of which are shown in Fig. 2.3. One no-
tices that the configuration in Fig. 2.3a is particularly favorable because the
electron spins at the C sites are nearly arranged as required by Hund’s rules.

The partial suppression of unfavorable configurations can be made more
quantitative. For that purpose we assume that the bonds are well localized,
and that they contain two electrons each. The probability of finding both
electrons of a bond in the same sp3 hybrid of an atom is 1/4 in SCF approx-
imation. Therefore the chance of finding at a C atom eight valence electrons
is 1/256 (= (1/4)4). This value is too high in view of the Coulomb repulsions
which are very large when eight instead of four valence electrons occupy a site.
Inclusion of electron correlations reduces that chance by 85%. The same holds
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(a) (b)

Fig. 2.3. Favorable (a) and unfavorable (b) configurations of electrons in a diamond-
like structure. Only 10 bonds of the infinite system are showed. In the favorable
configuration electrons are better separated from each other than in the unfavorable
one.

Fig. 2.4. Schematic plot of the probability P (ν) of finding ν valence electrons on a C
atom in diamond or a hydrocarbon molecule with C-C bonds when the SCF ground
state and when the correlated ground-state wavefunction are used. (From [366])

true when we calculate the probability of finding seven valence electrons or
zero or one at a C site. All these probabilities are too high in the SCF approx-
imation and they are reduced by including correlations. This is illustrated in
Fig. 2.4. For well-localized bonds as in diamond the probability distribution
PSCF(ν) of finding ν valence electrons at a C site is nearly a Gaussian one,
i.e.,

PSCF(ν) = αexp[−(ν − ν0)
2/(2∆n2)] . (2.49)

The three parameters contained in it, i.e., α, ν0 and ∆n2 are determined by
the three moments
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Fig. 2.5. Spatial segmentation of the atomic volume at a C site. The three rings
indicate three different sets of hybrid functions with varying radial decrease. A four-
fold angular segmentation can be obtained from hybridized s− p functions, whereas
a 12-fold subdivision requires also d functions. (a) An unfavorable configuration; (b)
a favorable one.

∑

ν
PSCF(ν) = 1

∑

ν
νPSCF(ν) = n̄

∑

ν
ν2PSCF(ν) = ∆n2 + (n̄)2 . (2.50)

The first condition normalizes the probability distribution, while the second
and third equations determine the average valence number n̄ = 4 and the
average of the squared number (note that ∆n2 + (n̄)2 = n2). If we assume
that the probability distribution Pcorr(ν) for the correlated ground state can
also be approximated by a Gaussian, we can use the reduction of the second
moment, i.e.,

(n2)SCF − (n2)corr

(n2)SCF

< 1 (2.51)

in order to quantify the importance of electron correlations, for a particular
system. The subscripts SCF and corr refer to |ΦSCF〉 and to the ground-state
wavefunction |Ψ0〉 containing correlations, respectively.

Those correlations which reduce charge fluctuations at an atomic site can
be described by a minimal basis set and shall be called interatomic from now
on. They are supplemented by intra-atomic correlations.

Consider a C site with ν valence electrons. They arrange themselves so as
to reduce their Coulomb repulsion as much as possible, i.e., so as to minimize
the sum of the kinetic and potential energy. Fig. 2.5 shows a segmentation of
the atomic volume of a C atom with five electrons. Describing it requires a
larger basis set than a minimal one. The segments can be constructed from
sets of hybridized angular-momentum functions with different spatial extent.
Again, in the independent-electron approximation, the weight of configura-
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tions in which the electrons are too close to each other proves too large. An
example of an unfavorable configuration is shown in Fig. 2.5a. Correlations
will decrease the weight of such configurations because they favor configura-
tions in which the electrons are well separated as in Fig. 2.5b. In particular,
when one electron is close to the nucleus, the others stay preferably further
away from the latter (in-out correlations). Similarly, the electrons prefer to
stay relatively uniformly distributed over the different angular segments of
the atom (angular correlations). In order to describe accurately intra-atomic
correlations, one needs a very fine spatial segmentation and hence large basis
sets including high angular momenta. The above examples show the severe
limitations and shortcomings of the independent-electron approximation.



3

Homogeneous Electron Gas

The homogeneous electron gas has served for a long time as a simple model for
ordinary metals. In particular it has been used as a model system to study the
effect of complete screening, an important hallmark of metallic behavior. It is
interesting that the SCF approximation leads here to an unphysical density of
states at the Fermi energy. It results from the long-range part of the Coulomb
interaction. The response to it, i.e., the screening cloud is missing when uncor-
related electrons move through the system. The random phase approximation
(RPA) discussed in Sect. 3.2 stands for its description. When applied to the
ground-state wavefunction it includes the zero-point fluctuations of plasmons,
the collective excitations of Coulomb interacting electrons. At low densities
the Coulomb repulsion of the electrons is more important than the kinetic en-
ergy gain caused by delocalization. As a result the homogeneous gas becomes
unstable against crystallization, because the latter strongly reduces the mu-
tual Coulomb repulsions of electrons. The electrons form a Wigner crystal.
This is discussed in Section 3.3. In between the liquid and the solid phase,
there is a liquid phase with a broken rotational symmetry.

The kinetic energy gain due to delocalization can be also reduced by apply-
ing a magnetic field perpendicular to the plane of a two-dimensional homoge-
neous electron gas. When the field becomes large enough, we enter the strong
correlation limit. The cyclotron orbitals of the electrons decrease to a mini-
mum required by the uncertainty principle and the kinetic energy is reduced
to zero point motions. All electrons are in the lowest Landau level in this case.
It is found that at certain field strengths, which depend on the density of the
two-dimensional electron gas, the system is an incompressible liquid – a spe-
cial feature of the strong correlations. Instead of forming a Wigner crystal the
system remains a liquid with highly unusual properties like excitations with
fractional charges (fractional quantum Hall effect). Those unusual features
are discussed in Sect. 14.2 together with other possible origins of fractional
charges.
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3.1 Uncorrelated Electrons

We consider a homogeneous electron gas with the compensating positive
charges distributed uniformly over the volume (jellium model). This way
charge neutrality is achieved without introducing any inhomogeneities. When
we apply the HF approximation a number of interesting results are obtained
which we will now discuss.

The normalized HF eigenfunctions of a homogeneous electron gas are
plane-wave states Ω−1/2 exp[ikr], where Ω is the total volume. Therefore,
the ground state |ΦHF 〉 can be expressed in terms of creation operators c+kσ
of plane-wave states as follows

|ΦHF〉 =
∏

|k|≤kF

c+kσ|0〉 . (3.1)

All plane-wave states with momentum less than the Fermi momentum kF
are occupied with two electrons each while all other states are empty. Let
n̂kσ = c+kσckσ denote the occupation-number operator with eigenvalue nkσ.
Then it follows that

n̂kσ|ΦHF〉 = nkσ|ΦHF 〉 (3.2)

with

nkσ =

{

1 |k| ≤ kF ,
0 |k| > kF .

(3.3)

In order to calculate the ground-state energy we express the Hamiltonian
in terms of plane-wave operators and split it into a kinetic energy- and an
interaction part

H = H0 +Hint,

H0 =
∑

pσ

εpc
+
pσcpσ,

Hint =
1

2Ω

∑

pkq

σσ′

vqc
+
p+qσc

+
k−qσ′ckσ′cpσ . (3.4)

Here εp = p2/(2m) is the kinetic energy of an electron. The interaction matrix
element is

vq =
4πe2

q2
(1 − δq0) , (3.5)

where the Kronecker δq0 ensures that vq=0 = 0 because the homogeneous
system is charge neutral.

The ground-state energy E0 is obtained from (2.19). The direct Coulomb
interaction does not contribute because of vq=0 = 0. Therefore only the kinetic
and exchange energy have to be calculated. Thus
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E0 =
∑

pσ

εpnpσ +
1

2Ω

∑

pq

σ

vq〈ΦHF|c+p+qσc
+
pσcp+qσcpσ|ΦHF〉 . (3.6)

When the kinetic-energy term is summed over the states with |k| < kF we
obtain the following contribution per electron

Ekin

N
=

(

3

5

)

k2F
2m

. (3.7)

The exchange contribution is

Eex

N
=

1

2NΩ

∑

pqσ

vqnp+qσnpσ

= − 1

NΩ

∑

|k1|<kF

∑

|k2|<kF

4πe2

|k1 − k2|2
. (3.8)

The evaluation of the integral

I =

∫

k1,k2<kF

d3k1d
3k2

1

|k1 − k2|2

= 4π2k4F (3.9)

is found in [242], for example. Expressed in terms of the electron density
ρ = N/Ω, the exchange energy per electron can be written as

Eex

N
= − 2e2k4F

(2π)3ρ

= −3e2kF
4π

. (3.10)

Here kF and ρ are related through

2

(2π)3
4π

3
k3F = ρ . (3.11)

The prefactor results from the spin and the fact that the phase space is in
units of h3, instead of ~3, where h is Planck’s constant. Often a mean radius
per electron r0 is used as a characteristic length, which is related to the total
electron number N through

4π

3
r30N = Ω . (3.12)

In units of Bohr’s radius aB (see Table 3.1) r0 defines a dimensionless number

rs = r0/aB (3.13)
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in terms of which the Fermi momentum kF is

kF =
1

αaBrs
, α =

(

4

9π

)1/3

= 0.521 . (3.14)

When expressed as function of rs, the energy per electron takes the following
form in atomic units

E0

N
=

3

10

1

α2r2s
− 3

4π

1

αrs
a.u.

=
1.105

r2s
− 0.458

rs
a.u. . (3.15)

Notice that for small values of rs (high densities), the kinetic-energy term
dominates. As rs increases the exchange contribution increases too and even-
tually gives binding (E0 < 0). In the low-concentration limit (rs → ∞) the
exchange contribution dominates. Electron correlations, neglected in the HF
theory, become very important. In the limit of large rs electrons minimize
their mutual Coulomb repulsions by forming a lattice (Wigner lattice). Met-
als have typically rs values in the range of order unity: for Li, Cu and Al
one finds rs = 3.2, 2.7 and 2.1, respectively. Owing to the neglect of electron
correlations, binding energies for metals generally turn out much too small in
the independent-electron or HF approximation.

Another serious deficiency of the HF approximation appears when we cal-
culate the eigenvalues ωkσ of the single-particle plane-wave states. They are
computed according to (2.30–2.32) and we find that

ωkσ =
k2

2m
− 1

Ω

∑

q

4πe2

q2
nk+q,σ . (3.16)

The sum over q can be performed with the result that

Table 3.1. Atomic units and their equivalents. The three basic quantities are the
electron mass and charge (e,m) and Planck’s constant(~)

Quantity Atomic unit Equivalent

Length aB = ~
2

me2
52.9 pm = 0.529 Å

Energy Eh = e2

aB
4.3597 × 10−20 J = 27.211 eV

Time t = ~

Eh
2.419 × 10−17 s

Probability density |ψ|2 = 1
a3
B

6.749 × 1030 m−3 = 6.749 Å−3

[6.749 × 10−6 pm−3]
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ωkσ =
k2

2m
− e2kF

2π

(

2 +
k2F − k2

kkF
ln

∣

∣

∣

∣

k + kF
k − kF

∣

∣

∣

∣

)

=
k2

2m
− e2kF

2π
F (k/kF ) . (3.17)

Due to the appearance of the logarithm we find a singularity in the deriva-
tive dω/dk when k = kF . It can be traced back to the long-range part of the
Coulomb interaction, i.e., to the q−2 behavior of vq as q → 0. According to
(2.32) we can consider ωkσ an electron ionization potential or affinity, depend-
ing on whether an electron is removed or added to the system (Koopmans’
theorem). Therefore ωkσ − ωkF σ plays the role of an excitation energy of the
electron gas. The density of states ρ(ω) is a measure of the number of available
excited states Ne per energy interval and unit volume. It is defined as

ρ(ω) =
dNe
dω

1

Ω

=
1

Ω

dNe
dk

dk

dω
. (3.18)

From phase-space counting we find that at the Fermi surface, i.e., for |k| = kF ,
the relation Ω−1(dNe/dk)

∣

∣

k=kF
= k2F /π

2 holds when both spin directions

are taken into account. Since dω/dk is singular for k = kF the density of
states ρ(ω) of a homogeneous electron gas vanishes at the Fermi surface in
HF approximation. This result is clearly in disagreement with experiments
on metals like Na and K, which resemble closely homogeneous electron sys-
tems. Measurements of the low-temperature specific heat, spin susceptibility,
etc. demonstrate that the density of states at the Fermi energy is nearly that
of a noninteraction electron gas, i.e., mkF /π

2. Obviously, correlation effects
neglected here remedy the errors introduced by the independent-electron ap-
proximation. Indeed, it is the screening of the long-range part of the Coulomb
interaction which modifies the density of states near the Fermi energy so that
it is of order kF /π

2 despite the fact that electron interactions are anything
but small.

An important quantity is the pair-distribution function g(r, r′). It is de-
fined by the probability of finding an electron at point r′, provided there is one
at point r relative to the one without that constraint. The pair-distribution
function is closely related to the equal-time density-density correlation func-
tion S(r, r′) defined with respect to a given state |Φ〉 by

S(r, r′) =
1

N
〈Φ|ρ̂(r′)ρ̂(r)|Φ〉 . (3.19)

The density operator ρ̂(r) is

ρ̂(r) =

N
∑

i=1

δ(r− ri) (3.20)
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where ri are the positions of the N electrons. The density is ρ(r) = 〈Φ|ρ̂(r)|Φ〉.
In accordance with the above definition the pair-distribution function is given
by

g(r, r′) =
1

ρ(r)ρ(r′)
〈Φ|
∑

i6=j
δ(r′ − ri)δ(r− rj)|Φ〉 . (3.21)

The condition i 6= j ensures that an electron does not correlate with itself.
For the homogeneous electron gas g(r, r′) = g(r − r). Taking the Fourier

transform and identifying |Φ〉 with |ΦHF〉, we find that

gHF(k) =

∫

d3rgHF(r)e
−ikr

=
1

N





1

N
〈ΦHF|

∑

i,j

eik(ri−rj)|ΦHF〉 − 1



 , (3.22)

where we have assumed a unit volume for convenience. In second quantization
the Fourier transform ρk of the density operator is

ρk =
∑

i

e−ik·ri

=
∑

pσ

c+p−kσcpσ . (3.23)

The pair-distribution function is then rewritten as

gHF(k) =
1

N

(

1

N
〈ΦHF|ρ+k ρk|ΦHF〉 − 1

)

=
1

N2
〈ΦHF|

∑

pq

σσ′

c+p+kσc
+
q−kσ′cqσ′cpσ|ΦHF〉 . (3.24)

This expression is easily evaluated and gives

gHF(k) =
N − 1

N
δ0k − 1

N2

∑

pσ

npσnp+kσ(1− δk0)

= δ0k − 1

N
+

1

N2

∑

pσ

npσ(1− np+kσ)(1− δk0) . (3.25)

Transforming back into r space, we find

gHF(r) = 1− 9

2

(

sin(kF r)− kF rcos(kF r)

(kF r)3

)2

. (3.26)

This function is displayed graphically in Fig. 3.1. The oscillations are too small
to be seen in the figure. They result from the discontinuity in the k state occu-
pation at the Fermi surface (see (3.1)). The pair-distribution function drops to
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Fig. 3.1. Pair distribution function gHF(r) for the homogeneous electron gas

0.5, at r = 0 because Pauli’s principle prevents two electrons of the same spin
from occupying the same space volume. The drop in gHF(r) is therefore called
exchange hole. In the HF approximation electrons with antiparallel spin come
arbitrarily close despite their Coulomb repulsions, which is unphysical. The
energy associated with the exchange hole is given by the contribution (3.10).
It is negative because the Coulomb repulsion of electrons with the same spin
is reduced this way. The moving electron with the exchange hole around it is
the simplest case of a quasiparticle.

3.2 Random-Phase Approximation

As pointed out before, the HF approximation gives unphysical results when
applied to a homogeneous electron gas, because the density of states vanishes
at the Fermi energy ǫF . As pointed out before, this is in disagreement with the
measurements, e.g., of low temperature specific heat C = γT for metals like
Na, which have an almost homogeneous conduction electron density. Those
experiments require a constant density of states at ǫF like for noninteracting
electrons. The failure of the HF approximation is closely related with the
long-range part of the Coulomb interaction. Indeed, it is easy to show that a
perturbation treatment of Hres (see (2.37)) yields divergent energy corrections
in every order of the perturbation due to the r−1 behavior of the Coulomb
interaction. This implies, that the contribution of Hres to the ground-state
energy is non-analytic and can be obtained only by summing up the most
divergent contribution in each order of vq. This was done by Gell-Mann and
Brueckner [144] based on earlier work by Macke [298]. The result which they
obtained for the correlation energy is

Ecorr

N
= 0.0311 ln rs − 0.048 +O(rs) a.u. (3.27)
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One notices the non-analytic logarithmic dependence of Ecorr on the elec-
tron density here represented by rs. In order to visualize the origin of the
failure of perturbation theory, we imagine an electron put as a test charge
into a metal. The conduction electrons respond to that test charge by screen-
ing it. Therefore the potential felt by the added electron from another electron
at distance r from the original one is much smaller than V (r) ∼ r−1. It turns
out that, at sufficiently large r, it is of the form

V (r) ∼ 1

r3
cos(2pF r) (3.28)

and oscillates. These are the well-known Friedel oscillations [123] and they
result from the discontinuous change of the momentum distribution npσ at
pF .

A simple ansatz for the correlated ground-state wavefunction is due to
Jastrow [215]. In first quantization its form is

ψ (r1, ....., rN ) =
∏

〈i,j〉
f̃ (ri − rj)ΦHF (r1, ....., rN )

= exp





∑

i,j

f (ri − rj)



ΦHF (r1, ....., rN )

= exp

(

∑

q

τ(q)ρ†
qρq

)

ΦHF (r1, ....., rN ) . (3.29)

By means of the function f̃(ri − rj) it reduces the amplitude of finding two
electrons close to each other. The function τ(q) is the Fourier transform of f(r)
and can be considered as a variational function. In writing the last equation
we have used the form (3.23) for ρq. The wavefunction (3.29) consists of a
part describing independent electrons and a prefactor which has the form of
a ground state of independent harmonic oscillators. The oscillator variables
are proportional to the density fluctuations ρq. The exponential prefactor in
(3.29) describes zero-point motions of density fluctuations which may give rise
to collective plasmon excitations. The determination of their energies is our
next goal. For that we have to derive and solve the equations of motion for
the ρq. Thereby a Random Phase Approximation (RPA) is made.

We start from
ρ̇q = i [H, ρq]− (3.30)

and write the Hamiltonian (2.12) in the form

H =
∑

i

p2i
2m

+
1

2Ω

∑

q

4πe2

q2
(

ρ†
qρq −N

)

. (3.31)

This leads immediately to
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ρ̇q = −i
∑

j

e−iqrj
q

m

(

pj −
q

2

)

, (3.32)

where the relation
[

pj , e
−iqrj

]

− = −q e−iqrj (3.33)

has been used. By repeating these steps we find

ρ̈q = −
∑

j

e−iqrj
1

m2

[

q ·
(

pj −
q

2

)]2

− 1

Ω

∑

q′jn

4πe2

q2
q · q′e−i(q−q′)rje−iq

′rn . (3.34)

Since it is the long-range part of the Coulomb interaction which is screened,
it suffices to consider small q values only. By taking an average with respect
to the direction of pj , we approximate

1

m2

∑

j

e−iqrj
[

q ·
(

pj −
q

2

)]2

≃ q2p2F
3m2

∑

j

e−iqrj

=
q2p2F
3m2

ρq . (3.35)

The RPA consists in keeping in the second term on the right-hand side
of (3.34) only the contribution q′ = q. Note that the neglected terms
∑

j e
−i(q−q′)rj cancel to zero when q′ 6= q and the phases appear at ran-

dom. With these approximations (3.34) becomes

ρ̈q = −
(

4πe2n

m
+

p2F
3m2

q2
)

ρq . (3.36)

This is the equation of a harmonic oscillator with eigenfrequency

ωpℓ(q) =

√

4πe2n

m
+
p2F
3m

q2 . (3.37)

In the long wavelength limit it reduces to the plasma frequency

ωpℓ =

√

4πe2n

m
, (3.38)

which is the frequency of a uniform oscillation of the electron gas of density
n against a positively charged background.

From (3.36) it is noticed that the eigenmodes characterized by a momen-
tum q are independent harmonic oscillator modes. The ground-state wave-
function for any of these modes is a Gaussian. That results in the Jastrow-
type variational ansatz (3.29). In Sect. 5.4.4 we will show how the zero-point
fluctuations of the plasma oscillations enter the ground-state wavefunction
(3.29).
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3.3 Wigner Crystal

It wasWigner who first dealt with the ground-state problem in the dilute limit
of a homogeneous electron gas [485]. It is easy to see that in this limit the
mutual Coulomb repulsion of electrons is much more important than their
kinetic energy. If 2rs is the average distance between electrons (in atomic
units) then in the dilute limit the average kinetic energy per electron scales
like

Ekin (rs) ≃
(∆p)

2

2m
∼ 1

r2s
(3.39)

because of the uncertainly relation (note that (∆p)rs ≃ 1). On the other hand,
the average potential energy scales like

V (rs) ≃
e2

2rs
. (3.40)

Thus when rs → ∞ the potential energy V (rs) dominates the kinetic one.
Therefore, the electron system will minimize the repulsive energy and accord-
ing to Wigner the way it does this is by forming a lattice. The change from an
itinerant electron system with a Fermi surface to a Wigner crystal is a liquid
to solid phase transition. It will take place when the average potential energy
〈V 〉 and kinetic energy 〈T 〉 are comparable. We want to draw attention to the
fact that 〈T 〉 can be quite different for a homogeneous electron gas and an
inhomogeneous system of the same average density. For example, when the
electrons are close to the nuclei like 3d or 5f electrons, the gain in kinetic
energy due to delocalization is much less than it is for a homogeneous system.
Therefore, for an inhomogeneous system 〈T 〉 = 〈V 〉 is fulfilled at lower values
of rs than for a homogeneous one. This point is discussed in detail in Sect.
13.2. Here we limit ourselves to treating the homogeneous electron gas.

In order to determine the critical value of rcs at which the liquid to solid
transition does occur, we have to compute accurately the energy of the two
phases. The energy of the electron liquid is given by (3.15, 3.27). In the crys-
talline phase there is first of all the Madelung energy, which scales like rs. The

exchange contribution falls off exponentially at large distances like exp
[

α
1/2
s

]

with αs ≈ 2. In addition the zero-point energy of the lattice vibrations, i.e.,
phonons has to be accounted for. The best estimates yield a dependence pro-

portional to r
−3/2
s [53]. Anharmonic correlations scale like r−2

s . This gives
us the ground-state energy in the crystalline phase of the electron system in
terms of an expansion for large rs in the form [52]

E0 =
a

rs
+

b

r
3/2
s

+
c

r2s
+ ... (3.41)

with a ≃ −1.8, b ≃ 2.7, c = −0.7.
The momentum distribution function n(p) for noninteracting electrons is

the step function (3.3). For an interacting electron liquid the discontinuity at
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Fig. 3.2. Schematic plot of n(p) for non-interacting electrons (dashed lines) and
for a Wigner lattice (solid line). The size of n(p = 0) depends on rs in the latter
case and becomes lower the larger rs gets. (From [311])

the Fermi momentum pF is reduced to Z(pF ) < 1 (see Fig. 7.3), where Z is
the quasiparticle renormalization constant. A quasiparticle consists of a bare
electron plus its correlation hole and Z(pF ) is the weight of the bare electron in
the quasiparticle. In the crystalline phase Z = 0, i.e., there is no discontinuity
in n(p) and no Fermi surface. Neither are there quasiparticles. Instead n(p)
looks like shown in Fig. 3.2. The lower the electron density, the more the
Coulomb repulsion dominates the kinetic energy. Hence the localization of
electrons increases. Therefore, n(p) approaches more and more a constant.
This argument can be made more quantitative. In the low-density limit the
only potential acting on an electron is the positive background charge within
a sphere of radius rs. Thus the potential energy is

V (r) = −e
2r2

2r3s
+ const. (3.42)

and the corresponding ground-state wavefunction is that of a harmonic oscil-
lator, i.e.,

ψ (r) =
(α

π

)3/4

e−
α
2
r2 (3.43)

with α = r
−3/2
s . With ψ(r) known the momentum distribution function is

obtained by a Fourier transformation of n(r) [311], i.e.,

n(k) =
3
√
π

r
3/4
s

exp

[

−
(

9π

4

)2/3
1√
rs

(

k

kF

)2
]

. (3.44)

Hereby it has been assumed that the orbitals (3.43) at different sites do not
overlap with each other, which is justified when rs is sufficiently large. Sim-
ilarly one can determine the pair-distribution function (3.21) for a Wigner
crystal. It differs considerably from that in Fig. 3.1 and resembles the one of
an atomic lattice. A plot of g(r) = g(r, 0) is shown in Fig. 3.3 for rs = 100.
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Fig. 3.3. Pair-distribution function g(r) for a Wigner lattice with rs = 100. (From
[311])

An estimate of the critical value of rcs is obtained by applying Lindemann’s
criterion for melting. According to it a lattice becomes unstable when the
zero-point fluctuations of the lattice vibrations have an averaged mean-square
amplitude 〈u2〉 of the order of the lattice spacing c squared, i.e., 〈u2〉1/2 = γc.
Clearly rcs depends sensitively on the choice of γ. It also depends on the way
〈u2〉 is calculated, i.e., whether it is based on an harmonic approximation or
includes anharmonicities. Therefore it is no surprise that estimates for rcs vary
considerably, i.e., between 5 and 100. The average 〈u2〉 does not only depend
on rs but also an temperature. Here an estimate of the melting temperature
Tm based on Lindemann’s criterion gives

kBTm ≃ 10−3

rs
a.u. . (3.45)

The magnetic properties of a Wigner crystal depend on the value of rs. For
values rs & 250 a ferromagnetic ground state is expected caused by direct
exchange. For smaller values of rs antiferromagnetism is likely to occur as in
the Hubbard model at half filling (see Sect. 8.2).

For an experimental observation of Wigner crystallization, two-dimensional
(2D) systems like semiconducting heterojunctions or electrons on the surface
of 4He are particularly suitable. Therefore 2D Wigner lattices have been stud-
ied in special detail by numerical methods, in particular Monte-Carlo tech-
niques. In the static limit, i.e., in the case of vanishing kinetic energy, a 2D
electron system solidifies in a hexagonal (trigonal) lattice structure. Of all 2D
lattices this one has the largest lattice spacing for a given electron density and
therefore minimizes the mutual repulsions of the electrons. In the numerical
calculations a variational wavefunction for electrons on a grid (Lx, Ly) is used
of the form

ψ (r1, ..., rN ) = exp

(

∑

i<j

f(ri−rj)

)

Det [φi (rj)] . (3.46)
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Here Det [φi (rj)] is a Slater determinant formed with plane-wave states in case
of a liquid and with localized Gaussian orbitals in case of a solid. The prefactor
is a Jastrow factor, which in the liquid phase keeps electrons better apart than
does a state described by a Slater determinant. For example f (ri − rj) can
be chosen as

f (ri − rj) = −α |ri − rj |2 . (3.47)

One finds that the liquid becomes unstable for rs & 40. Yet the Wigner solid
with localized wavefunctions φi(rj) is not the most stabile state either. This
is seen by using in the liquid phase Bloch states on a hexagonal lattice instead
of plane waves with k states limited to the first Brillouin zone. This implies
a breaking of rotational symmetry. The static density-correlation function
S(r, r′) (see (3.19)) has therefore no fully developed Bragg peaks yet. This
symmetry broken liquid state may be termed a Wigner liquid and has in the
regime 30 . rs . 80 a lower energy than both the electron liquid and the
Wigner crystal. For rs & 80 the crystal has the lowest energy. The type of
transition, i.e., true phase transition vs. simple cross-over from the symmetry
broken hexadic phase to the crystalline one is unclear at present.





4

Density Functional Theory

Density functional theory has had a major impact on electronic-structure cal-
culations. Thereby emphasis has been on ground-state properties of solids.
It has given the calculations a sounder theoretical basis than they ever had
before. Previously they depended to a considerable extent on model poten-
tials. With density functional theory this is no longer the case. The theory
has also been widely applied to energy-band calculations where its basis is,
however, much less founded than for ground-state calculations. The combina-
tion of density functional theory with new and powerful linearized methods
for solving self-consistent single-particle Schrödinger equations has led to an
outburst of electronic structure work in condensed matter physics. The theory
was developed by Hohenberg, Kohn and Sham [185, 246]. It was preceded by
the work of Slater. His Xα method contained a number of important ideas
which later entered density functional theory [417].

Density functional theory avoids the problem of calculating the many-
electron ground-state wavefunction. Instead, ground-state properties – such
as total energies, lattice constants and magnetic moments – are directly ex-
pressed in terms of the electronic density ρ(r) or spin density ρσ(r). A scheme
is provided for calculating the latter from the solution of a single-particle
Schrödinger equation with a self-consistent potential.

When the theory is applied to real solids, approximations to the general
theoretical scheme are required. The most important one is the local-density
approximation (LDA) which provides us with a simple, yet very successful
potential. The Schrödinger-like equation (Kohn-Sham equation)) which has
to be solved contains a local self-consistent potential instead of the nonlo-

cal one entering the Hartree-Fock equations. So the numerical computations
are much simpler than Hartree-Fock calculations. Yet the results are much
better since correlation effects are partially included. The LDA potentials en-
tering Schrödinger’s equation are derived from a homogeneous electron gas.
They can be improved by gradient corrections, i.e., corrections in which the
gradients of the electronic density are included. When the LDA including
gradient corrections fail, as it is the case when the electron correlations are
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strong, other kinds of improvements can be applied such as self-interaction
corrections (SIC) or a LDA+U approximation scheme, where U denotes a lo-
cal Coulomb interaction which must be estimated and put in by hand into
the calculations. There exists also a time-dependent generalization of density
functional theory, due to Runge and Gross [393], which has been applied in
order to treat excited states.

Calculations based on the density functional have the advantage of a sig-
nificant economy of computational expenses compared with calculations of a
many-body wavefunction. At the same time we may expect only limited gain
of insight into the electronic correlation problem. A detailed understanding
of the correlated motion of electrons requires information which is contained
in many-electron wavefunctions. For example, we would like to know to what
extent electronic charge fluctuations are suppressed by correlations or how
strongly spin fluctuations are enhanced. We would also like to understand to
what extent Hund’s rules are operative in a given system. This is relevant
when the question is asked, in how good or bad an approximation the param-
agnetic state, e.g., of iron may be described by a spin Hamiltonian in order to
estimate the Curie temperature. There are also experimental techniques like
Compton scattering which test the wavefunction of a system rather than the
density. Therefore, despite all the successes of density functional theory, it is
important not to neglect wavefunction-based methods.

4.1 Theory of Hohenberg, Kohn and Sham

Density functional theory is based on two theorems by Hohenberg and Kohn.
The first one states that the ground state energy E of an interacting many-
electron system in the presence of an external potential V (r) is a functional
of the electronic density ρ(r). It can be written in the form

EV [ρ] =

∫

d3r V (r) ρ(r) + F [ρ] , (4.1)

where F (ρ) is an unknown, yet universal functional of the density only, i.e.,
it does not depend on V (r). The second theorem states that the ground-
state density ρ0(r) minimizes Ev[ρ]. A particularly simple proof of the two
theorems is due to Levy [279]. Consider a given density ρ(r) and require
that it be written as the expection value of an N -electron wavefunction |ψ〉.
Furthermore, assume that there exists a set S(ρ) of different wavefunctions,
all yielding the same density ρ(r). For any given operator A, a functional in
terms of the density can be defined by requiring that

A[ρ] = min
|ψ〉ǫS(ρ)

〈ψ|A|ψ〉 . (4.2)

Stated differently, we select the particular wavefunction |ψ〉 contained in the
set S(ρ) which minimizes the expection value of A. This minimum value is
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then taken as the value of the observable A in the presence of the density
ρ(r). Equation (4.1) follows immediately, if A is identified with the sum of the
kinetic and interaction energies of the electron, i.e.,

F = Hkin +Hint, (4.3)

F [ρ] = min
|ψ〉ǫS(ρ)

〈ψ|F |ψ〉 .

This relation refers neither to a specific system nor to any particular external
potential V (r) and is universal.

We will show now that the ground-state density ρ0(r) minimizes EV [ρ]
and that this minimum value is the ground-state energy E0. Let |ψ0〉 denote
the ground state wavefunction and ρ0(r) the density associated with in.

Furthermore, consider a density ρ1(r) and denote by |ψ1〉 a wavefunction
which yields ρ1(r) and is in addition that particular member of the set S(ρ1)
which also gives F [ρ1], i.e.,

〈ψ1|F |ψ1〉 = F [ρ1] . (4.4)

Then it follows that

〈ψ1|F + V |ψ1〉 ≥ 〈ψ0|F + V |ψ0〉 (4.5)

since |ψ0〉 is the ground state and F + V = H . From the definition (4.4) of F
and EV [ρ], (see (4.1)), one obtains

E[ρ1] ≥ E0 (4.6)

because by definition E0 = 〈ψ0|H |ψ0〉. From (4.6) it follows that for the
particular density ρ1(r) = ρ0(r), the energy E[ρ] is minimized and equal to
the ground-state energy, i.e.,

EV [ρ0] = E0(V ) . (4.7)

The above arguments are easily generalized to spin-polarized systems,
where the role of the density ρ(r) is taken by the spin-density matrix

ρσσ′ (r) = 〈ψ|ψ+
σ (r)ψσ′ (r)|ψ〉 . (4.8)

Equation (4.18) is then replaced by

A[ρσσ′ ] = min
|ψ〉ǫS(ρσσ′ )

〈ψ|A|ψ〉 , (4.9)

where all wavefunctions |ψ〉 which yield a given spin-density matrix ρσσ′ are
included in S(ρσσ′ ). Similarly, the ground-state energy is obtained from the
ground-state spin-density matrix. The external potential may be spin depen-
dent.
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As pointed out before, F [ρ] is a unique-though unknown-functional of the
density ρ(r). In order to apply the theory, approximations have to be made.
Before describing them, we will show how ρ(r) is obtained from the require-
ment that EV [ρ] be minimized. For that purpose F [ρ] is divided into

F [ρ] =
e2

2

∫

d3r d3r′
ρ(r)ρ(r′)

|r− r′| + T0[ρ] + Exc[ρ] . (4.10)

The first term describes the Coulomb repulsion of the electrons (Hartree-
term). From the rest we single out the kinetic energy T0[ρ] of a system of
noninteracting electrons with the same density ρ(r) as the interacting one.
What remains is Exc[ρ], which is usually called the exchange and correlation
energy. It should be noted that T0[ρ] is not the true kinetic energy of the
system, which would be hard to calculate owing to the many-body effects;
instead, it is the kinetic energy of a fictitious, noninteracting system with the
ground-state density ρ(r). The part of the kinetic energy which is difficult
to calculate is contained in Exc[ρ]. It also includes the exchange and the
remaining correlation energy. In order for EV [ρ] to be minimized, the density
ρ(r) must satisfy the variational equation

∫

d3r δρ(r)

{

V (r) + e2
∫

d3r′
ρ(r′)

|r− r′| +
δT0[ρ]

δρ(r)
+
δExc[ρ]

δρ(r)

}

= 0 . (4.11)

Since the total electron number is conserved, the variation δρ(r) has to
fulfill the subsidiary condition

∫

d3r δρ(r) = 0 . (4.12)

The crucial point is that (4.11) is also the condition for a system of non-
interacting electrons moving in an effective external potential

Veff (r) = V (r) + e2
∫

d3r′
ρ(r′)

|r− r′| + vxc(r) , (4.13)

where the last contribution, the local exchange-correlation potential vxc(r) is
defined through

vxc(r) =
δExc[ρ]

δρ(r)
. (4.14)

The equivalence of (4.11) to that of a noninteracting electron system in an
external potential Veff(r) has become possible because of the way the kinetic
energy has been divided into T0[ρ] and a remaining part included in Exc[ρ].
This division is a key point for making density functional theory a useful tool
for practical calculations. It implies that ρ(r) can be obtained by first solving
a Schrödinger equation of the form

(

− 1

2m
∇∇∇2 + Veff(r)

)

χµ(r) = εµχµ(r) , (4.15)
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and then determining it from

ρ(r) = 2

N/2
∑

µ

|χµ(r)|2 . (4.16)

The sum is over the eigenfunctions with the lowest eigenvalues. Since
Veff(r) depends on ρ(r), the equations (4.15), (4.16) must be solved self-
consistently. They are often referred to as Kohn-Sham equations. Note that
the χµ(r) should not be used to construct a ground-state wavefunction, e.g.,
in form of a Slater determinant or else. Within the frame of density functional
theory nothing can be said about the form of the total wavefunction.

The real eigenvalues ǫµ do not describe electronic excitation energies which
are generally complex quantities due to lifetime effects. But for metallic infinite
systems with extended states the energy of the highest occupied level ǫN/2
turns out to be equal to the chemical potential µ. The Fermi energy is therefore
correctly reproduced by density functional theory. A similar statement cannot
be made as regards the shape of the Fermi surface. Despite this the ǫµ, or
better the ǫν(k) where ν is a band index and k is the momentum of a Bloch
state, are often successfully interpreted as energy bands of a solid. This has
contributed significantly to the wide application of density functional theory.

The complexity of the many-electron problem is contained in the unknown
exchange-correlation potential vxc(r). By making reasonable approximations
for it we can hope to deal in a simple way with this highly complex problem.
Indeed, the simplest possible approximation, the local-density approximation,
has proven very successful. There are a number of good textbooks on density
functional theory available see, e.g., [97, 109].

4.2 Local-Density Approximation and Extensions

In the local-density approximation (LDA) the exchange-correlation energy
Exc[ρ] is replaced by

Exc[ρ] =

∫

d3rρ(r)εxc(ρ(r)) , (4.17)

where ǫxc(ρ(r)) is the sum of the exchange and correlation energy per electron
of a homogeneous electron gas of density ρ. This quantity can be calculated
with good accuracy for a wide range of densities and therefore is considered
to be known. Then

vxc(r) =
d(ρ(r)εxc(ρ(r)))

dρ(r)
(4.18)

is a direct function of ρ(r) and the Schrödinger equation (4.15) becomes much
easier to solve than the Hartree-Fock equation with the nonlocal exchange
potential (see (2.33)). At the same time (4.15) contains correlations because of
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vxc(r) entering it. The results are therefore superior to those of an independent
electron or Hartree-Fock approximation.

For magnetic ground states a spin-dependent generalization of (4.15, 4.16)
is required. We obtain it by imposing a local spin-density approximation
(LSDA). Starting from (4.8, 4.9) and repeating the steps which led to (4.15)
we recover an analogous equation in (2 x 2) matrix form. The same holds
true for (4.16). The LSD employs the fact that exchange and correlation en-
ergy of a homogeneous electron system in the presence of an applied uniform
magnetic field H depend only on the density and on the magnetization, i.e.,
on the spin density parallel to the field. Therefore a convenient choice for the
two quantities are the spin densities ρ↑ and ρ↓ with ρ = ρ↑ + ρ↓. The energy
ǫxc(ρ(r)) in (4.17) is therefore replaced by ǫxc(ρ↑(r), ρ↓(r)) and the 2 x 2
matrix equation reduces to the coupled equations

(

− 1

2m
∇2 − µBσ ·H(r) + V eff

σ (r)

)

φµσ(r) = εµσφµσ(r) , (4.19)

which include a Zeeman term. The spin-dependent effective single-particle
potential is given by

V eff
σ (r) = V (r) + e2

∫

d3r′
ρ(r′)

|r− r′| + vxcσ (r) (4.20)

with

vxcσ (r) =
d

dρσ(r)
{[ρ↑(r) + ρ↓(r)] εxc(ρ↑(r), ρ↓(r))} . (4.21)

The spin densities are obtained from the functions φµǫ(r) via

ρσ(r) =

occ
∑

µ

|φµσ(r)|2 , (4.22)

where the sum is over all occupied orbitals with spin σ.
As pointed out above, we use for the exchange-correlation potential vxc(r)

the one of a homogeneous electron gas for a spin density ρσ. In Sect. 3.1 we
have discussed the exchange energy of a homogeneous system (see (3.10)), and
in Sect. 3.2 the leading correlation contributions to the ground-state energy
have been pointed out. Here it suffices to simply state the results for vxcσ
in a parameterized form with a proper inclusion of the magnetization. For
that purpose we introduce two dimensionless parameters, which specify the
homogeneous gas. One is rS defined in (3.12). It is related to the density
through

1

rS
= aB

(

4π

3
ρ

)
1
3

. (4.23)

The second parameter is mS = (ρ↑ − ρ↓)/ρ and characterizes the spin po-
larization of the system. In terms of rS and mS the potential vxcσ can be
approximated by
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Fig. 4.1. Density gradient in bulk Cu. (From [159])

vxcσ = −0.611

rS

(

β(rS) +
1

3

δ(rS) mSσ

1 + 0.297mSσ

)

, (4.24)

where σ = ±1 and

β(rS) = 1 + 0.0545rS ln

(

1 +
11.4

rS

)

δ(rS) = 1− 0.036rS − 1.36rS
(1 + 10rS)

. (4.25)

This special parameterization goes back to [160]. Other parameterized forms
have been used too, but the uncertainties caused by the different choices
remain smaller than the ones generated by the LSD approximation itself.

From the above it seems clear that the LDA will work better, the less the
electronic density changes in the unit cell. If the density changes are large,
we must provide for additional density-gradient corrections [267,268]. Instead

of the density we may also use the Fermi momentum kF (r) = (3π2ρ(r))
1
3 as

a variable for spin-unpolarized systems. The generalized gradient corrections
are taken into account by writing

Exc[kF ] = ELDA
xc [kF ] + δEGG[kF ] , (4.26)

where ELDA
xc [kF ] is the LDA contribution. In order to determine δEGG(kF ) it

proves useful to introduce a dimensionless measure of the density gradient

λ(r) =
1

2

|∇ρ(r)|
ρ(r)kF (r)

. (4.27)

Even in metals λ(r) can be appreciable. This is seen in Fig. 4.1, where the
density gradient in bulk Cu is shown.

The gradient correction δEGG[kF ] is of the general form
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δEGG[kF ] =

∫

d3rF (kF (r), λ(r)) . (4.28)

Several expressions have been suggested for the function F (kF , λ) [143]. An
especially successful one is

F (kF , λ) =
e2

18π3
λ2
(

e−bλkF − 7

18

)

, (4.29)

where b ≃ 1.2. For arguments why this form suggests itself we refer to the
original literature.

Another way of comparing different generalized gradient approximations
(GGA) with respect to each other is by defining an exchange-correlation en-
hancement factor Fxc(rS(r), λ(r)) through

EGGA
xc [kF ] =

∫

d3rρ(r)ǫx(ρ(r))Fxc(rS(r), λ(r)) , (4.30)

where ǫx(ρ) is the exchange-energy per electron of a homogeneous electron
gas of density ρ (see (3.10)).

Successful functional dependences of Fxc(rS , λ) have been constructed by
Perdew, Wang and Becke [23,24,360,361]. An especially popular one is called
PW 91 [360]. Generalized gradient corrections improve considerably the qual-
ity of ground-state calculations for solids. One noticeable improvement is a
correct ferromagnetic ground state for bcc Fe which LDA does not reproduce.
But some problems do remain, e.g., it is difficult to produce for FeO or CoO an
insulating antiferromagnetic ground state. The differences of various forms of
EGGA

xc [kF ] are often of similar size as those between Exc[ρ] and E
GGA
xc [kF ]. For

a critical evaluation of gradient correlations see, e.g., Ref. [118]. The cohesive
energy of silicon is found to be 4.64 eV per unit cell when the PW 91 version
is used as compared with 5.35 eV within LDA. The experimental value is 4.63
eV. The almost exact agreement for silicon is somewhat fortuitous, though.
The corresponding lattice constants are a = 5.37Å (LDA) and a = 5.59Å
(PW 91) while the experimental value is aexp = 5.43Å.

As pointed out in Sect. 2.3, the Hartree-Fock equations do not contain any
unphysical self-interactions because the contributions from the charge density
and exchange density to the potential energy cancel each other in an orbit
by orbital basis (see (2.33)). The same cancellation takes place in (4.10) if we
use the correct energy Exc[ρ]. However, when an approximation is made like
the LDA or LSDA, the cancellation is incomplete. As a result an electron in
a H atom provides an unwanted self-interaction contribution to the energy.
Self-interactions can be avoided by a self-interaction correction (SIC) to the
local spin-density approximation [362]. We write for the corrected exchange-
correlation energy functional
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ESIC
xc = ELSD

xc [ρ↑(r), ρ↓(r)]−
∑

iσ

∆iσ

∆iσ =
e2

2

∑

iσ

∫

d3r d3r′
ρiσ(r)ρiσ(r

′)

|r− r′| +
∑

iσ

ELSD
xc [ρiσ, 0] . (4.31)

The SIC consists of subtracting two terms from ELSD. One is the Coulomb
self-interaction of an electron in an orbital i with orbital density ρiσ(r). The
second term is the exchange-correlation energy of that electron when the fully
polarized LSD expression for that orbital is used. Equation (4.31) ensures
that a single electron, e.g., in the H atom does not interact with itself, since
the exchange-correlation energy of a single, fully occupied spin orbital cancels
exactly the self-direct Coulomb interaction.

The SIC is a useful concept only when the spin orbitals φiσ(r) are localized
and are not Bloch states, for example. It shifts the Kohn-Sham orbital energies
of localized orbitals downwards. This shift can be as large as 10 eV, e.g., for
4f electrons, which act then like core states.

4.3 Strong Electron Correlations: LDA+U

The LDA and its spin dependent version LSDA have many merits and had
many successes. But as pointed out before, they can fail too, in particular
when dealing with strongly correlated electrons. Examples are the insulators
FeO and CoO which come out metallic when the LSDA is applied. Other ex-
amples are systems with heavy quasiparticles. The effective masses calculated
within the LDA disagree with experiments sometimes by more than a factor
of ten. For a molecular-field theory which the LDA is, this is not unexpected.
Charge fluctuations are grossly overrated by a mean-field treatment when the
Coulomb repulsion exceeds the kinetic-energy gain due to hybridization. We
know this from the SCF approximations, the simplest version of a mean-field
theory.

We want to point out the physical origin of these difficulties and discuss
a phenomenological extension of the LDA, namely LDA+U, which partially
avoids them. A second, quite different extension, i.e., renormalized band the-
ory is discussed in Sect. 13.1.1.

In order to understand the difficulties just mentioned we need to get ahead
of ourselves and use some of the results derived and discussed in later chapters.
Consider again a homogeneous electron system. The exact electron excitation
energies ǫexk are given by the implicit equation

εexk =
k2

2m
+Σ(k, εexk ) , (4.32)

where Σ(k, ω) is the wavenumber- and frequency-dependent electron self-
energy discussed in Sect. 7.1.
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In the LDA the eigenvalues of (4.15) are of the form ǫk = k2/2m + const.
because for a homogeneous electron gas Veff(r) = const. Being a ground-state
theory, density function theory and, hence, (4.15) must correctly describe the
Fermi energy ǫF . The latter is just the difference between the ground-state
energy of an (N+1)- and an N-electron system. This fixes the constant in
the expression for ǫk, which becomes Σ(kF , ǫF ). The exact expression for the
excitation energy differs therefore from the eigenvalues ǫk of the Kohn-Sham
equation (4.15) by

εexk − εk = Σ(k, εexk )−Σ(kF , εF ) . (4.33)

As long as the self-energy Σ(k, ω) varies sufficiently slowly with k and ω,
one may identify the eigenvalues ǫk with the excitation energies. This is seen
as follows. By expanding Σ(k, ω) we may rewrite (4.32) in the form

ω =
k2 − k2F

2m
+

(

∂Σ

∂k

)

k=kF

(k − kF ) +

(

∂Σ

∂ω

)

ω=0

ω , (4.34)

where ω is counted from the Fermi energy ǫF . The requirement that Σ(k, ω)
changes sufficient slowly with k and ω can be recast into a requirement for the
effective mass m∗ associated with the electronic excitations. In the effective
mass approximation, the ansatz ω = (k2−k2F )/2m∗ is made for the excitation
energies. From (4.34) it follows that the effective mass is given by

m∗

m
=

1− (∂Σ/∂ω)ω=0

1 + (m/kF )(∂Σ/∂k)k=kF
. (4.35)

Therefore requiring that ǫexk ≃ ǫk is well described by LDA is equivalent to
the requirement that m∗/m ≃ 1. When the homogeneous electron system is
replaced by an inhomogeneous one, a similar result can be derived except that
m is replaced by the electron massmb in the presence of an external (periodic)
potential, i.e., the band mass. In systems with heavy quasiparticles (see Chap.
13) m∗/mb ≫ 1 and therefore a LDA must fail.

One way of improving the situation for d- or f -electron systems is to
extend the LDA method to one called LDA + U [11]. The central idea of that
extension is to push the occupied part of the d or f shell downwards in energy,
and to make sure that an additional electron added to the d(f) shell has an
energy much higher than ǫF . This shift is due to an effective repulsive energy
Ueff with the other d(f) electrons.

The basic idea behind LDA+U is to treat the strong correlations of d
or f electrons more accurately than in LDA. This is done by simplifying
the Coulomb repulsion between two electrons on an atomic site to a single
Coulomb integral U .

The intention of LDA + U is to combine LDA calculations with an im-
proved treatment of the on-site interaction U . In order to derive an appro-
priate value for the model parameter U , we use that n electrons at a given
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site and repelling each other with energy U have a total repulsive energy
E(n) = (U/2)n(n− 1). This implies that

U = E (n+ 1) + E (n− 1)− 2E (n) . (4.36)

One may use the LDA in order to determine the E(n) and from them the
screened interaction U . For that purpose one sets, e.g., the hybridization ma-
trix elements of the atomic-like d orbitals with the surroundings, equal to zero.
By keeping the d electron number nd fixed, one allows the other electrons to
relax self-consistently. By varying nd the ground-states energies E(nd) are
calculated within the LDA and U is obtained from U = d2E(nd)/d

2nd. For
transition metal ions typical values of U vary from 6 - 8 eV.

In a generalized version of the above model one includes the spin depen-
dence of the on-site interactions per site. The repulsion energy of two electrons
on a given site differs by the exchange energy J depending on whether the
two spins are parallel or antiparallel. Note that J is usually of order 1 - 2 eV
and therefore much smaller than U . The interaction energy for site ℓ reads

Eint(ℓ) =
1

2

∑

i,j,σ

Uniσ(ℓ)nj−σ(ℓ) +
1

2

∑

i6=jσ
(U − J)niσ(ℓ)njσ(ℓ) . (4.37)

The LDA is an orbital-independent molecular-field approximation. It replaces
the occupation numbers niσ(ℓ) by the average occupation n0(ℓ) = nd(ℓ)/10,
where

nd(ℓ) =
∑

iσ

niσ(ℓ) . (4.38)

By using (4.37) the total energy is written as

E = ELDA +
U

2

∑

ℓijσ

δniσ(ℓ)δnj−σ(ℓ) +
(U − J)

2

∑

ℓi( 6=j)σ
δniσ(ℓ)δnjσ(ℓ), (4.39)

where ELDA is the total energy in LDA and δniσ(ℓ) = niσ(ℓ) − n0(ℓ). The
potential which enters the Kohn-Sham equation is obtained from δE/δniσ(ℓ)
as

V eff
iσ (ℓ) = VLDA + U

∑

j

δnj−σ(ℓ) + (U − J)
∑

j 6=i
δnjσ(ℓ) . (4.40)

The LDA potential VLDA refers to a charge density with nd(ℓ) d electrons.
The last two equations show that results different from LDA are expected only
in the case of different spin- or orbital occupancies, i.e., when the δnjσ 6= 0.
Otherwise LDA+U in its present form reduces again to LDA. The above
scheme can be improved by replacing n0(ℓ) by its spin dependent components
n0σ(ℓ) = 1

5

∑

i niσ(ℓ), i.e., the average is taken separately for the two spin
components. In that case one starts from the LSDA instead of the LDA in
order to be consistent. One notices that the Coulomb energy U ≫ J enters
the spin-dependent potential V σeff(ℓ), i.e., the deviations from LDA.
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The difference between LDA and LDA+U is seen most easily by restricting
oneself to one orbital and one electron per site. In that case (4.40) becomes

V eff
σ (ℓ) = VLDA + Uδn−σ(ℓ)

= VLDA + U

(

1

2
− nσ(ℓ)

)

, (4.41)

where nσ(ℓ) + n−σ(ℓ) = 1 and n0(ℓ) = 1/2. Depending on the occupation
number nσ(ℓ), the potential Vσ(ℓ) is shifted by an amount, which is varying
from U/2 for nσ(ℓ) = 0 to −U/2 for nσ(ℓ) = 1. Thus the Coulomb repulsion
favors an unequal occupancy of the two spin orbitals. There is a potential
barrier U for occupying the orbital with a spin −σ electron when a spin σ
electron is present. Double occupancies of sites are therefore strongly sup-
pressed when U is large as compared with the hybridization matrix elements.
This provides an explanation for why CoO is an insulator and not a metal as
the LDA suggests. For a review of the LDA+U see, e.g., Ref. [8].

A quite different way of coping with the strong correlation problem within
density functional theory is provided by renormalized band theory. The ap-
proach differs fundamentally from the LDA+U one and is particularly useful
for heavy quasiparticle systems. It is based on the experimental observation
that systems like CeRu2Si2 or UPt3 are Fermi liquids at low temperatures
with the f electron participating in the formation of the Fermi surface. There-
fore a calculation aimed at determining the heavy quasiparticle energy bands
must ensure that f electron-like excitations remain close to ǫF . In order to
prevent a strong mixing with the other electrons, the hybridization matrix el-
ements of the f orbitals with the surrounding neighborhood must be strongly
renormalized. This contrasts with the LDA+U approach which reduces the
hybridization by downshifting the occupied f states. The renormalized band
structure approach has been very successful. The method is discussed in Sect.
13.1.1 in connection with heavy quasiparticles.

4.4 The Energy Gap Problem

Although density functional theory has been designed for the ground-state
properties of a system, the orbital energies of the Kohn-Sham equations (4.15)
are often identified with the energy-bands of a solid. This has worked remark-
ably well in many cases, but has led also to some serious problems. One of
these is the energy gap problem. It is well known that energy gaps of semi-
conductors and insulators are considerably overestimated when the SCF or
Hartree-Fock approximation is made. This is intuitively obvious because, when
we add (or remove) an electron from a system, the immediate neighborhood
of that particle will respond to that change and lower the energy required
for it. This is an effect of electron correlations and therefore not contained
in a SCF approximation. As a result the energy which is necessary for mov-
ing an electron from the valence to the conduction band is overestimated in
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Fig. 4.2. Schematic comparison of the pair distribution function g(0, r) for a semi-
conductor or insulator (a) in the ground state of the system, (b) when an extra
electron is added to the conduction band at point 0, and (c) when a hole is added
at 0. The oscillatory behavior in (b) and (c) is a result of the polarization which
the extra electron (hole) generates around itself. It decreases as |r|−2. The vector r
follows a bond sequence in the semiconductor and b is the bond length. (From [186])

that approximation. On the other hand, when the eigenvalues of the Kohn-
Sham equations are identified with the energy bands of a solid, energy gaps
of semiconductors and insulators come out usually much too small. As dis-
cussed before, one may even find that within the LDA or LSD approximation
an insulator or semiconductor shows metallic behavior, i.e., it does not have
an energy gap in the excitation spectrum. In the following we want to offer a
simple physical argument, why we cannot expect to obtain right energy gaps
from the LDA or derivatives of it.

Consider the ground state of a semiconductor like silicon or germanium.
The correlations are here of the van der Waals type. A charge fluctuation
in a given bond results in a fluctuating electric dipole which induces dipoles
in the other bonds. The corresponding correlation energy falls off rapidly at
large distances (see Sect. 6.1). The pair-distribution function (3.21) looks in
this case qualitatively as drawn in Fig. 4.2(a). Next let us add an electron to
the system by putting it into the lowest-energy state of the conduction band.
The resulting ground state of the (N+1)-electron system is charged and the
added electron polarizes the bonds in its neighborhood. The pair-distribution
function with the added electron at the origin must reflect this polarization
and therefore differs considerably from the one shown in Fig. 4.2(a). In the
neighboring bonds, charge is moving away from the added electron and with
two electrons in each bond the pair-distribution function oscillates as indi-
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cated in Fig. 4.2(b). The oscillations fall off like | r |−2 because the electric
field set up by the extra electron varies like | E(r) |= e/ǫr2, where ǫ is the
dielectric constant. A similar situation prevails when an electron is removed
from the top of the valence band, i.e., when we deal with the ground state
of the (N-1)-electron system. The generated hole attracts charge from the
neighboring bonds and the resulting pair-distribution function looks qualita-
tively as indicated in Fig. 4.2(c). The special features of the different pair-
distribution functions are reflected in the ground-state energy of the (N-1)-,
N-, and (N+1)-electron systems. Those findings have a strong effect on the size
of the energy gap. The response of the system to the addition of an electron
or a hole lowers the energy, which is required for that process as compared
with the corresponding Hartree-Fock value. On the other hand, the density of
an infinite system remains unchanged when one electron is added or removed,
and so does V eff

σ (r) of the LDA, see (4.13). Therefore, it comes as no surprise,
that the LDA fails to reproduce correctly energy gaps in semiconductors and
insulators. The changes in the pair distribution function shown in Fig. 4.2
cannot be accounted for by the LDA. It is also apparent that there is no sim-
ple way of resolving this inherent difficulty of a method into which only the
density of a system enters.

One way of improving the computed energy gaps is by applying the so-
called G ∗W approximation. Here G(r, r′, ω) stands for Green’s function and
W (r, r′, ω) for a dynamically screened Coulomb interaction. The ∗ indicates
a convolution of the two functions. Finding simple forms for both is essential
for applying that approximation. Constructing the Green’s function, a subject
dealt with in Chapter 7, we face no problems since the Kohn-Sham eigenfunc-
tions may be used for that purpose. Yet the dynamically screened Coulomb
interaction requires the knowledge of the nonlocal inverse dielectric function
ǫ−1, i.e.,

W (r, r′, ω) =
e2

Ω

w
d3r′′ǫ−1 (r, r′′, ω) · 1

|r′ − r′′| . (4.42)

In momentum spaceW and ǫ−1 are matrices with respect to the reciprocal lat-
tice vectorsG, G′. The dielectric matrix ǫGG′(q, ω) can be calculated without
too severe problems [116] and by numerical inversion of the matrix for each
value of q and ω the screened interaction can be found. However the convo-
lution of G and W requires an additional ω integration and that is difficult
to achieve. Therefore one usually tries to approximate the matrix ǫ−1

GG′(q, ω)
by a form which allows for an analytic ω integration. When this is done we
obtain much improved energy gaps for semiconductors, the reason being that
the long-ranged polarization cloud of an extra electron or hole is described
quite well by 1/(ǫr). Also the exchange part is improved as compared with
LDA. By replacing ǫ−1

GG(q, ω) with the unity matrix, all correlation effects are
turned off and we obtain the non-local exchange. While this is very gratify-
ing, there remains the problem of treating in a controlled way the short-range
relaxation and polarization part. For that purpose one must work in r-space,
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instead of k-space, e.g., by working with GTO’s. Like most of Green’s function
methods based on Feynman diagrams, the GW method uses k-space. That
makes it almost impossible to make controlled approximations for the short
range part of the correlations hole. Fortunately these deficiencies don’t seem
to play a major role when one compares the GW results with experiments.

The above is a sketchy outline of the essence of the method. A more
detailed discussion is beyond the scope of this introductory book and we have
to refer for it to the original literature [174, 175, 198, 199] or to [18].

4.5 Time-Dependent DFT

Time-dependent density function theory (TDDFT) is the endeavor to extend
the successful, stationary DFT to time dependent processes. It was an im-
portant achievement of Runge and Gross that they were able to formulate
a theorem considered to be the time-dependent analogue of the Hohenberg-
Kohn theorem. The arguments involved are the following.

Instead of dealing with the external potential V (r) in (4.1) we assume
here a time-dependent external potential V (r, t). It gives rise to a potential
operator

Vext(t) =

∫

d3rV (r, t)ρ(r) , (4.43)

which enters the Schrödinger equation

i
∂Φ(t)

∂t
= H̃(t)Φ(t) , Φ(t0) = Φ0 (4.44)

of the interacting electron system. Note that ρ̂(r) is given by (3.20). Except
for the time-dependent external potential, the Hamiltonian is the same as the
one used in (2.2), i.e., H̃(t) = H + Vext(t). Let us assume that by starting
from a given initial state Φ0, e.g., the ground state of H , equation (4.44) has
been solved for different external potentials Vext(t). That provides for a map
between V (r, t) and Φ(t). For a given Φ(t) we may calculate the density

ρ(r, t) = 〈Φ(t) |ρ̂(r)|Φ(t)〉 , (4.45)

This gives us a map between V (r, t) and ρ(r, t). The Runge-Gross theorem
specifies under which circumstances this map can be inverted. One notices
immediately that two external potentials which differ by a function C(t) map
to the same density ρ(r, t) as long as this function depends on time only
and not on space. This is seen as follows. The effect of C(t) is an additional
multiplicative phase factor e−iα(t) on the wavefunction with the result that
Φ̃(t) = e−iα(t)Φ(t). Here α(t) satisfies the equation dα/dt = C(t). Thus Φ(t)
and Φ̃(t) give the same density and an inversion of the map is possible only
up to a function C(t). Note that 〈Φ(t)|i ∂∂t−H̃(t)|Φ(t)〉 is independent of C(t).
When C(t) is added to Vext(t), it is canceled by the time derivative of α(t). A
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tacit assumption is that we are excluding from the beginning densities ρ(r, t)
which do not correspond to any interacting electron system in an external
potential V (r, t). An example is a discontinuous density. In other words, ρ(r, t)
must be V -representable. It is also required that the potential V (r, t) can be
Taylor expanded around t = t0. We do not reproduce the proof of the map
inversion here, but instead refer to the original literature [393]. The proof is
restricted to finite systems.

While the ground state can be obtained by minimizing the total energy,
this loses its meaning when we deal with time-dependent potentials. In that
case, the energy is no longer conserved. Therefore, the determination of ρ(r, t)
requires another starting point. One possibility is to consider the action

A =

∫ t

t0

dt

〈

Φ(t)

∣

∣

∣

∣

i
∂

∂t
− H̃(t)

∣

∣

∣

∣

Φ(t)

〉

(4.46)

and to search for its stationary point. This is in analogy to classical mechanics,
where the time evolution of a system is determined by the action

∫ t

t0
dt′L(t′)

with L(t′) denoting the Lagrangian. Note that the Schrödinger equation (4.44)
follows from δA/δ〈Φ(t)|. Indeed, it can be shown that the exact density ρ(r, t)
is the one of a stationary point of (4.46) [393]. This proof is the equivalent of
the one in DFT, which states that the ground-state density minimizes EV [ρ]
(see Sect. 4.1).

The Runge-Gross theorem is far from being obvious. One should keep in
mind that an electron system responds with retardation to an external time-
dependent perturbation. Therefore, the potential at time t has an effect on
ρ(r, t′) at a later time, i.e., for t′ > t. This effect must be correctly antici-
pated, since at t′ the density ρ(r, t′) is fixed by V (t′). Therefore it is not too
surprising that response functions calculated from (4.46) suffer from violation
of causality. However, the problem can be circumvented by making use of the
Keldysh formalism [234]. To show this in detail is beyond the scope of this
book as no additional insight is obtained into electron correlations.

The above-mentioned mapping, together with the fact that the matrix
element 〈Φ|i∂/∂t− H̃|Φ〉 is independent of C(t) implies that the action A[Φ]
can be written as a functional of the density A[ρ]. In analogy to (4.1) we split
the action into

A[ρ] = B[ρ]−
∫ t

t0

dt′
∫

d3rρ(r, t′)V (r, t′) , (4.47)

where

B[ρ] =

∫ t

t0

dt′
〈

Φ ([ρ], t′)

∣

∣

∣

∣

i
∂

∂t
−H

∣

∣

∣

∣

Φ ([ρ], t′)

〉

. (4.48)

The wavefunction Φ([ρ], t) is the one when C(t) = 0. This specification is
necessary since H and not H̃ enters B[ρ].

Note that as a consequence of the Runge-Gross theorem B[ρ] is a univer-
sal functional of ρ(r, t), i.e., its form is independent of the external potential
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V (r, t). This is a simple consequence of the definition (4.48). The correspon-
dence between B[ρ] and F [ρ] (see (4.1)) is apparent. The exact density ρ(r, t)
is obtained from the stationary point of A[ρ], i.e., from

δA[ρ]

δρ(r, t)
= 0 . (4.49)

For practical applications of the method we want to derive equations which
are the time-dependent generalization of the Kohn-Sham equation. The role
of F [ρ] is here taken by B[ρ]. By splitting off a Hartree-like interaction term
and a kinetic energy term of a noninteracting electron system with the exact
density ρ(r, t), we can decompose A[ρ] in analogy to (4.10) into the form

A[ρ] =

N
∑

µ=1

t
∫

t0

dt′
〈

χµ(t)

∣

∣

∣

∣

i
∂

∂t
+

1

2m
∇∇∇2 − Vext(t)

∣

∣

∣

∣

χµ(t)

〉

−1

2

∫

d3rd3r′
ρ(r, t)ρ(r′, t)

|r− r′| −Axc[ρ] , (4.50)

with

ρ(r, t) =

N
∑

µ=1

|χµ(t)|2 . (4.51)

The χµ(t) are spin orbitals of a fictitious noninteracting electron system. The
term Axc[ρ] contains the difference in kinetic energy of the noninteracting
and the real, i.e., interacting system, as well as exchange and correlation
contributions. Its form is unknown like Exc[ρ] in (4.10) is, and is subject
to simple, yet reasonable, accurate approximations. The action A[ρ] has a
stationary point when the χµ(t) are solutions of the generalized Kohn-Sham
equations

(

− 1

2m
∇∇∇2 + Veff(r, t)

)

χµ(r, t) = i
∂

∂t
χµ(r, t) , (4.52)

with the effective potential given by

Veff(r, t) = V (r, t) + e2
∫

d3r′
ρ(r′, t)

|r− r′| + vxc(r, t) , (4.53)

and

vxc(r, t) =
δAxc[ρ]

δρ(r, t)
. (4.54)

The second functional derivative

fxc(r, r
′, t− t′) =

δvxc(r, t)

δρ(r′, t′)
(4.55)

is called exchange-correlation kernel. Its Fourier transform is the starting
point for the linear response TDDFT, which is widely used in actual cal-
culations. The simplest, yet quite successful approximation is the Adiabatic
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LDA (ALDA). The ALDA replaces the non-local, frequency-dependent den-
sity functional by the frequency-independent local response of the homoge-
nous electron gas taken at zero frequency and zero momentum transfer and
evaluated at the local density

fALDAxc [ρ](r, r′, ω) = δ(r − r′)fhomxc (ρ(r), q = 0, ω = 0) . (4.56)

The exchange correlation kernel fxc is the appropriate starting point for recent
development to connect TDDFT with electronic structure calculations based
on the Bethe-Salpeter equation.



5

Wavefunction-Based Methods

In the previous chapter we discussed density-functional theory and various
approximations to it as a conceptually simple, yet effective scheme for go-
ing beyond the independent-electron approximation. A crucial feature of that
method is that it avoids calculating the many-electron wavefunction. Instead,
various ground-state properties such as the ground-state energy, magnetiza-
tion, etc. are calculated directly, i.e., without determination of the ground-
state wavefunction. On the other hand, it is also desirable to compute the
effects of electron correlations on the wavefunction itself given that consid-
erable insight into the correlation problem can be gained this way. For that
reason wavefunction-based methods, traditionally used in quantum chemistry
have not lost their importance. They have in addition the advantage that they
are amenable to controlled approximations, a distinct advantage as compared
to density functional theory. The computational efforts are generally much
larger than those required by applying density-functional theory, but often
this disadvantage is not crucial.

As discussed extensively in Chap. 2, the independent-electron approxima-
tion neglects the correlation hole which every electron has attached to it. It
prevents electrons from approaching each other too closely and reduces this
way their mutual Coulomb repulsion. Therefore wavefunction-based methods
must provide for a description of the correlation hole. The latter is a local
object and therefore local operators are particularly suitable for generating it.

Consider a system of N electrons which we want to describe by using L
basis functions and denote its ground state by |ψ0〉. We can always expand
|ψ0〉 in terms of a complete basis of the Hilbert space H for which we choose
the different N -electron configurations |ΦI〉. Thus

| ψ0〉 =
∑

I

αI | ΦI〉 , (5.1)

where the number of different terms is of order
(

2L
N

)

and equals the dimen-
sion of H. We may think of the |ΦI〉 as consisting of the SCF ground state
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|ΦSCF〉 and of states generated from the ground state by applying excitation
operators. Except for very small systems the Hilbert space is much too large
to be fully used. For practicable calculations it must be therefore drastically
limited. The challenge consists in finding an appropriate subspace of dimen-
sions as small as possible in order to achieve a given accuracy of the results.
The different quantum-chemical methods vary in the way they do this.

The energy is a size-extensive quantity, i.e., doubling the size of a solid im-
plies doubling the ground-state energy. Therefore, one requirement on wave-
function based methods is that they must yield size-extensive correlation-
energy contributions, i.e., the correlation energy must be proportional to
the electron number. This is not always the case, though. The popular
configuration-interaction (CI) method is not size extensive and therefore it is
applicable only to small molecules or clusters. Nevertheless, we will discuss it
here in some detail. It is not only an important technique in quantum chem-
istry, but also in computations for solids we may often determine required
matrix elements from calculations on small clusters. This will be demon-
strated when the method of increments is discussed in Sect. (5.3.1). Then
CI calculations are a useful tool. The Brillouin-Wigner perturbation theory
also lacks size extensivity. The Rayleigh-Schrödinger perturbation theory, on
the other hand, does not have this shortcoming. A simple way of ensuring
size-extensivity of the correlation energy is to formulate the theory in terms
of cumulants. They are well known from classical statistical mechanics and
Kubo has been pivotal in emphasizing their usefulness in quantum statisti-
cal mechanics. Whenever an approximation is made within a theory based
on cumulants, it will be size extensive. It guarantees also size consistency or
separability of the energy, when a system is separated into independent parts.

Various different approximations can be made when the ground-state en-
ergy is formulated in terms of cumulants. Examples are many-body perturba-
tion theory, coupled-electron pair approximations, coupled-cluster expansions,
etc. A particularly useful one is the projection or partitioning technique. This
method is a central theme of the book. Instead of expanding the ground-state
energy in powers of a small quantity, like the residual interaction energy (see
(2.36)), we partition the Liouville space ℜ of the excitation operators used to
generate the correlation hole of the electrons. It is split into a relevant sub-
space ℜ0, which is kept, and a remaining part (ℜ − ℜ0), which is discarded.
Another way of stating the same is by saying that the operators used to de-
scribe the correlation hole are projected onto ℜ0. The concept of partitioning
ℜ goes back to Löwdin [291]. By combining it with the cumulant formalism,
it is a tool whose efficiency will be demonstrated at numerous places. With its
help and using local operators, we can compute the ground state of solids with
high accuracy thereby establishing a connection to molecular calculations. An-
other distinct advantage of using cumulants is that they are also applicable
in cases when, e.g., diagrammatic approaches are difficult to formulate as is
the case for strongly correlated electrons. Diagrams represent in a pictorial
way different terms of a perturbation expansion. This is easily done according
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to Feynman when the unperturbed system is one of noninteracting electrons.
If, however, the unperturbed Hamiltonian contains already important corre-
lation effects, as it is the case when we start from electrons on atoms instead
of uncorrelated electrons, then a diagrammatic approach is difficult to set up
and becomes rather complicated.

5.1 Method of Configuration Interactions

The configuration-interaction (CI) method is a very general theory for treat-
ing electron correlations [343]. It is a variational method and as such has
the advantage of providing upper bounds for the correlation energy; it suf-
fers, however, from the problem of size extensiveness and therefore it is not
applicable to an infinite system like a solid.

Often it turns out that the SCF ground state,

| ΦSCF〉 =
N
∏

µ=1

c+µ | 0〉 (5.2)

contributes dominantly to |ψ0〉 when the expansion (5.1) is made (the spin
index σ has been included in the label µ). In this case we may use |ΦSCF〉
as a reference state and label all other |ΦI〉′s according to the differences
as compared to |ΦSCF〉. For example, they may differ from it by having one
or several of the c+µ , c

+
ν substituted by c+i , c

+
j . Here Greek indices µ, ν, etc.

are used for occupied orbitals and Latin indices i, j etc. for unoccupied (or
virtual) ones. Therefore we begin with the following expansion of the ground-
state wavefunction

| ψ0〉 =






1 +

∑

iµ

αiµc
+
i cµ +

∑

i<j
µ<ν

αijµνc
+
i c

+
j cνcµ + ...






| ΦSCF〉

=






1 +

∑

iµ

αiµω
i
µ +

∑

i<j
µ<ν

αijµνω
ij
µν + ...






| ΦSCF〉 , (5.3)

where we have set ωiµ = c+i cµ, ω
ij
µν = c+i c

+
j cνcµ and so on. The electrons

are annihilated and created in delocalized canonical molecular (or Bloch-)
orbitals (CMOs). We will later consider instead orthogonal localized as well
as nonorthogonal local orbitals. The operators ωiµ, ω

ij
µν etc. span the full space

ℜ. When we terminate the expansion (5.3) we can obtain the αiµ, α
ij
µν , etc.

by diagonalizing H within a Hilbert space of given dimension spanned by
the different configurations. Alternatively, one may consider the coefficients
as variational parameters which are fixed by minimization of the energy E =
〈ψ0|H |ψ0〉/〈ψ0|ψ0〉.
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From (5.1) we derive the following system of CI equations

∑

J

HIJαJ = EαI , with HIJ = 〈ΦI | H | ΦJ 〉 , (5.4)

provided the |ΦI〉 are orthogonal with respect to each other. Otherwise, on
the right-hand side of (5.4), αI has to be multiplied by the overlap matrix.
Identifying |ΦI=0〉 with |ΦSCF〉 and using (5.3) for |ψ0〉, we obtain from (5.4)
for the ground-state energy E0

〈H〉+
∑

iµ

〈Hωiµ〉αiµ +
∑

i<j
µ<ν

〈Hωijµν〉αijµν = E0 . (5.5)

As before, 〈...〉 = 〈ΦSCF|...|ΦSCF〉. The expansion terminates because H con-
tains one- and two-particle terms only (see (2.7)). The CMOs from which
|ΦSCF〉 is constructed follow from the stationarity condition (2.18) which im-
plies for closed-shell systems

〈Hωiµ〉 = 0 (5.6)

(Brillouin’s theorem). The ground-state energy reduces therefore to

E0 = 〈H〉+
∑

µ<ν

Eµν ,

Eµν =
∑

i<j

〈Hωijµν〉αijµν (5.7)

and the αijµν are obtained from (5.4).
When only single and double excitations are taken into account, (5.4)

simplifies to the set of two equations

∑

ν

∑

j

〈(ωiµ)+Hωjν〉αjν +
∑

ν<ρ

∑

j<k

〈(ωiµ)+Hωjkνρ〉αjkνρ = E0αiµ

〈(ωijµν)+H〉+
∑

ρ

∑

k

〈(ωijµν)+Hωkρ〉αkρ +
∑

ρ<τ

∑

k<l

〈(ωijµν)+Hωklρτ 〉αklρτ = E0αijµν .

(5.8)

Single substitutions are often only of secondary importance. They describe
changes in the electronic charge distribution due to correlations, i.e., due to
two-particle excitations. When only double excitations are kept, the ground
state |ψ0〉 has a form consisting of coupled electron-pair contributions, i.e.,

| ψ0〉 = | ΦSCF〉+
∑

µ<ν

| Φµν〉 ,

| Φµν〉 =
∑

i<j

αijµνω
ij
µν | ΦSCF〉 . (5.9)
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Equation (5.8) simplifies accordingly to

〈ΦSCF | (ωijµν)+H | ΦSCF〉+
∑

ρ<τ

〈ΦSCF | (ωijµν)+H | Φρτ 〉 = E0αijµν . (5.10)

Even when we restrict ourselves to single- and double-excitations, i.e., con-
figurations of the form ωiµ|ΦSCF〉 and ωijµν |ΦSCF〉 their number is of order
N2(2L−N)2/4. Consider the molecule CH4 as an example which has 10 elec-
trons. A minimal basis set consists of 9 basis functions, i.e., (1s, 2s, 3 × 2p)
for the C atom and four (1s) functions for the H atoms, while a DZ + P
basis set includes 35 functions. In the latter case the total number of double
substitutions ωijµν |ΦSCF〉 is 79650 of which 22500 are singlets. With to-day’s
computing facilities, we can treat up to 108 configurations. Hence we can deal
with molecules as large as C2H6 when the basis set is of DZ + P quality and
when only double substitutions are taken into account.

At this stage we want to comment on the convergence of the correlation
energy with increasing size of the basis set. This issue is related to the de-
scription of the short-range part of the correlation hole. For r → 0 the pair
distribution function (3.21) has a cusp, usually referred to as correlation cusp.
In order to describe it with sufficient accuracy, the atomic volume needs to
be divided into very fine segments (see Fig. 2.5). Thus basis function with
large angular momenta ℓ are required. An estimate of the convergence of the
correlation energy with increasing values of ℓ is obtained by considering an
He atom. A CI expansion is equivalent to an expansion of the two-electron
wavefunction in terms of spherical harmonics in this case.

Thus we write

ψ (r1, r2) =

∞
∑

ℓ=0

(

∑

i

u
(i)
ℓ (r1)u

(i)
ℓ (r2)

)

Pℓ (cosϑ12) (5.11)

where ϑ12 is the angle between r1 and r2. When we calculate the increments
to the ground-state energy from different angular momenta ℓ, we find that
they decrease like ℓ−4 [270]. Convergence is much faster if we add a term of
the form 1

2 |r1 − r2|u(r1, r2) to the right-hand side of (5.11), where u(r1, r2) is
an eigenfunction of the bare nuclear Hamiltonian. This improves considerably
the modulation of the correlation cusp.

For small molecules, e.g., H2O and basis sets up to triple zeta plus polar-
ization functions for oxygen one can perform full CI calculations. Thereby
all possible symmetry-adapted configurations which exist within that basis
set are taken into account. Calculations of this type serve as benchmark for
different approximation schemes which are later applied to solids.

An important generalization of the above CI equations are multireference
configuration interactions. If some of the electrons in a molecule are strongly
correlated, several configurations |Φn〉 may contribute significantly to the ex-
pansion (5.1). The same holds true for a solid. In that case |ΦSCF〉 is no longer
a good starting point for a correlation calculation. Consider a Li2 molecule.
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The SCF ground state is (1σg)
2(1σu)

2(2σg)
2. When the interatomic spacing is

enlarged by pulling the atoms apart, one needs in addition the configuration
(1σg)

2(1σu)
2(2σu)

2 in order to approach the limit of two separated Li atoms
in their SCF ground state. In this case the correlation calculation has to start
from two reference states.

The best way of taking M different reference configurations into account
is by means of a multiconfiguration self-consistent field (MC-SCF) calculation
onto which afterwards a CI calculation can be implemented. In MC-SCF cal-
culations, not only the weighting factors of the included |Φn〉 are optimized,
but so are the molecular orbitals contained in them. The energy of the ground
state is then of the form

E0 =
∑

ij

AiAj〈Φi | H | Φj〉 , (5.12)

with real coefficients Ai and matrix elements 〈Φi|H |Φj〉. The Ai and the or-
bitals entering the |Φn〉 are found as follows. The Ai are obtained by finding
the eigenvector to the lowest eigenvalue of the secular equation

det (〈Φi | H | Φj〉 − E0δij) = 0 . (5.13)

We obtain the appropriate one-electron orbitals φµ(r, σµ) if we require that

δE0 =
∑

ij

AiAjδ(〈Φi | H | Φj〉) = 0 (5.14)

The variation is done under the constraint that the orbitals are orthogonal to
each other. The MC-SCF ground state |ΦMC〉 is then written as

| ΦMC〉 =
M
∑

n=1

An | Φn〉 . (5.15)

A special form of a MC-SCF calculation is one which includes all configura-
tions of a defined active space. This active space must embrace the electrons
which are strongly correlated. For example, it may be spanned by the d orbitals
of a transition metal ion in a molecule or lattice. Since d electrons have usu-
ally strong on-site correlations, treating them by a simple SCF calculation is
a poor starting point for improvement. Self-consistent field calculations which
include all configurations of an active space are referred to us as Complete
Active Space SCF (CASSCF). Supplementing a MC-SCF calculation by a CI
calculation (MC-SCF-CI) we make the ansatz

| ψ0〉 =






1 +

∑

iµ

αiµω
i
µ +

∑

i<j
µ<ν

αijµνω
ij
µν






| ΦMC〉 . (5.16)
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The state |ΦMC〉 is no longer an eigenstate of the occupation-number opera-
tors nµ = c+µ cµ since it contains several different configurations. Therefore, for
active orbitals the distinction of using Greek and Latin indices for occupied
and virtual orbitals becomes obsolete. MC-SCF calculations have been per-
formed with as many as 103 configurations and up to 108 single and double
substitutions.

5.2 Cumulants and their Properties

For a unified discussion of various size-extensive correlation methods we first
introduce cumulants and discuss their properties. Cumulants are closely re-
lated to matrix elements of products of operators. In distinction to ordinary
matrix elements they do not contain any contributions from statistically in-
dependent processes. For example, consider the matrix element 〈Φ1|A1A2|Φ2〉
of two operators A1 and A2 with respect to the reference states |Φ1〉 and
|Φ2〉. The latter must have a finite overlap 〈Φ1|Φ2〉 6= 0. The cumulant
〈Φ1|A1A2|Φ2〉c is then defined by

〈Φ1 | A1A2 | Φ2〉c =
〈Φ1 | A1A2 | Φ2〉

〈Φ1 | Φ2〉
− 〈Φ1 | A1 | Φ2〉

〈Φ1 | Φ2〉
〈Φ1 | A2 | Φ2〉

〈Φ1 | Φ2〉
,

(5.17)
i.e., it subtracts or eliminates that part of the matrix element which corre-
sponds to statistically independent processes. A general definition of cumu-
lants is found as follows. Consider the function

f (λ1, λ2, ..., λM ) = ln〈Φ1 |
M
∏

i=1

eλiAi | Φ2〉 (5.18)

which depends on M parameters λ1, ..., λM and require that 〈Φ1|Φ2〉 6= 0.
This function is analytic near λ1 = λ2 = ... = λM = 0 and therefore can be
expanded in terms of the λi. The expansion coefficients define cumulants, i.e.,

〈Φ1 | A1...AM | Φ2〉c =
∂

∂λ1
...

∂

∂λM
ln〈Φ1 |

M
∏

i=1

eλiAi | Φ2〉
∣

∣

∣

∣

∣

λi=0

. (5.19)

One checks easily that (5.17) follows from (5.19). In the following we shall
assume 〈Φ1|Φ2〉 = 1, if not stated otherwise. In analogy to (5.17) one finds

〈A1A2A3〉c = 〈A1A2A3〉 − 〈A1〉〈A2A3〉
− 〈A2〉〈A1A3〉 − 〈A3〉〈A1A2〉
+ 2〈A1〉〈A2〉〈A3〉, etc. , (5.20)

where the abbreviation 〈Φ1|...|Φ2〉 = 〈...〉 has been used. By setting in (5.18)
A1 = ... = AM = A, multiplying with λn/n! and summing over n, we obtain
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ln〈eλA〉 = 〈eλA − 1〉c . (5.21)

Sometimes this expression is used to define cumulants instead of the more
general form (5.19). It demonstrates that by using cumulants we can avoid
working with the logarithm. This is of advantage, e.g., in statistical physics.

Cumulants have the property that

〈A(αB + βC)〉c = α〈AB〉c + β〈AC〉c

〈α1Φ1 | AB | α2Φ2〉c = 〈Φ1 | AB | Φ2〉c , α1, α2 6= 0 . (5.22)

When evaluating a cumulant, we must also distinguish between the number
1 and the unit operator 1op. We find that 〈1 ·A〉c = 〈A〉 while 〈1op · A〉c = 0.
Furthermore, by formally reducing in (5.19) the number of different λi to zero,
we define

〈Φ1 | 1 | Φ2〉c = ln〈Φ1 | Φ2〉 . (5.23)

We must also label special operator products, which are considered an
entity when a cumulant is evaluated. For example, when the product A2A3

is considered a unit with respect to a cumulant, we denote it by (A2A3)
•.

Generally it is
〈A1(A2A3)

•〉c 6= 〈A1A2A3〉c . (5.24)

Sometimes we have to deal with cumulants of expectation values which vanish.
Consider for example

〈ΦSCF | (ωiµ)+(ωiµ)+ωiµωiµ | ΦSCF〉c = −2〈ΦSCF | (ωiµ)+ωiµ | ΦSCF〉2 . (5.25)

Here ωiµ is defined as in Section 4.1. While the cumulant of that opera-
tor product obviously does not vanish, the expectation value does because
ωiµω

i
µ|ΦSCF〉 = 0. When the above rules are observed, calculations with cu-

mulants are as simple as those with ordinary expectation values. A number
of additional relations involving cumulants are to be found in Appendix A.

5.3 Ground-State Wavefunction and Energy

We want to derive a conceptually simple set of equations that allows for
approximate yet accurate computations of the ground-state wavefunction and
energy of a solid. The theory presented in the following is quite general and
can be applied to weakly as well as strongly correlated electron systems. We
start from a Hamiltonian H decomposed into

H = H0 +H1 . (5.26)

We assume the eigenstates and eigenvalues of H0 to be known and the
effect of H1 on the ground-state energy to be relatively small. No further
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assumptions about the above decompositions are being made. The ground
state of H0 is |Φ0〉 and for convenience is assumed to be nondegenerate, i.e.,

H0 | Φ0〉 = E0 | Φ0〉 . (5.27)

We want to find the ground state |ψ0〉 of H and its energy, i.e.,

H | ψ0〉 = E0 | ψ0〉 (5.28)

by using the eigenstates of H0. With the help of (5.19) we can write

E0 =
〈Φ0 | H | ψ0〉
〈Φ0 | ψ0〉

= 〈Φ0 | H | ψ0〉c (5.29)

provided that there is a non-vanishing overlap 〈Φ0|ψ0〉 6= 0. We also find the
important relation

〈Φ0 | AH | ψ0〉c = 0 , (5.30)

where A is an arbitrary operator because |ψ0〉 is an eigenstate of H and
therefore the matrix element 〈Φ0|AH |ψ0〉 factorizes and the cumulant vanishes
(see (5.17)).

Next we want to express the exact ground state |ψ0〉 in (5.29) and its
energy in terms of |Φ0〉. Then we have to evaluate cumulants of the form
〈Φ0|.....|Φ0〉c. This suggests a simplified notation of the form

(A | B) = 〈Φ0 | A+B | Φ0〉c . (5.31)

Note that this bilinear form is not a scalar product in the strict mathematical
sense since (A|A) need not be positive yet can vanish.

In order to find the desired relation between |ψ0〉 and |Φ0〉 we use the
identity

lim
t→∞

e−Ht | Φ0〉 = lim
t→∞

e−E0t | ψ0〉〈ψ0 | Φ0〉 (5.32)

or

| ψ0〉 =
1

〈ψ0 | Φ0〉
lim
t→∞

e−(H−E0)t | Φ0〉 . (5.33)

This implies the following form for the wave operator Ω̃ which relates |ψ0〉
and |Φ0〉 through |ψ0〉 = Ω̃|Φ0〉,

Ω̃ =
1

〈ψ0 | Φ0〉
lim
t→∞

e−(H−E0)t . (5.34)

Because of the second equation (5.22) the cumulant wave operator |Ω) can
be written as

| Ω) = lim
t→∞

| e−Ht) . (5.35)

The round bracket implies that this expression has to be used together with
the metric (5.31). Note that the effect of the operator exp(-Ht) remains finite
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even when the limit t→ ∞ is taken. In order to extract the remaining part we
take the Laplace transform to which a constant termmakes a z−1 contribution.
By multiplying that transform by z and taking the limit z → 0, we obtain the
part we are looking for. Therefore

lim
z→0

1

z
| Ω) = − lim

z→0

∞
∫

0

dt ezt
∣

∣e−Ht
)

; ℜe{z} < 0

| Ω) = lim
z→0

∣

∣

∣

∣

1

z −H
z

)

. (5.36)

This expression is rewritten as

| Ω) = lim
z→0

| 1 + 1

z −H
H)

= lim
z→0

∣

∣

∣

∣

1 +
1

z −H
H1

)

. (5.37)

The last equation results from the fact that |Φ0〉 is an eigenstate of H0

and any cumulant with |...H0) vanishes.
An equivalent expression for |Ω) is

| Ω) = lim
z→0

∣

∣

∣

∣

1 +
1

z − L0 − H1
H1

)

. (5.38)

The Liouvillean L0 which appears here, is a superoperator, i.e., it acts
on operators and not on states. We call the space spanned by operators the
Liouville space in distinction to the Hilbert space, i.e., the space spanned by
states of a given particle number. The way L0 acts on operators A is given by

L0A = [H0, A]− . (5.39)

Equation (5.38) is obtained by starting from the decomposition

e−λH = e−λ(H1+L0)e−λH0 (5.40)

and repeating the steps which lead to (5.37). The decomposition follows from
integrating the equation of motion of

R(λ) = e−λHeλH0 , R(0) = 1 , (5.41)

i.e.,

d

dλ
R(λ) = −HR(λ) +R(λ)H0

= −(H1 + L0)R(λ) . (5.42)

At this stage we want to point out that cumulants containing L0 or more
generally a superoperator L have the property that



5.3 Ground-State Wavefunction and Energy 67

〈BLA〉c = 〈B(LA)•〉c . (5.43)

A proof of that relation is found, e.g., in [243].
Within the cumulant formalism |Ω) characterizes the exact ground state

|ψ0〉. Therefore, when |Ω) is known we may claim that we know the ground-
state wavefunction! We shall use repeatedly that identification despite the
fact that |Ω) is not unique. Any other |Ω′) with (A|Ω −Ω′) = 0 for arbitrary
operators A will correspond to the same ground state |ψ0〉. For more details
see Appendix A. With this in mind we may replace (5.29-5.30) by

E0 = (H | Ω) (5.44a)

0 = (A | HΩ) . (5.44b)

The last two equations serve as a starting point for numerous different approx-
imations and therefore are central for many applications. An important point
is that size-extensivity is ensured independent of any approximation made
for |Ω). Within the cumulant formulation the problem of size-extensivity has
disappeared.

It is instructive to compare the expression for the ground-state energy
(5.44a) with the corresponding one written in terms of Ω̃, i.e.,

E0 =
〈Φ0 | HΩ̃ | Φ0〉
〈Φ0 | Ω̃ | Φ0〉

. (5.45)

In quantum-field theory where Feynman diagrams are used, the denomi-
nator can be eliminated by taking into consideration only linked or connected
diagrams. When (5.44a) is used instead, there is no denominator which has
to be canceled. Since cumulants eliminate any contribution from statistically
independent processes, unlinked or disconnected diagrams do not appear a
priori. Hence, energies written in terms of cumulants are size extensive. In-
stead of (5.44a) we may also write

E0 = (Ω | HΩ) , (5.46)

where use of (5.37) and (5.44b) has been made. This is a special case of a
more general relation which holds for any operator A

〈ψ0 | A | ψ0〉
〈ψ0 | ψ0〉

= (Ω | AΩ) . (5.47)

It is proven as follows. First we write

〈ψ0 | A | ψ0〉
〈ψ0 | ψ0〉

= 〈ψ0 | A | ψ0〉c . (5.48)

By applying the transformation (A3) in going over from |ψ0〉 to |Φ0〉 we
find that

〈ψ0 | A | ψ0〉c = 〈ΩΦ0 | A | ΩΦ0〉c

= (Ω | A Ω) . (5.49)
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5.3.1 Method of Increments

In the following we discuss a practical way of calculating the correlation energy
and ground-state wavefunction of a periodic solid. We assume that the SCF-
or Hartree-Fock ground state has been determined within a given set of basis
functions, e.g., by applying the program package CRYSTAL [370]. What needs
to be done is the post-SCF part. By treating a solid we are dealing with
an unlimited number of electrons. Yet in any practical calculation we can
correlate only a finite, not too large number of electrons. Therefore, we first
have to find out how we can reduce the correlation problem of a solid to
that of a relatively small number of electrons. Afterwards we will discuss
different approximate methods which enable us to deal with the problem of
few electrons (see Sect. 5.4).

One expects that a reduction of the many-electron problem to that of a
few electrons is possible in view of the small extent of the correlation hole of
an electron. One should keep in mind, however, that there remain special cor-
relations like the Cooper-pair correlation leading to superconductivity, which
extend over several hundred lattice distances and require special treatment.

The simplest case of relating the correlation problem for a given number of
particles to one of a smaller number of particles was treated by Faddeev [113].
He considered three particles interacting through a two-particle scattering
potential. Assuming that the solution of the two-particle scattering problem
is known, he used that information to set up an equation for the three-particle
scattering problem. We want to proceed here in the same spirit, i.e., we want
to use solutions of few-electron scattering problems in order to construct a
solution for the N electron scattering problem.

For this purpose we introduce the scattering matrix S of the N electron
system by writing

| Ω) = | 1 + S) . (5.50)

From (5.44a) it follows that

E0 = E0 + (H | S) . (5.51)

When we identify H0 with HSCF and H1 with the residual interactions Hres,
the correlation energy of the system is

Ecorr = (H | S) . (5.52)

More generally E0+δE0 = (H |1)+(H |S) describes the change in the ground-
state energy caused by H1.

We decompose the scattering matrix into single-site (or bond), two-sites
(bonds), three-sites etc. scattering matrices and write

S =
∑

I

SI +
∑

〈IJ〉
δSIJ +

∑

〈IJK〉
δSIJK + ... , (5.53)
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where 〈IJ〉 and 〈IJK〉 denote pairs and triples of sites or bonds. Furthermore,

δSIJ = SIJ − SI − SJ (5.54)

is a two-sites increment, i.e., the scattering matrix SIJ for sites I and J from
which the single-site contributions have been subtracted. The higher order
terms are defined accordingly. It is clear that when we continue up to the
N -th order increment the exact scattering matrix of the N electron system is
reproduced. A more detailed derivation of (5.53) starting from the form (5.37)
is found in Appendix B. By using (5.52) we may write

Ecorr =
∑

I

(H | SI) +
∑

〈IJ〉
(H | δSIJ) + ...

=
∑

I

ǫI +
∑

〈IJ〉
ǫIJ + ... , (5.55)

We want to mention that this energy expansion resembles very much the
Bethe-Goldstone expansion [32] known from nuclear physics. Contrary to that
approach we determine here also the ground-state wavefunction by specifying
|Ω) = |1 + S).

It turns out that in practice the incremental decomposition of S and Ecorr

are rapidly convergent [431]. In most cases two-body increments are sufficient
to achieve good accuracy for the correlation energy. This is discussed in more
detail in Chapter 6 where this formalism is applied to semiconductors and
insulators. There we also show how the single-site, two-sites etc. scattering
matrices can be computed. For the benefit of the reader who wants to see
right away how the formalism can be applied, we give here a brief sketch of
the way this is done.

Starting point is the SCF ground-state wavefunction written in terms of
localized, i.e., Wannier orbitals

| ΦSCF〉 =
∏

I,νσ

c+νσ(I) | 0〉 , (5.56)

where the creation operators refer to Wannier orbitals centered at site (or
bond) I with additional orbital index ν and spin σ. Note that for a metal with
partially filled bands, one cannot construct well-localizedWannier orbitals and
therefore has to proceed somewhat differently. The single-site scattering ma-
trix SI is obtained by freezing all electrons in |ΦSCF〉 except those in c+νσ(I)|0〉,
i.e., in Wannier orbitals centered at site I. They are of a small number and
therefore the scattering matrix can be calculated by any of the methods dis-
cussed below. Similarly we can determine the SIJ by freezing all electrons
in |ΦSCF〉 except for those in Wannier orbitals at sites I and J . Again, that
is still a small number and therefore poses no particular problems when the
correlation energy is evaluated. As mentioned before and shown in Chapter 6,
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an extension to three sites is usually sufficient to obtain high-quality results
for the total correlation energy.

The method of increments is not restricted to weakly correlated systems.
It can be also applied when the electronic correlations are strong. If this is the
case, different routes can be pursued. One consists in starting again from the
SCF ground state |ΦSCF〉 despite the fact that the corrections to it become
large. The one-center scattering operators SI and to a lesser degree the two-
center scattering operators SIJ must provide for the strong modifications,
e.g., by a MC-SCF calculation within a limited orbital space. An alternative
way of treating such systems is by starting from a wavefunction |Φ0〉 which
comes as close as possible to the exact wavefunction |ψ0〉. A possible choice
is to use an antisymmetrized product of the (correlated) wavefunctions of the
different atoms. Once |Φ0〉 has been chosen the cumulant scattering operator
|S) is again determined as before, but this time with respect to the special
form of |Φ0〉.

5.4 Different Approximation Schemes

After having reduced the correlation calculations for a solid to one of a few
electrons, we still need approximation schemes in order to treat the latter.
We use as starting point the set of equations (5.44a, 5.44b) with Ω given by
(5.37) or (5.38).

The simplest approximation is to expand the change in the ground-state
energy δE0 due to H1 in powers of H1. From (5.38) and (5.37) we obtain

δE0 = (H1 | 1) + lim
z→0

∞
∑

n=1

(

H1

∣

∣

∣

(

1

z −H0
H1

)n)

. (5.57)

Hereby the identity

1

a+ b
=

1

a
+

1

a
b
1

a
+

1

a
b

1

a+ b
b
1

a
(5.58)

has been used. This is nothing else but the Rayleigh-Schrödinger perturba-
tion expansion in terms of cumulants. Note that in quantum chemistry a
perturbation expansion based on HSCF as unperturbed Hamiltonian is called
Møller-Plesset expansion.

When H0 describes noninteracting electrons and H1 their interactions,
then (5.57) is known as Goldstone’s linked-cluster expansion. Goldstone de-
veloped a diagrammatic method to classify and compute the different terms
of a Rayleigh-Schrödinger perturbation expansion (5.57) [147]. When those
diagrams are analyzed, we find that only linked diagrams contribute to the
changes δE0 of the ground-state energy. Linked diagrams are those which
do not separate into disconnected parts. Using cumulants amounts to deal-
ing with linked diagrams only. Unlinked diagrams are eliminated by a cumu-
lant because they correspond to statistically independent processes. Equation
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(5.57) can be considered a generalization of Goldstone’s linked cluster theorem
to arbitrary splittings of the Hamiltonian H into H0 and H1. No diagrams
need to be considered here. By expanding (5.38) instead of (5.37) we can write
as well

δE0 = (H1 | 1) + lim
z→0

∞
∑

n=1

(

H1

∣

∣

∣

(

1

z − L0
H1

)n)

. (5.59)

The excitation energies in the denominators are obtained here through the
Liouvillean L0.

5.4.1 Partitioning and Projection Methods

The projection method provides for very useful and powerful approximations
by limiting strongly the number of operators from which the cumulant wave
operator is constructed. In practice this means that a relative small number of
excitation operators acting on |Φ0〉, (see, e.g., (5.3)) are used when the effect
of H1 on the ground-state energy is accounted for. We divide the operator
space ℜ into a relevant subspace ℜ0 spanned by a set of operators {Aν} and
a remaining irrelevant part ℜ1 = ℜ − ℜ0 which we neglect. The operator
Ω is projected onto ℜ0. By successively increasing the dimension of ℜ0, we
can improve the quality of the approximation. We assume that the Aν are
orthonormal, i.e., (Aν |Aµ) = δνµ. This suggests the ansatz

| Ω) =| 1 +
∑

ν

ηνAν) . (5.60)

We determine the parameters ην by making use of (5.44b), i.e., from

(Aν | HΩ) = 0 . (5.61)

When (Aν |H1) 6= 0 for all ν we obtain a particularly simple form for the
energy change δE(ℜ0) due to H1. The last equation

(Aµ | HΩ) = (Aµ | H1) +
∑

ν

ην(Aµ | HAν)

= 0 (5.62)

is solved by

ην = −
∑

µ

L−1
νµ (Aµ | H1) , (5.63)

where the matrix Lρτ is given by

Lρτ = (Aρ | HAτ ) . (5.64)

By virtue of (5.44a) and (5.60) the energy change is equal to
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δE(ℜ0) = (H1 | Ω)

=
∑

ν

ην(H1 | Aν) , (5.65)

showing that it consists of a sum of contributions from the different opera-
tors Aν which span ℜ0. When some of the Aν do not couple directly to H1,
i.e., when (Aρ | H1) = 0, those operators enter only indirectly δE(ℜ0) by
modifying the coefficients ην via the matrix Lρτ . We want to point out that
the projection method does not give bounds to the energy. This seems to be
a general feature: size-extensive approximations give generally no bounds for
the correlation energy.

A much used approximation in quantum chemistry is the coupled-electron
pair approximation (CEPA). In combination with the method of increments it
can also be used for calculations of the ground state of solids. In the CEPA we
identify H0 with HSCF and choose for the set {Aν} all single (S) and double
(D) excitations. This suggests introducing operators with compound indices
K and Γ . They stand for

AKΓ =

{

ωiµ
ωijµν ; i < j and µ < ν .

(5.66)

The ansatz
| Ω) =| 1 +

∑

KΓ

ηKΓ A
K
Γ ) (5.67)

is called CEPA-0.
The accuracy of correlation calculations is improved if in addition operator

products are included in the set which span ℜ0. For example, A2
ν or AνAµ are

such products. An ansatz of the form

| Ω) =| 1 +
∑

KΓ

ηKΓ A
K
Γ +

1

2

∑

KLΓ

ηKΓ η
L
ΓA

K
Γ A

L
Γ ) (5.68)

is a variant termed CEPA-2 in quantum chemistry. Note that the prefactors
1
2η
K
Γ η

L
Γ of the product operators are not independent of those of the operators

AKΓ . Instead they are products of the latter. There exist other CEPA variants
for which we refer to the literature (see, e.g., [260]).

5.4.2 Coupled Cluster Method

Another powerful method in quantum chemistry is the coupled-cluster method
(CC) [259] which is part of some of the available quantum chemistry program
packages and has also been used for solid-state calculations. Coupled-cluster
equations can be derived in a quite general form from the set of equations
(5.44a, 5.44b), that is for any division of H into H = H0 +H1. In particular,
H0 need not beHSCF, but can for example also be the Ising part

∑

〈ij〉
JijS

z
i S

z
j of
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the Heisenberg Hamiltonian H =
∑

〈ij〉
JijSiSj . Here Si,Sj are spin operators

for sites i and j, respectively.
We begin by deriving the CC equations in the most familiar form, i.e., in

the form used mainly in quantum chemistry where H0 is identified with HSCF.
Afterwards we generalize them so that they become more widely applicable.

Starting from the SCF ground state |ΦSCF〉 the CC ansatz for the exact
ground state is

| ψ0〉 = exp





∑

iµ

ηiµω
i
µ +

∑

i<j,µ<ν

ηijµνω
ij
µν + ...



 | ΦSCF〉

= eS̃ | ΦSCF〉 . (5.69)

When compared with the CI ansatz (5.3) one notices that the excitation
operators appear here in the exponent of the prefactor. This has the advantage
that when the exponent is terminated, e.g., by stopping after the ωijµν terms the
corrections to |ΦSCF〉 remain size consistent. This is seen best by considering
an ensemble of N uncoupled atoms, e.g., He atoms. For a minimal description
of intra-atomic correlations we take into account one excitation 1s2 → 2s2

out of each atomic SCF ground state. With the two-particle excitations in the
exponent of (5.69) we obtain N -times the correlation energy of a single atom,
a result which requires terms up to ωi1...i2Nµ1...µ2N

in the expansion (5.3). This is
seen by expanding the prefactor.

From the ansatz (5.69) it follows immediately that

E0 = 〈ΦSCF | e−S̃HeS̃ | ΦSCF〉 . (5.70)

For a determination of the coefficients ηiµ, η
ij
µν , ... we rewrite S̃ in the form

S̃ =
∑

ν

ην S̃ν , (5.71)

where ν is now a compact index of the form ν = (i;µ), (i, j;µν) etc. Note that

S̃+
ν | ΦSCF〉 = 0 (5.72)

because S̃+
ν destroys electrons from virtual orbitals, i.e., orbitals which are

unoccupied in |ΦSCF〉. This feature is used to set up the second CC equation

〈ΦSCF | S̃+
ν e

−S̃HeS̃ | ΦSCF〉 = 0 (5.73)

or
〈

(

ωi1...inµ1...µn

)+
e−S̃HeS̃

〉

= 0 . (5.74)

By expanding the exponential one obtains equations for the coefficients ην . In
most calculations the excitation operators are limited the single- and double-
excitations (CCSD). Sometimes triple excitations are added by perturbation
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theory (CCSD(T)). Program packages like MOLPRO [480] contain these CC
options.

The coupled-cluster equations become particularly simple if we restrict S̃
to two-particle excitations (pair approximation). In that case

S̃ = S̃2

=
∑

i1<i2

∑

µ1<µ2

ηi1 i2
µ1µ2

ωi1 i2µ1µ2
, (5.75)

and the ground-state energy reduces to

E0 = ESCF + 〈HS̃2〉 (5.76)

while (5.73) goes over into

〈(ωijµν)+(1− S̃2)H(1 + S̃2 + S̃2
2/2)〉 = 0 . (5.77)

The expansion terminates as indicated, because H contains at most two cre-
ation and two annihilation operators. From the last equation the coefficients
ηi1i2µ1µ2

can be determined.
In a next step we generalize the coupled-cluster method to an arbitrary

starting Hamiltonian H0 with ground state |Φ0〉. We make for |Ω) the ansatz

| Ω〉 = | eS
)

(5.78)

and expand S similar to (5.71) into a basis {Sµ} of prime operators, i.e.,
operators which are treated as an entity when cumulants are evaluated. This
implies that operators of the form AνAµ etc. are excluded. We also require
that Sµ|Φ0〉 6= 0. Thus

S =
∑

µ

ηµSµ (5.79)

and the equations (5.44a) and (5.44b) become

E0 =
(

H | eS
)

0 =
(

Sν | HeS
)

. (5.80)

These equations are the same as the ones (5.70, 5.73) when H0 = HSCF.
This is seen by noticing that not only (A|HΩ) = 0 but also (AB|HΩ) = 0
for arbitrary operators B. Therefore

(

Sν | HeS
)

=
(

e−S
+

Sν | HeS
)

= 0

E0 =
(

1 | HeS
)

=
(

e−S
+ | HeS

)

, (5.81)

which are evidently the CC equations. As pointed out before the advantage
of (5.80) is that the equations hold independently of the form of H0 and H1.
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5.4.3 Selection of Excitation Operators

As pointed out before, with to-day’s computing facilities we can treat up to 108

configuration when a correlation calculation is performed. Therefore, we have
to make a careful choice of the relevant operators Aν from which the cumulant
wave operator |Ω) or scattering operator |S) = |Ω − 1) are constructed.

In correlation calculations for small molecules the excitation operators ωiµ
and ωijµν etc.1 contain creation and annihilation operators of electrons in (de-
localized) canonical molecular orbitals. As mentioned before, when referring
to periodic solids the latter are called Bloch orbitals. For a correlation calcula-
tion they are not very useful. It is practically impossible to describe with them
the local correlation hole of the electrons. Therefore we want to use localized

or local orbitals instead of Bloch orbitals. From a computational point of view
it is advantageous to work with orthogonal localized orbitals. In fact, almost
all of the quantum chemical program packages are designed so that the anni-
hilation operators in the ωi...lµ...τ refer to orthogonal orbitals; on the other hand,
the creation operators may refer to nonorthogonal local orbitals. In solid-state
physics orthogonal localized orbitals which are occupied in the SCF ground
state are called Wannier orbitals. In quantum chemistry several localization
procedures are used depending on the localization criteria. A popular one is
named after Foster and Boys. The criterion for localization is here that the
distance between different orbitals is maximized. Another often used method
is due to Pipek and Mezey. It requires that a localized orbital extends over
as few atoms as possible. Generally we are facing the following problem. It
is fairly easy to construct Wannier orbitals for a semiconductor or insulator,
i.e., a system with a gap between the conduction and valence bands. How-
ever, this is generally not possible when we deal with metallic systems which
are characterized by partially filled conduction bands. An extreme example is
that of a homogeneous electron gas. The Wannier functions constructed from
plane-wave states with momentum | k |< kF fall off like r−2 as r → ∞ rather
than exponentially. Therefore, in this case one has to proceed differently, as
will be explained in Sect. 6.3.

In order to be more specific let us consider single- and double excitations
only, i.e., we assume that the operators Aν in (5.60) are of the form (5.66).
Since the correlation hole is a very local object, the creation operators in
the AKΓ should create electrons in the immediate vicinity of the Wannier
orbitals from which they were annihilated. This is schematically indicated
in Fig. 5.1. As creation operators need not be mutually orthogonal we may
use for them the a+iσ which appear in the Hamiltonian2. However, they must be
orthogonalized to the operators which create the occupied Wannier orbitals,
i.e., they must act onto the virtual space. The above procedure is part of the
package MOLPRO where it has been implemented according to a proposal by
Pulay [379].

1 see Eq. (5.3)
2 see Eq. (2.7)
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i                                                 j

µ                              ν

Fig. 5.1. Range of sites (bonds) i and j on which electrons are created by ωij
µτ when

the annihilation operators refer to Wannier orbitals centered at sites (bonds) µ and
ν.

Discarding for a moment the requirements of presently available quan-
tum chemical program packages, the local character of the correlation hole is
accounted for best by giving up the requirement of double substituting orthog-
onal occupied orbitals and using instead non-orthogonal local orbitals [434].
Thus we define non-orthogonal local functions gi(r) and expand them in terms
of the basis set, i.e.,

gi(r) =
∑

m

γinfm(r) . (5.82)

For example, the gi(r) can be GTOs or combinations of them. The operators
which create (destroy) electrons with spin σ in local orbitals gi(r) are denoted
by b+iσ(biσ). The b

+
iσ can be expanded in terms of occupied (subscript µ) and

unoccupied (subscript n) Wannier orbitals, in which case

b+iσ =

N/2
∑

µ=1

uiµc
+
µσ +

L
∑

n=N/2+1

vinc
+
nσ . (5.83)

Constructing the cumulant wave operator | Ω) with the help of the b+iσ, bjσ
we have to take into account that a state b+iσb

+
jσ′bkσ′bℓσ | ΦSCF〉 does not only

contain double substitutions (D), but also single and zero substitutions. They
must be eliminated when one wants to consider double substitutions only, i.e.,

b+iσb
+
jσ′bkσ′blσ | ΦSCF〉 −→

D

∑

mnµν

vimvjnukµulνω
mn
µν | ΦSCF〉 . (5.84)

The spin indices are again included in the indices m,n, µ, ν. This shows that
we can work with non-orthogonal local orbitals as well. However, sophisti-
cated computer program packages, which would enable us to perform efficient
calculations with them are still missing.

Working with local orbitals has the advantage that the number of, e.g.,
single and double substitutions can be kept minimal for a required accuracy
of the ground-state or binding energy, for example. The local orbitals k and
l which are substituted and those which replace them (i.e., i and j) have to
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be in fairly close spatial neighborhood of each other. This follows from the
local character of the correlation hole of an electron. As an example consider
a lattice with one orbital per site i only. Furthermore assume that electrons
interact only when they are on the same lattice site. If so, the interaction
Hamiltonian is

Hint = U
∑

i

a+i↑ai↑a
+
i↓ai↓

= U
∑

i

ni↑ni↓ . (5.85)

In order to treat the interactions better than in a mean-field approximation
at least double substitutions are required. We choose for them operators of
the form

Oij =







ni↑ni↓δij ,
ninj ,
sisj

(5.86)

with number operators

ni =
∑

σ

niσ , niσ = a+iσaiσ (5.87)

and spin operators

si =
1

2

∑

αβ

a+iασαβaiβ (5.88)

but with all zero- and single excitations removed. This is achieved by replacing
the Oij by δOij with, e.g., δ(ni↑ni↓) = δni↑δni↓ where δniσ = niσ −〈niσ〉 and
similar for ninj and sisj . Note that for the Hamiltonian considered here the
a+iσ take the role of the operators b+iσ. The number of operators Oij per site
remains small, since the index j need not go beyond n.n. or n.n.n. sites of site
i.

The above choice of substitutions has been labeled Local Ansatz [434] and
allows for a simple physical interpretation. As discussed in Chapter 2 the
shortcomings of the independent electron approximation, i.e., of | ΦSCF〉, re-
sult from configurations with large deviations of the charges and spins from
their local mean values. In these configurations, the Coulomb repulsions be-
tween electrons are large. Therefore they are partially suppressed by correla-
tions. This is achieved by the Local Ansatz.

The δOij describe double substitutions which correlate charge and spin
degrees of freedom between sites i and j. When δOij acts on |ΦSCF〉 all those
configurations are picked out in which sites i and j are occupied by electrons.
For an illustration, consider the operator δOi = δ(ni↑ni↓) when applied to
|ΦSCF〉, i.e., δ(ni↑ni↓)|ΦSCF〉. All those configurations of |ΦSCF〉 are picked
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out, in which site i is doubly occupied. These particular configurations carry
too large a weight in |ΦSCF〉 and therefore have to be partially suppressed. An
ansatz of the form

| ψi〉 = (1− ηδOi) | ΦSCF〉 (5.89)

with η < 0 shows explicitely the partial suppression of configurations with a
doubly occupied site i contained in |ΦSCF〉. Similar arguments hold for njnj
and sisj . For example, an ansatz [1+ ηijδ(sisj)]|ΦSCF〉 with ηij < 0 enhances
configurations with two electrons of opposite spin at site i and j, while con-
figurations with parallel spin arrangement are partially suppressed. When i
and j are nearest neighbor sites this describes antiferromagnetic correlations.
For a simple extension of (5.86) leading to further improvements, see [433].

5.4.4 Trial Wavefunctions

Trial wavefunctions have played an important role in understanding electron
correlations. They are often well suited when one is interested in a qualita-
tive rather than quantitative treatment of correlation effects. Usually a trial
wavefunction for the ground state of a correlated system contains parameters
which are optimized by minimizing the ground-state energy. Examples are
the Jastrow ansatz for the correlated ground state of a homogeneous electron
gas or the trial wavefunction suggested by Gaskell which includes zero-point
fluctuations of plasmons in an RPA description (compare with Sect. 3.2).
For an understanding of strongly correlated electron systems the Gutzwiller
trial wavefunction has played an important role. Another famous example is
the BCS wavefunction, which includes Cooper-pair correlations. We want to
show here how trial wavefunctions can be obtained from |Ω), which accord-
ing to Sect. 5.3 specifies the exact ground state. Special approximations are
hereby required. In order to explain them we start from the decomposition
H = H0 + H1 and assume that we know the ground state |Φ0〉 of H0. We
use for |Ω) the form (5.38) and expand in powers of H1, i.e., we perform a
perturbation expansion

Ω = lim
z→0

∞
∑

ν=0

(

1

z − L0
H1

)ν

. (5.90)

Furthermore we decompose H1 in terms of eigenoperators Aν of L0. The Aν
satisfy the equations

L0Aν = aνAν . (5.91)

They generate transitions between eigenstates of the unperturbed system with
energy differences aν . In terms of a complete operator set Aν the Hamiltonian
H1 can be expanded as

H1 =
∑

ν

λνAν . (5.92)
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In the single-mode approximation the different eigenvalues λν in (5.92) are
approximated by a single, mean-excitation energy ω0 so that

L0H1 = ω0H1 . (5.93)

We use this relation in order to derive an approximate form for Ω. By
inserting (5.93) into (5.90) we find

Ω =
∞
∑

ν=0

1

ν!

(

−H1

ω0

)ν

= exp

(

−H1

ω0

)

. (5.94)

The parameter ω0 is chosen so as to minimize the ground-state energy.
Thus, within the single-mode approximation, a very simple result is ob-

tained. The trial wavefunction for the exact ground state is given by the
unperturbed ground state | Φ0〉 of H0 multiplied by the exponential function
exp(−H1

ω0
), i.e.,

| ψ0〉 = e
−H1

ω0 | Φ0〉 . (5.95)

This is not a coupled-cluster ansatz, since H1 destroys and creates electrons in
occupied as well as virtual orbitals of | Φ0〉. The distinction becomes important
when expansion terms of the exponent higher than linear order in H1 are
considered. We use that finding in order to derive the Gutzwiller wavefunction.
It is a trial wavefunction for the ground state of the Hubbard Hamiltonian
and is discussed in more detail in Sect. 10.4. It consists of a kinetic energy part
H0 of the form

∑

ijσ tijc
+
iσcjσ and an interaction part H1 given by (5.85). By

using (5.95) we find in single-mode approximation the following trial function

| ψ0〉 = eη
∑

i ni↑ni↓ | Φ0〉 (5.96)

first proposed by Gutzwiller [163]. An equivalent way of writing the above is

| ψ0〉 =
∏

i

(1− η̃ni↑ni↓) | Φ0〉 , (5.97)

where the property n2
iσ = niσ has been used. The parameter η is related to η̃

through
η = ln(1− η̃) . (5.98)

As a second application of the single-mode approximation we consider a
homogeneous electron gas with H1 given by

Hint =
1

2Ω

∑

q

(

4πe2

q2
ρ+q ρq −N

)

. (5.99)

Applying (5.95) we find the following form for the ground-state wavefunction
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|ψ0〉 = exp

(

−Σ′
q

2πe2

ω0q2
|ρq|2

)

|φ0〉 . (5.100)

The dash on the sum means that q should remain sufficiently small. When we
choose for ω0 the plasma frequency ωpl we arrive at a wavefunction suggested
by Gaskell [141] which contains the zero-point fluctuations of plasmons. From
(3.37) it is seen that for (p2F /3m)q2 & ω2

pl the single-mode approximation
becomes very poor. Therefore q should be summed up only to a critical value
qc.

In order to improve the limitation of the wavefunction (5.100) we extend
the previous approximation to the independent-mode approximation. Here
we form groups of eigenoperators of L0 and replace the different eigenval-
ues within each group with a group dependent mean-excitation energy. More
specifically, we write

H1 =
∑

i

Bi , (5.101)

where the groups Bi consist of sums of eigenoperators Aiν of L0, i.e.,

Bi =
∑

ν

λiνAiν (5.102)

with
L0Aiν = aiνAiν . (5.103)

The aiν are approximated by a mean-excitation energy ωi. We also assume
that the Bi are independent of each other, i.e., that they commute. The per-
turbing Hamiltonian then consists of a sum of independent excitation modes
and in analogy to (5.95) we find

|ψ0〉 = e
−
∑

i

(

1
ωi

)

Bi |Φ0〉 . (5.104)

Returning to the interaction Hamiltonian (5.99) we consider (2Ω)−1vqρ
+
q ρq

as independent excitation modes. They correspond to particle-hole excitations
with a given momentum q. We identify them with the Bi and the ωi with ωq.
Within this approximation

|ψ0〉 = e
∑

q
ηq|ρq|2 |Φ0〉 , (5.105)

where we have set (2Ωωq)
−1vq = ηq. The ηq are variational parameters which

are obtained by minimizing the energy. In distinction to (5.100) the relative
weight of the density-fluctuation modes described by the prefactor of |Φ0〉 is
optimized here. Therefore the results are improved when q increases.

After a Fourier transformation of the exponent in (5.105) the ground-state
wavefunction is of the form

| ψ0〉 = exp
[

∫

d3rd3r′f(r− r′)ρ(r)ρ(r′)
]

| Φ0〉 , (5.106)
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where | Φ0〉 is the ground state of noninteracting electrons. This is Jastrow’s
variational ansatz for a correlated ground state [215]. The function f(r−r′) is
determined by minimizing the energy. When written in first instead of second
quantized form the last equation goes over into

ψ0(r1, ..., rN ) = exp





∑

ij

f(ri − rj)



Φ0(r1, ..., rN ) . (5.107)

Here Φ0(r1, ..., rN ) is the Slater determinant for the ground state of the non-
interacting system.

The Jastrow prefactor depends on relative coordinates ri − rj only and
therefore requires improvements when inhomogeneous systems are considered.
In that case an ansatz of the form

| ψ0〉 = exp





∑

i

ηiδni +
∑

ij

ηijδOij



 | ΦSCF〉 (5.108)

proves appropriate. The single-particle excitations δni = ni − 〈ΦSCF | ni |
ΦSCF〉 reoptimize the electron density distribution when correlations are taken
into account. The latter are implemented by the double excitations δOij given,
e.g., by (5.86) or by (5.3).





6

Correlated Ground-State Wavefunctions

Correlation effects play a significant role practically in all materials. Here we
shall discuss the various correlation contributions to the ground-state wave-
function and energy. Hereby we have to distinguish between insulators, which
have a gap and metals, which don’t have one. In the former case the SCF
ground-state wavefunction can be expressed in terms of well localized orthog-
onal Wannier orbitals. As pointed out in Sect. 5.4 this is not the case when
dealing with a metal. Yet, well localized Wannier orbitals are very suitable
for the construction of the local correlation hole of an electron. This explains
why somewhat different approaches are required for the determination of the
ground-state wavefunction and energy of an insulator and of a metal.

We begin with a discussion of semiconductors and insulators and continue
by including metals. It may come as a surprise that correlations in semicon-
ductors and insulators are significant in view of the fact that the physical
properties of semiconductors are nearly always explained in terms of a one-
electron theory. However, this merely demonstrates that the quasiparticle pic-
ture works very well in that case. Correlation effects are here incorporated in
quasiparticle properties. In the following we are interested in the ground state,
i.e., its wavefunction as well as its properties such as the binding energy or
bulk modules. As it will turn out, electron correlations contribute to the bind-
ing energy, e.g., of elemental semiconductors as much as one third. Their role
becomes even more pronounced when excitations such as the energy gap are
considered. But this is the subject of Chapter 7 and therefore not discussed
here.

It is instructive to consider the physics behind the various correlation
contributions to the ground-state wavefunction and energy. We will do this
first by means of a semi-empirical calculation for covalent semiconductors. An
important advantage is that these calculations can be done analytically. They
give good insight as to where the different correlation contributions come
from and how big they approximately are. This is followed by a discussion
of the ab initio results for various covalently bonded semiconductors and for
systems with ionic bonding such as MgO, CaO and NiO. They are obtained by
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employing the program package CRYSTAL for the SCF part of the calculation
and the package MOLPRO for the correlation part. The methods outlined
in Chapter 5 find applications here. Finally we also discuss rare-gas solids
because of the special van der Waals bonding in those systems.

As pointed out before, metals require a modified approach when the
ground-state energy and wavefunction are calculated. The modifications are
explicitly demonstrated for Li metal. The ab initio results obtained compare
very favourable with the best DFT results.

Towards the end of the chapter, we show that the above concepts can
be extended to ground states of strongly correlated electron systems. The
method of choice is here the CASSCF. The obvious question is, how an active
space may be defined for an infinite periodic system. It can be answered by
using the cumulant wave operator for the characterization of the ground-state
wavefunction.

6.1 Semiconductors

We start out by performing semi-empirical calculations for covalently bonded
semiconductors with a diamond lattice structure. They have the advantage
that one obtains good insight into the underlying physical processes. We shall
distinguish between inter- and intraatomic correlations1 and give simple esti-
mates for both cases.

6.1.1 Model for Interatomic Correlations

Calculations of interatomic correlations become very simple when a bond-
orbital approximation (BOA) is made. The starting Hamiltonian is written
as

H =
∑

ijσ

tija
+
iσajσ +

1

2

∑

ijkl

σσ′

Vijkla
+
iσa

+
kσ′alσ′ajσ , (6.1)

where the a+iσ and aiσ are creation and annihilation operators for electrons in
orthogonalized, tetrahedral atomic sp3 hybrids. They fulfill the anticommu-
tation relations

[aiσ , a
+
jσ′ ]+ = δijδσσ′ . (6.2)

Those hybrids take the place of the basis functions fi(r) in (2.8). The pa-
rameters tij can be obtained by fitting them, e.g., to more sophisticated band
structure calculations. It is convenient to introduce a special notation for the
most important of the matrix elements Vijkl . We use the following abbrevia-
tion for matrix elements referring to hybrids i and j forming bond I

1 see Sect. 2.5
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Fig. 6.1. Two configurations of a small segment of a diamond lattice structure. In
(b) Coulomb repulsions are much larger than in (a). Note that the central C site
has ν = 4 valence electrons in (a) and ν = 2 in (b).

U = Viiii ,

J1 = Viijj
K1 = Vijji

}

i 6= j , i, j ∈ I , (6.3)

Calculations within the BOA are carried out best in terms of bonding
and antibonding wavefunctions. The corresponding creation and annihilation
operators are

B+
Iσ =

1√
2
(a+I1σ + a+I2σ) , (6.4a)

A+
Iσ =

1√
2
(a+I1σ − a+I2σ) . (6.4b)

Here we have indexed the two hybrids forming bond I by the subscripts 1 and
2. In this notation the SCF ground-state is approximated in the BOA by

| ΦBOA〉 =
∏

Iσ

B+
Iσ | 0〉 . (6.5)

There are two electrons in each bond.
In the correlated ground state |ψ0〉 unfavorable configurations like the one

in Fig. 6.1b must be partially suppressed. They have too large weights in
|ΦBOA〉. Contrary to that, favorable configurations like the one in Fig. 6.1a
become enhanced. We can do this by an ansatz of the form

| ψ0〉 = eS̃ | ΦBOA〉 (6.6)
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like in (5.69) and applying subsequently the approximation of the local ansatz
(5.86-5.88). Or, conversely, we can use the wave operator |Ω) instead of the
wavefunction |ψ0〉 for characterizing the ground state and write

| Ω) = | 1 + S) (6.7)

(see (5.50)). In the following we use the last equation as a starting point. For
a construction of S we need to specify the correlations we want to describe.
A plausible ansatz for S is of the form of (5.60), i.e.,

S =
∑

IJ

ηIJS
η
IJ

= η0
∑

I

SηI + η1
∑

〈IJ〉

′SηIJ , (6.8)

where SηI accounts for correlations of electrons in bond I and SηIJ for those
within a pair of neighboring bonds 〈IJ〉 (indicated by a dash in the summa-
tion). The SηI (= SηII) and S

η
IJ are identified with the operators δOij of Sect.

5.4.3. The operator SηI = δOii with Oii = ni↑ni↓ and niσ = a+iσaiσ is used to
reduce configurations in which the hybrid 1 of bond I is doubly occupied. This
reduces automatically also those configurations in which hybrid 2 of bond I
is doubly occupied. In terms of the AIσ and BIσ operators, we may also write

SηI =
1

4
A+
I↑A

+
I↓BI↓BI↑ . (6.9)

A double excitation from bonding into antibonding states can be used to
reduce configurations with two or zero electrons in a sp3 hybrid orbital. This
requires a negative value of η0. Similarly we use SηIJ = δOij with Oij = ninj
in order to describe correlations between electrons in neighboring bonds I and
J . The SηIJ can be rewritten in the form

SηIJ =
1

4

∑

σσ′

A+
Jσ′BJσ′A+

IσBIσ . (6.10)

The operator SηIJ generates dipoles in bonds I and J when acting on |ΦBOA〉.
This is seen by expressing A+

IσBIσ in terms of a+Iνσ and aIνσ (ν = 1, 2)
and noticing that the operator contains parts which move within a bond an
electron from one hybrid orbital to the other, resulting in a dipole. When a
fluctuating dipole generates a dipole in another bond we speak of van der
Waals interactions or correlations between the two bonds. The corresponding
correlation energy falls off like R−6 with increasing bond separation R. With
the above considerations we have specified the operators {Aν} in (5.60) which
span the relevant part ℜ0 of the Liouville space. We conclude that they are
given by
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{Aν} = {SηI } ⊕ {SηI′J′} . (6.11)

What has been left out by the above choice for SηI and SηI′J′ are correlations
between more distant bonds than nearest neighbors as well as spin-spin cor-
relations. We use (5.52) in order to write for the (interatomic) correlation
energy

Einter
corr = η0

∑

I

(H | SηI ) + η1
∑

〈IJ〉

′ (H | SηIJ) . (6.12)

The dash in the sum indicates that only nearest neighbor bonds are included.
The parameters η0 and η1 are determined by applying (5.44b), i.e., from
(SηI |HΩ) = 0 and (SηIJ |HΩ) = 0. More explicitly,

0 = (SηI | H) + η0
∑

K

(SηI | HSηK) + η1
∑

〈KL〉

′ (SηI | HSηKL)

0 = (SηIJ | H) + η0
∑

K

(SηIJ | HSηK) + η1
∑

〈KL〉

′ (SηIJ | HSηKL) . (6.13)

The different cumulants are readily evaluated. Thereby it is useful to express
the electron interactions in terms of bonding and antibonding operators. These
matrix elements of the interaction Hamiltonian are denoted by ṼAIBJAKBL

etc. and obtained from the Vijkl by expressing the a+iσ in terms of A+
Iσ and

B+
Iσ. With this notation we find

(SηI | H) =
1

2
ṼAIBIAIBI

=
1

4
(U − J1) =

V D0
2

(6.14a)

(SηIJ | H) = ṼAIBIAJBJ − 1

2
ṼAIBJAJBI

= V D1 . (6.14b)

The matrix element V D1 describes the van der Waals interaction between
neighboring bonds I and J . The second term on the right-hand side of (6.14b)
ensures that the interaction reduces to (6.14a) when I = J . Furthermore

(SηI | HSηK) = δIKt0 , (6.15)

where t0 = −t12 > 0 denotes the (bare) hopping matrix element for the two
sp3 orbitals within a bond. It equals one-half of the energy splitting of bonding
and antibonding states in the absence of the Coulomb interactions. In (6.14a)
and (6.15) we have neglected all interaction matrix elements which are not of
the form (6.3). We also find
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(SηI | HSηKL) =
1

2
(δIK + δIL)V

D
1 (6.16)

(SηIJ | HSηKL) = (δIKδJL + δILδJK)

(

t0 +
1

2

(

V D0 + 4V D1
)

)

= (δIKδJL + δILδJK)αt0 , (6.17)

with

α = 1 +
V D0 + 4V D1

2t0
. (6.18)

As discussed before, only matrix elements involving nearest-neighbor bonds
have been taken into account. The matrix element (6.16) corrects the forma-
tion of a dipole in bond I (see (6.14a)) in the presence of correlations in the
neighboring bonds K or L, (local field corrections). It costs more energy to
set up a dipole in the presence of these correlations than in their absence.
The same feature shows up in (6.17). A dipolar fluctuation in bond I induces
a dipole, e.g., in bond K and that dipole contributes to the electric field in
bond J (via Vijkl) and affects the size of the dipole which is formed there.

Inserting these matrix elements into (6.12) we obtain for the interatomic
correlation energy per unit cell

Einter
corr = −2V D0 η0 − 24V D1 η1 , (6.19)

while the set of equations (6.13) becomes

0 =
V D0
2

+ t0η0 + 6V D1 η1

0 = V D1 + V D1 η0 + 2αt0η1 . (6.20)

Table 6.1. Various matrix elements and the correlation parameters η0 and η1 for
the elemental semiconductors. Also shown is the inter-atomic correlation energy per
unit cell in eV. (From [41])

Solid

C Si Ge α-Sn

t0 10.7 5.0 4.7 3.6

V D
0 4.6 2.5 2.4 2.0

V D
1 1.1 0.6 0.6 0.5

η0 0.20 0.24 0.25 0.27

η1 0.029 0.030 0.032 0.034

−Einter
corr 2.6 1.6 1.6 1.5
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By solving them we obtain

η0 ≃ −V
D
0

2t0
, η1 ≃ − V D1

2t0α

(

1− V D0
2t0

)

. (6.21)

Hereby we have neglected terms of order (V D1 /t0)
2α−1. The expression

(6.19) shows in a simple form the energy contributions of correlations within
a bond and between neighboring bonds. Table 6.1 lists for covalent semicon-
ductors the parameters which enter (6.21). Before concluding we want to point
out that interatomic correlations are reduced the more ionic a bond becomes,
i.e., the larger the polarity α. The energy Einter

corr for homopolar bonds, which
for given values of t0, V

D
0 and V D1 is obtained from (6.19), is modified to

Einter
corr (α) =

(

1− α2
)ν
Einter

corr (α = 0) . (6.22)

The BOA predicts a value of ν = 2.5 but a comparison with ab initio results
using a minimal basis set suggest ν = 4.0± 0.25.

6.1.2 Estimates of Intra-Atomic Correlations

What remains to be discussed is the contribution of intra-atomic correlations
to the binding energy. Their description requires large basis sets. Choosing
diamond as an example, a simple estimate can be given as follows.

As pointed out in Sect. 2.4, in a chemical environment the number of
valence electrons at a carbon site can vary between 0 and 8 with the average
number given by 4. Therefore let us denote by PCcorr(ν) the probability of
finding n valence electrons at a C site. The total intra-atomic correlation
energy (per unit cell) of diamond is then approximately given by

Eintra
corr (Cx) = 2

∑

ν

PCcorr(ν)ǫν(C) , (6.23)

where ǫν(C) is the correlation energy of a C atom in diamond with ν va-
lence electrons. To be precise, we must exclude from it the contributions of
s2pν−2 → s0pν excitations because they are treated within a minimal basis
set and therefore included in Einter

corr (Cx). The energy ǫν(C) is a weighted av-
erage of atomic correlation energies ǫatν (i) belonging to different atomic terms
or configurations i,

ǫν(C) =
∑

i

ων(i)ǫ
at
ν (i) . (6.24)

For the purpose of illustration we list in Appendix C the correlation energy of
different configurations. Each configuration or term can give rise to different
multiplets. For example, the configuration s0p2 can lead to a 1S, 3P or 1D
multiplet. In BOA the weights ων(i) are simply given by the sum of the
degeneracies of those multiplets divided by 256 (= 28), i.e., the total number of
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possible states. Therefore we find for s0p2 that ων = 15/256 (i.e., (1+9+5)/256
corresponding to the three multipletts). With their help Eintra

corr (Cx) can be
calculated provided we know the PCcorr(ν). For the latter we may assume again
a Gaussian distribution like in (2.49).

When estimating the intra-atomic correlation energy contribution to bind-
ing, one needs to know the correlation energy of a C atom in its ground state
(s2p2, 3P ), which is ǫcorr(C) = −4.27eV . By using (6.23) and subtracting the
energy of the C atom, one obtains for the intra-atomic correlation contribution
to binding of diamond a value of

Ecorr
B = 1.2 eV/unit cell . (6.25)

Together with the interatomic correlation energy contribution of 2.6 eV/unit
cell (see Table 6.1) the total contribution of correlations to binding is

Ecorr
B (Cx) = 3.8 eV/unit cell . (6.26)

A comparison with the experimental cohesive energy for diamond of

Eexp
B (Cx) = 15.1 eV/unit cell (6.27)

reveals that after a correction for the zero-point energy of the atoms has been
accounted for, correlations contribute approximately 25 % to it.

6.1.3 Ab Initio Results

After the above estimate of the correlation-energy contribution to binding we
want to present some results based on the computational schemes discussed in
Sect. 5. We consider again the elemental semiconductors. For the SCF part the
program package CRYSTAL [371] is used. It contains a localization procedure
for determining Wannier functions. An alternative approach to CRYSTAL is
an embedded-cluster approach called Wannier [413], where the Wannier-Boys
localization procedure is part of the SCF calculations. For C atoms a double-
zeta basis set (9s4p1d)/[3s2p1d] [98] is used to which (1d1f) functions were
added. For Si, Ge and Sn a four-valence-electron pseudopotential is employed
for a simulation of atomic cores, while for the valence electrons, corresponding
optimized basis sets (4s4p2d1f)/[3s3p2d1f ] are used. The use of pseudopo-
tentials is not being discussed in this book, but a brief introduction of their
use in the present context can be found, e.g., in [137] while profound reviews
are, e.g., [90, 381]. The correlation contributions to the cohesive energy have
been calculated by applying the methods described in Sect. 5, here in par-
ticular the CEPA-0 computational scheme. The package MOLPRO is used
which has implemented a selection of excitation operators AKΓ (see (5.67))
in accordance with the discussion given in Sect. 5.4.3. Results are shown in
Table 6.2 together with corresponding findings from density-functional calcu-
lations. The correlated ground-state wavefunction |ψ0〉 is described by |Ω) as
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Fig. 6.2. Basis-set dependence of the correlation energy contributions to binding
in GaAs. (From [358])

given by (5.68). The numerical calculations include all excitation operators
AKΓ which make significant contributions to the correlation energy and deter-
mine the corresponding parameters ηKΓ . Therefore we may rightfully claim to
have determined |ψ0〉 with high accuracy. Instead of CEPA-0 we could also
have applied the coupled-cluster method with marginal changes in the results.
Not only the cohesive energy but also the lattice constant and the bulk mod-
ules have been calculated including correlation effects, both with good results.

Ground-state properties have also been calculated for III-V and II-VI com-
pounds. Examples of III-V compounds are listed in Table 6.3 where the co-
hesive energy based on CCSD is compared with density functional results.
As an example we consider GaAs. The basis-set dependence of the results
is seen in Fig. 6.2 and gives an impression of how the size of the basis set
influences the required accuracy. Fig. 6.3 demonstrates that the method of
increments yields rapidly converging results. One- and two-body increments
are essentially sufficient. Note that the sum of the two-body increments gives
an almost twice as large contribution to cohesion than one-body increments

Table 6.2. Cohesive energy per unit cell (in eV) as obtained from a SCF calculation
and by including correlations by the method of increments (Ecoh

incr) in percent of the
experimental values. For comparism LDA results are shown. (From [357])

C Si Ge Sn

Ecoh
SCF 10.74 6.18 4.25 3.65

Ecoh
incr 14.36 8.83 6.98 6.08

96 % 94 % 90 % 97 %

Expt. [497] 15.10 9.39 7.75 6.23

LDA [114], [153], [502] 17.25 10.58 9.06 –
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Fig. 6.3. Contributions of different many-body increments to the cohesive energy
of GaAs. One notices a fast convergence with increasing number of correlated sites.
Calculations are based on basis set A. (From [358])

do. It shows once more that single-site approximations for a treatment of elec-
tronic correlations are usually not sufficient. Correlation contributions fall off
rather fast with increasing distance of the correlated electrons. This is seen
from Fig. 6.4 which shows that one does not need to go beyond third-nearest
neighbors in order to obtain rather accurate results for cohesion and for the
correlations hole, as one might add. The above findings give a rather detailed
picture of correlations in the ground state of that class of semiconductors.
More details can be found, e.g., in the review [356].

6.2 Ionic and van der Waals Solids

Among the ionic solids oxides are of special interest. Consider for example
MgO or alternatively Mg2+O2−, in order to stress the role of valency. There
is no existing free O2− ion. Evidently an O2− ionic state in a solid is pos-
sible only because the chemical environment prevents electrons from leaving
an O2− site. This suggests a high polarizability of O2− and therefore consid-
erable correlation energy contributions to binding. Thus in addition to the
ionic Coulomb repulsions, intersite correlations of van der Waals type will be
important. This justifies their closer inspection, in particular since LDA type

Table 6.3. Cohesive energy per unit cell (in eV) for selected III-V compounds. The
results of wavefunction-based calculations are compared with LDA and GGA results
based on density functional theory (from [358]).

SCF SCF+corr LDA GGA Expt.

BN 9.12 (67 %) 12.38 (91 %) 16.57 (122 %) 13.74 (101 %) 13.60

AlP 5.39 (64 %) 7.94 (94 %) 10.09 (120 %) 8.38 (100 %) 8.41

GaAs 3.54 (53 %) 6.20 (93 %) 7.75 (116 %) 6.23 (93 %) 6.69
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Fig. 6.4. Contributions to the cohesive energy of GaAs with increasing distance of
the correlated electrons. Calculations were done with basis set A. (From [358])

of calculations have problems with van der Waals interactions. The latter are
crucial when binding in rare-gas solids is considered. Without van der Waals
interactions there would be no binding in those systems. The method of in-
crements is applied again for ionic as well as rare-gas solids, yet for the latter
systems in a modified form. Since the rare-gas solids are weakly bound only,
we calculate energy increments not of the correlation energy but instead of
the total energy. This demonstrates the general character of the method.

6.2.1 Three Oxides: MgO, CaO and NiO

It is instructive to compare the correlation energy for the three oxides MgO,
CaO and NiO, since Ca is in the Periodic Table just below Mg, and Ni has in
distinction to the other two oxides in addition a nearly filled 3d shell. MgO
is generally considered a nearly perfect ionic crystal consisting of Mg2+ and
O2− ions. The Wannier orbitals of the valence electrons as obtained, e.g.,
from CRYSTAL or elsewhere, have O 2p, 2s character and are very compact
and practicly limited to the oxygen sites. Therefore, when we decompose the
scattering matrix S (see 5.53) the single-site contributions SI involve excita-
tions only from valence electrons on the oxygen sites. There are no valence
electrons at the magnesium sites. In order to stick to a nearly perfect ionic
description we include in SI only excitations from Wannier orbitals at site
I into virtual orbitals centered at the same site. All other electrons are kept
frozen. Excitations into virtual orbitals centered at Mg sites are included in
the matrices SIJ . The different contributions to the S matrix are calculated
by using the MOLPRO package and choosing either a CEPA-0 or a coupled-
cluster approximation scheme, depending on the required accuracy. A basis
set [5s4p3d2f ] is chosen for oxygens and a set [6s6p5d2f1g] for Ca, combined
with a small-core pseudopotential. For the Mg ions and their contributions
to the S matrix a [4s4p] valence basis set is used together with a large-core
pseudopotential. The latter includes the effects of core-valence electron inter-
actions on a SCF level together with a core-polarization potential accounting
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for correlation effects between the valence electrons and the core shell. For Ni
the basis is [6s5p4d3f ] in combination with a Ne core pseudopotential. The
correlation energy contributions for MgO and CaO were obtained by a CCSD
computation. For NiO quasi-degenerate variational perturbation theory was
used instead, because of the open d shell. Details are found in the original
literature [92, 93].

The one-body correlation energy increments are listed in Table 6.4. Hereby
O2− ions were embedded by nearest neighbor X2+ pseudopotentials in order
to simulate the repulsion due to Pauli’s principle. The whole complex is em-
bedded in a set of point charges arranged in a NaCl structure.

The two-body increments are calculated by correlating simultaneously
electrons on two ions thereby keeping all other orbitals frozen. Results are
to be multiplied with the number of such pairs of ions per primitive cell. Of
interest is the decrease of the oxygen-oxygen increments with increasing dis-
tance d. For MgO this is shown in Table 6.5. Since these are van de Waals
interactions they decrease like d−6 but contribute significantly to the cohesive
energy.

Table 6.4. One-body increments of the correlation energy contributions to cohesion
(in eV) for three oxides. (From [92,93])

MgO CaO NiO

O → O2− - 2.62 - 2.64 - 2.74

X → X2+ 1.28 1.29 2.03

sum of 1-body increments - 1.35 - 1.35 0.72

Table 6.5. Van der Waals like two-body increments to the correlation energy of
oxygen-oxygen pairs at lattice sites (a, b, c) in MgO (in eV). (From [92])

pair of neighbors 2-body increm. multiplic. factor contribution to

cohesive energy

O(0, 0, 0,) – O(0, 1, 1) - 0.069 6 - 0.414

– O(2, 0, 0) - 0.006 3 - 0.018

– O(2, 1, 1) - 0.002 12 - 0.020

– O(2, 2, 0) - 0.001 6 - 0.004

– O(3, 1, 0) - 0.000 12 - 0.004

sum -0.460
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Fig. 6.5. One- to three-body correlation contributions to the cohesive energy per
unit cell for (a): MgO and (b) NiO: three-body increments are omitted. (From [92])

The one- to three-body increments to the correlation-energy contribution
to cohesion for MgO and for NiO are shown in Fig. 6.5. The oxide CaO is
very similar to MgO. The final results are listed in Table 6.6

Table 6.6. Sum of increments and experimental cohesive energy (in eV) for three
oxides. The experimental correlation contribution is the difference between the mea-
sured cohesive energy and the Hartree-Fock value. (From [92,93])

MgO CaO NiO

experim. cohesive energy [72] 10.45 11.10 9.61

– Hartree Fock cohesive energy - 7.51 - 7.59 - 5.61

“experim.” correl. contrib.

to cohesive energy = 2.93 = 3.51 = 4.00

calculated correl. contrib. 2.31 2.50 3.37

(79 %) (71 %) (84 %)

calculated cohesive energy 9.82 10.10 8.98

% of experim. value 94 % 91 % 93 %
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Again, the above examples show us how much insight can be gained with
respect to binding when wavefunction methods are applied. One would like
to have this level of insight for all types of different bindings in solids.

6.2.2 Rare-Gas Solids

Rare-gas crystals are particularly interesting since on a SCF level binding is
not obtained. When second-order Möller-Plesset perturbation theory is ap-
plied we find for rare-gas dimers strong overbinding and the same holds true
when the LDA is applied instead [252], [363]. Therefore rare-gas crystals are
an ideal case for applying controlled approximations, i.e., wavefunction-based
methods. In doing so we use an important modification: we apply the method
of increments not to the computation of the correlation energy but instead
to the total ground-state energy. Then H0 in (5.26) describes a collection
of free atoms while H1 deals with the interactions between them. The de-
composition of the S-matrix (5.53) begins with the SIJ contributions and
yields the cohesive energy. Note that for large distances correlations are of
van der Waals type. A fluctuating dipole on one atom induces a dipole on
another atom as found before for bonds in the elemental semiconductors.
For reliable results large basis sets are required. The following turn out be-
ing sufficient – for Ar, Kr, Xe a set: (8s8p6d5f4g)/[7s7p6d5f4g] and for Ne:
(9s9p6d5f4g)/[7s7p6d5f4g]. The core shells are described by pseudopoten-
tials. Results for the cohesive energy are obtained by applying the CCSD(T)
scheme. As seen from Table 6.7 the agreement with experiments is good. The
same holds true for lattice constants, which are not shown here. More details
are found in Ref. [388]. There it is also discussed that three-body contributions
need to be included for a good agreement with experiments.

The above examples show that we can obtain detailed insight into the
ground-state and the different correlation-energy contributions to cohesion
by applying wavefunction-based methods and quantum-chemical techniques.
Relative sizes of those contributions can be studied and compared when the
chemical environment changes. We can also study differences in the correlation

Table 6.7. Sum of two-body increments and experimental cohesive energy (in eV)
for rare-gas solids. (From [388])

including: 2-body contrib. Expt.

Ecoh

Ne - 0.027 - 0.027

Ar - 0.088 - 0.089

Kr - 0.122 - 0.122

Xe - 0.176 - 0.170
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Fig. 6.6. (a) Localized Pipek-Mezey orbital of a Li2 unit as compared with the
valence orbital of a free Li2 molecule (b). (From [432])

energy, e.g., of a bond when it is part of a molecule and of a solid. Until now
only solids with small unit cells could be studied. In order to be able to treat
solids with large unit cells and large basis sets considerable work is required
in optimizing the available program packages.

6.3 Simple Metals

As we have seen in the proceeding section, wavefunction-based methods are
very efficient in van der Waals bonded rare-gas systems where DFT based ap-
proaches fail. On the other hand, they face some difficulties when the systems
are metallic, i.e., where local density functionals are expected to be most ac-
curate by construction. Thus from a practical point of view both approaches
are complementary. When we consider bulk Li and imagine that the lattice
constant is artificially enlarged, the system goes over from metallic to van
der Waals bonding. Therefore, it is of interest to include metals in local ab-
initio wavefunction-based schemes. With this in mind, we turn to the cohesive
energy of Li metal.

Metallic systems are difficult to treat with wavefunction-based correlation
calculations because of the absence of well-localized Wannier orbitals. The
latter fall off only algebraically and not exponentially like in insulators. Yet
when we consider pairs of Li atoms, the pair orbitals are doubly occupied and
act similarly as closed shell atoms. Therefore we determine localized orbitals
φi, here according to the procedure proposed by Pipek and Mezey [369], asso-
ciate them with single Li2 units and compute the different increments to the
S matrix for a single localized orbital, pairs of orbitals etc.
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Fig. 6.7. Correlation energy contributions to the cohesive energy of Li metal, in
Hartree and in eV. (a) Results from a Li14 cluster for different basis sets (single-
to triple-zeta) up to 2nd-nearest neighbors (b) correlations for increments up to
6th-nearest neighbors. (From [432])

For a pair Li2 of neighboring sites the wavefunction φi differs consider-
ably from that of a free Li2 molecule because of its chemical environment.
The differences are seen in Fig. 6.6. The correlation energy for the differ-
ent increments is determined by using the CCSD computational scheme.
The calculation can be done by considering a cluster of merely Li14 sites
with a basis set of triple-zeta quality. The experimental cohesive energy is
Eexp

coh = 1.66eV/atom. When the Hartree Fock value of EHF
coh = 0.54eV/atom

is subtracted one obtains for the experimental correlation-energy contribution
to cohesion Ecorr

coh = 1.12eV/atom. Results with the inclusion of second-nearest
neighbor orbital pairs are shown in Fig. 6.7. In order to see, how the quality of
the basis influences the results, we show them also for a single- and a double-
zeta basis set. The difference to the experimental value is less than 10 %. We
may even go a step beyond and include pair energies up to the 6th-nearest
neighbor and inter-pair correlations beyond those contained in the Li14 sites
cluster. For those contributions we increase the cluster to Li50. For a cluster
of that size only a single-zeta basis set can be used for computations. The
final results for Ecorr

coh differ from the exact ones only by less than 3 % and
compare very favorably with the best DFT results. The nice feature of the
present wavefunction-based calculation is that one has a precise picture of
where the correlation contributions come from. Similar computations can be
done, e.g., for Na or K metal.

Before finishing we want to mention briefly mercury, which crystallizes be-
low 233 K in a rhombohedral structure. Contrary to common belief, cohesion
is solely due to electronic correlations and not to the single-particle kinetic
energy. The cohesive energy is 0.79 eV/atom. A Hartree-Fock calculation does
not give cohesion. It was considered a success when wavefunction-based cal-
culations led to good results for the cohesive energy. The main findings are
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that binding results from two-site correlations, while single-site correlations
counteract binding here. Furthermore, it is crucial to include the d shell in
the calculations. Relativistic effects are also important since without them we
would find significant overbinding. For further details we refer, e.g., to the
review [356].

6.4 Ground States with Strong Correlations: CASSCF

When electron correlations are strong like in d electron systems, which we
assume in the following, an ordinary SCF calculation is not a proper starting
point. The modifications that have to be made in order to account for cor-
relations are very large. A much better starting point would be a CASSCF
calculation in which the active space includes, e.g., the strongly correlated d
electrons. But how do we formulate that computational scheme for an infi-
nite solid, where the active space involves a finite number of orbitals per unit
cell? In particular, how can we write down a ground-state wavefunction for
a solid in that case? Here the advantages of the cumulant formulation of the
correlation problem outlined in Sect. 5.3 come fully into play.

We characterize the many-body ground state by the cumulant wave oper-
ator |Ω) or scattering operator |S) of the system. Consider the decomposition
(5.53) of the S matrix. Furthermore, assume that a conventional SCF calcu-
lation has been done. The effect of SI on |ΦSCF〉 should here be identified
with the result of a CASSCF calculation with an active space restricted to
orbitals on site I. Assume that the active space at site I is spanned by the
atomic d orbitals φn(I) of that site. Then the projections {Poccφn(I)} and
{Punoccφn(I)} onto the occupied and unoccupied orbitals in |ΦSCF〉 define
localized orbitals in the two subspaces. A CASSCF calculation yields the op-
timal superposition of all possible configurations formed from the localized
orbitals of the active space, while the remaining occupied orbitals are kept
doubly occupied. By including in addition one-particle excitations from the
active space to the remaining localized orbitals the ones in the active space
are optimized. When 2-sites contributions SIJ to the scattering operator are
included, we can enlarge the active space so that it is the sum of the active
spaces of sites I and J . However, that will generally not be necessary since in-
teratomic correlations are usually not strong when I and J are some distance
apart. Therefore, most of the remaining correlations can be computed by using
one of the standard methods described in Sect. 5. CASSCF-based calculations
have been performed for a number of strongly correlated systems. They en-
large considerably the range of application of wavefunction-based electronic
structure calculations. Examples based on CASSCF are discussed in Chapter
10.





7

Quasiparticle Excitations

A determination of excited states of correlated electron systems would seem at
first sight a formidable task, especially when the correlations are strong. For-
tunately it turns out that the problem, though difficult is not unmanageable.
The concept of quasiparticles is here of great help.

The traditional theories of electrons in metals of which the theory of
Sommerfeld and Bethe [419] is the most prominent treat the electrons as an
ideal gas of fermions. They move in an external potential set up by the nu-
clei and core electrons, however their mutual interactions are discarded. The
Sommerfeld-Bethe theory has been very successful in describing qualitatively
and - in its more elaborate form - even quantitatively the physical properties
of systems like the alkali or earth-alkali metals. These findings became much
better understood after Landau introduced the concept of quasiparticle and
quasihole excitations [264, 265]. These excitations are restricted to an energy
regime close to the Fermi surface and are indeed much weaker interacting
than bare electrons. Instead of trying to calculate the quasiparticle interac-
tions microscopically, indeed a difficult task, they are parameterized. These
parameters enter different measurable quantities and can therefore be deter-
mined - at least in principle - by experiments. Landau’s Fermi-liquid theory
was originally devised for isotropic fermionic systems like 3He, rather than
realistic metals; if extended to anisotropic systems, it looses much of its sim-
plicity and it becomes difficult to make predictions from it. Nevertheless, it
had and still has a great influence on research in the field of metallic systems.
In this Chapter we discuss only basis features of quasiparticles. The subject
will come up again in a number of other chapters. In particular in Chapter
13 the usefulness and virtues of the concept of quasiparticles will become
apparent.

One may speak of quasiparticle excitations not only in metals but also in
semiconductors and insulators. When we add, e.g., an electron to a semicon-
ductor its surroundings responds to this local perturbation by polarization
and relaxation. The added electron plus its polarization and relaxation cloud
forms a quasiparticle. It may move through the system in form of a Bloch
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wave giving rise to a dispersive conduction band. The same holds true when
instead a hole is added to the system, i.e., when an electron is removed. It
seems obvious that the energy gap between the conduction and valence bands
will be reduced in comparison with the one in the absence of the response
of the surroundings, i.e., without polarization and relaxation like in a SCF
approximation. The reduction of energy gaps by correlation effects is an im-
portant subject in view of the very important role, which semiconductors play
in research and development. Therefore, we have to be able to determine those
gaps with high accuracy by ab initio methods, i.e., without adjustable param-
eters. Wavefunction-based methods are very useful here. Due attention will
be paid to that topic in the later part of this chapter.

Quasiparticle excitations as well as incoherent excitations are defined by
the poles of a single-particle Green’s function. Therefore, we start by recalling
basic facts about that function. At the beginning the Green’s function for-
mulation for zero temperature is considered. Then we go on to describe the
extension to finite temperatures.

7.1 Single-particle Green’s Function

In order to calculate the dispersion of quasiparticles and the spectral function
A(p, ω) we must determine the single-particle Green’s function. This function
will also enable us to calculate the incoherent contributions to the spectral
density, which result from the internal degrees of freedom of the correlation
hole and are the subject of the next chapter.

Let c+j and cj denote creation and annihilation operators for electrons
in state j. The index j stands for any set of four quantum numbers that
characterize the electron. For example, it may stand for the momentum vector
p and spin σ, for a site index i and spin σ, or for a MO and spin index,
depending on the problem. In the Heisenberg representation the time evolution
of these operators is given by idc+j /dt = [c+j , H ]− or

c+j (t) = eiHtc+j e
−iHt

= eiLtc+j . (7.1)

Here H is the Hamiltonian of the system and L is the Liouville operator
associated with H ; see (5.39). The causal Green’s function Gij(t−t′) is defined
as

Gij(t− t′) = −i〈ψN0
∣

∣T
(

ci(t)c
+
j (t

′)
)∣

∣ψN0 〉 , (7.2)

where ψN0 denotes the (exact) ground state of the N -electron system. T is
a time-ordering operator; it orders products of time-dependent operators by
placing operators with the larger time argument to the left of those with the
smaller time argument. The overall sign depends on the number of permuta-
tions required to achieve time order. For the operator product in (7.2), this
implies
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T
(

ci(t)c
+
j (t

′)
)

=







ci(t)c
+
j (t

′) , t > t′

−c+j (t′)ci(t) , t < t′
. (7.3)

One notices that the Green’s function is the probability amplitude of finding
an electron at time t in state i, after at time t′ an electron in state j has been
added to the ground state. The Green’s function describes electron propaga-
tion for t > t′ and hole propagation for t < t′. When we identify the quantum
numbers i with p, σ it follows from (7.1,7.2) that

G(p, t) =







−ieiEN
0 t〈ψN0

∣

∣cpσe
−iHtc+pσ

∣

∣ψN0 〉 , t > t′

ieiE
N
0 t〈ψN0

∣

∣c+pσe
iHtcpσ

∣

∣ψN0 〉 , t < t′
. (7.4)

As before |ψN0 〉 and EN0 denote the ground-state wavefunction and energy of
the interacting N electron system.

The Fourier transform of the Green’s function

G(p, ω) =

∫ +∞

−∞
dteiωtG(p, t) (7.5)

can be written in form of a spectral representation

G(p, ω) =

∫ ∞

0

dω′
(

A(p, ω′)

ω − ω′ + iη
+

B(p, ω′)

ω + ω′ − iη

)

(7.6)

with

A(p, ω) =
∑

n

∣

∣〈ψN+1
n

∣

∣c+pσ
∣

∣ψN0 〉
∣

∣

2
δ
(

ω − δEN+1
n

)

,

B(p, ω) =
∑

m

∣

∣〈ψN−1
n |cpσ|ψN0 〉

∣

∣

2
δ
(

ω − δEN−1
m

)

. (7.7)

The expressions for A(p, ω) and B(p, ω) follows from (7.4,7.5) by inserting
into (7.4) a complete set of eigenstates of the (N + 1) and (N − 1) particle
system with eigenvalues EN+1

n and EN−1
m , respectively. The δEN±1

n are the
excitation energies of the N ± 1 particle system.

The spectral representation of G(p, ω), or more generally of Gij(ω) shows
that the Green’s function represents an analytic function in the ω plane, except
near the real axis. Therefore it can be constructed from two functions GRij(ω)

(retarded Green’s function) and GAij(ω) (advanced Green’s function) which
are analytic in the upper and lower ω half plane, respectively.

The relation is

Gij(ω) =

{

GRij(ω) , Re {ω} > µ

GAij(ω) , Re {ω} < µ
. (7.8)
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Because of their analytic properties the retarded and advanced Green’s func-
tions have the following simple spectral representation:

GRij(ω) =

∫ +∞

−∞
dω′ ρij(ω

′)

ω − ω′ + iη

GAij(ω) =

∫ +∞

−∞
dω′ ρij(ω

′)

ω − ω′ − iη
, (7.9)

where the function ρij(ω) is analytic in the whole ω′ plane. One notices that
GR(ω) = GA(ω)∗. The corresponding time-dependent functions are

GRij(t) = −iΘ(t)〈ψN0
∣

∣

∣

[

ci(t), c
+
j (0)

]

+

∣

∣

∣ψN0 〉

GAij(t) = iΘ(−t)〈ψN0
∣

∣

∣

[

ci(t), c
+
j (0)

]

+

∣

∣

∣ψN0 〉 . (7.10)

Here Θ(t) is the step function, i.e., Θ(t) = 1 for t ≥ 0 and Θ(t) = 0 for t < 0.
The equation of motion for the Green’s function Gij(ω) is

i
d

dt
Gij(t− t′) =

d

dt

{

Θ(t− t′)
〈

ci(t)c
+
j (t

′)
〉

−Θ(t′ − t)
〈

c+j (t
′)ci(t)

〉}

= δ(t− t′)
〈

[

ci(t), c
+
j (t

′)
]

+

〉

+
〈

T [ci(t), H ]− c
+
j (t

′)
〉

.(7.11)

From this equation of motion we can obtain another very useful representa-
tion, which looks similar for the retarded, advanced and full Green’s func-
tion. Moreover, it applies not only to Green’s functions formed with operators
c+i (t) and cj(t

′) but to Green’ functions formed with arbitrary operators A(t),
B(t′) as well. We label the Fourier transforms of those Green’s functions by
GAB(ω) =≪ A;B ≫ω a much-used notation in the literature. For such a
function the equation of motion has the generalized form

ω ≪ A;B ≫ω= 〈ψN0 |[A,B]+|ψN0 〉+ ≪ [A,H ]−;B ≫ω (7.12)

showing that the Green’s function ≪ A;B ≫ω is coupled to another one,
i.e., ≪ [A,H ]−;B ≫ω. Setting up the equation for the new Green’s function
shows that it is coupled to yet another one, and so on. When we apply this
to G(p, ω) and decompose the Hamiltonian into H = H0+H1, with H0 given
by

H0 =
∑

pσ

(ǫ̃p − µ) c+pσcpσ , ǫ̃p = p2/2m (7.13)

we obtain the relation

ωG(p, ω) = 1 + (ǫ̃p − µ)G(p, ω)+ ≪ [cpσ, H1]−; c
+
pσ ≫ω . (7.14)

We can define a mass operator Σ(p, ω) by formally setting

≪ [cpσ, H1]−; c
+
pσ ≫ω= Σ(p, ω)G(p, ω) . (7.15)
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When set into (7.14) this yields the form

G(p, ω) =
1

ω − (ǫ̃p − µ)−Σ(p, ω)
. (7.16)

The functionΣ(p, ω) is called self-energy. The poles of the Green’s function
give the excitations of the system. In the present case they are obtained from

ω =
p2

2m
− µ+Σ(p, ω) . (7.17)

For ”normal” Fermi-liquid systems, which exclude for example superconduc-
tors, one can expand the self-energy around the energy ω = 0, i.e.,

Σ(p, ω) = Σ(p, 0) +
∂Σ(p, ω)

∂ω

∣

∣

∣

∣

ω=0

ω . (7.18)

When we set this expansion into (7.16) we obtain a pole with the real part
given by

ǫp = Z
(

p2/2m− µ+Σ(p, 0)
)

≃ v∗F (p− pF ) , (7.19)

where the renormalization constant Z is

Z =
1

1− ∂Σ(p, ω)/ ∂ω|ω=0

. (7.20)

From (7.18) the quasiparticle mass is obtained according to (4.35).
It turns out that for a normal Fermi liquid the imaginary part of the pole

is γp ∼ (p− pF )
2 (see (7.82)). The self-energy of a Fermi liquid has therefore

in the low-frequency limit the general form

Σ(p, ω) = A(p) +B(p)ω + iC(p)ω2 . (7.21)

As the Fermi energy is approached, the imaginary part vanishes faster than
the real part and therefore quasiparticle excitations are well defined. For small
excitation energies the Green’s function can be split into the form

G(p, ω) =
Z

ω − ǫp − iγp sgn ω
+Ginc(p, ω) , (7.22)

where Ginc(p, ω) is the incoherent part. It is well-behaved near the Fermi
energy, having often branch cuts as a function of ω, instead of poles. By
taking the Fourier transform of (7.22) we find for t > 0

G(p, t) = −iZ(p)e−iǫpt−γpt +Ginc(p, t) (7.23)
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Fig. 7.1. Discontinuity Z(pF ) in the momentum distribution n(p). It determines
the residue of the quasiparticle pole in the Green’s function G(p, ω).

provided t ≫ 1/ǫp and |p| > pF . From the definition (7.2) of the Green’s
function it follows that Z(p) can be interpreted as the weight of the bare elec-
tron within the quasiparticle. The part Ginc(p, t) describes the dynamics of
the modified surroundings due to Coulomb repulsions or alternatively of the
correlation hole of an added electron. The renormalization constant Z(pF ) de-
scribes the discontinuity in the momentum distribution nσ(p) of the electrons
at the Fermi surface. This is seen as follows. By making use of (7.4) we can
write the momentum distribution nσ(p) of the electrons (not quasiparticles)
in the ground state of the system as

nσ(p) = 〈ψN0
∣

∣c+pσcpσ
∣

∣ψN0 〉
= −i Gσ(p, t)|t→−0 . (7.24)

In the discussion below we suppress the index σ. The last equation is written
as

n(p) = − i

2π
lim
t→−0

w
dωe−iωt G(p, ω)

= − i

2π

w

C

dω G(p, ω) . (7.25)

The closed contour C extends along the real axis and includes a semicircle in
the upper ω half-plane at |ω| → ∞. When using the quasiparticle representa-
tion (7.22) for G(p, ω), the quasiparticle poles contribute for p < pF but not
for p > pF because in the latter case they are in the lower ω half-plane. This
causes a discontinuity in n(p) at pF given by

lim
η→0

[n (pF − η)− n (pF + η)] = Z (pF ) . (7.26)

We show this schematically in Fig. 7.1.
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7.1.1 Perturbation Expansions

We demonstrate in what follows how the Green’s function can be evaluated
with the help of perturbation expansions. For that purpose, we consider the
Green’s function matrix Gij(t), where the operators ci, c

+
j destroy and create

electrons in SCF spin orbitals i and j, respectively. The aim is to compute
this matrix in powers of the residual interactions (2.37), for which one must
express the expectation value (7.2) in terms of |ΦSCF〉. We achieve this by
going over from the Heisenberg to the interaction representation.

When we start from the Schrödinger equation

i
∂φ

∂t
= Hφ (7.27)

the state φ(t) depends on time according to

φS(t) = e−iHtφH . (7.28)

This is called the Schrödinger representation. In the Heisenberg representa-
tion, the state φ (i.e., φ = φH) remains time independent and the time de-
pendence is shifted to the operators. Now consider (7.28) in order to establish
the advantage of a third representation, i.e., the interaction representation.
Dividing H into H = H0 +H1, we would like to split off a factor exp(−itH0)
so as to treat the remaining part of the time evolution by perturbation the-
ory. For H0 we can either choose HSCF or, alternatively, the part without the
electron-electron interactions. The following decomposition holds:

e−iHt = e−iH0tTe−i
∫

t
0
dτH1(τ)

= e−iH0tU(t, 0) , (7.29)

where the time dependence of H1(τ) is according to

H1(τ) = eiH0τH1e
−iH0τ . (7.30)

Equation (7.29) is proven by differentiating both sides. Setting

y(t) = e−iH0tTe−i
∫

t
0
dτH1(τ) , (7.31)

we find by differentiation

dy(t)

dt
= −iH0y(t)− ie−iH0tH1(t)Te

−i
∫ t
0
dτH1(τ) . (7.32)

In the last term H1(τ) appears in front of the T product because t is larger
than any of the values of τ . Using (7.30, 7.31), we write (7.32) as

dy(t)

dt
= −i(H0 +H1)y(t)

= −iHy(t) . (7.33)
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By integration we obtain the left-hand side of (7.29).
We introduce still another representation with the requirement that the

states of the system φI(t) depend on time according to

φI(t) = eiH0tφS(t) . (7.34)

This is the interaction representation. From (7.28, 7.29) it follows that

φI(t) = U(t, 0)φH . (7.35)

Note that φH = φS(0) = φI(0) at t = 0.
In the interaction representation, operators A(t)I evolve in time according

to idA(t)I/dt = [A(t)I , H0]−, or

A(t)I = eiH0tASe
−iH0t

= U(t, 0)A(t)HU+(t, 0) . (7.36)

The indices S and H refer to operators in the Schrödinger and Heisenberg
representations, respectively. As a reminder, the time dependence of operators
in the Heisenberg representation is given by (7.1).

The matrix U(t, 0) has the following properties:

UU+ = 1 ,

U(t, t′) = U+(t′, t) = U−1(t′, t) ,

U(t, t′) = U(t, t′′)U(t′′, t′) . (7.37)

The interaction representation allows for the required connection between
the exact ground state |ψ0〉 and the ground state |Φ0〉 of H0, provided the
adiabatic hypothesis is made. This assumes that |ψ0〉 is obtained from |Φ0〉
by adiabatically switching on the interaction H1 at time t = −∞, so that the
full interaction is present at t = 0. This implies that

|ψ0〉 = |ψ0(0)〉 = U(0,−∞)|Φ0〉 . (7.38)

If we use the last of the relations (7.37), we can also write

|ψ0〉 = U(0,∞)U(∞,−∞)|Φ0〉
= U(0,∞)S|Φ0〉 , (7.39)

where S is called the scattering matrix. It differs from the scattering matrix
discussed in Chapter 5, yet both are interrelated. Starting from |Φ0〉 and slowly
turning on and off the interaction H1, we see that the final state can differ
from the initial one only by a phase α. Thus, we consider |Φ0〉 an eigenstate
of S = U(∞,−∞), i.e.,

S|Φ0〉 = eiα|Φ0〉 . (7.40)

It is not difficult to show that in the interaction representation the Green’s
function (7.2) can be written as
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Gij(t) = −i
〈

T
(

ci(t)c
+
j (0)S

)〉

〈S〉 , (7.41)

where 〈. . . 〉 = 〈Φ0| . . . |Φ0〉 and the operators ci, c
+
j depend on time according

to (7.36). In the course of this the assumption is that t > 0. The proof for
t < 0 is completely analogous. With (7.38, 7.39) and (7.36), we can write (7.2)
in the form

Gij(t) = −i〈Φ0|S+U+(0,∞)U+(t, 0)ci(t)U(t, 0)c+j (0)U(0,−∞)|Φ0〉
= −ie−iα〈Φ0|U(∞, t)ci(t)U(t, 0)c+j (0)U(0,−∞)|Φ0〉 . (7.42)

After introducing the time-ordering operator, the operators can be reshuffled,
resulting in

Gij(t) = −ie−iα
〈

T
[

ci(t)c
+
j (0)S

]〉

. (7.43)

The phase factor e−iα can be replaced by 〈S〉−1, yielding (7.41). If we expand

S = Te−i
∫

+∞
−∞

dτH1(τ) , (7.44)

we obtain the Green’s function Gij(t) in the form of a perturbation expansion

Gij(t) =
−i
〈S〉

∞
∑

n=0

(−i)n
n!

∫ +∞

−∞
dt1· · ·

∫ +∞

−∞
dtn

×
〈

T
[

ci(t)c
+
j (0)H1(t1) . . . H1(tn)

]〉

. (7.45)

The expectation values in this expansion can be evaluated if we apply Wick’s
theorem [484]. They are all of the form

〈Φ0|T [A1 . . . An] |Φ0〉 , (7.46)

where the An are either electron creation or annihilation operators c+i (t), ci(t)
in the interaction representation.

Wick’s theorem describes how to break up such expectation values into
products of expectation values, each involving one creation and one annihi-
lation operator only. To state the theorem we first introduce a normal order

of operators N [A1 . . . An] defined by moving all “creation” operators to the
left of the “annihilation” operators and associating a minus sign with each
commutation. The quotation marks highlight the convention used here for ci,
which is considered to be an annihilation operator when the subscript i refers
to a virtual orbital (i.e., an orbital which is unoccupied in |Φ0〉) and a cre-
ation operator (creation of a hole) when i refers to an occupied orbital. The
advantage of introducing a normal order of operators is that

〈Φ0|N [A1 . . . An] |Φ0〉 = 0 (7.47)

by definition. Having defined the normal order, a contraction between a cre-
ation operator A1 and an annihilation operator A2 is introduced by
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(7.48)

Wick’s theorem states that a T product of creation and annihilation op-
erators can be uniquely decomposed into a sum of normal ordered products
according to the rule

(7.49)

The following notation is used:

(7.50)

The number of commutations determines the sign of this expression. Wick’s
theorem requires that the operators, which appear in the unperturbed Hamil-
tonian H0, fulfill simple fermionic (or bosonic) commutation relations among
themselves and the operators in H1. We find this to be true in the case thatH0

is a one-particle Hamiltonian like HSCF. Yet, when the electron correlations
are strong, we should include most parts of the strong Coulomb repulsion in
H0. The remaining H1 contains the weak resonance interactions (hybridiza-
tions) in powers of which we would like to expand. The operators, which
diagonalize H0 no longer obey a simple commutation algebra and therefore
converting a time-ordered product into a normal-ordered one becomes much
more complex. From (7.48) we conclude that

(7.51)

The Green’s function G
(0)
ij (t) is that of a system treated in SCF approxima-

tion. Because of (7.47), the only terms which are left when the decomposition
(7.49) is inserted into (7.46) are those in which all operators Aν are contracted
in pairs. Therefore, the perturbation expression (7.45) for the Green’s function
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Fig. 7.2. Example of a disconnected diagram (a) and a connected di-
agram (b), which corresponds to particular contractions of operators in
〈T [ci(t)c+j (0)H1(t1)H1(t2)]〉, i.e., a term in the expansion (7.45). Solid lines denote

unperturbed functions G
(0)
nm(t) or G

(0)
nm(−t), depending on the direction of the arrows

associated with them. The dashed lines represent matrix elements of H1(t1(2)). For
a more detailed description of the rules governing the construction of diagrams, see,
e.g., [116].

Gij(t) can be decomposed into a sum of products of Green’s functions G
(0)
mn(t)

of independent electrons; it should be remembered, however, that while HSCF

contains electron interactions it does so only in a mean-field or independent-
electron approximation. This decomposition provides the basis for associating
Feynman diagrams with different orders of perturbation theory. These dia-
grams are obtained by representing each Green’s function (7.51) by a directed
line and help keep track of the different contributions to the expansion (7.45).
There are rules which specify the form of the diagrams to be associated with
a given term of the expansion; these rules are found in numerous textbooks1.

An important notion is that of connected versus disconnected diagrams.
The latter are diagrams which divide into different unconnected pieces. They
belong to parts of the expansion (7.45) for which the expectation values fac-
torize into at least two independent products, a point we illustrate in Fig. 7.2.
Since the disconnected diagrams just cancel the factor 〈S〉 in the denomina-
tor of (7.45), only connected or linked Feynman diagrams need be taken into
account (linked-cluster theorem). Thus Gij(t) may also be written as

Gij(t) = −i
∞
∑

n=0

(−1)n

n!

+∞
∫

−∞

dt1· · ·
+∞
∫

−∞

dtn

×
〈

T
[

ci(t)c
+
j (0)H1(t1) . . .H1(tn)

]〉c
. (7.52)

The superscript c refers to taking only connected diagrams as discussed above,
which is equivalent to taking the cumulant of that expectation value. For a
discussion of cumulants see Sect. 5.2.

1 see, e.g., [4, 116,157,300,402]
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7.1.2 Temperature Green’s Function

An understanding of the effect of electronic correlations at finite temperatures
requires a generalization of the single-particle Green’s function to T 6= 0.
Because of thermal excitations, effects of correlations on excited states come
into play here.

When thermodynamic quantities like the temperature Green’s function are
determined the statistical operator ρ and the partition function Z enter the
calculations. Therefore we start by introducing both. The statistical operator
is defined by

ρ =
e−βH

Tr{e−βH} . (7.53)

The symbol Tr stands for taking the trace of the operator. As usual β =
(kBT )

−1 where kB is Boltzmann’s constant. The definition (7.53) assumes
that the temperature T , the volume V , and the number N of electrons are
independent thermodynamic variables. The partition function Z is defined by

Z = Tr{e−βH}
= e−βF , (7.54)

where F is the free energy of the system. When dealing with a grand canon-
ical ensemble, i.e., when instead of N the chemical potential µ is used as a
thermodynamic variable, we have to make the substitution

H → H − µNel

ρ → ρG =
e−β(H−µNel)

Tr{e−β(H−µNel)} . (7.55)

We use the notation Nel for the electron-number operator in order to dis-
tinguish it from the electron number N . Then the grand canonical partition
function is written in analogy to (7.54) as

ZG = e−βΩ , (7.56)

where Ω is the thermodynamical potential.
Thermodynamic expectation values of operators A with respect to a grand

canonical ensemble are defined through

〈A〉H = Tr{ρGA} . (7.57)

Assume that H can be divided into

H = H0 +H1 (7.58)

and that the eigenstates ofH0 are known. It is useful at this point to introduce
the grand canonical partition function Z0 corresponding to H0, i.e.,
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Z0 = Tr{e−β(H0−µNel)} . (7.59)

We define the expectation value 〈A〉H0
of an operator A with respect to H0

in analogy to (7.57) as

〈A〉H0
=
Tr{e−β(H0−µNel)A}

Z0
. (7.60)

Clearly,
ZG = Z0

〈

e−βHeβH0
〉

H0
, (7.61)

and the thermodynamical potential may be written as

βΩ = − lnZG . (7.62)

The form of (7.61) suggests extracting a factor exp(−λH0) from exp(−λH).
Since H0 and H1 do not commute, this requires special care. Here (7.29) is of
help. One notices that λ can be considered an imaginary time. Therefore we
may use this analogy in order to write

eλ(H0+H1−µNel) = e−λ(H0−µNel)Tτe
−

λ
∫

0

dτH1(τ)

= e−λ(H0−µNel)Ũ(λ) . (7.63)

The derivation of this equation is the same as for (7.29) except that t is
replaced by the “imaginary time” λ. The operator Ũ(λ) is the analogue of the
one in (7.29). We define the τ -dependent operator H1(τ) by the relation

H1(τ) = eτ(H0−µNel)H1e
−τ(H0−µNel) . (7.64)

The τ -ordering operator Tτ is defined in analogy to (7.3) as

Tτ (A(τ1)B(τ2)) =

{

A(τ1)B(τ2) , τ1 > τ2 ,

(−)B(τ2)A(τ1) , τ2 > τ1 .
(7.65)

The minus sign in brackets refers to the case where A and B are fermionic
operators, e.g., electronic creation or annihilation operators.

If (7.63) is inserted into (7.60) we obtain

ZG = Z0

〈

Tτe
−

β
∫

0

dτH1(τ)
〉

H0

. (7.66)

Using (7.62) we may write the thermodynamic potential Ω in the presence of
H1 as

−βΩ = −βΩ0 + ln

〈

Tτe
−

β
∫

0

dτH1(τ)
〉

H0

. (7.67)
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The term Ω0 denotes the thermodynamic potential in the absence of H1.
From the definition of cumulants, in particular from (5.21), it follows that the
logarithmic term on the right-hand side can be expressed in terms of those.
Thus

−βδΩ =

〈

Tτe
−

β
∫

0

dτH1(τ)
− 1

〉
c

H0

, (7.68)

with the obvious notation δΩ = Ω − Ω0. The superscript c has the same
meaning as in Sect. 5.3. It is important that the cumulant can be taken despite
the “time” ordering represented by Tτ . When computing the cumulants, the
operatorsH1(τ) as given by (7.64) must be treated as an entity. For a detailed
discussion of these points, the original work of Kubo [253] should be consulted.
The above form for δΩ can be expanded in powers of H1 as

−βδΩ =
∞
∑

n=1

(−1)n

n!

β
∫

0

dτ1· · ·
β
∫

0

dτn 〈TτH1(τ1) . . . H1(τn)〉cH0
. (7.69)

When H0 is a one-electron Hamiltonian and H1 contains the electron-electron
interactions, we can evaluate expectation values of the form 〈TτH1(τ1) . . .
H1(τn)〉cH0

by means of finite-temperature Green’s function provided they
are properly defined (see below). Wick’s theorem is applicable and Feyn-
man diagrams can be associated with each expectation value. Taking cu-
mulants ensures that only connected diagrams have to be considered. The
finite-temperature Green’s function technique, standard by now, is described
in great detail in a number of textbooks2; therefore, we include here only a
summary of the main results. It is important to repeat that H0 ought to be a
one-electron Hamiltonian.

Next we discuss a proper definition of Green’s function which allows for
an expansion analogous to that of (7.45). One might think that we simply
have to generalize Gij(t − t′) given by (7.2) or, alternatively, the retarded
Green’s function GRij(t − t′) (see (7.10)) to T 6= 0. That implies that the

expectation value in (7.2) with respect to the ground state |ψN0 〉 has to be
replaced by a thermodynamic ensemble average. When T , V and µ are chosen
as thermodynamic variables, an assumption commonly made when studying
the effects of finite temperatures, the retarded Green’s function (and similarly
the advanced one) becomes

GRij(t− t′) = −iθ(t− t′)
〈

[

ci(t), c
+
j (t

′)
]

+

〉

H

= −iθ(t− t′)
∑

N,n

wNn

〈

ΨNn

∣

∣

∣

[

ci(t), c
+
j (t

′)
]

+
,
∣

∣

∣ΨNn

〉

, (7.70)

with the wNn given by

2 see, e.g., [4, 157,300,402]
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wNn =
1

ZG
e−β(E

N
n −µN) . (7.71)

The partition function ZG is defined by (7.56) and the sum in (7.70) is over
all eigenstates |ψNn 〉 of H for different electron numbers N .

However, using the Green’s function (7.70) has a serious drawback. This
becomes apparent when we try to calculate it explicitly, e.g., in order to
study the effects of finite temperatures on the excitation spectrum of the
system. Then one realizes that the perturbation expansion described in the
last section cannot be carried over the finite temperatures, the reason being
that an equivalent of (7.41) does not hold. This is due to the fact that (7.40),
a prerequisite for (7.41), does no longer apply when the ground state |ΦN0 〉 of
H0 is replaced by excited states |ΦNn 〉(n 6= 0). Instead, the scattering matrix S
when acting on |ΦNn 〉 transforms that state into the different scattering states
resulting from the electron interactions. Without a form analogous to (7.42)
or (7.43), one cannot generalize (7.52) to finite temperatures.

The difficulty can be circumvented by introducing a modified Green’s func-
tion Gij(t− t′), which is related to, but not identical with Gij(t− t′) and has
the advantage that an expansion similar to (7.45) can be derived for it. It
goes back to Matsubara and is called the temperature or Matsubara Green’s
function. Its definition is based on the observation that (7.63) and (7.29) are
the same when t is replaced by −iλ and H by (H − µNel). This suggests the
introduction of τ -dependent operators of the form

c+j (τ) = eτ(H−µNel)c+j e
−τ(H−µNel) , (7.72)

i.e., with a τ evolution corresponding to (7.1) (Heisenberg representation).
The temperature Green’s function is then defined by

Gij(τ, τ
′) = −

〈

Tτ
(

ci(τ)c
+
j (τ

′)
)〉

H
. (7.73)

The τ -ordering operator Tτ is the one given by (7.65). As in the preceding
section, we shall go over to the analog of the interaction representation. By
considering a Green’s function which depends on imaginary times τ, τ ′ instead
of real times, one avoids the obstacle of the scattering matrix S = U(∞,−∞)
transforming an excited state |ΦNn 〉 of H0 into different scattering states. Be-
fore going into that, we would like to state briefly some important properties
of Gij(τ, τ

′), without necessarily explaining the details how they can be de-
rived. As mentioned before, numerous fine textbooks are available on that
topic.

First, it can be shown that Gij(τ, τ
′) = Gij(τ − τ ′) and that for τ ′ = 0 the

variable τ is restricted to a range −β ≤ τ ≤ β. Furthermore, the values of
Gij(τ) for τ < 0 are related to those for τ > 0 by

Gij(τ) = −Gij(τ + β) , − β ≤ τ ≤ 0 . (7.74)

The Fourier expansion of Gij(τ) is therefore of the form
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Gij(τ) = kBT
+∞
∑

n=−∞
Gij(ωn)e

−iωnτ , (7.75)

where ωn = πkBT (2n + 1) (Matsubara frequencies). The relation between
Gij(τ) and the retarded (advanced) Green’s function GRij(t)(G

A
ij), or better

between their Fourier transforms, is

Gij(ωn) =

{

GRij(iωn) , for ωn > 0

GAij(iωn) , for ωn < 0 .
(7.76)

On discrete points along the imaginary axis, the Fourier transform of the
temperature Green’s function agrees with that of the retarded and advanced
Green’s function. Provided that Gij(ωn) is known, one can thus obtain GRij(ω)

or GAij(ω) by analytic continuation from the points iωn, to the real frequency
axis.

As mentioned before, the main advantage of Gij(τ) is that an expression
analogous to (7.45) can be derived for it. For that purpose, we go over to an
interaction representation, in which, in analogy to (7.36), the τ evolution of
an operator A is given by

AI(τ) = eτ(H0−µNel)Ae−τ(H0−µNel) (7.77)

[compare with (7.64)]. Within that representation, Gij(τ) takes the form [285,
342]

Gij(τ) =

〈

Tτ
(

ci(τ)c
+
j (0)S (β)

)〉

H0

〈S (β)〉H0

, (7.78)

with S (β) given by the equivalent of (7.44), i.e., S (β) = Ũ(β) which here is

Ũ(β) = Tτe
−

β
∫

0

dτH1(τ)
. (7.79)

By expanding S (β) we obtain the desired series expansion of Gij(τ)

Gij(τ) = − 1

〈S 〉H0

∞
∑

n=0

(−1)n

n!

β
∫

0

dτi· · ·
β
∫

0

dτn

〈

Tτ
[

ci(τ)c
+
j (0)H1(τ1) . . . H1(τn)

]〉

H0

. (7.80)

All operators should carry an additional index I as a reminder that their τ
evolution is according to the interaction representation; however, for simplicity
we have left out that index. In evaluating the matrix elements in (7.80), we
can again introduce contractions as done above but, instead of (7.51), we have
here

−
〈

Tτ
(

ci(τ)c
+
j (0)

)〉

H0

= G
(0)
ij (τ) , (7.81)
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where G
(0)
ij (τ) is the temperature Green’s function in the absence of H1. Like

for T = 0, Feynman diagrams can be introduced and used to evaluate the
temperature Green’s function in various approximations. The factor 〈S 〉H0

in the denominator of (7.80) is cancelled by the disconnected diagrams. By
considering connected diagrams only, we may replace 〈S 〉H0

by unity and
〈. . . 〉H0

by 〈. . . 〉cH0
(compare with (7.69)).

7.2 Coherent Quasiparticles in Metals

The concept of Fermi liquids was developed by Landau and has been extended
by Abrikosov, Khalatnikov, Nozieres, Pines, Silin and others3. It explains why
the low-temperature properties of metals resemble so much those of a free
electron system, i.e., with neglected electron-electron repulsions, provided we
renormalize properly some of the electronic parameters like the effective mass
or density of states. A crucial part of that concept is the notion of quasipar-
ticles and quasiholes. They describe the low-energy excitations of a metallic
system. The basic assumption of Fermi liquid theory is a one-to-one mapping
between those quasiparticles and the excitations of a corresponding noninter-
acting electronic system. The distribution function npσ helps to characterize
the latter. This function depends on the energy ǫpσ of the excitations and
on temperature. When npσ is known, we can easily determine the energy of
the system. In order to allow for the one-to-one mapping mentioned above,
excitation-energy levels should not cross when the interactions are turned on.
This implies that the energy of the interacting system must again be a func-
tional of the distribution function npσ, which now describes the distribution
of the quasiparticles. Of course, ǫpσ need not be the same in the presence of
interactions as it is in their absence. Instead it will in general be renormalized.
Many physical quantities like the specific heat, different susceptibilities, and
in particular transport properties, involve electronic excitations with energies
of the order of kBT . These energies are usually on the order of or less than
10−2 eV and therefore much smaller than the Fermi energy, which is on the
order of few eV. This implies that the excited electrons are close to the Fermi
surface, which makes their effective scattering rate τ−1 by interactions with
other electrons small (Fig. 7.3).

Consider a filled Fermi sphere and an additional electron with momentum
p and energy ǫp ≥ ǫF . In order to estimate its scattering rate, we look at
the scattering of an electron with momentum p and energy ǫp ≥ ǫF by an
electron with momentum k and energy ǫk < ǫF . After the scattering process
the two electrons are in the final states p′ and k′ with ǫ′p > ǫF , ǫ

′
k > ǫF .

The latter conditions result from the Pauli principle, which requires that the
final states be empty before scattering. Energy conservation requires that
ǫp + ǫk = ǫ′p + ǫ′k. If ǫp = ǫF , it follows that ǫk = ǫ′p = ǫ′k = ǫF , i.e., the two

3 see, e.g., [276,368]
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Fig. 7.3. Scattering of an electron with momentum p and ǫp > ǫF by an electron
with momentum k inside the Fermi sphere. The final states with momentum p’ and
k′ must be outside the Fermi sphere.

initial and the two final momenta are all on the Fermi surface. The available
phase space has zero volume and the scattering rate is zero. When ǫp is slightly
larger than ǫF , the energies ǫk and ǫ′p must be within a shell of thickness
(ǫp−ǫF ) around the Fermi surface. The fourth energy ǫ′k is not an independent
variable because of energy conservation. There is now phase space available
for scattering to take place and the scattering rate is τ−1 = a(ǫp − ǫF )

2

where a is a proportionality constant. At finite temperatures, i.e., for T 6= 0,
an additional term proportional to T 2 enters the scattering rate because the
Fermi surface is smeared out over an energy interval of order kBT . Therefore
we have

1

τ
= a (ǫ− ǫF )

2
+ bT 2 . (7.82)

The electron mean free path due to electron-electron interactions is ℓe−e =
vF , where vF is the velocity of the electrons at the Fermi surface and with τ
given by the last equation. In order to estimate its actual value in a metal,
we relate it to the effective electron scattering cross section σ(T ) through
ℓe−e = 1/[nσ(T )]. According to (3.11), the electron density n depends on the
Fermi energy ǫF . At sufficiently high temperatures, i.e., when kBT & ǫF so
that the effect of Pauli’s exclusion principle can be neglected, the cross section
is σ0. It can be computed from Coulomb’s law and is found to be in metals
on the order σ0 ≃ 10−15 − 10−16cm2. Note that it corresponds to a disk with
a radius of order r0, see (3.13). At low temperatures, σ(T ) is given according
to (??) by

σ(T ) =

(

kBT

ǫF

)2

σ0 . (7.83)

For T = 4 K and ǫF ≃ 5 eV, we obtain a mean-free path of order ℓe−e ≃
1 cm. This demonstrates that at low temperatures the electronic excitations
have long mean-free paths.
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At finite temperatures T we want to describe the excitations by a distri-
bution function depending on the energy ǫ of the excitations and on temper-
ature. According to the uncertainty principle, the energy uncertainty caused
by a mean-free time τ between electron collisions is ∆ǫ = τ−1(= vF /ℓe−e).
This energy must be much less than the thermal broadening, i.e., ∆ǫ≪ kBT ,
in order that the excitations be described by a thermal distribution function.
Because of (ℓe−e)−1 ∝ T 2, this condition is fulfilled at low temperatures for
electrons within an energy interval kBT of the Fermi surface.

At this stage a comment concerning the spin index should be made. Since
the spin is a quantum mechanical quantity, the distribution function is defined
as a 2 × 2 density matrix with elements np,αβ . This becomes important when
studying, for example, the effect of a homogeneous or inhomogeneous magnetic
field on the electron system. Only when the locally defined quantization axis of
quasiparticle excitations agrees with the z axis everywhere does np,αβ reduce
to a diagonal matrix np,αβδαβ . In order to simplify the notation, we assume
here that the spin index σ stands for the matrix. When required, one replaces
the sum over σ by a trace.

Assume that a given distribution npσ of quasiparticles is changed by an
infinitesimal amount δnpσ. If the system is homogeneous, we may start from
a step function of the form

n(0)
pσ = Θ (|p| − pF ) , (7.84)

where pF is the magnitude of the Fermi momentum fixed by the electron
density, and may consider the deviations from it. The change in the energy
δE caused by the change in the distribution function is given by

δE =
∑

pσ

ǫpσδnpσ +O
(

δn2
)

. (7.85)

This serves as a definition of the quasiparticle energy matrix ǫpσ, i.e., the
latter is the functional derivative of the energy with respect to the distribution
function ǫpσ({npσ}) = δE/δnpσ. The entropy S of the quasiparticles is the
same as that of noninteracting electrons, because of the requirement that the
energy levels correspond to each other in both cases. This implies the following
form:

S = −kB
∑

pσ

[npσ + (1− npσ) ln (1− npσ)] . (7.86)

Consider a grand canonical ensemble, so that the electron number N is not
fixed and may fluctuate. The chemical potential is denoted by µ. The quasi-
particle distribution function is determined by the requirement that the free
energy F remains stationary with respect to changes δnpσ in the quasiparticle
distribution, i.e.,

δF = δE − TδS − µδN = 0 . (7.87)

With the help of (7.85, 7.86) we find, in close analogy to the case of a nonin-
teracting Fermi gas, that npσ is given by the Fermi distribution function
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npσ =
1

1 + eβ(ǫpσ−µ) . (7.88)

The energy ǫpσ of a quasiparticle results from the motion of an electron in
the self-consistent field of all the other electrons or quasiparticle excitations.
When their distribution changes by δnpσ, the quasiparticle energy changes,
too. The following ansatz is made for this change:

δǫpσ =
∑

p′σ′

fσσ′ (p,p′) δnp′σ′ . (7.89)

The function fσσ′(p,p′), introduced by Landau, characterizes the electron-
electron interactions, although its microscopic calculation is generally not pos-
sible. Consequently, in Fermi-liquid theory no attempt is made to calculate it.
Instead, we relate the interaction function to measurable physical quantities
and determine it experimentally as accurately as possible. The information
obtained proves useful in the prediction of the results of other experiments.

The relation (7.89) may be applied to write the quasiparticle energy ǫpσ
in the form

ǫpσ = ǫ(0)pσ +
∑

p′σ′

fσσ′ (p,p′) δnp′σ′ . (7.90)

Here ǫ
(0)
pσ is the energy when a single quasiparticle is present, i.e., when npσ =

n
(0)
pσ . One may expand ǫ

(0)
pσ in terms of |p−pF |, i.e., the distance in momentum

space to the Fermi surface. For homogeneous systems, we obtain the simple
form

ǫ(0)pσ = µ+
pF
m∗ |p− pF | . (7.91)

The effective mass m∗ of the quasiparticles is in this case given by

m∗ = pF

/(

∂ǫ
(0)
pσ

∂p

)

p=pF

. (7.92)

The change in the total energy resulting from the deviations δnpσ of the
quasiparticle distribution function from a step function becomes

δ (E − µN) =
∑

pσ

(

ǫ(0)pσ − µ
)

δnpσ+
1

2

∑

pp′σσ′

fσσ′ (p,p′) δnpσδnp′σ′ . (7.93)

This equation proves basic to the theory of Fermi liquids. We notice that
fσσ′(p,p′) has to be symmetric under the permutation p, σ ⇄ p′, σ′. In re-
gions where δnpσ 6= 0, i.e., close to the Fermi energy, the energy difference

ǫ
(0)
pσ − µ is also small and therefore the two terms on the right-hand side are
generally of comparable size. If the changes δnpσ result solely from finite tem-
peratures, then, in the limit T → 0, the quasiparticle interactions may be
neglected. Their contribution is proportional to T 4, in distinction to the first
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term on the right-hand side of (7.93), which is of order T 2. When in the second
term of (7.90) the sum over p′ is taken, the positive and negative contribu-
tions of δnp′σ′ cancel up to terms of order T 2. Since the interaction term in
(7.93) contains a double summation, it is of order T 4 as stated above.

When the system is homogeneous, the fσσ′(p,p′) depend only on the angle
θ between p and p′. If the spin-dependent interactions are of the exchange
type, they are proportional to σ · σ′. In that case, the function fσσ′(θ) is a
tensor of the form

f(θ) = f s(θ)1 · 1′ + σ · σ′fa(θ) (7.94)

or, alternatively,

fαβ,γδ(θ) = f s(θ)δαβδγδ + σαβ · σ′
γδf

a(θ) . (7.95)

The Pauli matrices σ and σ′ act on the spins of quasiparticles with momentum
p and p′, respectively.

The two functions f s and fa can be expanded in terms of Legendre poly-
nomials

fλ(θ) =
π2

Ωm∗pF

∞
∑

l=0

Fλl Pl(cos θ), λ = s, a . (7.96)

We can write the prefactor π2/Ωm∗pF as [2N∗(0)]−1 where N∗(0) denotes
the density of states per spin of the quasiparticles close to the Fermi energy.
The Fλl are the Landau parameters.

One immediate consequence of (7.87) together with (7.86, 7.91 - 7.93) is
that, in the limit of low temperatures, the free energy of the interacting system
is that of a noninteracting electron gas, its only modification being that the
quasiparticle mass m∗ is substituted for the free electron mass.

We will now give examples of how different physical quantities depend on
the interaction parameters Fλl [266]. For homogeneous systems, the ratio of
the quasiparticle mass m∗ to the free electron mass m is

m∗ = m

(

1 +
F sl
3

)

, (7.97)

i.e., it depends on the symmetric l = 1 Landau parameter only. Furthermore,
the ratio of the spin susceptibility of an interacting system χs to that of a

noninteracting system χ
(0)
s is

χs

χ
(0)
s

=
m∗/m

1 + F a0
. (7.98)

The factorm∗/m results from the change in the quasiparticle density of states.
The remaining factor S = (1 + F a0 )

−1 is the Stoner enhancement factor, so
called because it plays an important role, for example, in exchange-enhanced
metals (Sect. 11.3). Similarly, the charge compressibility κ of an electron sys-
tem is
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κ

κ(0)
=
m∗/m

1 + F s0
, (7.99)

where κ(0) is the compressibility of a noninteracting electron gas. This relation
becomes important in the theory of metals with heavy quasiparticles (see
Chapter 13). The specific heat C = −T (∂2F/∂T 2) takes the form

C(T ) = γT + δT 3 lnT +O
(

T 3
)

. (7.100)

The Sommerfeld coefficient

γ =
m∗pF
3

k2B (7.101)

remains the same as for free electrons except for the substitution of m∗ for
m. The contribution T 3 lnT , solely due to electron interactions, is purely a
Fermi-liquid effect and does not require a particular microscopic model for its
derivation. Instead, it follows from general properties of the inverse lifetime of
the quasiparticles. In order to derive it one must include in the scattering rate
1/τ(ǫ) (see (??)) the next higher order term, i.e., 1/τ(ω) = aω2 + b|ω|3 + ...
where ω = (ǫ − ǫF ). Through the Kramers-Kronig relations, the term aω2

makes a contribution to the real part of the quasiparticle energy which is
proportional to ω, while the term b|ω|3 leads to one of the form ω2 lnω. The
last term results eventually in the T 3 lnT contribution to the specific heat.
The form (7.100) has been widely used, in particular in the theory of almost
ferromagnetic alloys and of metals with strongly correlated electrons.

As an example we show in Appendix D how the dependence (7.97) of
the effective mass m∗ on the Landau parameter F s1 is obtained. It follows
from Galilean invariance. The relation therefore does not strictly apply to
electrons in a periodic lattice potential, because these systems are invariant
only with respect to displacements by a lattice vector. In anisotropic systems
the scattering amplitudes fλ(p,p′) depend on the directions of p and p′

separately, and not only on the angle θ between the two vectors. Yet, one may
still use the property that fλ(p,p′) remains unchanged under the operations
ℜ of the symmetry group of the system, i.e.,

fλ (p,p′) = fλ
(

ℜ−1p,ℜ−1p′) . (7.102)

Consequently one may expand fλ(p,p′) in terms of the basis functions be-
longing to the irreducible representations of the symmetry group. As is already
obvious, the number of independent parameters increases considerably and it
becomes very difficult to determine them experimentally.

7.3 Quasiparticles in Semiconductors and Insulators

Reliable calculations of energy-bands and in particular of energy gaps are im-
portant topics of semiconductor physics. Most phenomena in semiconductors
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and insulators are explained within a single-electron picture. This has led oc-
casionally to the opinion that electron correlations are unimportant in those
systems. That this is not the case has been demonstrated in Sect. 6.1, where it
was shown that correlations contribute approximately one third to the binding
energy. As regards excited states, correlation effects are even more important.
Hartree-Fock energy gaps are usually reduced approximately by a factor of
two by electronic correlations. The fact that a single-electron description of
many phenomena seems to work so well proves that a quasiparticle description
is highly appropriate. Correlation effects are hidden this way in renormalized
parameters such as the energy gap between conduction and valence bands,
quasiparticle mass, etc. In this section we show how quasiparticle excitations
can be calculated by quantum chemical methods. Before discussing ab initio
calculations and results for a specific example, i.e., MgO, we consider a sim-
ple model. It applies to elemental semiconductors and serves to demonstrate
qualitatively different correlation contributions to excitation energies.

Consider what happens when we add an electron (or hole) to the system.
The added particle polarizes the bonds of its neighborhood because the system
is locally no longer charge neutral. The polarized bonds form a polarization
cloud which moves with the extra electron (hole) and together they form a
quasiparticle. It costs much less energy to create an electron-hole pair with a
polarization cloud than without it. The generation of such a polarization cloud
is a correlation effect not taken into account in the independent-electron ap-
proximation. It is reflected in the pair-distribution function g(r, r′) introduced
in Sect. 3.1 (see Fig. 4.2b). An analogous argument holds when a hole instead
of an electron is considered. The correlation cloud around the added electron
is quite distinct from that of electrons in the ground state of the system. In
the latter case, the correlation hole is due to van der Waals interactions, which
decrease rapidly with bond distance (Fig. 4.2a).

In the LDA we cannot distinguish between the correlation holes around
the added and the remaining electrons. The density-dependent exchange-
correlation potential remains unchanged when an extra electron is added to
the infinite system. The energy gap problem described in Sect. 4.4 finds its
origin here. One can circumvent it by calculating explicitly the relaxation and
the polarization cloud around the added particle by quantum chemical tech-
niques. This is the approach which is adopted here. Alternatively one may
make use of Green’s functions and of Feynman diagrammatic techniques. The
GW approximation for the electron self-energy Σ(p, ω) discussed in Sect. 4.4
proves an important computational scheme in this context [198,199]. The con-
ceptual simplicity of this method is definitely an advantage, yet it is difficult
to free it from uncontrolled approximations.

7.3.1 Quasiparticle Approximation

In the following we outline the computation of energy bands when correlation
effects are included and the quasiparticle approximation is being made.
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As discussed in Section 7.1 excitations are generally determined from the
poles of the single-particle Green’s function. For the present purpose we write
the latter in the form

Gij(ω) =
∑

mm′

〈

ψN0 |ci|ψN+1
m

〉

〈

ψN+1
m

∣

∣

∣

∣

1

ω −H + EN0

∣

∣

∣

∣

ψN+1
m′

〉

〈

ψN+1
m′

∣

∣c+j
∣

∣ψN0
〉

+
∑

mm′

〈

ψN0
∣

∣c+j
∣

∣ψN−1
m

〉

〈

ψN−1
m

∣

∣

∣

∣

1

ω +H − EN0

∣

∣

∣

∣

ψN−1
m′

〉

〈

ψN−1
m′ |ci|ψN0

〉

,

(7.103)

where |ψN0 〉 is the ground-state of the N particle system with energy EN0 and
ψN+1
m , ψN−1

m are eigenstates of the (N +1) and (N − 1) electron system. The
valence bands v and conduction bands c are obtained from the poles of the
matrices

Rvmm′(ω) =

〈

ψN−1
m

∣

∣

∣

∣

1

ω +H − EN0

∣

∣

∣

∣

ψN−1
m′

〉

Rcmm′(ω) =

〈

ψN+1
m

∣

∣

∣

∣

1

ω −H + EN0

∣

∣

∣

∣

ψN+1
m′

〉

. (7.104)

The indices m,m′ comprise the momentum k, a band index ν and spin σ.
Before we treat the effects of correlations, let us recall briefly how the

energy bands of a semiconductor or insulator are calculated in SCF approxi-
mation. For that purpose we consider the valence bands with band index ν.
Starting from the SCF ground state

|ΦSCF〉 =
∏

kνσ

c+kνσ|0〉 (7.105)

with energy ESCF
0 , we denote the SCF states with one electron annihilated in

a Bloch state with quantum numbers k, ν, σ by

|kνσ〉 = ckνσ |ΦSCF 〉 (7.106)

and write for the energies of the valence bands

ǫSCF
kν = 〈kνσ |H |kνσ〉 − ESCF

0 . (7.107)

We want to express it in terms of localized orbitals since we later treat corre-
lations by using those. Therefore we define localized hole states

|Rnσ〉 = cRnσ |ΦSCF〉 (7.108)

by a unitary transformation

|kνσ〉 = 1√
N0

∑

Rn

ανn(k)e
ikR|Rnσ〉 . (7.109)
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Here cRnσ destroys an electron in the localized spin-orbital (R, n, σ), where
n refers to the different localized states within a unit cell centered at a lattice
vector R. Furthermore, N0 is the total number of cells. The choice of |Rnσ〉
and hence of the matrix ανn is to some extent ambiguous. It depends on
the special localization procedure. In solid-state physics the localized orbitals
are called Wannier orbitals while in quantum chemistry one refers to them
as Foster-Boys orbitals. We require that within the space of occupied SCF
orbitals these orbitals are optimally localized.

Next we want to express the energies of the valence bands in terms of the
|Rnσ〉. For this purpose we introduce the matrix

HSCF
R−R′,nn′ = 〈R′n′σ |H |Rnσ〉 − δRR′δnn′ESCF

0

= (cR′n′σ |H | cRnσ) . (7.110)

The round brackets were introduced in (5.31). The valence band energies are
given by

ǫSCF
kν =

∑

R

∑

nn′

ανn(k)α
∗
νn′(k)eikRHSCF

R,nn′ . (7.111)

It is seen that we have reduced the computation of the valence band energies
to that of a relatively small number of matrix elements HSCF

R,nn′ [154]. The
matrix ανn(k) is determined by the lattice structure.

We want to generalize the above calculations by including electronic cor-
relations. In the course of this we use the identity

1

ω +H − EN0
=

1

ω − EN0
− 1

ω − EN0
H

1

ω +H − EN0
(7.112)

and write for the matrix Rvmm′(ω) the matrix equation

[(

ω − EN0
)

1 +H
]

R = 1 , (7.113)

tacitly assuming that the |ψN−1
m 〉 are orthogonal to each other. The quasipar-

ticle assumption implies that to each state |kνσ〉 there exists a corresponding
state in the interacting (N − 1) electron system which we denote by |ψN−1

kνσ 〉
or |kνσ}. In analogy to (7.109), we write

| kνσ} =
1√
N0

∑

Rn

ανn(k)e
ikR | Rnσ} . (7.114)

The state |Rnσ} contains a hole in Wannier orbital (R, n) together with its
polarization- and relaxation cloud. In the quasiparticle approximation only
the matrix element

〈

ψN−1
kνσ |ckνσ|ψN0

〉

6= 0 is kept in (7.104). We write the
zeros of (7.113) in the form

EN−1
kνσ = ǫkνσ + EN0 . (7.115)



126 7 Quasiparticle Excitations

From (7.113) and (7.114) we find for the valence band of the correlated system

ǫkν = {kνσ |H |kνσ} − EN0

=
∑

R

∑

nn′

ανn(k)α
∗
νn′ (k)eikR{On′σ|H |Rnσ} − EN0 . (7.116)

A corresponding expression is obtained for the conduction band. Here we
start from |kνσ〉 = c+kνσ|ΦSCF〉 and after repeating the steps from (7.107) to
(7.116) we end up again with matrix elements {On′σ|H |Rnσ}. They refer to
states of the (N + 1)-particle system. In passing we note that the correlation
contribution to ǫkν can be written in an elegant, condensed form if we make
use of the cumulant formulation discussed in Sect. 5.2. We find

ǫcorrkνσ =
∑

R

∑

nn′

ανn(k)α
∗
νn′ (k)eikR (c0n′σ|HresS cRnσ) , (7.117)

where S = Ω − 1 (see (5.50)).
In order to obtain the energy bands, the matrix elements in (7.116) have

to be evaluated. For that one needs to know the states |Rnσ}. They can be
obtained in a fairly simple way as will be demonstrated later.

7.3.2 A Simple Model: Bond-Orbital Approximation

In Sect. 6.1 we introduced the bond-orbital approximation (BOA) in order
to study qualitatively the effects of correlations on the ground-state wave-
function of elemental semiconductors. Here we use the same approximation in
order to discuss the different physical processes which are contained in (7.117)
and affect the band structure. Main emphasis is on the energy gap. For that
reason it is important to understand first, why the gap is so large in SCF
approximation. The exchange plays an important role here. We want to make
this transparent. Starting Hamiltonian is (6.1) which in SCF approximation
is

HSCF =
∑

ijσ

fij
(

a+iσajσ −
〈

a+iσajσ
〉)

+ ESCF . (7.118)

For a closer study it is useful to separate the Fock matrix defined in (2.30)
into two parts, i.e.,

fij = fHij + fx
ij , (7.119)

where
fHij = tij +

∑

klσ′

Vijkl
〈

a+kσ′alσ′

〉

, (7.120)

is the Hartree part and

fx
ij = −1

2

∑

klσ′

Vilkj
〈

a+kσ′alσ′

〉

, (7.121)
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Fig. 7.4. The different matrix elements fij of the Fock operator relate to atomic
hybrids as indicated.

is the exchange part. The labeling of the different Fock matrix elements is
according to Fig. 7.4.

The SCF eigenstates of the (N + 1)-electron system are written in the
form

| Φkcσ〉 = c+kcσ | ΦSCF〉 , (7.122)

where c+kcσ creates an extra electron in conduction band c with momentum k
and spin σ. The corresponding SCF energy is

ESCF
kcσ (N + 1) = ESCF(N) + ǫSCF

cσ (k) , (7.123)

with ESCF(N) denoting the ground-state energy of the semiconductor or in-
sulator. This expression for ESCF

kcσ is equivalent to the relation

[

HSCF, c
+
kcσ

]

− = ǫSCF
cσ (k)c+kcσ . (7.124)

A corresponding relation holds for the valence band ǫSCF
vσ (k). Since we want

to study the effect of the exchange, we divide

ǫSCF
nσ (k) = ǫHnσ(k) + ǫxnσ(k) . (7.125)

The first term ǫHnσ(k) is the Hartree part determined by fH
ij while ǫxnσ is the

exchange part originating from fx
ij .

Consider first the Hartree part fH
ij of the Fock matrix. It leads to Hartree

energy bands. They are not self-consistent because the density matrix, which
is used in (7.120) is that of a calculation including exchange. The four Hartree
conduction (c) and four valence (v) bands are determined from

FH =
∑

ijσ

fH
ija

+
iσajσ (7.126)

with help of the relations
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[

FH, c
+
kcσ

]

− = ǫHc (k)c
+
kcσ ,

[FH, ckvσ]− = −ǫHv (k)ckvσ . (7.127)

We have omitted the spin index σ, because magnetic effects are not part of
this analysis. When evaluating ǫHc(v)(k), it is advantageous to single out matrix

elements fH
ij with i, j referring to the same bond because in BOA they do not

contribute to the band dispersion. Thus

ǫHc (k) = fH
ii − fH

12 + ǫ̃Hc (k) , c = 1, . . . , 4

ǫHv (k) = fH
ii + fH

12 + ǫ̃Hv (k) , v = 1, . . . , 4 (7.128)

with fH
12 < 0. These expressions are still very general.

We apply the BOA in order to evaluate the effect of exchange on the
energy bands. Now the exchange can be evaluated analytically because the
one-particle density matrix is of the simple form

〈

a+iσajσ′

〉

=

{

δσσ′/2 , for i, jǫI
0 , otherwise

. (7.129)

This follows from the form (6.5) for the ground-state wavefunction together
with relation (6.4a). The inclusion of fx

ij in (7.119) leads in (7.128) to the
replacements

fH
ii → fH

ii −
U

2
, fH

12 → fH
12 −

J1
2

− K1

2
. (7.130)

Here we have used the notation (6.3) for the most important matrix elements.
The energies U and J are large while K is small. Estimates for diamond
yield the following order of magnitude values: U ≃ 22 eV, J1 ≃ 13 eV, K1 ≃
0.3 eV [239]. Thus there is a downward shift of all bands by U/2 which is
due to the exchange. In addition there is an increase by (J1 + K1)/2 in the
effective hopping matrix elements between the two hybrids forming a bond.
Accordingly, a dramatic increase in the bonding-antibonding splitting takes
place and affects the direct gap at the Γ point. We find for the contribution
of the exchange to the gap in SCF approximation

∆x(Γ ) = ∆SCF(Γ )−∆H(Γ ) ≃ J1 , (7.131)

where ∆H(Γ ) and ∆SCF(Γ ) are the gap in Hartree- and SCF (or HF) approx-
imation, respectively. The contribution from K1, may be neglected here. The
exchange contribution J1 enters with a different sign in the conduction and
valence bands and therefore is discontinuous across the band gap. Exchange
contributions from more distant hybrids are not significant for diamond in
BOA considered here. The discontinuity is easily understood if we consider a
single bond. When one of the two electrons within the bond is moved from a
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bonding into an antibonding state (particle-hole excitation), the charge dis-
tribution within that bond changes. Consequently, also the exchange energy
of the two electrons changes by a finite amount, causing a discontinuity in the
exchange energy across the gap.

The main contribution −J1/2 to the exchange matrix elements fx
12 can be

considered a classical Coulomb interaction energy of two electrons in a given
bond because J1 = V1122. This suggests setting

∆SCF −∆H =
e2

lx
, (7.132)

where lx is a characteristic exchange length smaller than the interatomic dis-
tance d. In order to obtain agreement with ab initio results for diamond we
have to use lx = 0.93d.

The effect of the exchange on the valence bandwidth is easily calculated
when the BOA is used and when interactions extending beyond nearest neigh-
bor bonds are neglected. In that case we find for the valence bandwidth

W SCF =WH + 4V1113 + 8V1114 , (7.133)

where WH is the valence bandwidth when the energies (7.128) are used. Ex-
change therefore increases the valence bandwidth.

After having discussed the influence of the exchange, we consider the effects
of correlations by assuming that one electron has been added to the system.
Before a more detailed discussion of various correlation effects is given, it is
worthwhile presenting a simple estimate for the change of the energy gap.
As pointed out before, the dominant effect of correlations in the presence of
the extra electron is the generation of a long-ranged polarization cloud which
moves with the extra particle. For an estimate of the energy-gap correction,
we simply calculate the classical polarization-energy gain in a continuum ap-
proximation. It is given by

∆ǫpol =
1

2

w
d3rP ·E = − ǫ0 − 1

2ǫ0

e2

lc
, (7.134)

where P is the macroscopic polarization of the medium, and E is the electric
field of the extra electron. Furthermore, ǫ0 is the dielectric constant of the
semiconductor or insulator, and lc is an effective correlation length, which
serves as a cutoff. We may fix it by requiring that it be equal to the length
at which the dielectric function ǫ0(r) reaches its asymptotic value ǫ0 as a
function of distance r; at this length, the correlation induced screening is
fully developed. A more detailed analysis shows that this implies lc ≃ a/2 =
1.16d, where a is the lattice constant and d is the interatomic distance. The
correlation-energy reduction∆c(Γ ) of the gap at the Γ point is twice the value
of ∆ǫpol because a hole in the valence bands also forms a polarization cloud.
The contribution of exchange plus correlations to the direct gap is obtained
by adding up (7.132) and (7.134), i.e.,
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∆xc(Γ ) =
e2

d

(

1

0.93
− 1

1.16

ǫ0 − 1

ǫ0

)

. (7.135)

Some numerical results are found in Table 7.1. One notices a considerable can-
cellation of the exchange and correlation contributions. While the exchange
enlarges the gap, correlations reduce it. This demonstrates the vital impor-
tance of electron correlations in semiconductors. The LDA treats both non-
local exchange and correlations very approximately and the errors cancel to
some extent when the gap is computed. But the computed gaps are unreliable
and usually too small.

The GW approximation discussed in Sect. 4.4 includes the two effects on
the gap pointed out here, i.e., the nonlocal exchange as well as the polarization
cloud around an electron or hole. Therefore in a number of cases very good
results are obtained [198]. That is not self-evident since the short-range part
of the correlation hole is not well described in RPA on which the method is
based. A proper reduction of the mutual Coulomb repulsion of electrons at
short distances is particularly important. Therefore one would have thought
that the short-range part of the correlation hole must be particularly well
described in order to obtain the correct gap. One reason might be that it
changes little when in covalent systems one is going over from a crystal to the
atomic limit.

Next we apply the BOA in order to discriminate between the different
correlation contributions to the energy bands. We consider valence bands with
band index ν. In BOA the one-hole state in Bloch representation is written
as

Bkνσ |ΦBOA〉 =
1√
N0

∑

I

αkν(I)BIσ |ΦBOA〉 (7.136)

Table 7.1. Various contributions to the energy gap at the Γ point for diamond,
silicon, and germanium when the BOA is made. ∆H, ∆x, and ∆c are the Hartree-,
exchange-, and the correlation contributions, respectively. The parameter d is ad-
justed slightly so that ∆ = ∆SCF + ∆c agrees with the experimental values. Also
shown are the gaps within the LDA.

Solid

C Si Ge

∆H 3.9 1.6 1.6

∆x 10.1 6.6 6.4

∆SCF 14.0 8.2 8.0

∆c -6.6 -4.8 -4.8

∆ (exp. value) 7.4 3.4 3.2

∆LDA 5.6 2.6 2.6
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where |ΦBOA〉 is given by (6.5) and I is a bond index. In BOA the expression
(7.117) for ǫcorrkνσ becomes

ǫcorrkνσ =
∑

II′

ανI(k)α
∗
νI′ (k) (BI |HresSBI′) . (7.137)

For the cumulant scattering operator S we make the ansatz

S =
∑

I,J

πIJS
π
IJ +

∑

I,J

ηIJS
η
IJ , (7.138)

where
SπIJ =

∑

σσ′

A+
Jσ′BJσ′BIσB

+
Iσ (7.139)

and
SηIJ =

∑

σσ′

A+
Jσ′BJσ′A+

IσBIσ . (7.140)

The parameters ηIJ are fixed according to (6.13) while the πIJ are obtained
from an analogue of (5.44b) but here for the (N-1)-particle state.

In order to understand the implications of the form (7.138) for S, or al-
ternatively Ω, let us assume that the hole would not be present. In that case
SπIJ |ΦBOA〉 = 0 since B+

Iσ|ΦBOA〉 = 0 (due to Pauli’s principle). The ansatz
(7.138) is then identical with (6.7 - 6.8) for the correlated ground state of the
N particle system. When the SηKL act on BIσ|ΦBOA〉 they generate again cor-
relations between bonds I and J like in the N -particle ground state, but with
one modification. The hole in bond I with spin σ blocks some processes which
contribute to the N -particle ground state. This results in a loss of ground-state
correlations.

When an operator SπKL is applied on BIσ|ΦBOA〉 it is non-vanishing only
when K = L, i.e.,

∑

K,L

πKLS
π
KLBIσ |ΦBOA〉 =

∑

Lσ′

πILA
+
Lσ′BLσ′BIσ |ΦBOA〉 . (7.141)

The hole state BIσ|ΦBOA〉 is generating particle-hole excitations (or dipoles)
A+
Lσ′BLσ′ in bond L. Thus a long-range polarization cloud is created around

the hole. As pointed out before, it reduces considerably the energy required to
remove an electron from the valence band. Very similar considerations apply
when an electron is added to the system, i.e., to conduction bands. The simple
model calculations employing the BOA pave the way for more elaborate ab
initio calculations.

7.3.3 Wavefunction-Based Ab Inito Calculations

As an example for the application of the quasiparticle approximation we want
to present the results of an ab initio calculation for the correlation contribu-
tions to the energy bands of MgO. Choosing MgO has the advantage that we
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(a) (b)

Fig. 7.5. (a): Mg 3s-like conduction band Wannier orbital on a MgO lattice. Note
that there is considerable weight on the nearest neighbor oxygen sites; (b): Mg 3p-
like Wannier orbital. (From [190])

have already discussed the correlation contributions to the ground state in
Sect. 6.2. An extension to quasiparticle excitations complements our insight
into correlation effects in that material. From (7.138) we know that when an
electron or hole is added to the system we have to distinguish between cor-
relation effects due to relaxation and polarization on the one hand and loss
of ground-state correlations on the other. The operators SπIJ and SηIJ stand
for the two different processes. They must reduce the band gap from the SCF
value of 16.2 eV to the experimental value of 7.8 eV.

Starting point is a SCF bandstructure calculation using the CRYSTAL
package. For Mg a triple-zeta basis set is used and for the highly polarizable
O a triple-zeta set supplemented by polarization functions. The conduction
band Wannier orbitals which are Mg 3s- and Mg 3p-like are shown in Fig. 7.5.
There is substantial weight on the nearest-neighbor oxygen sites. The valence
band O 2p and 2s Wannier orbitals are very compact with nearly vanishing
contributions at the nearest Mg sites. Note that the O 2s valence bands are
much lower in energy than the O 2p bands. Relaxation and polarization around
an extra electron or hole can be determined by freezing the added electron
or hole and performing a new SCF calculation in the presence of the frozen
particle.
This corresponds precisely to (7.141) were the surroundings of the hole in
BIσ|ΦBOA〉 is modified by one-particle excitations. In practice the SCF calcu-
lation is done for a MgO cluster with the hole at the center. In order to obtain
good results we choose a large cluster C which is divided into an active region
CA and a buffer region CB , i.e., C = CA +CB . All Wannier orbitals centered
at a site belonging to CB are kept frozen. The buffer provides for a good
representation of the tails of the Wannier orbitals centered on sites belonging
to CA. The changes in the diagonal matrix elements due to correlations, i.e.,
∆Hnn = {Rnσ|H |Rnσ}− 〈Rnσ|H |Rnσ〉 are listed in Table 7.2. One notices
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that the one-site and nearest-neighbor relaxation and polarization reduce the
SCF band gap by more than 4 eV, which is more than 45 % of the required
value.
The calculations do not yet account for the long-range part of the polarization
cloud. In order to include it we make a continuum approximation and apply
(7.134). The polarization energy beyond a radius R is

∆ǫpol = − (ǫ0 − 1)

2ǫ0

e2

R
, (7.142)

where ǫ0 = 9.7 is the dielectric constant of MgO. A more accurate estimate

is obtained by choosing two different clusters C
(1)
A and C

(2)
A with radii R1

and R2 and extrapolating the corresponding ∆H
(1)
nn and ∆H

(2)
nn . The radius

R in (7.142) is determined by taking into account that the core-like electrons
of Mg2+ ions contribute nearly nothing to the polarization energy. Therefore
R is the average of the radii of the first and second oxygen coordination
shells of a localized 2p (2s) hole, when valence bands are considered or of the
corresponding coordination shells of a localized 3s/3p electron when we treat
conduction bands. The resulting energies are listed in Table 7.2.

Before turning to the off-diagonal matrix elements we have to discuss the
loss of ground-state correlations. Here we find two competing effects. As dis-
cussed before, removing an electron results in a hole state localized on the
oxygen sites. In its presence, i.e., for a frozen hole on an oxygen ion, 0.9 eV of
the ground-state correlations are missing. The energy gap increases accord-
ingly. On the other hand, when an electron is added, it resides on the Mg
sites. Without it Mg2+ has closed electronic shells. They are polarized when
an electron is added. The correlation energy gain of 0.3 eV reduces the gap
and partially compensates the loss of 0.9 eV in the presence of a hole. The net
result is an increase in the gap by 0.5 eV. Together with the results shown in
Table 7.2 we find a gap reduction due to correlations of order 8.1 eV which is

Table 7.2. Correlation induced corrections to the diagonal Hamiltonian matrix
elements for the valence-band O 2s, 2p and conduction-band Mg 3s, 3p states. All
numbers are in eV. Negative corrections induce upward shifts of the valence bands
and shifts to lower energies for the conduction bands. Remember that the O 2s
bands are far below the O 2p bands. (From [189])

∆Hnn

O 2s O 2p Mg 3s Mg 3p

On-site orbital relaxation -2.64 -2.04

n.n. orbital relaxation -1.23 -1.20 -0.81 -0.84

Long-range polarization -1.80 -1.80 -2.25 -2.25

Total -5.67 -5.04 -3.06 -3.09
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Fig. 7.6. Correlated valence and conduction bands of MgO (solid lines). For com-
parison the SCF bands are shown by dashed lines. The valence bands have predom-
inantly O 2p and the conduction bands Mg 3s and 3p character. The O 2s bands
are not shown (courtesy of A. Stoyanova).

somewhat accidentally close, i.e., 95 % to the experimental value. Improved
basis sets will certainly lead to some modifications.

Off-diagonal matrix elements determine the shape and width of the bands
and therefore also effect the energy gap. Here we determine the effective hop-
ping matrix elements

tνν′ =
(Hνν′ − Sνν′Hνν)

1− S2
νν′

(7.143)

where ν is a compact index comprisingR, n and σ. ThusHνν′ = {Rnσ|H |R′n′σ}.
Furthermore, Sνν′ is the overlap matrix. The latter is non-diagonal since states
consisting of Wannier orbitals plus their polarization clouds are no longer or-
thogonal to each other. It turns out that not only nearest-neighbor but also
next-nearest-neighbor hopping matrix elements are important in this rock-
salt structure. They are of order 0.7 – 0.4 eV and change little when the
SCF Wannier orbitals are supplemented by their relaxation and polarization
cloud. The shapes and widths of the energy bands remain therefore practi-
cally unaffected by electron correlations. A plot of the SCF bands and of the
quasiparticle bands are shown in Fig. 7.6. For further details we refer to the
original literature [189]. Similar calculations were done for c-ZnS [436] and
TiO2 [84]. Here the inclusion of d electrons is a new feature.

We have discussed the example of MgO in some detail in order to show the
accuracy, which presently can be achieved with wavefunction based calcula-
tions of energy bands. This remains a field with considerable potential. There
seems to be no other way to obtain insight with respect to which microscopic
processes affect to what extend the gap of an insulator or semiconductor. The
approximations which are required are well controlled and can be improved
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step by step. It is still an open problem to generalize the wavefunction based
approach to Green’s functions. That would allow for determining the inco-
herent excitations with comparable accuracy as it is the case for the coherent
excitations.





8

Incoherent Excitations

Very often excitations in solids can be described by quasiparticles. They con-
sist of a bare electron (or hole) and a relaxation and polarization cloud around
it. This cloud is what we have termed correlation hole before. Associated with
the latter are internal degrees of freedom. When they are excited they give
rise to incoherent excitations which are represented by the incoherent part
Ginc(p, ω) of the Green’s function (see (7.22)). One may think of the exci-
tation modes of a drumhead symbolizing the correlation hole. The latter is
moving together with the bare electron in form of a quasiparticle through the
system.

In a metal with the quasiparticle concept limited to low-energy excitations,
the incoherent part of the excitation spectrum appears in the spectral density
at much higher energies than the characteristic quasiparticle peak at ω = ǫkσ.
For strongly correlated electrons the incoherent contributions are generally
large to the extent that the quasiparticle picture can break down completely.

In order to obtain the incoherent excitation spectrum of a system one has
to determine its single-particle Green’s function. The incoherent excitations
are contained in the self-energy Σ(p, ω) and the computation of the latter is a
central problem in solid-state theory. We can tackle it by applying either per-
turbation expansions with respect to the interaction part of the Hamiltonian,
i.e., using the equations of motion (7.12) or by applying projection techniques.
The two methods are related. The first method, i.e., perturbation theory, is
usually formulated in terms of Feynman diagrams. It will not be discussed
here, since there are numerous good textbooks available on the subject (see,
e.g., [116]). But we want to consider the projection method in more detail.
By identifying the most important degrees of freedom of the correlation hole
and choosing them as relevant dynamical variables, one can determine the
incoherent part of the spectrum.
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8.1 Projection Method

The projection method was developed by Mori [329] and Zwanzig [506]. It has
independently been used in quantum chemistry by Löwdin and coworkers in
a somewhat modified form, where it has been called superoperator method1.
That name relates to the use of the Liouville operator L which acts on oper-
ators and not on states.

Consider the operator space or Liouville space as it is called. There are
various ways of defining an operator product in it. One particular choice was
made in Chapter 5 and specified by (5.31). A different form is

(A|B)+ = 〈ψ0

∣

∣

∣

[

A+, B
]

+

∣

∣

∣
ψ0〉 , (8.1)

where the expectation value is with respect to the normalized exact ground
state |ψ0〉. In distinction to (5.31) cumulants are not used here. The appropri-
ate choice for the inner product depends on the problem we want to consider.
The above choice is particularly suitable for calculating Green’s functions, see
(7.10). Most of the following considerations are independent of the particular
choice of the inner product; they apply also when we use the form (5.31) in-
stead. The Liouville operator L corresponding to H is defined in analogy to
(5.39) by

LA = [H,A]− , (8.2)

where A is an arbitrary operator. Since in addition [H,A]− = −idA/dt, it
follows that

LA = −idA
dt

. (8.3)

This equation has the formal solution

A(t) = eiLtA(0) . (8.4)

We introduce in the text that follows a set of operators |Ai) called dynamic

variables. We aim at evaluating the general Green’s function matrix R(z) with
matrix elements

Rij(z) =

(

Ai

∣

∣

∣

∣

1

z − L
Aj

)

+

, z = ω + iη . (8.5)

The term iη serves to specify the analytic properties of Rij(ω). For example,
when the |Ai) are the electron-creation operators |c+pσ), then it can be shown

that Rσpp is the retarded Green’s function GRσ (p, ω) of the electrons (see Sect.
7.1).

In order to evaluate (8.5) a projection operator

1 see [291–293]
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P =
∑

ij

∣

∣Ai)+ χ
−1
ij (Aj

∣

∣ ,

χij = (Ai | Aj)+ (8.6)

is introduced. It has the property that when it acts on any operator |B)+ it
extracts from it all those components which are proportional to the variables
|Ai)+. The operator

Q = 1− P (8.7)

projects onto that part of the Liouville space, which is orthogonal to the one
spanned by the |Ai)+. The matrix χij is often called susceptibility matrix.

We consider again the matrix R with matrix elements (8.5) and make use
of the identity

1

a+ b
=

1

a
− 1

b
b

1

a+ b
. (8.8)

By using that L = PL+QL we can write Rij in the form

Rij =

(

Ai

∣

∣

∣

∣

(

1

z − LQ
+

1

z − LQ
LP

1

z − L

)

Aj

)

+

. (8.9)

Since Q|Aj)+ = 0 it follows that

(

Ai

∣

∣

∣

∣

1

z − LQ
Aj

)

+

=
1

z
(Ai | Aj)+

=
1

z
χij . (8.10)

Therefore (8.9) goes over into

Rij =
1

z
χij +

∑

lm

(

Ai

∣

∣

∣

∣

1

z − LQ
LAl

)

+

χ−1
lmRmj . (8.11)

When both sides are multiplied by z and when χij is diagonal, this equation
resembles the equations of motion (7.12,7.14,7.15). The terms, however, are
ordered differently. We rewrite (8.11) in matrix notation as

(

z1−Kχ−1
)

R = χ . (8.12)

The matrix K has matrix elements

Kil =

(

Ai

∣

∣

∣

∣

z

z − LQ
LAl

)

+

(8.13)

and can be decomposed into

Kil = (Ai | LAl)+ +

(

Ai

∣

∣

∣

∣

LQ
1

z − LQ
LAl

)

+

. (8.14)
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One part consists of the matrix elements Lij of the frequency matrix

Lil = (Ai | LAl)+ , (8.15)

while the remaining part defines the memory matrix

Mil(z) =

(

Ai

∣

∣

∣

∣

LQ
1

z −QLQ
QLAl

)

+

, (8.16)

where Q2 = Q has been used in order to write the expression in a symmetric
form. It should be noticed that Mil(z) is again of the form of (8.5) but with
|Aj)+ replaced by QL|Aj)+ and L replaced by QLQ. Therefore we can repeat
the same procedure for evaluating the newly generated Green’s functions over
and over again. At each step the Liouville space considered is perpendicular
to the former one.

When (8.15,8.16) are set into (8.12) it is of the form

R(z) =
1

z1− [L+M(z)]χ−1
χ , (8.17)

or alternatively

∑

l

(

zδil −
∑

s

[Lis +Mis(z)]χ
−1
sl

)

Rij(z) = χij . (8.18)

We see that when M(z) is written in the same form as R(z) a continued
fraction is obtained. In each order a new frequency and memory matrix are
generated.

There are two different ways in which one can use the projection method
for the computation of the retarded Green’s function (7.10). The first one uses
only a single operator (or dynamic variable) A = c+pσ. For the homogeneous
electron gas the frequency matrix reduces in that case to the energy

Lp =
(

c+pσ |L c+pσ
)

+

=

(

p2

2m
− µ

)

+
(

c+pσ |Lint c
+
pσ

)

+
, (8.19)

where Lint refers to the interaction Hamiltonian Hint (see 3.4). The memory
matrix reduces to

M(p, z) =

(

c+pσ

∣

∣

∣

∣

LQ
1

z −QLQ
QL c+pσ

)

+

(8.20)

and therefore, from the Fourier transform of (8.18), the self-energy is obtained
as

Σ(p, z) =
(

c+pσ |Lint c
+
pσ

)

+
+M(p, z) . (8.21)
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As pointed out above, we may continue by deriving a similar equation for
M(p, z) and so on, thereby obtaining Σ(p, ω) in form of a continued fraction.
The latter has to be terminated at one point. With an increase in the number
of fractions the number of poles of the Green’s function increases. These poles
with their residual model the incoherent part of the excitation spectrum.
They give the coherent excitations a line width and model possible satellite
structures. The latter show up in particular when correlations are strong.

The second way to determine the retarded Green’s function (7.10) is by
identifying again one of the dynamic variables Ai with c+pσ (i.e., A0 = c+pσ)
but complementing this choice with a number of additional operators Ai. As
previously discussed they describe the internal degrees of freedom of the corre-
lation hole. Exciting them leads to the incoherent part of the spectral density
A(p, ω). We will demonstrate this below by giving a specific example. The
projection method consists in neglecting all operators which are orthogonal
to the space spanned by the |Ai)+. Thus the memory matrix Mij(z) = 0.
We are dealing here with a generalization to excited states of the partition-
ing and projection method discussed before in Sect. 5.4.1, when we computed
the ground state. This leaves us with the diagonalization of a Green’s func-
tion matrix of dimension N , which equals the number of operators Ai. The
diagonalization must be done for each vector k, but is usually simple.

When R(z) is evaluated this way, it contains a number of static quantities,
e.g., the susceptibility matrix χij and the frequency matrix Lil. These matrices
cannot be computed directly since the exact ground state |ψ0〉 is not known.
Ways of approximating those quantities have been described in Chapt. 5.

We find that the conventional projection method of Mori and Zwanzig ex-
presses dynamic correlation functions in terms of static quantities. The latter
have to be determined separately. But as shown in Sect. 5.3, the projection
method together with the method of increments can also be applied to the
approximate calculation of the exact ground state. This opens the way for
calculating the static quantities as well. We consider this a generalization of
the Mori-Zwanzig method.

8.2 An Example: Hubbard Model

In order to demonstrate how the projection method works in practice, we
consider a simple Hamiltonian which has been much applied to study strongly
correlated electron systems. It is of the form

H =
∑

i,j,σ

tija
+
iσajσ + U

∑

i

ni↑ni↓

= H0 +Hint (8.22)

and describes electrons on a lattice with one orbital per site. There is a hop-
ping matrix element tij between different sites. We will mainly consider nearest
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neighbor hopping. Interactions between electrons take place only when they
are located on the same site. As before niσ = a+iσajσ are the occupation num-
ber operators. Strong correlations are present when the interaction U is large
in comparison with the band width W of the system. The model Hamiltonian
(8.22) was independently proposed and applied by Gutzwiller, Hubbard and
Kanamori. It is commonly referred to as Hubbard Hamiltonian and the same
convention will be adopted here. The Hubbard model is discussed in detail
in Sect. 10.4. Here we limit ourselves to a demonstration of how incoherent
excitations may be calculated by applying the projection technique.

Of particular interest is the case when U ≫ |tij |. For less than one electron
per site, the system will avoid configurations with doubly occupied sites since
they cost an additional energy U . Similarly, for more than one electron per
site the system tries to avoid empty sites.

In the limit of large U the case of half filling is special. On average there
is one electron located at each site. The electrons take advantage of H0 by
hopping forth and back between neighboring sites. Because of the Pauli prin-
ciple, this process can take place only if electrons on neighboring sites have
opposite spins, thus resulting in antiferromagnetic correlations between sites.

Hubbard’s approximate solutions have contributed significantly to our un-
derstanding of strongly correlated electrons [194,195]. They have further had
an influence on our understanding of another important problem of solid-state
physics, namely that of electrons moving in a nonperiodic potential (disor-
dered system). Now we turn to the so-called Hubbard I approximation and
show how it is obtained by applying the projection method. For that purpose
we determine the retarded Green’s function matrix

Rij(ω) =

(

Ai

∣

∣

∣

∣

1

ω − L+ iη
Aj

)

+

. (8.23)

For the {An} we choose the following set of variables: a+iσ and in addition
a+iσδni−σ with δni−σ = ni−σ − 〈ni−σ〉. The latter variables are orthogonal
to the a+iσ and the operator a+iσδni−σ is used to describe in the simplest ap-
proximation the correlation hole of an electron on site i with spin σ. With its
help we can modify double occupancies of site i because it filters out those
configurations when it is applied to a state. When it acts on a configuration in
which site i is singly occupied it gives zero. This is equivalent to the following
choice of variables in k-space.

A1(k) = a+kσ

A2(k) =
1√
N0

∑

i

eik·Ria+iσδni−σ . (8.24)

We shall assume a paramagnetic state in which case 〈ψ0|niσ|ψ0〉 = n/2,
where n denotes the band-filling. The retarded Green’s function GR(k, z) =
(a+kσ|(z − L)−1a+kσ)+ is given by R11. For simplicity we omit in the following
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its upper script R. In order to determine the matrix RRR, we apply (8.12) with
the memory matrix set equal to zero, i.e.,

(

ω1 −LLLχχχ−1
)

RRR(k, ω) = χχχ . (8.25)

We find that

χχχ =

(

1 0
0 n

2

(

1− n
2

)

)

. (8.26)

Similarly

LLL =

(

ǫ(k) + n
2U

n
2

(

1− n
2

)

U
n
2

(

1− n
2

)

U n
2

(

1− n
2

)2
U

)

. (8.27)

Hereby an additional term W (k) ∝ t in L22 which describes a band shift has
been neglected. This shift is partially caused by the k-independent difference
of the kinetic energy in the upper and lower band (see below) and partially by
an effect of spin correlations on the band dispersion. Yet within the Hubbard
I approximation those terms are not considered. From (8.25-8.27) and (8.17)
we obtain for the retarded Green’s function R11

G(k, z) =

[

z − ǫ(k)− U

2
n

(

1 +
Û

ω − Û + iη

)]−1

, (8.28)

where Û = U(1− (n/2)). It has two poles centered around ω ≃ 0 and ω ≃ U ,
which result in two bands of excitations. Up to terms of order U−1, we can
rewrite G(k, ω) in the form

G(k, z) =
1− n/2

z − ǫ(k)(1 − n/2)
+

n/2

z − U − ǫ(k)n/2
. (8.29)

We notice that the widths of the two bands differ except when n = 1, which
is the case of half filling. An unusual feature - at least from the point of view
of conventional band theory - is that the number of states per site in the two
subbands is different, namely (2−n) for the lower and n for the upper band. A
simple physical argument for the n dependent number of states in a Hubbard
band is given in Sect. 10.4.3. If we want to show that formally, we need to
know the relation between the density of states per spin, N(ω), and Green’s
function. This relation is found in many textbooks and is given by

N(ω) = − 1

π

w
dk Im {G(k, z)} . (8.30)

Integrating 2N(ω) over ω, we obtain the number of states in a subband. Its
dependence on electron concentration is discussed below in more detail.

The dynamics of the correlation hole shows up as a satellite in the spectral
function A(k, ω) (see (7.7)). This is shown in Fig. 8.1 for a square lattice with
large ratio U/t at half filling n = 1 and when n = 2/5. The satellite structure
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Fig. 8.1. Schematic representation of A(k, ω) for the Hubbard model on a square
lattice with filling factors (a) n = 1 and (b) n = 2/5 in Hubbard I approximation.
Only the centers of gravity of the spectral structure are shown. When the band
filling is decreased to n = 2/5, one notices a change in the dispersion and a transfer
of spectral density from the upper to the lower Hubbard band.

leads also to a band. Thus we are dealing with a lower and an upper Hubbard
band. There are several things to notice when the bands are compared for
different filling factors. For n = 1 both bands have equal spectral weight. The
lower band has its minimum value at theM point, while for n = 2/5 the mini-
mum is at the Γ point. The change in the band dispersion is obviously related
to a decrease of antiferromagnetic correlations with decreasing band filling.
They are present in the half-filled case as pointed out above. We mention
here that the exact diagonalization of clusters with small and intermediate
ratios U/t yields a dispersion for the lower Hubbard band at half-filling which
is proportional to (cos kx + cos ky)

2 like in a itinerant antiferromagnet. For
n = 2/5 the band resembles that of free electrons. At that band filling most of
the spectral density of the upper Hubbard has transferred to the lower band
and what remains looks like a small satellite structure.



9

Coherent-Potential Approximations

In correlated electron systems as well as in disordered systems coherent-
potential approximations (CPAs) play an important role1. The close rela-
tionship between these two different fields of condensed matter physics was
pointed out by Hubbard, one of the inventors of the CPA [195]. When we
speak of disorder it is important to distinguish between static and dynamical
disorder. The first case is given when we deal with systems which deviate in
an irregular fashion from a regular lattice structure. A glass is an extreme
example here. But even on a regular lattice structure static disorder may ex-
ist. Think of an alloy with equal components A and B which are distributed
irregularly over the lattice sites. The result is again static disorder. Dynamic
disorder is different. Consider an electron moving on a lattice under the con-
dition that it cannot hop onto a site which is already occupied by another
electron. Thus it is experiencing a disordered surrounding because some of
the sites are empty while others are occupied. However, this surrounding is
changing with time. Not only does the original electron move, but also the sur-
roundings of a given site are changing too, since the electrons hop on and off
sites. The original CPA was done for static disorder. Its generalization to dy-
namical disorder is therefore an important step. There are several equivalent
generalizations of which the Dynamical Mean-Field Theory (DMFT) is one
that has obtained widespread application. It involves taking time dependent
disorder into account in a local approximation. This reduces the problem to
that of an impurity with on-site correlations embedded self-consistently in an
environment. The success of DMFT is based in large part on the availability of
efficient impurity solver programs. However, the neglected intersite dynamical
disorder effects are not small. Therefore the DMFT needs generalization.

We discuss first the CPA for the case of static disorder before we turn to
the DMFT and to generalizations of it.

1 see [421,446,465,499]
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9.1 Static Disorder

Consider a disordered system with noninteracting electrons (alloy problem).
Let us describe it by a Hamiltonian

H =
∑

〈ij〉σ
tij
(

a+iσajσ + h.c.
)

+
∑

i

ǫini . (9.1)

We speak of diagonal disorder when the ǫi vary irregularly from site to site
and of off-diagonal disorder when the tij depend explicitly on i and j and
not only on the relative positions of sites i and j. Consider for a moment an
alloy with diagonal disorder only. An electron traveling through the system
experiences at each site a different potential ǫi. In order to describe this system
we start from the equation for the retarded Green’s function matrix Gij(z) in
site representation

(z1−LLL)GGG(ω) = 1 , (9.2)

where the Liouvillean LLL refers to H given by (9.1), i.e., LA = [H,A]−. We
find

Lij =
(

a+iσ | L a+jσ
)

+
= tij + ǫiδij . (9.3)

In the simplest approximation Lij is replaced by the ensemble average

Lij = 〈Lij〉 . (9.4)

The disordered system is replaced here by a virtual periodic system. Equation
(9.2) is then trivially solved after Fourier transformation. With the notations

ǫp =
1

N0

∑

i6=j
〈tij〉 eip(Ri−Rj)

ǫ = 〈ǫi〉 , (9.5)

we obtain

G (p, z) =
1

z − ǫp − ǫ
, (9.6)

which is the Green’s function of a virtual crystal.
The CPA improves considerably this approximation. In order to demon-

strate the essence of it, assume again that there is diagonal disorder only,
i.e., tij = 〈tij〉. In that case fluctuations of the frequency-matrix elements are
given by

δLij = Lij − Lij

= (ǫi − ǫ) δij = ∆ǫiδij . (9.7)

The system can therefore be considered as one of impurities with scattering
potentials ∆ǫi embedded in a virtual crystal. The respective scattering of an
electron by site i can be described by the t-matrix
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ti =
∆ǫi

1−∆ǫiGii(z)
. (9.8)

It has the form of a geometric series. The scattering of an electron which
repeatedly leaves and returns to site i enters through the Green’s function
Gii(z) of the virtual crystal multiplied by the scattering potential ∆ǫi. In the
CPA the effect of the scattering (or t-matrix) is approximately taken into
account by a modified Green’s function G̃ij(z) with a yet unspecified self-

energy Σ̃(z).

G̃ij(z) = Gij

(

z − Σ̃(z)
)

. (9.9)

The system resembles therefore that of electrons in a virtual crystal but with
an additional coherent potential Σ̃(z) added to it. With respect to a medium
described by G̃ij(z) the different sites behave like impurities with a modified,
frequency dependent scattering potential

∆ǫ̃i = ∆ǫi − Σ̃(z) . (9.10)

Therefore they give raise to a t̃-matrix

t̃i =
∆ǫ̃i

1−∆ǫ̃iG̃ii(z)
. (9.11)

The CPA requires as a self-consistency condition for the self-energy Σ̃(z) that
the averaged t̃-matrix in that effective medium vanishes, i.e., that

〈

t̃i
〉

= 0 . (9.12)

For the purpose of demonstration consider a random binary alloy for which
the ǫi take the two values ǫA and ǫB only. The concentrations of the two types
of sites are cA and cB = 1 − cA, respectively. The condition (9.12) together
with (9.11) results in

cA

[

∆ǫA − Σ̃(z)
]

1−
[

∆ǫA − Σ̃(z)
]

G̃00(z)
+

cB

[

∆ǫB − Σ̃(z)
]

1−
[

∆ǫB − Σ̃(z)
]

G̃00(z)
= 0 , (9.13)

where ∆ǫA(B) = ǫA(B)−ǫ. Since G̃00(z) = [z−t00−Σ̃(z)]−1 we can determine

Σ̃(z) from that equation. It is important to realize that the CPA is a single-site
theory. Scattering off two sites or larger clusters is neglected here.

Equation (9.13) can be used to demonstrate the alloy analogy of strongly
correlated electrons by means of the Hubbard model (8.22). Consider an elec-
tron with spin ↑ moving through the system. Let us assume for a moment that
all electrons with spin ↓ are kept frozen. In that case the motion of the spin
↑ electron resembles the one in a disordered system with diagonal disorder.
When a site is occupied by a frozen spin ↓ electron the acting potential at
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that site is U while when a site is empty the associated potential is zero. Thus
we are dealing with a disordered system to which the CPA applies. We use
(9.13) with ∆ǫA = 0 and ∆ǫB = U and furthermore cA = (1 − 〈n−σ〉) and
cB = 〈n−σ〉. Here 〈n−σ〉 is the probability of site being occupied by a spin ↓
electron. This gives us

−Σ̃(z) (1− 〈n−σ〉)
1 + Σ̃(z)G̃00(z)

+

(

U − Σ̃(z)
)

〈n−σ〉

1−
(

U − Σ̃(z)
)

G̃00(z)
= 0 . (9.14)

In order to find a solution to that equation we consider the large U limit
and neglect hopping processes in G̃00(z) (atomic limit). Therefore the latter
reduces to

G̃00(z) =
1

z − t00 −Σ(z)
, (9.15)

where t00 is the atomic orbital energy. When this expression is set into (9.14)
we obtain for the self-energy

Σ̃(z) =
(z − t00) 〈n−σ〉U

z − t00 − (1− 〈n−σ〉)U
. (9.16)

By setting this relation into (9.15) we obtain in the atomic limit

G̃at
00(z) =

1− 〈n−σ〉
z − t00

+
〈n−σ〉

z − t00 − U
, (9.17)

with two poles at energies t00 and (t00 + U). In order to improve the result
we include in the Fourier transform of G̃ij(ω) the kinetic energy but still use

for G̃00(ω) the atomic limit.

G̃(k, z) =
1

z − ǫ(k) − Σ̃(ω)

≃ 1
[

G̃at
00(z)

]−1

− ǫ(k)− t00

. (9.18)

Because of the pole structure of G̃at
00(z) (see (9.17)), we find that also G̃(k, z)

has two singularities for each k point. Neglecting terms of order tij/U , setting
t00 = 0 and furthermore assuming 〈n−σ〉 = n/2 we reproduce (8.29), i.e., the
Hubbard I approximation.

9.2 Dynamical Disorder: DMFT and Beyond

The alloy analogy discussed at the end of the last section shows that there
is a close relation between strongly interacting electrons and noninteracting
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electrons in disordered systems. This relation is most transparent when for-
mulated in terms of functional integrals [75]. As briefly pointed out before,
the main idea is here the following. Consider an interacting electron moving
through a lattice. When the electron hops onto a site, its energy will de-
pend on the number of electrons which are already there. Since that number
is fluctuating in space and time, the electron experiences a space- and time
dependent potential. The conversion of interactions into fluctuating external
potentials is achieved best by going over to finite temperatures and applying a
Hubbard-Stratonovich transformation (see Sect. 11.3). The finite temperature
version of the CPA discussed in the last section is obtained by treating that
potential in a single-site approximation and replacing it self-consistently by an
effective medium. Thereby its time dependence is neglected (static disorder).
Self-consistency implies here that the average scattering- or t-matrix of the
spatially fluctuating potential vanishes in the effective medium.

Neglecting the time dependence of fluctuations by making the static ap-
proximation implies that at T = 0 the theory reduces to a mean-field theory.
The ground state is the one obtained in a SCF approximation and all the
correlation effects discussed in Chapter 6 are missing. This makes it clearly
desirable to go beyond the static approximation and to treat dynamical disor-
der. An early attempt to generalize the coherent potential approximation to
a many-body CPA was made by Hirooka and Shimuzu but did not get wide
application. Other attempts started from a variational ansatz for the thermo-
dynamic potential or from an expansion of the dynamical scattering matrix
with respect to the frequency modes of the dynamical potential. However, a
breakthrough was only obtained with the development of the dynamical mean-
field theory (DMFT) for infinite dimensions by Georges and Kotliar [145] and
by Jarrell [213]. They cast the theory into the form of a self-consistent quan-
tum impurity problem, for which efficient numerical impurity solver became
available. The work was stimulated by the findings of Metzner and Vollhardt

proving that in infinite dimensions the Hubbard model is solvable [322]. Mean-
field treatments become exact in that limit. The self-energy is a function of
frequency only and the problem reduces to a single-site or local one [334].
This explains why DMFT reduces to an impurity problem. At the same time
a dynamical CPA (DCPA) was developed by Kakehashi [222]. Subsequently
it was shown that both theories are equivalent to each other and to the ap-
proach of Hirooka and Shimizu [224]. Impurity solvers, which use Monte Carlo
techniques, have been particularly successful2. While the DMFT is based on
temperature Green’s functions, one can also formulate a dynamical CPA in
terms of retarded Green’s functions. The latter in its most advanced form is
named fully self-consistent projection operator approach [227]. It avoids the
problem of analytic continuation from imaginary to real frequencies that the
DMFT approach faces.

2 see, e.g., [213,214]
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Numerous works have successfully used DMFT in combination with the
LDA. Reference to infinite dimensions is abandoned here. Instead, we simply
limit ourselves to a single-site approximation, in which case the self-energy
Σ(p, ω) is replaced by a function of frequency only. Correlations between
different sites are neglected. By treating a small atomic cluster as a single
“site”, the self-energy Σ(p, ω) can be computed, at least for some p points
(cluster dynamical mean-field theory (CDMFT) [301]). One of the remaining
problems can be seen as follows.

Assume that we deal with a system with appreciable short-range antifer-
romagnetic correlations. A 4×4 sites cluster diagonalization will reflect these
correlations by an antiferromagnetic arrangement of the spins in the cluster.
A CDMFT transfers this result self-consistently to the environment, which in
this case also consists of 4×4 sites cluster units. Since all these units become
identical by the self-consistency process, we obtain long-range antiferromag-
netic order. Antiferromagnetic correlations and long-range order are therefore
strongly overemphasized in CDMFT. Whether a system is an antiferromag-
net or not can be found out only when the dimension of the cluster exceeds
the AF coherence length. In practice this is hardly possible though. A special
case is 2D. Here the Mermin–Wagner theorem excludes long-range AF order,
except at T = 0. A CDMFT for the Hubbard model at half-filling on a square
lattice shows a logarithmic decrease of the Néel temperature TN with increas-
ing clusters up to 26 sites in agreement with that theorem [302]. The field has
been extensively reviewed in Ref. [146] and in a monograph [9].

We use here retarded Green’s functions in order to describe the extension
of the CPA to a dynamical CPA and beyond. Thereby we make use of the
projection technique. When combined with the method of increments of Sect.
5.3.1 it allows for accurate calculations of the self-energy Σ(k, ω) for model
systems like Hubbard’s Hamiltonian. The method is not restricted to a single-
site approximation but extends instead to far neighbors. We formulate the
self-consistent projection method by using the Hubbard model (8.22). Starting
point is the retarded Green’s function

Gmn(z) =

(

a+mσ

∣

∣

∣

∣

1

z − L
a+nσ

)

+

, z = ω + iη (9.19)

and its Fourier transform

G(k, z) =
1

z − ǫ(k)−M(k, z)
. (9.20)

The frequency matrix Lil (see (8.15)) has been included in ǫ(k). For the
Hubbard model under consideration it leads to an energy shift only, which can
be ignored. We assume a paramagnetic system so that the spin dependence
of the Green’s function can be omitted. In site representation the memory
function is of the form (see (8.16) and (8.24)),
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Mij(z) =

(

a+iσδni−σ

∣

∣

∣

∣

1

z −QLQ
a+jσδnj−σ

)

+

=

(

Aiσ

∣

∣

∣

∣

1

z −QLQ
Ajσ

)

+

, (9.21)

with Ajσ = a+jσδnj−σ and Q = 1 −∑iσ |a+iσ)+(a+iσ |. The function M(k, z) is
obtained from

M(k, z) =
∑

j

Mj0(z)e
ikRj , (9.22)

where Rj denotes the lattice vectors. Stopping at this stage, i.e., neglecting
the new memory function in the denominator of Mij(z), would bring us back
to the Hubbard I approximation.

In the spirit of the CPA we define an effective single-electron Hamiltonian
with a nonlocal time- or frequency-dependent potential

H̃(z) = H0 +
∑

ijσ

Σ̃ijσ(z)a
+
iσajσ . (9.23)

The operator H0 is that of (8.22) with the slight modification that the fre-
quency matrix has been included in ǫ(k) (see above).

The corresponding Liouvillean L̃(z) has the property L̃(z)A =
[

H̃(z), A
]

−
for arbitrary operators A. When we choose

Σ̃ijσ(z) =Mij(z) , (9.24)

then the Green’s function

Fij(z) =

(

a+iσ

∣

∣

∣

∣

1

z − L̃(z)
a+jσ

)

+

(9.25)

is identical with (9.20). Equation (9.25) serves as a self-consistency condition,
i.e.,

Gij(z) = Fij(z) . (9.26)

The goal is to determine Mij(z) as accurately as possible. Before we pur-
sue this, we draw attention to a simplification which arises when we neglect
nonlocality in Σ̃ijσ(z) and replace it by a local self-energy Σ̃ijσ = Σ̃(z)δij . In
that case the self-consistency condition becomes

Σ̃(z) =
1

N0

∑

k

M(k, z) , (9.27)

where N0 is the number of lattice sites. Here the medium acts like a time-
or frequency dependent external- or molecular field, which is applied to an

impurity site with on-site interaction
(

Uδni↑δni↓ − Σ̃(z)ni

)

. Self-consistency
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i         j i

j

(a) (b)

Fig. 9.1. 2-site clusters: (a) nearest-neighbor sites ij; (b) more distant sites i and j

i         j

Σ(z)
~

Σ (z)
~

U

U

(a) (b)

Fig. 9.2. (a): Medium with cavities at sites i and j. (b): the Hubbard two-particle
interaction is substituted at the cavity sites. In the shaded areas the self-energy
matrix Σ̃(z) applies.

is attained when Σ̃(z) ensures that the scattering matrix of the impurity
vanishes. The theory is then essentially identical with the DMFT. In the text
that follows we want to keep the nonlocal Σ̃ijσ(z) and go beyond the DMFT
and equivalent theories.

We compute Mij(z) by increments. For that purpose we define groups of
sites, i.e., clusters c which contain one-, two-, three- etc.. sites (c = i, ij, ijk,
etc.). The sites need not be nearest neighbors but instead can be far apart (see
Fig. 9.1). Furthermore we define an interaction Hamiltonian for the cluster

H
(c)
I (z) = U

∑

iǫc

δni↑δni↓ −
∑

ijσ

′Σ̃ijσ(z)niσ , (9.28)

where the dash at the summation of the second term indicates that the sites
i and j must belong to the cluster c. The difference to the interaction part
H̃(z)−H0 (see (9.23)) is that at sites i of the cluster the coherent potential
is replaced by the two-particle interaction of the Hubbard model. This is

illustrated in Fig. 9.2. The corresponding Liouvillean is L
(c)
I so that we may

define a cluster Liouvillean

L(c)(z) = L̃(z) + L
(c)
I (z) (9.29)
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corresponding to the cluster Hamiltonian H(c)(z) = H̃(z) +H
(c)
I (z). For the

clusters we define cluster memory functions

M
(c)
ij (z) =

(

Aiσ

∣

∣

∣

∣

1

z −QL(c)(z)Q
Ajσ

)

+

. (9.30)

Our aim is to express the memory function (9.21) in form of increments.
Thereby we have to distinguish between diagonal matrix elements

Mii(z) =M
(i)
ii (z) +

∑

ℓ 6=i
δM

(iℓ)
ii (z) + . . . (9.31)

and off-diagonal matrix elements

Mij(z) =M
(ij)
ij (z) +

∑

ℓ 6=ij
δM

(ijℓ)
ij (z) + . . . . (9.32)

The δM (c) denote the changes in the matrix elements when the cluster includes
an increasing number of sites. The DMFT corresponds to restricting oneself
to

Mii(z) =M
(i)
ii (z) , (9.33)

which reduces to an impurity problem (see Appendix I). Note that for the
off-diagonal matrix elements one has to start from a two-site cluster.

In order to apply the theory in practice, we need to have explicit ex-
pressions for the cluster memory matrices M (c)(z). They can be obtained by
making use of renormalized perturbation theory (RPT). Within that scheme,
one is expanding around a suitably chosen Hamiltonian, respective Liouvil-
lean. The latter is here L̃(z). Therefore we expand (z −QLQ)−1 in (9.21) by
starting from

g0(z) =
1

z −QL̃(z)Q
(9.34)

and including perturbationally L
(c)
I (z) (see (9.29)). This defines a cluster T -

matrix operator T (z) through

1

z −QLQ
= g0 + g0T (z)g0 ,

so that the self-consistency condition (9.24) takes here the form

(Aiσ |g0(z)T (z)g0(z)|Ajσ) = 0 . (9.35)

This constitutes a generalization of the CPA to dynamical disorder. This
way the different matrix elements of the memory-function increments can be
determined (see Appendix I). After the cluster expansion is terminated at a
stage, the potential Σ̃ij(z) is determined self-consistently by using (9.26). It
enters the different matrix elements Mij(z) via g0(z).
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Actually, within RPT we can make one more simplification. We know from
Sect. 8.2 that the variables Aiσ = a+iσδni−σ are sufficient in order to obtain the
correct atomic limit. Therefore we introduce a projector P̄ onto the subspace
spanned by the {Aiσ}, i.e.,

P̄ =
∑

iσ

|Aiσ)+ χ−1
iσ (Aiσ| , (9.36)

where χiσ = 〈niσ〉(1 − 〈ni−σ〉).
We express L

(c)
I (z) in (9.29) in terms of P̄ in the form

L
(c)
I (z) = P̄L

(c)
I P̄ + L

(c)
IQ (9.37)

with
L
(c)
IQ = Q̄L

(c)
I P̄ + L̄

(c)
I Q̄ (9.38)

and Q̄ = 1− P̄ we can neglect L
(c)
IQ(Q) in lowest approximation. In that case

the correct atomic limit is ensured and so is the weak interaction limit for
small U (see (9.20)). The present scheme is therefore able to provide for an
interpolation between the two limits.

When we require self-consistency with respect to the embedding poten-
tial only for the diagonal matrix elements ˜∑

iiσ(z) we speak of the self-
consistent projection method (SCPM). The fully self-consistent projection
(FSCP) method includes also self-consistency for the off-diagonal contribu-

tions ˜∑
ijσ(z).

The theory has been applied to the Hubbard Hamiltonian on a square
lattice and a simple cubic lattice at half filling and for different hole-doping
concentrations. The momentum dependent spectral density

Aσ(k, ω) = − 1

π
Im G(k, ω + iη) (9.39)

has been calculated and an example is shown in Fig. 9.3 for U = 8 in units of
the nearest-neighbor hopping t. There are quasiparticle excitations present,
but also appreciable incoherent structure is observed. The results are among
the most accurate for the Hubbard model at small hole doping. We draw
attention to complementary results in Sect. 10.7 and 10.9.1.
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Fig. 9.3. Spectral density for the nearly half-filled Hubbard model with 5 % hole
doping on a square lattice for U = 8 in units of |t|. Calculations employ the fully
self-consistent projection (FSCP) operator technique. (Courtesy of Y. Kakehashi)
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Strongly Correlated Electrons

The physics of strongly correlated electrons is a vast field of all its own. But
when do we speak of strongly correlated electrons and when of weakly cor-
related ones? One way of answering this question is by comparing the size
of the Coulomb repulsion of electrons on a given site with the hybridization
energy, i.e., with the energy gain of an electron by delocalizing. Surely, those
two energies work against each other. Delocalization of electrons due to hy-
bridization matrix elements increases the fluctuation of the electron number
ni at a given site i and defined by 〈(ni−〈ni〉)2〉, since electrons hop on and off
that site (charge fluctuations). This leads to an increase of their Coulomb re-
pulsion, since the latter is optimized by configurations, in which the electrons
are distributed over the lattice sites as uniformly as possible. Thus when we
characterize the on-site Coulomb repulsion of two electrons by an energy U
and the hybridization by a hopping matrix element t to a nearest neighbor
site, the ratio U/|t| enables us to distinguish between strong and weak corre-
lations. When U/|t| ≫ t, the Coulomb repulsion and hence the tendency to
minimize charge fluctuations are dominant, while for U/|t| ≪ 1 the electrons
move almost as freely as independent particles. In an alkali metal like Na the
overlap of s-wave functions on neighboring sites and hence |t| is large. The
functions are relatively extended so that U is not particularly large. Therefore
U/|t| is small and the electrons are weakly correlated only. At the other end
of the scale are 4f electrons which are close to the nuclei. Their wavefunction
overlap with neighboring sites is small, while the on-site Coulomb repulsion
is large. Therefore U/|t| ≫ 1 and correlations are strong.

The reductions of charge fluctuations, as compared with the ones one
would obtain in a self-consistent field approximation, may be used to define a
measure for the strength of electron correlations in a system. Accordingly we
may classify, e.g., different bonds in molecules or solids with respect to their
correlation strength. Rare-earth ions with incompletely filled 4f shells are the
strongest correlated valence electrons in solids. Except for Ce3+, which may
fluctuate between 4f1 and 4f0, Yb3+ which fluctuates between 4f13 and 4f14,
fluctuations in the f -electron number at a site are practically zero, implying
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that the 4f electrons remain localized. Note that we leave aside here the spe-
cial case of valence fluctuating Sm and Eu ions. An incompletely filled 4f shell
is characterized by its total angular momentum J , which can be calculated
by applying Hund’s rules. The (2J+1)-fold degeneracy of the ground-state J
multiplet is split in the crystalline electric field (CEF) set up by the neigh-
boring ions. Typical splitting energies are of order of a few meV and therefore
much smaller than a typical Fermi energy. They define a low-energy scale
caused by correlations. This scale prevails even when the 4f electrons become
slightly delocalized as in the case of Ce3+ or Yb3+. While CEF excitations
are an almost trivial example of a low-energy scale due to strong correlations,
there are other more refined cases. A simple model will give good insight into
low-energy excitations of spin degrees of freedom which couple only weakly to
charge degrees of freedom. One goal consists in finding appropriate effective
Hamiltonians, which describe the low-energy excitations. They only act on
a proper subspace of the full Hilbert space. The high-energy excitations are
eliminated and replaced by new interactions within the reduced space. New
low-energy scales are an earmark of strong correlations. They lead to a high
density of low-energy excitations which show up, e.g., in the low-temperature
specific heat. Needless to say, in strongly correlated electron systems nonlo-
cal correlations play an important role. Contrary to local correlations, they
involve different lattice sites when they are described in terms of dynamical
variables (see Sect. 8.1). In fact, short-range antiferromagnetic correlations,
i.e., small antiferromagnetic clusters, which fluctuate in space and time are a
well-known example. A discussion of how they may be detected experimentally
is found, e.g., in Ref. [255].

One phenomenon caused by correlations has played a particularly large
role in condensed matter physics and that is the Kondo effect. It was dis-
covered by Kondo when he tried to explain a characteristic minimum in the
temperature dependent resistivity, which is observed when certain magnetic
impurities are added to a metal. Due to the internal degrees of freedom of
the impurity, the scattering of a conduction electron by a magnetic impurity
turns out to be a true many-body problem. In metals with strongly correlated
electrons, e.g., Kondo lattices the characteristic low-energy scales result in
heavy quasiparticles or heavy fermions as they are often called.

The analogue of the drosophila fruit fly, used by biologist for genetic stud-
ies, is for the study of correlated electron systems the Hubbard model. Trial
wavefunctions for the ground state of that model have been used of which
the Gutzwiller wavefunction has been an especially popular one. For the ex-
citations spectrum of that Hamiltonian, Hubbard has introduced a number of
approximations which demonstrate how a single band can split into two in
the presence of strong correlations. This splitting serves as an explanation of
the metal-insulator transition which may take place at half-filling. Insulators
due to correlations are therefore called Mott-Hubbard insulators. When the
band filling is very small, we deal with the so-called Kanamori limit. Here,
because of the large interelectron spacings, the effect even of strong local cor-
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relations remains rather limited. Near half filling strong correlations in the
Hubbard model can be treated quite well by transforming it to the so-called
t−J model. This model acts on a much smaller Hilbert space than the original
Hubbard model, but still contains most of the important features of strong
correlations. A subject which can be studied particularly well in the t − J
model is the motions of holes doped into a system at half filling.

It is important to know the strong and the weak points of different ap-
proximation schemes, in particular of advanced mean-field approximations.
They can be tested by applying them to a simple generic model, for which the
exact solution is known. One way of avoiding approximations when dealing,
e.g., with the Hubbard Hamiltonian is by numerical studies. They can be done
only for small systems, but the results give often new insights and serve as
guideline for new approximation schemes.

In metallic systems with strong electron correlations a Fermi liquid de-
scription is sometimes inapplicable. There is not always a one-to-one corre-
spondence possible between the low-energy excitations of strongly correlated
electrons and those of a weakly interacting system of quasiparticles. A special
case are systems with a marginal Fermi liquid behavior at low temperatures.
The self-energy Σ(ω) in the Green’s function has here a different frequency
dependence for small ω than is mandatory for a Fermi liquid. This has con-
siderable consequences for measurable quantities, such as the temperature
dependent resistivity or other transport coefficients.

10.1 Measure of Correlation Strengths

As pointed out in the Introduction, the description of a H2 molecule by a
molecular-orbital wavefunction and by a Heitler-London one represent two
extremes. The wavefunction ψSMO(r1, r2) in (1.2) describes the electrons as
independent or uncorrelated. Consequently, charge fluctuations at a proton
site are large, i.e., ionic configurations have 50 % weight. The Heitler-London
wavefunction given by (1.1) has no ionic configurations, i.e., interatomic
charge fluctuations vanish. Therefore it corresponds to the strong correlation
limit. The two limiting cases suggest immediately introducing the reduction
of charge fluctuations compared with the uncorrelated case as a measure of
the strength of interatomic correlations (see (2.51)). Let |ψ0〉 denote the exact
ground state of the electrons in the H2 molecule and |ΦSCF〉 that of uncor-
related electrons. The reduction of the normalized mean-square deviation of
the electron number ni at site i = 1, 2 can be quantified by computing:

Σ(i) =
〈ΦSCF

∣

∣δn2
i

∣

∣ΦSCF〉 − 〈ψ0

∣

∣δn2
i

∣

∣ψ0〉
〈ΦSCF |δn2

i |ΦSCF〉
, (10.1)

where δn2
i = n2

i − n̄2
i . Thus Σ(i) = 0 implies that |ψ0〉 equals |ΦSCF〉 while

Σ(i) = 1 describes the Heitler-London limit of strong interatomic correlations.
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The above concept for determining the correlation strength can be gener-
alized to different bonds. Then, for a given bond the index i refers to hybrid
functions gi(r) (i = 1,2) of the atoms forming the bond (see Fig. 2.3), e.g., sp3

hybrids forming a C–C σ bond. Then δn2
i describes the mean-square devia-

tion of the electron occupation number of hybrid gi(r). Often these hybrids
are called half bonds. When dealing with heteropolar bonds some charge fluc-
tuations are required because otherwise there would be no charge flow from
atom A to atom B forming the bond. Therefore one has in addition to consider
a hypothetical wavefunction |ψpc〉 which reproduces the charge distribution
of |ψ0〉 but minimizes the charge fluctuation to the largest possible extent
(strong correlation limit). A good way is to determine first

Σb(i) =
〈ΦSCF

∣

∣δn2
i

∣

∣ΦSCF〉 − 〈ψ0

∣

∣δn2
i

∣

∣ψ0〉
〈ΦSCF |δn2

i |ΦSCF〉 − 〈ψpc |δn2
i |ψpc〉

(10.2)

with i = 1, 2 referring to gi(r) and thereafter to form

Σm =
1

2

(

Σb
m(1) +Σb

m(2)
)

(10.3)

for a characterization of the correlation strength in bond m. Shown in Fig.
10.1 is Σ for a number of different σ and π bonds. The correlation strength
may vary between 0 (uncorrelated limit) and 1 (limit of strong correlations). It
is noticed that σ bonds are weakly correlated. Ordinary π bonds with Σ ≃ 0.5
are just in between the uncorrelated and the strong correlations limit, while
resonating π bonds with 0.3 . Σ . 0.35 are less strongly correlated.

In Fig. 2.4 we showed that the probability distribution of finding ν valence
electrons on a carbon site is nearly of Gaussian form when the atom is part
of a molecule or a solid. Correlations narrow that distribution. In the strong
correlation limit with electrons becoming localized the distribution reduces to
a δ-function.

Of particular interest is to know how strong valence electrons are cor-
related when they are in the Cu-O planes of the high-temperature super-
conducting cuprates. Let us consider the ground state of La2CuO4 and let
P (dν) denote the probability of finding ν 3d electrons on a given Cu site.
Within the independent electron or Hartree-Fock approximation the average
d count is found to be n̄d ≃ 9.5 and the probabilities of different configura-
tions are P (d10) = 0.56, P (d9) = 0.38 and P (d8) = 0.06. When correlations
are included, i.e., the correlated ground state |ψ0〉 is calculated by quantum
chemical wavefunction-based methods, the average d electron number changes
to n̄d ≃ 9.3 and P (d10) = 0.29, P (d9) = 0.70 while P (d8) = 0.0. One notices
that the d8 configurations are almost completely suppressed by correlations,
which is in agreement with photoemission experiments. The fluctuations be-
tween the d9 and d10 configurations are fixed by the value of n̄d.

A similar analysis for the oxygen ions reveals that here the 2p4 configura-
tions are not completely suppressed, because the Coulomb integrals are not
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Fig. 10.1. Correlation strength parameter Σ for a number of bonds formed by
first-row atoms. Single, double, triple, and aromatic bonds are indicated by single,
double, triple and dotted-over solid lines, respectively. (From [351]; actually, the
definition of Σ in that paper differs slightly from the present one, but this difference
does not affect the figures).

as large as for Cu. Indeed, these configurations are important for superex-
change to occur, which determines the antiferromagnetic coupling between
Cu ions. In accordance with the above considerations one finds Σ(Cu)≃ 0.8
and Σ(O)≃ 0.7. So indeed correlations are quite strong in La2CuO4. On the
other hand, they are still considerably smaller than those of 4f electrons in a
system like CeAl3.

When correlations are so strong that the electrons remain localized like 4f
electrons in most of the rare-earth systems, we observe a separation of spin
and charge degrees of freedom. In that case spin degrees of freedom may lead
to excitations in the form of magnons or crystal-field excitations, while charge
degrees of freedom are seen in photoemission experiments. In the cuprates the
values of Σ are too small in order to expect spin-charge separation.

In addition to interatomic correlations we have to consider intra-atomic
correlations. For them a measure of their strength is more difficult to define.
One way is to find out to which extent Hund’s rule correlations are operative
on a given atomic site i. When electrons hop very frequently on and off a
site, charge fluctuations at that site are dominated by the kinetic energy and
Hund’s rules play a minor role only. In the strong correlation limit Hund’s rules
will be fully operative. A possible measure is the degree of spin alignment at
a given atomic site i

S2
i = 〈ψ0

∣

∣S2(i)
∣

∣ψ0〉 , (10.4)

where S(i) = Σmsν(i) and sν(i) is the spin operator for orbital ν. The quan-
tity S2

i should be compared when the SCF ground-state wavefunction |ΦSCF〉
is used and when instead the ground state |Φloc〉 in the limit of complete sup-
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pression of interatomic charge fluctuations is used. Therefore we may define

∆S2
i =

〈ψ0

∣

∣S2(i)
∣

∣ψ0〉 − 〈φSCF

∣

∣S2(i)
∣

∣φSCF〉
〈φloc |S2(i)|φloc〉 − 〈φSCF |S2(i)|φSCF〉

(10.5)

for a measure of the strength of intra-atomic correlations. Note that 0 ≤
∆S2

i ≤ 1. For example, for the transition metals Fe, Co and Ni the quantity
∆S2

i is approximately 0.5.
Those findings show that the much discussed transition metals are just in

the middle between the limits of uncorrelated and strongly correlated elec-
trons. Hund’s rule correlations are important in them, but relatively large
overlaps of atomic wavefunctions on neighboring sites prevent their complete
establishment.

10.2 Indicators of Strong Correlations

There are several indicators of strong electron correlations. One is the appear-
ance of low-energy scales. As mentioned before, among all valence electrons,
the 4f electrons are the most strongly correlated ones due to their nearness
to the nuclei. They remain localized in most cases and have low-energy exci-
tations of order meV caused by level splittings by the crystalline electric field
of the surrounding. These excitations involve spin and orbital degrees of free-
dom but no charge degrees of freedom. Therefore we have here a separation
between spin (+ orbital) and charge excitations. The latter are of order eV
as is known from photoemission experiments. Similar low-energy excitations
are found in Ce or Yb intermetallic compounds where the correlations are
not quite as strong. Here a small hybridization takes place of the 4f electron
(hole) with the surroundings. Therefore spin and charge degrees of freedom
are no longer independent but become weakly coupled. The associated high
density of states gives rise to heavy quasiparticles. Note the special case of
one-dimensional electronic systems where spin and charge excitations remain
uncoupled, even when correlations are weak (Luttinger liquid).

The energy scale of the quasiparticles is set by the variation of the single-
particle energies with wavevector k. A measure of it is the Fermi velocity
vF , which for heavy quasiparticles can be two to three orders of magnitude
smaller than in ordinary metals like sodium. Since the conduction electron
density and hence pF is similar to that in other metals, a small vF implies a
large effective mass m∗.

The high density of low-energy excitations holds up only to an energy
characterized by a temperature T∗. With the total number of excitations
being nearly constant, e.g., one per lattice site, the lower T∗ is, the larger
is the density of states of the low-energy excitations. In systems with strong
electron correlations T∗ ranges from a few Kelvin to a few hundred Kelvin.
When the correlations are weaker, T∗ increases until it is no longer useful to
speak of a distinct low-energy scale.
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The microscopic origin of the low-energy excitations may be quite differ-
ent. Examples are the Kondo effect, strong intra-atomic correlations, charge
ordering, frustrations or nearness to a quantum critical point, to name some of
them. One should be aware of this manifold and not associate automatically
the appearance of heavy quasiparticles with a Kondo effect. For better insight
we study first the simplest possible example for a low-energy scale caused by
strong correlations.

10.2.1 Low-Energy Scales: a Simple Model

In the following we want to show the way in which strong correlations may
result in new low-energy scales. The simplest example of a system of strongly
correlated electrons consists of two electrons distributed over two orbitals.
These orbitals are denoted by L (for ligand) and F (for 4f , for example) and
we assume the corresponding orbital energies to be ǫl and ǫf with ǫf < ǫl.
Two electrons in the F orbital are expected to repel each other with an energy
U ≫ (ǫl − ǫf ). When they are both in the L orbital, or when one electron is
in the L and the other in the F orbital, we neglect their Coulomb interaction.
This is justified if the ligand orbital has a large spatial extend. It applies when,
for example, the ligand orbital is that of a large molecule. We assume that
the hybridization V between the two orbitals is small, i.e., V ≪ (ǫl− ǫf). The
Hamiltonian of the system depicted in Fig. 10.2 is

Fig. 10.2. Two orbitals L (for ligand) and F (for f orbital) with orbital energies ǫℓ
and ǫf which are weakly coupled through a hybridization matrix element V . When
two electrons are in orbital F their mutual Coulomb repulsion is U . The L orbital
is assumed to be extended and Coulomb interactions between electrons in it are
neglected, as are interactions between electrons in an L and an F orbital.

H = ǫl
∑

σ

l+σ lσ + ǫf
∑

σ

f+
σ fσ + V

∑

σ

(

l+σ fσ + f+
σ lσ

)

+ Unf↑n
f
↓ . (10.6)

The l+σ (lσ), f
+
σ (fσ) create (annihilate) electrons with spin σ in the L and F

orbital, respectively; furthermore, nfσ = f+
σ fσ. When V = 0, the ground state
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of the system has energy E0 = ǫl+ ǫf and is fourfold degenerate. One electron
is in the F orbital, while the other is in the L orbital. A state with a doubly
occupied F orbital has a high energy, because of the large Coulomb repulsion
U . The four states are eigenstates of the total spin S and take the form

|ΦS=0〉 =
1√
2

(

f+
↑ l

+
↓ − f+

↓ l
+
↑

)

|0〉

|Φ1
S=1〉 = f+

↑ l
+
↑ |0〉

|Φ0
S=1〉 =

1√
2

(

f+
↑ l

+
↓ + f+

↓ l
+
↑

)

|0〉

|Φ−1
S=1〉 = f+

↓ l
+
↓ |0〉 . (10.7)

The system has one excited state of the form

|Φex〉 = l+↑ l
+
↓ | 0〉 . (10.8)

The energy of the excited state is Eex = 2ǫl. The state f+
↑ f

+
↓ |0〉 is excluded

from further consideration, since its energy is of order U and we assume that
U → ∞.

When the hybridization is turned on, the singlets |ΦS=0〉 and |Φex〉 are
coupled, while the S = 1 states |ΦS=1〉 remain unchanged. The resulting 2 ×
2 matrix

(

ǫf + ǫl V
√
2

V
√
2 2ǫl

)

(10.9)

is easily diagonalized. For small values of (V/∆ǫ), the eigenvectors are

|ψ0〉 =
[

1−
(

V

∆ǫ

)2
]

|ΦS=0〉 −
√
2V

∆ǫ
|Φex〉

|ψex〉 =
[

1−
(

V

∆ǫ

)2
]

|Φex〉+
√
2V

∆ǫ
|ΦS=0〉 (10.10)

with ∆ǫ = ǫl − ǫf . The eigenvalue of |ψ0〉 is

Ẽ0 = E0 −
2V 2

∆ǫ
(10.11)

while that of |ψex〉 is
Ẽex = Eex +

2V 2

∆ǫ
(10.12)

Consider the changes in the spectrum shown in Fig. 10.3. For small values
of V there is a low-energy triplet excitation above the singlet ground state.
One can attach a characteristic temperature T ∗ = 2V 2/∆ǫ to the energy gain
associated with the singlet formation. The forms of the ground state and of
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Fig. 10.3. Changes in the two-electron spectrum when U → ∞ and the hybridiza-
tion V is turned on. A low-lying singlet splits off from the quartet states.

the low-lying excitations are both due to the strong correlations, which forbid
double occupancy of the F orbital. In the ground state the occupancy of the
F orbital is

nf = 1− 2

(

V

∆ǫ

)2

with nf = nf↑ + nf↓ . (10.13)

We conclude that for temperatures T ≪ T∗ there exist two distinct types of
excitations:

a) low-lying excitations with an energy kBT
∗ which involve predominantly

spin degrees of freedom;

b) an excitation of an f electron into the ligand orbital, with an excitation
energy of order ∆ǫ. This excitation involves charge degrees of freedom.

The separation of excitations into those involving primarily either spin or
charge degrees of freedom only is what the model enables us to learn. Since the
three triplet states have the same energy, spin-rotation symmetry is conserved.
Therefore we may re-express the low-energy spin excitation by an effective
Hamiltonian

Heff = JSℓSf −
J

4
, J =

2V 2

∆ǫ
, (10.14)

where Sℓ and Sf are the spins of a ligand and an f electron, respectively.
For T ≫ T∗ the singlet and triplet states are equally populated and the

singlet-triplet splitting becomes unimportant. The two electrons in the L and
F orbitals act like being effectively coupled via (10.14), with kBT ≫ J . The
high-energy excitation into the ligand orbital remains possible in all cases.

The above simple model contains key ingredients of the Kondo problem
as well as of systems with heavy electrons (heavy fermions). The ground state
is a singlet and the magnetic moment of the partially filled F level is zero.
As the temperature increases towards T∗, the triplet states become thermally
populated. Since they have a moment, the magnetic character of the f electron
starts to appear; for T≫T∗ the magnetic moment is fully present. The singlet
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character of the ground state is noticeable only for T≪T∗. The low-lying
excitations are intimately connected with the degeneracy of the ground state
in the absence of hybridizations. A number of approximation schemes can be
tested by applying them to the Hamiltonian (10.7) (see Sect. 10.6.1).

Fig. 10.4. Molecular structure of di-π-cyclo-octatetraene cerium, (C8H8)2Ce (ce-
rocene)

The above simple Hamiltonian describes in essence the ground state of
molecules like di-π-cyclo-octatetraene cerium, (C8H8)2Ce, abbreviated ce-
rocene. We show its structure in Fig. 10.4. Because the total valence electron
number is even, Ce is usually considered to be tetravalent; however, such a
statement proves to be misleading. We find instead that the Ce ion belongs
almost entirely to a 4f1 configuration corresponding to Ce3+(C8H

1,5−
8 )2. The

4f electron forms a singlet with an electron of the highest occupied molecular
orbital (HOMO) with e2u symmetry. The 4f1e32u singlet state resembles the
state |ψ0〉 in (10.10) with two electrons added because the HOMO is fourfold
degenerate. This degeneracy results from the C8ν symmetry of a C8H8 ring.
Large-scale MC-SCF calculations with several hundred basis functions con-
firm this picture [91]. The multiconfigurations on which the SCF calculation
is based must include 4f0e42u, 4f

1e32u, and also 4f2e22u. One finds that the
ground state has in addition to f1 configurations an admixture of f0 and f2

configurations, with weights of 3,8 % and 0,2 %, respectively. The underlying
physical picture appears in Fig. 10.5. The calculations provide also the low-
lying excitation energies to triplet states; for cerocene, for example, they are on
the order of 0.3 eV. Because of this relatively large excitation energy, the Van
Vleck paramagnetic contribution is smaller than the diamagnetic one of the
ring currents. If we replaced the C8H8 rings by more extended molecules, the
HOMO would couple much less to the 4f orbital and the excitation energies
would correspondingly decrease. The sandwich molecule would then become
paramagnetic, since that contribution grows faster than the diamagnetic one
with increasing size.
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Fig. 10.5. Formation of a singlet in (C8H8)2Ce (cerocene) by an unpaired electron
in the HOMO and a 4f1 configuration of Ce. The binding energy is approximately
0.3 eV.

10.2.2 Effective Hamiltonians

As discussed in the preceding sections, one indicator of strong correlations are
new low-energy scales. The above simple model served us as a specific example
for a possible origin of a low-energy scale. It is certainly desirable to describe
low-energy excitations of strongly correlated electrons by an appropriate ef-
fective Hamiltonian such as (10.14). While the original Hamiltonian contains
the large Coulomb interactions acting on the full Hilbert space, the effective
Hamiltonian acts on a strongly reduced Hilbert space. It should contain only
those degrees of freedom required for describing the low-energy excitations.
The remaining degrees of freedom are projected out and enter the effective
Hamiltonian in terms of new interactions. For example, the effective Hamil-
tonian (10.14) has neither the Coulomb repulsion U appearing in it, nor the
charge fluctuations in the F orbital. Instead, it contains a spin-spin interac-
tion, a result of the strong correlations, i.e., of U ≫ V . The reduced Hilbert
space consists of all states with one electron each in the L and in the F orbital.
The change from (10.6) to (10.14) is a special example of a Schrieffer-Wolff
transformation [404] which was originally used to transfer the Anderson impu-
rity Hamiltonian into the Kondo Hamiltonian. First a general route is shown
for reducing the Hilbert space. Thereafter we apply it to the above model,
i.e., to two electrons described by the Hamiltonian (10.6).

Consider the configurational space of an electron system. This space is
divided into two subspaces by using the projection operators P and Q = 1−P .
The projection of a wavefunction |ψ〉 onto the two subspaces is given by
P |ψ〉 = |ψP 〉 and Q|ψ〉 = |ψQ〉. The Schrödinger equation acting on the full
space is written as

(HPP − E) | ψP 〉+HPQ | ψQ〉 = 0 ,

HQP | ψP 〉+ (HQQ − E) | ψQ〉 = 0 . (10.15)

The Hamiltonians HPP and HQQ act within the subspaces generated by the
projectors P and Q, respectively. The two subspaces are connected through
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the Hamiltonian HPQ = PHQ. By eliminating either |ψQ〉 or |ψP 〉 from
(10.15) we reduce the problem to one subspace |ψP 〉 or |ψQ〉 and obtain

(

H̃PP − E
)

| ψP 〉 = 0 ;
(

H̃QQ − E
)

| ψQ〉 = 0 . (10.16)

The effective Hamiltonians H̃PP and H̃QQ are given by

H̃PP = HPP −HPQ
1

HQQ − E
HQP , (10.17a)

H̃QQ = HQQ −HQP
1

HPP − E
HPQ (10.17b)

and act within the subspaces created by P and Q, respectively. Working with
H̃PP , one can limit oneself to the space |ψP 〉; the subspace |ψQ〉 is then
eliminated from the problem. The Schrieffer-Wolff transformation consists of
treating the influence of Q on H̃PP to lowest-order perturbation theory. This
is justified as long as HPQ is sufficiently small.

Let us apply this scheme to the Hamiltonian (10.6). In subspace P one
electron is in each of the orbitals L and F while in |ψQ〉 both electrons are in
the L orbital. The operators HPQ and HQP are

HQP +HPQ = V
∑

σ

(

ℓ+σ fσ + f+
σ ℓσ

)

. (10.18)

The energy denominator in (10.17a) is ∆ǫ and, by setting (10.18) into
(10.17a), we obtain immediately (10.14) when the ground-state energy ofHPP

for the two electron system is set equal to zero.

10.3 Kondo Effect

The Kondo effect has been playing a significant role in condensed matter
physics. It was discovered in an attempt made by Kondo to explain the resis-
tivity ρ(T ) of metals with added magnetic impurities. It has a characteristic
minimum at low temperatures which had remained unexplained for a long
time. Soon it became clear that with Kondo’s explanation a road had opened
to a whole new class of problems.

Kondo’s original work starts from a Hamiltonian of free conduction elec-
trons coupled antiferromagnetically to a local impurity spin S = 1/2 via

Hint = Js(0)S , J > 0 . (10.19)

Here s(0) is the conduction electron spin density at the impurity site which
is taken to be at the origin. Therefore this Hamiltonian is often referred to
as Kondo Hamiltonian although it had been known long before [473]. Due to
the interaction, the impurity spin and the conduction electron spin form a
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singlet very similar to the one found for the Hamiltonian (10.6) or (10.14).
The difference to the simple model considered before is that here we are
dealing with a continuum of conduction electron states instead of a single
ligand orbital. It turns out that one must go beyond perturbation theory in
order to obtain finite results in the low temperature limit. The scattering
of conduction electrons on a magnetic impurity becomes a true many-body
problem, since the Fermi distribution function enters explicitly the scattering
rate. This is due to the quantum character of the impurity spin and differs
fundamentally from the scattering by a nonmagnetic impurity. Here the Fermi
function drops out of the scattering rate and the scattering process is a one-
electron problem. It is the appearance of the Fermi function in the former case
which leads to divergent results for the scattering rate at low temperatures,
when the Hamiltonian (10.19) is treated by perturbation theory.

Instead of showing explicitly the failure of perturbation theory, we proceed
here differently. We do not start from the Hamiltonian (10.19) but rather from
one which is due to Anderson and still contains the charge degrees of freedom
of the impurity site like (10.6) does. This Hamiltonian will be treated by
nonperturbative methods and the formation of a ground-state singlet will be
described.

Assume that the magnetic impurity is Ce3+ which implies a 4f1 config-
uration. According to Hund’s rule, the lowest j multiplet of an f electron is
j = 5/2. The z component of j is denoted by m. The corresponding creation
(annihilation) operators are f+

m(fm), the number operators are nfm = f+
mfm.

The Coulomb repulsion between f electrons is denoted by U and the limit
U → ∞ is later assumed. The conduction electrons in Bloch states are cre-
ated by operators c+kσ. They have a dispersion ǫ(k) and are considered to be
non-interacting. Their weak hybridization with the f electrons is described by
the Hamiltonian

H =
∑

kσ

ǫ(k)c+kσckσ + ǫf
∑

m

nfm +
U

2

∑

m 6=m′

nfmn
f
m′

+
∑

kmσ

[

Vmσ(k)f
+
mckσ + V ∗

mσ(k)c
+
kσfm

]

. (10.20)

As all energies are measured from the Fermi energy ǫF , the resemblance to the
Hamiltonian (10.6) is apparent. The difference is that now the f orbital is νf -
fold degenerate and the ligand orbital has been replaced by a partially filled
band of conduction electrons. Note that the Kondo Hamiltonian (10.19) as
well as a generalized form due to Coqblin and Schrieffer [71] are obtained from
the Anderson Hamiltonian by a Schrieffer-Wolff transformation (see preceding
section).

Due to crystal-field splitting of the lowest J manifold, the degeneracy νf of
the ground state of a magnetic rare earth impurity is usually less than (2J+1).
We will later analyze the case of Ce3+ with one and zero f electrons. Then
the total angular momentum j of the 4f1 electron equals the total angular
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momentum J of the incomplete f shell. Interesting effects stem from the
coupling of the impurity to the conduction electrons. Thus we keep only those
degrees of freedom of the conduction electrons which couple to the impurity.
The matrix elements Vmσ(k) vary rapidly with the direction of k. The angular
average of V ∗

mσ(k)Vm′σ(k) is small, except when m′ = m. One may therefore
set

∑

σ

∫

dk̂

4π
V ∗
mσ(k)Vm′σ(k) ≃ V 2(k)δmm′ , (10.21)

where k̂ = k/|k|. This suggests introducing the following orthogonal electronic
basis:

|k,m〉 = 1

V (k)

∑

σ

∫

dk̂

4π
V ∗
mσ(k)|kσ〉 . (10.22)

When expressed in this basis, and provided ǫ(k) = ǫ(|k|) = ǫ(k), the Anderson
Hamiltonian takes the form

H =
∑

km

ǫ(k)c+kmckm + ǫf
∑

m

nfm +
U

2

∑

m 6=m′

nfmn
f
m′

+
∑

km

V (k)
(

f+
mckm + c+kmfm

)

+ H̃0 . (10.23)

The Hamiltonian H̃0 contains all those degrees of freedom of the conduction
electrons which do not couple with the impurity.

In the limit U → ∞, the magnetic ion cannot be in a configuration with
more than one f electron. The Hamiltonian (10.23) is then rewritten in the
form

H =
∑

km

ǫ(k)c+kmckm + ǫf
∑

m

f̂+
mf̂m

+
∑

km

V (k)
(

f̂+
mckm + c+kmf̂m

)

+ H̃0 , (10.24)

where the f̂+
m create an f electron only if the f site was previously empty, i.e.,

f̂+
m = f+

m|0〉〈0| . (10.25)

The ket |0〉 denotes the 4f0 state and therefore |0〉〈0| acts like a projection
operator. If we denote f+

m|0〉 = |m〉, then we may also write

f̂+
m = |m〉〈0|

= Xm0 . (10.26)

In the literature the operators Xm0 = |m〉〈0|, X0m = f̂m = |0〉〈m|, Xmm =

f̂+
mf̂m = |m〉〈m| and X00 = |0〉〈0| are frequently used and referred to as stan-
dard basis operators or Hubbard operators. The Xνµ are no longer fermion
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operators, because they do not obey simple fermionic anticommutation rela-
tions. For example, [Xm0, X0m]+ = Xmm + X00 6= 1. In addition they must
fulfill the subsidiary condition

νf
∑

m=1

Xmm +X00 = 1 . (10.27)

This condition is in compliance with the requirement that one remains in the
Hilbert space with either a singly occupied or empty f site. When a Hamil-
tonian is expressed in terms of the Hubbard operators, double occupancy of
the f site is strictly excluded. We return to the Hubbard operators later.

Fig. 10.6. A magnetic impurity with one f orbital placed in a metal. In order
to reduce the problem to the one in Fig. 10.2 one must first move one conduction
electron to the Fermi surface. The remaining electron of that conduction-electron
state and the f electron can form a singlet.

In order to account for the energy gain (10.11), by forming a ground-state
singlet, we have to reduce the problem of a magnetic ion in a metal to a two-
electron one. We show in Fig. 10.6 how this is done for the case of νf = 2.
One electron from a given conduction-electron state is moved to the f orbital.
The remaining electron and the f electron can form a singlet. In contrast to
Sect. 10.2.1 where we considered only one ligand orbital, the singlet formation
can take place here with many different conduction-electron states. The states
close to ǫF become particularly important since it takes less energy to move
from them one electron up to ǫF .

In order to put the above arguments onto a quantitative basis, we assume
that

|ǫf | ≫ νfΓ = νfπN(0)V 2 , V = V (kF ) , (10.28)

where N(0) is the conduction electron density of states per spin direction. The
energy Γ is the width of the f level due to the coupling to the conduction
electrons. We obtain it when we apply Fermi’s golden rule.
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For the calculation of the ground-state energy we have to use a nonpertur-
bative approach. We will outline two of them. One is by constructing a proper
trial wavefunction and optimizing the parameters contained in it. The second
is to use the projection method discussed in Sect. 5.4.1. We begin with the
more conventional trial-wavefunction approach of Varma and Yafet [464]. Let
|Φ0〉 represent the filled Fermi sea of the conduction electrons. The occupied
spin orbitals contain two electrons each. A proper ansatz for a variational
wavefunction is

|ψS=0〉 = A

(

1 +
1

√
νf

∑

km

α(k)f+
mckm

)

|Φ0〉 . (10.29)

As is seen from Fig. 10.6, the part without an f electron must have small
weight as compared with the part when one f electron is present.

The normalization constant A in (10.29) relates to the f electron number
by means of

|A|2 = 1− nf , (10.30)

where
nf =

∑

m

nfm . (10.31)

For nf → 1 the state |Φ0〉 has indeed little weight in |ψS=0〉. By minimizing
〈ψS=0|H |ψS=0〉 one can determine A as well as α(k) and obtain the energy
gain due to the formation of a singlet. Instead of doing this here, we want to
derive the same result by the projection method, since it is a nice example for
the usefulness of that technique.

We start from
E0 = (H |Ω) (10.32)

and choose for H0 the Hamiltonian (10.24) with V (k) = 0. We are interested
in a ground state with total spin S = 0 and therefore choose for the ground
state of H0 the singlet state

|Φ̃0〉 =
1

√
νf

∑

m

f̂+
mckFm|Φ0〉 . (10.33)

Note that for a singlet state the total electron number must be even and
therefore an electron from |Φ0〉 has to be removed. In constructing |Ω) we
must include the most important microscopic processes caused by H1. One
important feature is that also electrons with k < kF contribute to the for-
mation of the singlet |ψS=0〉 when V (k) 6= 0 (Fig. 10.7b). This is achieved
by including the operators Akm = ckmc

+
kFm

in the operator set {Aν} with
the help of which |Ω) is constructed. A second important process is that the
f electron can leave the impurity site, which then becomes a 4f0 configura-
tion. The latter corresponds to |Φex〉 in (10.10) and is described by including

c+kFmf̂m in the set {Aν} (Fig. 10.7c). We discard all processes caused by H1
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(i.e., by V (k)) in which a conduction electron is promoted into a state with
k > kF . As it turns out, they are higher-order corrections in an expansion in
terms of 1/νf [161, 162].

Fig. 10.7. Configurations from which the singlet state |ψS=0〉 is constructed.

Led by (5.68) we make the following ansatz for Ω

|Ω) =

∣

∣

∣

∣

1 + S +
1

2
S2

)

, (10.34)

where S = S1 + S2 and

S1 =
C

√
νf

∑

k<kF ,m

α(k)ckmc
+
kFm

(10.35)

S2 = C
∑

m

c+kFmf̂m . (10.36)

We set
E0 = E0 + ǫ , (10.37)

where E0 is the energy of |Φ̃0〉 and ǫ is the energy gain due to H1. From
(10.32) we obtain

E0 = E0 + (H1 | S2)

= E0 + 2V C . (10.38)

Therefore ǫ = 2V C. We obtain a set of equations for C and α(k) from the
relations

(

f̂+
mckFm | HΩ

)

= 0
(

ckmc
+
kFm

| HΩ
)

= 0 , (10.39)
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which follow from (5.44b). After replacing C by ǫ/(2V ), we obtain from them
the following coupled equations:

ǫ = |ǫf |+
√
νfV

∑

k≤kF
α(k)

(ǫ(k) + ǫ)α(k) =
√
νfV . (10.40)

Replacing α(k) in the first equation, we find

ǫ = |ǫf |+ νfV
2
∑

k≤kF

1

ǫ+ ǫ(k)

= |ǫf |+ νfV
2N(0)

0
∫

−D

dǫ(k)

ǫ+ ǫ(k)
. (10.41)

Here we have assumed a constant density of states. The lower cut-offD is equal
to half the conduction-electron bandwidth when the band is half filled. Note
that the same equations (10.40,10.41) are obtained from the trial wavefunction
(10.29) when its energy is minimized.

Fig. 10.8. Graphical solution of (10.41). There always exists a solution with ǫ < 0.

The solutions of this equation can be visualized from Fig. 10.8, in which
we plot the two sides of (10.41) separately. For small values of V we find
three solutions; one of them has ǫ < 0 and is the one we are looking for. It is
approximately determined by

|ǫf | = νfN(0)V 2 ln (D/|ǫ|) . (10.42)

The lowering of the energy due to hybridization is therefore

ǫ = −De−|ǫf |/(νfN(0)V 2) . (10.43)

The energy of the singlet |ψS=0〉 has to be compared with that of the multiplets
|ψS 6=0〉. We start from a corresponding multiplet ground state |Φ̃S 6=0〉 of H0.
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Provided we discard once more processes, in which a conduction electron is
promoted by H1 to a state with k > kF , there is no effect of H1 on |Φ̃S 6=0〉 and
the corresponding Ω is equal to unity. This can easily be seen, for example,
by considering the largest ground-state multiplet and inspecting |Φ̃mSmax

〉 =

f̂+
mckF−m|Φ0〉 with m = (νf − 1)/2. Processes of the form of (10.36) are not
possible, and E0 = E0. As expected from Sect. 10.2.1, we find that the energy
of the singlet |ψS=0〉 is always lower than that of the multiplets |ψS 6=0〉.

It is customary to associate a characteristic temperature TK (Kondo tem-
perature) with the energy gain due to the formation of the singlet, i.e.,

kBTK = D exp

(−π |ǫf |
νfΓ

)

, (10.44)

with Γ as defined in (10.28). The condition |ǫf | ≫ νfΓ ensures that TK
remains sufficiently small (Kondo regime). In contrast to (10.11), the energy
gain is a nonanalytic function of V ; its origin may be easily traced back to the
fact that the singlet formation involves many different conduction electron k
states.

Equation (10.44) does not change when processes involving conduction
electrons with k > kF are included. These contributions are the same for
|ψS=0〉 and |ψS 6=0〉 and cancel when the energy difference between the singlet
and the multiplets is calculated.

The f electron number can be determined by adding a term of the form
λ
∑

m f̂
+
mf̂m to the Hamiltonian and by calculating

nf =
∂E0(λ)
∂λ

∣

∣

∣

∣

λ=0

= 1 +
∂ǫ(λ)

∂λ

∣

∣

∣

∣

λ=0

. (10.45)

By means of (10.37,10.38), we obtain

nf = 1− kBTKπ

νfΓ
, (10.46)

which is a useful relation between the f electron number and the Kondo
temperature. As TK decreases, so does the deviation of nf from unity.

When the ground-state singlet is formed, the magnetic susceptibility of
the impurity χimp remains finite in the zero-temperature limit. It can become
very large, when the energy difference to the excited states is small (Van Vleck
susceptibility). The susceptibility can be calculated by including an external
field h in the Hamiltonian. It lifts the degeneracy by Zeeman splitting the f
levels; we must replace ǫf in (10.23) by ǫf − gJµBmh with −J ≤ m ≤ J .

The factor gJ denotes the Landé factor of the ground-state J multiplet,
which for Ce3+ is J = 5/2 as pointed out before. We write the energy E0(h)
in analogy to (10.37) in the form
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E0(h) = E0 +∆ǫ(h) . (10.47)

Repeating the above calculation, we find

∆ǫ(h) = |ǫf |+ V 2
∑

m

∑

k≤kF
(∆ǫ(h) + gJµBmh+ ǫ(k))

−1
. (10.48)

This equation generalizes (10.41) to finite magnetic fields. If we take the second
derivative with respect to h, we obtain

χimp = −
(

∂2

∂h2
∆ǫ(h)

)

h→0

= (gJµB)
2 J(J + 1)

3

1

νfΓ

nf
1− nf

=
(gJµB)

2

π

J(J + 1)

3

1

kBTK
. (10.49)

This shows that the smaller TK is, the larger is χimp. Experiments measuring
the magnetic susceptibility, demonstrate that the magnetic impurity loses its
moment as the temperature falls below TK . This is a direct consequence of the
singlet formation, which in turn results from the strong electron correlations.

In Sect. 10.2.1 we have seen that a local f orbital, which hybridizes weakly
with an extended ligand orbital has a low-lying singlet-triplet excitation. The
latter involves predominantly spin degrees of freedom of the system; the same
is expected to hold true for a magnetic impurity. Formally, we could determine
the excitation energies by computing the poles of the one-particle Green’s
function of the system, thereby applying the projection technique as before.
But, in order to bring out the analogy with Sect. 10.2.1, we prefer instead to
generalize the ansatz (10.29) to excited states.

The hole state |ψex
pn〉 with quantum numbers p and n can be written in the

form

|ψex
pn〉 = A

(

1 +
1

√
νf

∑

km

α(k)f+
mckm

)

cpn|Φ0〉 , (10.50)

which should be compared with (10.29). If we think of that state as a dressed
conduction-band state, we notice that the “dress” or “cloud” of the bare state

|Φex
pn〉 = cpn|Φ0〉 (10.51)

consists of an admixture with the impurity f state. For energies |ǫ − ǫF | ≪
kBTK the weight of |Φex

pn〉 in |ψex
pn〉 is |A|2 = 1−nf (see (10.30)) and therefore

very small. A different way of stating the same is to say that the bare particle
must be strongly renormalized in order to become a quasiparticle.

Consider a photoemission experiment in which the f spectral density is
measured. Its weight near ǫF is given by the sum over the squared matrix
elements
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∑

pn

∣

∣〈ψex
pn |fm|ψS=0〉

∣

∣

2
= |A|2 nf/νf , (10.52)

and varies as nf (1 − nf )/νf . We are dealing here with the weighting factor
of the well-known Abrikosov-Suhl or Kondo resonance, which appears in the
vicinity of the Fermi energy. As we saw in Sect. 10.2.1, the low-energy singlet-
triplet excitation has only a small change in f charge associated with it,
i.e., ∆nf ∝ (1 − nf ). The main contributions to the f spectral weight come
from an energy regime near ǫf , well separated from the Kondo resonance. It
corresponds to the high-energy excitation (10.12), in which the f electron is
removed from its orbital.

Fig. 10.9. Schematic plot of the spectral function vs. ω. The narrow low-energy
peak has weight (1−nf ) and results from spin fluctuations while the broad peak near
ǫf is due to charge fluctuations. The broadening is obtained from a more advanced
theory than presented here.

The f spectral density is schematically shown in Fig. 10.9. Clearly seen
are low-energy excitations involving predominantly spin degrees of freedom
and high-energy excitations involving mainly charge degrees of freedom.

Before closing, it is important to mention that the Anderson Hamiltonian
for one impurity can be solved exactly by Bethe ansatz methods. For more
details the reader should consult [31] or the reviews [338,400,455]. The exact
solution provides a stringent test for any approximation, but the physics is
simpler to grasp from the treatment given above.

10.4 The Hubbard Model Revisited

The Hubbard Model, which we briefly introduced in Sect. 8.2 has played
a major role in the physics of strongly correlated electrons. Therefore we
want to discuss it here in more detail. For convenience we rewrite the model
Hamiltonian (8.22) in simplified form

H = −t
∑

〈ij〉σ

(

a+iσajσ + h.c.
)

+ U
∑

i

ni↑ni↓ , (10.53)
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where only nearest neighbor hopping processes are considered. The interesting
case is, of course, when U ≫ t, i.e., when electrons are strongly correlated.
Here Gutzwiller, Hubbard and Kanamori, who formulated independently the
model Hamiltonian (10.53) took quite different routes in order to extract
physical properties from it. We will especially concentrate on the approaches
which Gutzwiller and Hubbard took because they come closest to projection
techniques, which are one of the guidelines in this book. But before doing that
we apply the simplest possible approximation to (10.53), which is a molecu-
lar field approximation. It leads to a spin-density wave state. By symmetry
breaking we reduce charge fluctuations in a metal with strong electron cor-
relations. Typically an effect of electron correlations, the reduction of charge
fluctuations is achieved here by symmetry breaking.

10.4.1 Spin-Density Wave Ground State

It is straightforward to show that the interaction term in the Hubbard Hamil-
tonian (10.53) can be rewritten as

Uni↑ni↓ =
U

2
ni −

2U

3
si · si , (10.54)

where
si = a+iασσσαβaiβ (10.55)

is the operator of electron spin at site i (this is seen most easily by noting
that both sides of the equation give identical results when acting onto any of
the four possible states of site i, i.e., states |0〉, | ↑〉, | ↓〉 or | ↑↓〉). This shows
that the system can lower its energy by forming magnetic moments at each
site. These moments may either form a static pattern–so that the expectation
values 〈si〉 have nonvanishing time-independent values–or they may fluctuate
so that 〈s2i 〉 6= 0 but 〈Si〉 = 0. The question, of which case is realized is a
tricky issue and the answer depends on dimensionality, lattice geometry and
temperature.

Spin-density wave theories are based on the mean-field approximation and
treat the former case, i.e., one assumes time-independent expectation values

〈si〉 = Re
(

MeiQ·Ri
)

(10.56)

where the Ri are lattice vectors. Choosing, e.g., M = (0, 0,m0) yields a state
where the ordered moment always points in z-direction but its sign oscillates
with wave vector Q. However, choosing M =

(√
2m0, i

√
2m0, 0

)

with a Q
in z-direction gives a state where the ordered moment rotates around the
wave vector and so on. In the following we consider a square lattice and for
simplicity restrict ourselves to the first case, i.e., an ordered moment in z-
direction oscillating with a wave vector Q = (π, π).

We decompose H into two terms
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H = HSCF +Hres

HSCF = −t
∑

〈ij〉σ

(

a+iσajσ + h.c.
)

+ U
∑

iσ

〈ni−σ〉niσ + E0

Hres = U
∑

i

δni↑δni↓ , (10.57)

where we have introduced δniσ = niσ − 〈niσ〉 and

E0 = −U
∑

i

〈ni↑〉 〈ni↓〉 . (10.58)

The mean-field approximation is here an unrestricted SCF approximation. It
neglects Hres and makes an ansatz for the ground state, which breaks spin-
rotational and translational symmetry. It has the form of a spin-density wave,
which in the case of half filling becomes an antiferromagnetic Néel state. We
shall restrict ourselves to the latter; for systems different from half filling one
finds solutions in the form of spiral states (compare with Fig. 10.23). We
divide the lattice into sublattices A and B, whereby A contains the origin
(0, 0), and make the following ansatz

〈niσ〉 =
1

2

(

1 + σm0e
−iQ·Ri

)

. (10.59)

The staggered magnetization m0 is defined as

m0 =

{

〈ni↑ − ni↓〉 , sublattice A
〈ni↓ − ni↑〉 , sublattice B

. (10.60)

These relations are ensured by the factor exp(−iQ · Ri) in (10.59) because
exp(−iQ · Ri) is +1 for Ri on sublattice A and −1 for sublattice B. The
vector Q = (π, π) is the reciprocal lattice vector in the presence of an AF
ground state. The unit cell is doubled in that case and correspondingly the
Brillouin zone is reduced by one half. This is indicated in Fig 10.10. When
(10.59) is inserted into (10.57) and the Fourier transform is taken, we obtain

HSCF =
∑

kσ

′
[(

ǫ(k) +
U

2

)

a+kσakσ +

(

−ǫ(k) + U

2

)

a+k+Qσak+Qσ

−U
2
σm0

(

a+kσak+Qσ + a+k+Qσakσ

)

]

+ E0 , (10.61)

where ǫ(k) = −2t(cos kx + cos ky). The dash indicates that the summation is
over the reduced Brillouin zone. We have used that ǫ(k +Q) = −ǫ(k). The
Hamiltonian is diagonalized by the transformation

α+
kσ = uka

+
kσ + σvka

+
k+Qσ

β+
kσ = −σvka+kσ + uka

+
k+Qσ (10.62)
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Fig. 10.10. Top: By partitioning the square lattice into two sublattices the primitive
translation vectors are rotated by 45◦ and scaled by a factor of

√
2. Bottom: The

reciprocal lattice vectors–which span the Brillouin zone–are thus rotated by 45◦ as
well as shrunk by a factor of 1/

√
2. The reduced Brillouin zone is shaded.

where u2k + v2k = 1. Diagonalization requires that

u2k =
1

2

(

1− ǫ(k)

E(k)

)

, v2k =
1

2

(

1 +
ǫ(k)

E(k)

)

E(k) =
√

ǫ(k)2 +m2
0U

2/4 . (10.63)

We denote the diagonalized form of HSCF by HSDW:

HSDW =
∑

kσ

′
[(

U

2
− E(k)

)

α+
kσαkσ +

(

U

2
+ E(k)

)

β+
kσβkσ

]

+ E0

=
∑

kσ

′ [
E1(k)α

+
kσαkσ + E2(k)β

+
kσβkσ

]

+ E0 . (10.64)

One effect of U is to generate a gap in the excitation spectrum as indicated
in Fig. 10.11. The SDW ground state is

| ΦSDW〉 =
∏

kσ

′
α+
kσ | 0〉

=
∏

kσ

′ [
uka

+
kσ + σvka

+
k+Qσ

]

| 0〉 . (10.65)

As is obvious from (10.60) the staggered magnetization is



10.4 The Hubbard Model Revisited 181

Fig. 10.11. Excitation spectrum E1,2(k) of a SDW state on a square lattice
(schematic). Dashed line: the case m0U = 0.

m0 =
1

N0

∑

i

eiQ·Ri 〈ni↑ − ni↓〉

=
1

N0

∑

k

σ
〈

a+kσak+Qσ

〉

=
1

N0

∑

kσ

′
σ
〈

a+kσak+Qσ + h.c.
〉

(10.66)

This leads to the following self-consistency relation

m0 =
2

N0

occ
∑

k

m0U
√

(ǫ(k)− ǫ(k+Q))2 +m2
0U

2

, (10.67)

where N0 is the number of sites. It should be noted that in the present case of
a square lattice at half filling with ǫ(k) = −ǫ(k+Q) we have perfect nesting.
This implies that m0 6= 0 for all values of U > 0, i.e., the system becomes
unstable with respect to the formation of antiferromagnetic ordering as soon
as particles repel each other.

The ground-state |ΦSDW〉 has fewer configurations with doubly occupied
sites than does the ground state without symmetry breaking (spin restricted
SCF ground state). This is caused by the magnetizationm0 and is particularly
evident in the limit of large U . In that limit m0 → 1 and |ΦSDW〉 goes over
into a Néel state with no doubly occupied sites.

It is instructive to study the spectral density for the full, i.e., unre-
duced Brillouin zone. We do this here as an exercise. It is Ā(k, ω) =
−π−1Im{GR(k, ω)}. The Green’s function is obtained in SDW approxima-
tion by replacing in (8.23), (8.1) |ψ0〉 by |ΦSDW〉 and by choosing for the set
of dynamic variables {An} the operators A1 = a+kσ, where k is inside the re-
duced Brillouin zone and A2 = a+k+Qσ. This leads to a 2× 2 Green’s function
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matrix (see (8.25))

Rij(ω) =

(

Ai |
1

ω − LSCF + ıη
Aj

)

+

, (10.68)

where LSCF refers to HSCF given by (10.57). By using (10.62) and (10.64)
equation (8.25) can be solved simply, from which GR(k, ω) is obtained as
GR(k, ω) = R11(k, ω). For k in the AF Brillouin zone the result is

GR(k, ω) =
v2k

ω −
(

U
2 − E(k)

)

+ iη
+

u2k
ω −

(

U
2 + E(k)

)

+ iη
, (10.69)

with poles which are obvious from (10.64). Therefore

Ā(k, ω) = v2kδ

(

ω − U

2
+ E(k)

)

+ u2kδ

(

ω − U

2
− E(k)

)

. (10.70)

A schematic plot of the spectral density is shown in Fig. 10.12. When we
back fold the part from (π2 ,

π
2 ) to M of that quantity onto the part from Γ

to (π2 ,
π
2 ) we obtain excitations with pole strength unity. The behavior of the

pole strengths in the full Brillouin zone is of relevance when we deal with
paramagnets having pronounced short-range antiferromagnetic correlations.
Then the full Brillouin zone must be used, but features of long-range order
begin to show up here in the form of shadow bands.

Fig. 10.12. Schematic plot of Ā(k, ω) in the ω, k plane within SDW approximation.
The momentum vector k varies between Γ and M . The δ-function peaks have been
slightly broadened. The shadow band is obtained by connecting points with the
smaller pole strength (dashed line). Compare with Fig. 8.1.

The structure of (10.69) is similar to the one in (8.29) for n = 1. In fact,
in the limit of large U both expressions agree with each other after a shift
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of energy by U/2. In that case Figs. 8.1 and 10.12 become identical. For a
given k vector we may consider the pole with the smaller residue as a satellite
structure to the pole with the larger pole strength. Stated differently, for each
k value we have a band state and a shadow band state. At (±π

2 ,±π
2 ) the

quasiparticle picture is breaking down completely because both poles have
equal strength.

10.4.2 Gutzwiller’s Ground-State Wavefunction

The reduction of doubly occupied sites at half filling due to the on-site repul-
sion U is also achieved by a trial wavefunction introduced by Gutzwiller [163].
The Gutzwiller wavefunction is of the form

| ψG〉 = exp

(

η
∑

i

ni↑ni↓

)

| Φ0〉

= PG(η) | Φ0〉 . (10.71)

Here |Φ0〉 is the ground state of noninteracting electrons and the exponential
prefactor is often referred to as Gutzwiller projector. As demonstrated before
(see (5.96)) the Gutzwiller wavefunction is a single-mode approximation to the
true ground state of the Hubbard Hamiltonian. The variational parameter η
(or η̃ in (5.97)) is determined by minimizing the energy

EG =
〈ψG | H | ψG〉
〈ψG | ψG〉

. (10.72)

Generally we are not able to compute that expectation value without drastic
approximations. Noticeable exceptions are the cases of one dimension [321]
and infinite dimensions [322]. In both cases EG can be computed exactly.

Equation (10.72) can be evaluated my making use of the so-called Gutzwiller
approximation [164, 165]. The essence of this approximation is that the hop-
ping matrix element t is replaced by a product γσt. The renormalization fac-
tor γσ < 1 is caused by the reduced hopping probability when the projector
PG(η) is applied to a wavefunction of uncorrelated electrons. The γσ factor is
obtained from combinatorial considerations when two assumptions are made.
One is that all possible electronic configurations, i.e., all possible distributions
of electrons over the sites of the system, are assumed to have the same overall
phase factor, e.g., +1. The other is that the relative weights of the different
configurations are determined solely by the number of doubly occupied sites
D [350]. No fermionic sign changes are taken into account. This enables us to
rederive γσ by using single-site bosonic operators [105]. For this purpose we
introduce four bosonic operators for each site i. They correspond to the four
different states of a site, i.e., empty, singly occupied with spin σ and doubly
occupied. The operators are e+i , s

+
iσ and d+i [250]. With their help we define

a bosonic wavefunction for site i, namely ν+i |0〉, with
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ν+i =
(

1 + α2
↑ + α+

↓ + β2
)−1/2 (

e+i + α↑s
+
i↑ + α↓s

+
i↓ + βd+i

)

. (10.73)

The ασ, β are related to the densities nσ and d of singly occupied (with spin
σ) and doubly occupied sites through

nσ =
α2
σ + β2

1− α2
↑ + α2

↓ + d2
, d =

β2

1 + α2
↑ + α2

↓ + d2
. (10.74)

The equation can be inverted to yield

ασ =

√

nσ − d

1− n↑ − n↓ + d
; β =

√

d

1− n↑ − n↓ + d
. (10.75)

The total wavefunction written in terms of the bosonic operators is

|ψ〉 = P (N↑)P (N↓)
∏

i

ν+i |0〉 (10.76)

and the projectors P (Nσ) project onto the states with
∑

i

(

s+iσsiσ + d+i di
)

=
Nσ. The state |ψ〉 has the following properties: The probability that a site is
singly or doubly occupied is the same for all sites. All configurations with the
same number of doubly occupied sites have the same weight in |ψ〉 and they
all have the same phase.

It is interesting that in the thermodynamic limit the projectors P (Nσ) in
(10.76) may be omitted. The wavefunction |ψ〉 is then no longer an eigenfunc-
tion of the total particle number Nop but 〈ψ|ψ〉 = 1. When Nop is applied
to it the distribution of eigenvalues is strongly peaked at N with a mean
square deviation (∆N)2 of order N . Therefore ∆N/N ∼ 1/

√
N and van-

ishes for N → ∞. A similar situation is found in Chapter 15 where the BCS
ground state is discussed. Because |ψ〉 is a product state it is easy to calculate
with it expectation values. In order to compute the renormalization factor γσ
one should notice that the operator aiσ is in the bosonic basis equivalent to
s+i−σdi+e

+
i siσ. Annihilating an electron with spin σ can either reduce a doubly

occupied site to a singly occupied one with spin −σ or convert a singly occu-
pied site into an empty one. Note the ignoring of the fermionic sign change.
Fermions require a given order of the a+iσ operators when a site is doubly oc-
cupied, e.g., a+i↑a

+
i↓ in which case the application of the operator s+i−σ would

give a sign change for one of the two spin directions. This is neglected when
the Gutzwiller approximation is made. We then find for the hopping term

rσ = 〈ψ|
(

s+i−σdi + e+i siσ
) (

d+j sj−σ + s+jσej
)

|ψ〉

=

(

ασ + βα−σ
1 + α2

↑ + α2
↓ + β2

)2

=
(

√

nσ − d
√

1− nσ − n−σ + d+
√
d
√

n−σ − d
)2

(10.77)
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and for the renormalization factor

γσ =
rσ(d)

rσ(d = n↑n↓)

=

[√
nσ − d

√

1− nσ − n−σ + d+
√

d (n−σ − d)
]2

nσ (1− nσ)
. (10.78)

We have to divide by rσ(d = n↑n↓), the matrix element for U → 0, since in
that limit γσ has to be equal to unity. We study γσ by assuming a paramag-
netic ground state with band filling n ≤ 1, i.e., nσ = n−σ = n/2. Let us take
the limit U → ∞. In that case D = 0 and we find that

γ =
1− n

1− n/2
. (10.79)

The numerator is equal to the probability that an electron at site j finds
site i to be empty so that it can move to it. Of this probability a fraction
(1 − mσ) = (1 − n/2) is already taken into account by Pauli’s principle.
Therefore, we have to divide (1−n) by this factor. For the special case of half
filling n = 1 we find that γ = 0. Each site is occupied by one electron and
each move would generate a doubly occupied site and cost an infinite amount
of energy.

When we keep U finite, we find from (10.78) that for n = 1

γ = 16d(1/2− d) . (10.80)

Therefore the energy per site becomes

EG(d)

N0
= 16d(1/2− d)ǭ + Ud . (10.81)

Here ǭ is the average kinetic energy per electron, when unrenormalized hop-
ping matrix elements tij are used, i.e., when the electrons are noninteracting.
It is negative when the center of the band is set equal to zero. The energy is
minimized when

dmin =
8ǭ+ U

32ǭ
(10.82)

and takes the form
Emin

N0
= ǭ(1− U/Uc)

2 . (10.83)

Note that Uc = 8|ǭ| is a critical interaction constant. For U ≥ Uc the energy is
zero and the number of doubly occupied sites vanishes, i.e., dmin = 0. In that
case the system is going over into an insulating state with one electron per
site (Brinkmann-Rice transition) [44]. Inspecting (10.81) we notice that q =
16d(12−d) acts as a renormalization factor of the average kinetic energy caused
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by correlations. At the metal-insulator transition it vanishes like (1− U/Uc).
This implies that the effective mass m∗ diverges, i.e.,

m∗

m0
=

1

1− U/Uc
, (10.84)

where m0 is the electron mass in the absence of the interaction energy U . The
same holds true for the magnetic susceptibility χs, which is proportional to
the effective density of states and hence to m∗,

χs ∼
1

1− U/Uc
. (10.85)

The Gutzwiller wavefunction suppresses partially charge fluctuations due
to the interaction U , yet it fails to properly include spin-spin correlations and
density correlations between sites (compare with (5.87)). This shortcoming
becomes visible when we try to derive the antiferromagnetic interaction con-
tributions to the energy at half filling in the limit of large ratio U/t. They are
of order J ∼ t2/U and cannot be obtained from Gutzwiller’s wavefunction,
while other approximation schemes like the t–J model produce them eas-
ily (see Sect. 10.6). Therefore the Brinkmann-Rice phase transition does not
fully describe the metal-insulator transition in finite dimensions. In infinite
dimensions though it turns out to be exact.

The momentum distribution n(p) calculated from |ψG〉 shows always a
discontinuity at pF like for a metal, even for large values of U when at half-
filling the system is an insulator. The exponential prefactor in (10.71) which
describes the correlations is not able to remove the discontinuity, a feature
of |Φ0〉. The shortcomings just described can be linked to the single-mode
approximation discussed in Sect. (5.4.4).

10.4.3 Hubbard’s Approximations and their Extensions

In Sect. 8.1 we discussed the projection method and demonstrated their use-
fulness by applying it to the Hubbard Hamiltonian (10.53). In particular, the
so-called Hubbard I approximation takes a very simple form when this tech-
nique is applied. The retarded Green’s function matrix Rij(ω) (8.5) reduces
to a simple 2 × 2 matrix since the relevant variables are just the operators
a+iσ and a+iσδni−σ. With this choice of variables one is able to reduce double
occupancies of sites when an on-site Coulomb interaction is operative. For
large values of U/|t| the retarded Green’s function was shown to be of the
form (8.29), which for half filling (n = 1) reduces to

G(k, z) =
1/2

z − ǫ(k)/2
+

1/2

z − U − ǫ(k)/2
, z = ω + iη . (10.86)

The poles are given by
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ω1(k) = ǫ(k)/2

ω2(k) = U + ǫ(k)/2 . (10.87)

Since U/t ≫ 1 we deal with two Hubbard bands separated by a gap. For
a square lattice the corresponding spectral density A(k, ω) was shown in Fig.
8.1. The density of states ρ(ω) is schematically shown in Fig. 10.13 for half
filling and for n < 1. From the numerator in (8.29) as well as from Fig. 8.1 it
is seen that weight between the two Hubbard bands is shifted when n deviates
from n = 1. The transfer of spectral density from the upper to the lower band
with increasing hole doping is easy to understand:

2−n
n

0                 U

ρ(ω)

ω

ρ(ω)

1 1

0                 Uω
(a) (b)

Fig. 10.13. Configurations with different filling factors n in the limit U → ∞
together with the corresponding density of states (DOS) ρ(ω) (a): n = 1 (half
filling); (b): n < 1. In the lower part we show the integrated DOS of the Hubbard
bands, which depends on the filling factor n as indicated.

Consider a system of N0 sites at half filling in the limit of large U . Then
each site is occupied by one electron (Fig. 10.13a). Adding one hole yields N0

possible ways of ending up with one empty site. Therefore the upper Hub-
bard band contains N0 states. Assume now that the system contains M holes
corresponding to a filling factor of n = 1 −M/N0. If this is the case, there
are only (N0 −M) ways of creating an empty site when a hole is added. This
implies a reduction of the number of states in the upper band by a factor of n.
There are 2M ways of singly occupying a site, when a electron is added and
(N0 −M) ways of removing an electron from a (singly) occupied site. There-
fore, the total number of states in the lower band is N0(2− n), of which N0n
are filled and 2N0(1 − n) are empty. This reasoning, schematically indicated
in Fig. 10.13, agrees with the results of the Hubbard I approximation. As
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we have seen in Sect. 9.2 this picture remains incomplete. In a paramagnetic
system a third, e.g., central peak in ρ(ω) is present, when we deviate from
half filling by hole doping (see Fig. 9.3).

Of special interest is the transformation from two Hubbard bands to
one band when U decreases, i.e., the Mott-Hubbard transition from an in-
sulator to a metal. It cannot be described by the Hubbard I approxima-
tion, which therefore needs improvement. The latter is obtained by including
the band shifts W (k) in L22 neglected hitherto, but more important by an
extension of the relevant variables {Aν} from which the Green’s function
is computed. We obtain the Hubbard III approximation by extending the
variables to the set a+iσ, a

+
iσδnl−σ and a+iσδ(a

+
l−σai−σ), where δ(a

+
l−σai−σ) =

a+l−σai−σ − 〈a+l−σai−σ〉. They stress the importance of nonlocal correlations,
because they involve different lattice sites.

It is instructive to consider the physical picture behind the Hubbard III
approximation, i.e., the particular choice of variables. Consider an electron
with spin σ moving through the system. When electrons with spin −σ are
kept fixed, the moving electron experiences two different potentials. Sites oc-
cupied by an electron with spin −σ present a potential U , while sites without
an electron with spin −σ have a vanishing potential. Since we expect the spin
−σ electrons to be distributed at random, we are dealing with the problem
of an electron moving through a random potential. The disorder scattering
is treated by the inclusion of the variables a+iσδnℓ−σ(i 6= ℓ) in the set {Aν}.
The assumption of keeping electrons with spin −σ fixed can be relaxed, which
allows us to include the effect of their motion on that of the spin σ electron.
As a result of this motion, a given site switches back and forth between hav-
ing a potential 0 and U . This feature is treated by including the variables
a+iσδ(a

+
ℓ−σai−σ) in the set of {Aν}. When the switching rate 1/τ is less than

U , we expect a broadening of the two levels 0 and U , while for 1/τ ≫ U only
a simple resonance is expected. The change from one situation to the other
causes a transition from an insulator to a metal. An important feature of the
Hubbard III approximation is that for n 6= 1 the linewidth of the low-energy
excitations does not vanish like ω2 when ω → 0, but instead remains finite.
This implies a break-down of the quasiparticle picture (see Sect. 7.2). It is
related to a remaining static character of the random potential, in which an
electron is moving. The variables a+iσδ(a

+
ℓ−σai−σ) do not completely remedy

that shortcoming.
Let us return to the different choices of variables within the two-particle,

one-hole operator space, when the Hubbard I and III approximations are
made. The most general form of variables within that space is a+iσδ(a

+
j−σaℓ−σ).

In the Hubbard I approximation we select those variables for which i = j = ℓ,
while in Hubbard III those variables are kept for which either j = ℓ or i = ℓ.
Among alternative approximations for the Hubbard Hamiltonian, the most
appropriate one to choose is a+iσδ(a

+
i+ν1,−σai+ν2,−σ) with ν1 and ν2 limited to a

given number of neighbors (nearest, next-nearest, etc.) of site i. Because of the
fixed number of variables associated with each site i, we are dealing here with
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a matrix problem of relatively small dimension. Therefore the corresponding
matrix equations can be solved numerically. But this has not been done yet.

The Hubbard Hamiltonian has also been treated by making use of Hub-
bard operators. They were briefly introduced before and are defined in site
representation by

Xσ0
i = a+iσ (1− ni−σ) , X0σ

i =
(

Xσ0
i

)+

X2−σ
i = σa+iσni−σ . (10.88)

They cause a transition from an empty site to one occupied with a single elec-
tron of spin σ, and from a singly occupied site to a doubly occupied site. One
notices that the Hubbard operators are composite operators. In addition to
the above operators, there are the ones Xnn

i = |n, i〉〈n, i| with n = 0, σ,−σ, 2.
They specify the four possible configurations of a site. The spin flip operator
is Xσ−σ

i = Xσ0
i X0−σ

i . One may define Green’s functions for the Hubbard
operators and apply various techniques like a diagrammatic one [209, 372] or
projection methods [307]. They are not simple since Hubbard operators are
not fermion operators. Instead they fulfill the commutation relations

[

Xmn
i , Xrs

j

]

± = δij [δrnX
ms
i ± δmsX

rn
i ] . (10.89)

In addition they have to satisfy the local constraint

X00
i +

∑

σ

Xσσ
i +X22

i = 1 (10.90)

because a site has to be in one of the four different states, i.e., empty, singly
occupied with spin ±σ or doubly occupied. In the infinite U limit this condi-
tion has to be satisfied without X22

i , i.e., without a possible double occupancy
of a site.

When correlations are strong, i.e., for large ratios of U/t the Hubbard
Hamiltonian can be expanded in terms of t/U . To leading order this brings us
to the so-called t− J Hamiltonian. Since that limit is particularly interesting
we devote to it a separate Sect. 10.6.

10.4.4 Kanamori limit

When we deal with a system with a nearly empty or nearly full band of
correlated electrons the Kanamori limit applies [230]. In a dilute gas of Fermi
particles or holes the most important processes are those in which two particles
scatter repeatedly on each other without affecting the background [140]. A t-
matrix approach applies in this case. As a result the Hubbard interaction
U goes over into a screened interaction Ueff which never exceeds the order
of the bandwidth W . This is seen by a simple argument: When U is very
large, electrons avoid occupying the same site. This costs them at most kinetic
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energy of order W . The effective repulsion energy, therefore, cannot be larger
than that energy.

The t-matrix approach starts from a Hubbard interaction written in k
space,

Hint = U
∑

i

ni↑ni↓

=
U

N0

∑

kk′q

′
a+k+q↑ak↑a

+
k′−q↓ak′↓ . (10.91)

The prime on the summation sign indicates that momentum is conserved
during the scattering process only up to a reciprocal lattice vector G, i.e.,
a+k′−q↓ has to be replaced more generally by a+k′−q+G↓.

Fig. 10.14. Lowest-order scattering process due to the local Hubbard interaction
U .

A single scattering process between two particles of opposite spin in initial
states |k1,k2〉 is given by the matrix element (see Fig. 10.14)

〈k3,k4 | Hint | k1,k2〉 =
U

N0
∆ (k1 + k2;k3 + k4) . (10.92)

The lattice function ∆(k1+k2;k3+k4) is equal to a δ-function with argument
(k1+k2−k3−k4+G). The t-matrix is the sum of repeated scattering processes
with the two-particle propagatorG(k1,k2) between two subsequent scattering
events. This is shown in Fig. 10.15. The sum is a geometric series and therefore
can be written in the form

Ueff =
U

1 +G(k1,k2)U
. (10.93)

The sign in the denominator must be positive for positive G(k1,k2) since
the interaction is repulsive, i.e., the bare interaction U is screened and not
amplified. The two-particle propagator is

G(k1,k2) =
1

N0

∑

k5k6

∆ (k1 + k2;k5 + k6)

ǫ(k5) + ǫ(k6)− ǫ(k1)− ǫ(k2)−∆ǫ12
. (10.94)
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Fig. 10.15. Scattering processes contained in the t-matrix in the low-density or
Kanamori limit.

The sum of the unperturbed kinetic energies of two particles is modified by
an increment ∆ǫ12 = Ueff/N0. In order to evaluate G(k1,k2) we go over from
a two-electron problem to a partially filled band. The assumption is that the
scattering processes contained in Fig. 10.15 are the dominant ones and the
only ones to be taken into account. We neglect the generation of electron-hole
excitations out of the Fermi sea. As pointed out before, this approximation
is the better, the lower the electron or hole density is. The momenta k5,k6

must be above the Fermi energy for the scattering into the state |k5,k6〉 to
take place. When the bottom of the band is at a k point of high symmetry,
e.g., at k = 0, we take for ǫ(k1) and ǫ(k2) the energy at the bottom of the
band. In this case

G(0, 0) ≃ 1

2

∫ W

ǫF

dǫ
N(ǫ)

ǫ
, (10.95)

whereN(ǫ) is the density of states per spin direction and energies are measured
from the bottom of the band. We neglect the energy ∆ǫ12 and notice that
G(0, 0) is of order W−1. When U → ∞, the screened interaction is reduced
to

Ueff ≃ U

1 + U/W
≃W , (10.96)

i.e., to an energy of the order of the bandwidth. This agrees with the intuitive
argument presented above.

10.5 The t-J Model

We have shown before that the Hubbard model at half filling describes an
insulating state, when the ratio U/t is sufficiently large. In distinction to
conventional band insulators the gap in the excitation spectrum of the system
is here a consequence of the strong correlations (Mott-Hubbard insulators).
Materials which fall into that category are discussed in Chapters 12 and 15.
It is especially important to understand how the physics of those systems is
affected by doping them with holes or electrons. Here the t − J model is a
significant tool. It is obtained by an expansion of the Hubbard Hamiltonian
in terms of t/U when only the leading order terms are kept. As it turns out,
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antiferromagnetic correlations play an important role in that limit. This is
immediately seen by starting out from the insulating state at half-filling. Here
excitations require an energy of order U . We speak of virtual excitations when
an electron hops onto a neighboring site which becomes doubly occupied and
then hops back. This is possible only, when electrons on neighboring sites
have opposite spins. Those charge fluctuations can be eliminated by a unitary
transformation of the form described in Sect. 10.2.2. They result in an effective
antiferromagnetic HamiltonianHeff which acts on a reduced Hilbert space, i.e.,
one without double occupancies. We introduce a projection operator P which
projects here onto a reduced Hilbert space, in which doubly occupied sites are
excluded. Obviously it satisfies the relation P 2 = P . Then Q = 1−P projects
onto the space of configurations with doubly occupied sites. The hopping term
t of the Hubbard-Hamiltonian takes us from the reduced Hilbert space to the
full one. To second order in t we may write (10.17a) as

H̃ = PHP− 1

U
PH0QH0P , (10.97)

where we used that Q2 = Q. The second term reflects the energy increase by
U when in the intermediate state a site is doubly occupied. From the definition
of P and Q, it follows that

QH0P =
∑

ijσ

tijni−σa
+
iσajσ (1− nj−σ)

PH0Q =
∑

ijσ

tij (1− ni−σ) a
+
iσajσnj−σ . (10.98)

The term QH0P describes hopping of an electron with spin σ from a singly
occupied site j to site i, which is already occupied by an electron with spin
−σ. The second term is the inverse of the first. Only nearest-neighbor hopping
is considered (tij = −t). After some rearrangement [169], we obtain

H̃ = − t
∑

〈ij〉σ

(

â+iσâjσ + h.c.
)

+
4t2

U

∑

〈ij〉

(

Si · Sj −
n̂in̂j
4

)

− t2

U

∑

〈ijk〉σ

(

â+kσn̂j−σ âiσ − â+kσâ
+
j−σ âjσâi−σ + h.c.

)

. (10.99)

As before, brackets 〈ij〉 denote pairs of nearest neighbors, while 〈ijk〉 stands
for three-site terms, i 6= k being nearest neighbors of j. The â+iσ, âiσ are
electron creation and annihilation operators which act on the reduced Hilbert
space. However, they do not satisfy simple anticommutation relations. They
are identical with the Hubbard operatorsXσ0

i , X0σ
i , yet in the present context

the above notation is more often used, i.e.,

â+iσ = a+iσ (1− n̂i−σ)

âiσ = aiσ (1− n̂i−σ) . (10.100)
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The spin operators are Si = (1/2)
∑

αβ â
+
iασαβ âiβ and n̂iσ = â+iσâiσ. The

three-site terms in H̃ contribute only when the system deviates from half fill-
ing and they describe indirect hopping processes between sites i and k. They
are of order t/U smaller when compared with the first, direct hopping term
in (10.99). These terms are often discarded for low doping concentrations, al-
though not always justifiably. If we do so, the Hamiltonian (10.53) transforms
into the t− J model Hamiltonian

Ht−J = −t
∑

〈ij〉σ

(

â+iσâjσ + h.c.
)

+ J
∑

〈ij〉
(Si · Sj − n̂in̂j/4)

= Ht +HJ , (10.101)

The t−J Hamiltonian can be considered as the leading term of an expansion
of the original Hubbard Hamiltonian in powers of t/U . Higher order terms
generate ring exchange processes, spin-dependent three-sites hopping etc.

We want to decompose the spin-spin interaction part HJ into an Ising part

HIsing = J
∑

〈ij〉

(

Szi S
z
j − n̂in̂j/4

)

(10.102)

and a remaining part

H1 =
J

2

∑

〈ij〉

(

S+
i S

−
j + S−

i S
+
j

)

. (10.103)

In the following we investigate the Hamiltonian on a square lattice. In the
limit of n = 1, i.e., at half-filling Ht−J is the Hamiltonian of a 2D Heisenberg
antiferromagnet (AF). Its ground-state energy can be calculated by deploying
either the projection technique, Monte Carlo methods, exact diagonalizations
or variational methods.

When holes are doped into the system, they move according to the first
term in the Hamiltonian (10.99). In an antiferromagnetic background with
its two sublattices A and B a hole hopping between nearest neighbors must
necessarily create magnetic frustration, because each hop of the hole shifts
one spin to the opposite sublattice. To make this more quantitative we note
that a bond connecting two antiparallel spins contributes an energy of −J/2
to the expectation value 〈HIsing〉. A bond which connects either two parallel
spins or a spin and a hole contributes zero. We call the latter type of bond
‘defects’ and note that there are no defect bonds in the Néel state.

Removing a spin from – say – a site j belonging to the A-sublattice of the
Néel state creates zL = 4 frustrated bonds (see Fig. 10.16a) and thus increases
the expectation value 〈HIsing〉 by zL · J/2 (zL is the coordination number of
the square lattice). The first hop away from j creates another zL − 1 defect
and increases the energy by (zL − 1)J/2, see Fig. 10.16b. For most of the
paths any further hop creates two additional defects, see Fig. 10.16c. The last
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(a) (b) (c)

Fig. 10.16. Motion of a hole in a 2D Néel state |ΦN 〉. (a) The hole is generated at
site j. (b) after one hop seven bond defects have been created. They are marked by
crosses. (c) after two loops nine bond defects are present.

(a) (b)

Fig. 10.17. The truncation of a string of defects by the term H1. Acting with
J
2
S+
j S

−
n onto the string of length ν = 2 starting at j shown in (a) produces the

‘string of length 0’ starting at j′ in (b).

statement is in fact exact for all paths with length ν ≤ 3. The lattice constant
is set equal to unity here.

It thus might seem that the hole is self-trapped in an effective potential
due to the string of spin defects, which increases roughly linearly with the
number of hops. At this point, however, the transverse part of the Heisenberg
exchange, H1, becomes of crucial importance. Namely H1 can flip a pair of
‘wrong’ spins and thus shorten the string of defects by 2. Simultaneously, the
starting point of the string is shifted to a second ((1,1)-like) or third ((2,0)-
like) neighbor, see Fig. 10.17. We thus arrive at the following picture of hole
motion in an antiferromagnet: the hole executes a rapid zig-zag motion around
a site j on a time scale ∝ t−1. Thereby it remains tied to j by a string of
spin defects. Occasionally – i.e. on a timescale given by the inverse coupling
constant J – the term H1 acts and shifts the starting point of the string to a
second nearest neighbor j′. Then, the hole oscillates around j′ and so on.
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Fig. 10.18. Motion of a hole along a Trugman path. The hole is generated at site
j and moves in six steps to position i, indicated by dotted lines and labeled by
numbers in parentheses. No bonds are frustrated. By the spiraling motion, the hole
eliminates the disordered bonds it generated before.

The situation is therefore the following: a hole created at site j with spin
σ hops with matrix element −t around that site and generates a cloud of
disordered spins around its origin, often referred to as spin bag. The hole
with its bag moves through the system with a quasiparticle dispersion E(k)
of bandwidth J rather than t≫ J .

It should be noted here that it is in fact possible for a hole to delocalize
even without the help of H1, namely by executing a complicated spiral motion
where it passes each site twice. This has been discussed by Trugman and is
shown in Fig. 10.18. The process is of little importance though.

In order to describe the hole motion and to calculate E(k) we apply the
projection method and use the following set of relevant variables:

Aj,0 = âj↑

Aj,1 =
1√
zL

∑

m

S−
j ∆j,mâm↓

Aj,2 =
1√
zL

∑

m 6=n
S−
j ∆j,mS

+
m∆m,nân↑ , etc. (10.104)

While Aj,0 removes an electron with spin ↑ at site j, the Aj,ν 6=0 operators de-
scribe to subsequent motion of the hole to sites m, n etc followed by spin flips.
As discussed above, the latter annihilate defects generated by the motion of
the hole. Here ∆m,n = 1 if m and n are nearest neighbors and zero otherwise.
Let us briefly discuss the normalization factors: there are zL paths of length 1
and since each hop couples a path of length ν > 0 to zL − 1 longer paths and
one shorter path, the total number of paths of length n is Nν ≤ zL(zL−1)ν−1.
This right-hand site is an upper bound because for ν > 3 the paths may in-
tersect themselves and these paths should be excluded. Since the number of
self-intersecting paths is only a small fraction of the total number of paths,
we will henceforth ignore this complication and set Nν = zL(zL− 1)ν−1. This
is called the Bethe-lattice approximation.
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For a description of the coherent motion of the hole together with its spin
bag we introduce the Fourier transform

Aν(k) =

√

2

N0

∑

jǫA

e−ik·RjAj,ν . (10.105)

We have divided the square lattice into sublattices A and B and denoted with
A the sublattice of the Néel state with spin ↑ sites.

With the above choice of dynamic variables, we define a projector P onto
the set of variables {Aν(k)}:

P =

νmax
∑

ν=0

|Aν(k)) χ−1
νµ (Aµ(k)

∣

∣ . (10.106)

The dispersion E(k) of the hole is obtained from

R↑(k, ω) =

(

âk↑

∣

∣

∣

∣

P
1

z − L
P

∣

∣

∣

∣

âk↑

)

(10.107)

and we determine this function with the help of (8.18). We need to cal-
culate the susceptibility matrix χµν as well as the frequency matrix ωµν
which enter that equation. Within the present approximation, the matrix
χµν(k) = (Aµ(k)|Aν(k)) is equal to the unity matrix. In analogy to (8.19)
the frequency matrix is determined from ωµν(k) = (Aµ(k)|LAν(k)). For its
computation, we decompose the Liouvillean L into

L = Lt + LIsing + L1 , (10.108)

where LIsing corresponds to the Ising part HIsing of HJ , i.e., LIsingA =
[HIsing, A]− while Lt and L1 correspond to the hopping Hamiltonian Ht and
to H1, respectively.

The part LIsing describes the increase of magnetic energy due to the strings
of defects generated by the moving hole. We have seen that the number of
frustrated bonds is 4, 7, 9, . . . for paths of length 0, 1, 2, . . . Therefore, we
have

(Aµ(k) | LIsing | Aν(k)) = δµ,ν ·
J

2
[2ν + 5− δν,0] . (10.109)

The matrix element of Lt is calculated as follows: according to the Bethe-
lattice approximation there are Nν = zL(zL − 1)ν−1 paths of length ν > 0.

Each of these has a prefactor of N
−1/2
ν and is coupled to zL−1 paths of length

ν + 1 by Ht, all of which have a prefactor of N
−1/2
ν+1 . The matrix element of

Lt contains therefore the effective hopping

t(zL − 1)

√

Nν
Nν+1

= t
√
zL − 1 . (10.110)
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Analogous considerations apply for ν = 0 and therefore we arrive at:

(Aµ(k) | Lt | Aν(k)) = −δµ,ν+1t̃ν − δµ+1,ν t̃µ , (10.111)

where t̃ν = t
√
zL for ν = 0 and t̃ν = t

√
zL − 1 otherwise.

Finally, we need the matrix elements of L1. As mentioned before, this term
truncates or extends the string of defects by 2 and shifts the starting point j to
a second- or third-nearest neighbor. Therefore it is the only term which is k-
dependent. It is straightforward to see that there are two possibilities to reach
a (1,1)-type neighbor by the string truncation process shown in Fig. 10.17,
yet only one possibility to reach a (2,0)-type neighbor. The k-dependence is
therefore given by:

g(k) = 2 · 4 cos(kx) cos(ky) + 2 (cos(2kx) + cos(2ky))

= 4
(

(cos(kx) + cos(ky))
2 − 1

)

(10.112)

in units of the lattice vector. To obtain the remaining prefactor of the matrix
element we note that Nν/(zL(zL−1)) of the paths of length ν > 2 which start
at j pass through a (2,0)-type neighbor j′ (it would be twice this number

for a (1,1)-type neighbor!). Each of them has a prefactor of N
−1/2
ν and is

transformed by H1 into a path of length ν − 2 starting at j′. In turn, each

of these latter paths has a prefactor of N
−1/2
ν−2 . We thus obtain for the matrix

element an overall factor of

J

2

1

zL(zL − 1)

√

Nν
Nν−2

=
J

2
· 1

zL
. (10.113)

The case ν = 2 can be treated in an analogous way and we find

(Aµ(k) | L1 | Aν(k)) =
J

2
g(k) (δµ,ν+2fν + δµ+2,νfµ) , (10.114)

where fν = 1/
√

zL(zL − 1) for ν = 0 and 1/zL otherwise.

For the frequency matrix a dimension of νmax . 20 is sufficient. The matrix

can be diagonalized numerically. Let ǫi and {α(i)
µ (k)} denote the eigenvalues

and eigenstates of this matrix. The spectral function A(k, ω) is defined in
terms of them by

A(k, ω) =

νmax
∑

i

∣

∣

∣
α
(i)
0 (k)

∣

∣

∣

2

δ(ω − ǫi) . (10.115)

The index 0 refers to the variables Aj,0 (see (10.104)) but here with the
site index j replaced by the momentum vector k. We show the result for
νmax = 20 in Fig. 10.19 and compare it with the one obtained from the
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diagonalization of a 4 × 4 cluster with periodic boundary conditions using
the Lanczos method (Appendix F). The agreement between the two types of
calculations is very satisfactory despite the dramatic reduction in the number
of all possible dynamical variables. It should be pointed out that the exact
treatment of a 4 × 4 cluster requires the diagonalization of a matrix of order
5 × 104, while with the projection method we need to diagonalize for each
k-point a matrix of dimension 20 only.

Fig. 10.19. Spectral function A(k, ω) for k = (π/2, π/2) of a hole moving on an
antiferromagnetic square lattice according to (10.115) (dashed line). Also shown are
the results of the diagonalization of a 4 × 4 cluster (solid line). (From [102])

The sequence of smaller peaks accompanying the main peak in Fig. 10.19
is due to the internal degrees of freedom of the spin bag. In a simplified picture
we may think of them as eigenmodes of a droplet. When we plot the energy of
the main peak, i.e., the coherent quasiparticle peak as function of k we obtain
E(k). We find that E(k) has a minimum along the line |kx| + |ky | = π in
the Brillouin zone (compare with Fig. 10.10). This degeneracy is lifted, when
the small contributions of Trugman paths are taken into account. Then only
four minima at the k points k = (±π/2,±π/2) remain. We will return to this
point later.

It is interesting that we obtain a result of comparable quality when a
self-consistent Born approximation is applied to the t− J model [313]. Start-
ing point is again (10.101 - 10.103) but for later purposes with a general
anisotropic spin interaction, i.e.,

Hint = HIsing + αH1 . (10.116)

For α = 1, Hint reduces to HJ . Note that for α = 0 the spin interaction
reduces to the Ising limit and the t− J model goes over into a t− Jz model.
The ultimate goal is to calculate the Green’s function
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G(p, ω) =

〈

ψ0

∣

∣

∣

∣

â+pσ
1

ω −Ht−J + E0
âpσ

∣

∣

∣

∣

ψ0

〉

(10.117)

for a hole. The ground state |ψ0〉 is that of the AF Heisenberg Hamiltonian
with energy E0. We divide the lattice into sublattices A and B and rotate the
spins on sublattice B by π about the x axis. Then S±

i → S∓
i and Szi → −Szi

for sites i on B. The Hamiltonian Hint becomes

HJ = J
∑

〈ij〉

[

−Szi Szj +
1

2

(

S+
i S

+
j + S−

i S
−
j

)

− n̂in̂j/4

]

(10.118)

and the ground state is ferromagnetic. We assume that spins are up. We note
that in distinction to a conventional ferromagnetic ground state the one we
are dealing with here contains quantum fluctuations caused by the operators
S+
i S

+
j and S−

i S
−
j .

In the following we proceed in several steps. First we reformulate the t−
J Hamiltonian so that the interaction of a hole with spin waves becomes
apparent. In a second step we compute instead of (10.117) a Green’s functions
for a holon which we shall define appropriately. Finally, we show that the holon
Green’s function agrees approximately with the one in (10.117).

We begin by introducing new annihilation operators with respect to the
ground state. They consist of spinless fermion operators f+

i , which create what
is called a holon at site i. Thus a separation is being made between charges
and spins. Therefore we define

âi↑ = f+
i , (10.119)

and composite operators
âi↓ = f+

i S
+
i . (10.120)

The latter cause a spin flip before a hole on a spin ↓ site is generated and allow
for a description of spin-wave emission processes induced by the motion of the
hole. Note that neither the right nor the left side of the above two equations
do satisfy simple fermionic commutation relations since double occupancies of
sites are excluded. Yet matrix elements calculated with this reduced Hilbert
space are the same when the right or left hand side of the equations are used.
Instead of having three states per site, i.e., empty or singly occupied with spin
σ, we deal here with four states, namely products of |holon〉 ⊗ |spin〉 states.
The holon number is 0 or 1. Each of the holon states has a spin attached to a
site. The state |1, ↓〉 is unphysical and must be excluded. Because of (10.120)
it is not possible to create a holon at site i with a remaining spin ↑ left at
that site. A holon together with an up spin is, of course, possible.

Next a Holstein-Primakoff transformation for S = 1/2 is applied. The Si
operators are expressed in terms of boson operators bi as



200 10 Strongly Correlated Electrons

S+
i =

(

1− b+i bi
)1/2

bi

S−
i = b+i

(

1− b+i bi
)1/2

Szi =
1

2
− b+i bi . (10.121)

When a b+i operator is applied to the vacuum, which here is a conventional
ferromagnetic lattice, it creates a spin ↓ at site i. In linear spin wave theory
(1−b+i bi)1/2 is set equal to unity. This might seem questionable in the present
case since for the ground state of a Heisenberg AF on a square lattice 〈b+i bi〉 =
1
2 −〈Szi 〉 ≃ 0.2, i.e., 〈b+i bi〉 is not small. However, numerical studies show that
the approximation is better than expected. The constraint on the Hilbert
space, i.e., the exclusion of |1, ↓〉 can now be taken into account by adding a
term

Hλ = λ
∑

i

f+
i fib

+
i bi (10.122)

with λ → ∞ to the Hamiltonian Ht−J . Then those states obtain an infinite
energy and drop out. When we make the above replacements in (10.101) it
becomes

Ht−J = −t
∑

i,τ

(

fif
+
i+τbi+τ + h.c.

)

+
J

4

∑

i,τ

(

1− nfi

)

[

bibi+τ + b+i b
+
i+τ + nbi + nbi+τ

]

(

1− nfi+τ

)

−J
2
N0(1− δ)2 . (10.123)

Here we have used the notation nbi = b+i bi and n
f
i = f+

i fi. Furthermore, the
sum over τ runs over the four nearest neighbors of the different sites. The
factors (1 − nfi ) and (1 − nfi+τ ) account for the loss in magnetic energy in
the presence of holes. The Hamiltonian Ht−J is bilinear in the b-operators.
Therefore we can diagonalize it with respect to these operators. After a Fourier
transformation this is done with the help of a Bogoliubov transformation
which is similar, but not identical to (10.62), i.e.,

αq = uqbq − vqb
+
−q . (10.124)

Note that u2q − v2q = 1. Introducing the structure factor for a square lattice
γq = (cos qx + cos qy)/2, we obtain

Ht−J =
4t√
N0

∑

p·q

[

f+
p fp−qαq (uqγp−q + vqγp) + h.c.

]

+
∑

q

ωqα
+
q αq + E0 . (10.125)
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The α+
q operators generate spin waves of energy ωq. One finds that ωq =

2J(1 − δ)2νq where νq = (1 − γ2q)
1/2. The hole concentration δ is defined

through δ = 〈nfi 〉. It is seen that Ht−J describes fermions, i.e., holons cou-
pled to spin waves of energy ωq. The functions uq and vq are determined by
diagonalization of (10.125) when t = 0. In the isotropic limit it is

uq =

√

1 + νq
2νq

, vq = −sgnγq ·
√

1− νq
2νq

. (10.126)

Apart from a trivial factor (1 − δ)2 in ωq the effect of holes back on ωq

has not been taken into account (see Sect. 15.5). The present case resem-
bles that of spinless electrons coupled to phonons. For that reason the above
Hamiltonian is often referred to as that of spin polarons. However, there is no
free Fermion term

∑

p

ǫpn
f
p like in the electron-phonon problem. Instead the

motion of holons is directly coupled to a generation of spin waves. Without
the S+

i S
+
j and S−

i S
−
j terms the hole is tied to the site where it was created.

We notice that the form factor

M(p,q) = (uqγp−q + vqγp) (10.127)

in (10.125) is zero when q = 0 or (π, π). It is largest for q vectors in between
those two points, showing that the coupling of holons to short-ranged spin
fluctuations is most important.

In a next step we calculate the retarded Green’s function for holons, i.e.,

Gf (p, ω) =

〈

0

∣

∣

∣

∣

fp
1

ω −Ht−J + E0
f+
q

∣

∣

∣

∣

0

〉

. (10.128)

The vacuum state |0〉 is here the quantum Néel state. It includes fluctua-
tions. In the spirit of Sect. 5.4.4 we write it in the form

| 0〉 = exp

(

∑

q

vq
uq
α+
q α

+
−q

)

| F 〉 . (10.129)

In this case |F 〉 is the ferromagnetic state, or classical Néel state before the
spin rotation in sublattice B. The Green’s function is determined by applying
the self-consistent Born approximation. In that scheme the self-energyΣ(p, ω)
is computed in lowest order perturbation theory using for the hole propagator
the full Green’s function Gf (p, ω). The corresponding diagrams are shown in
Fig. 10.20. With four nearest neighbors per site we obtain for the self-energy
due to emission and reabsorption of a spin wave

Σ(p, ω) =
16t2

N0

∑

q

M2(p,q)

ω − ωq −Σ(p− q, ω − ωq)
. (10.130)
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Fig. 10.20. Diagrams in self-consistent Born approximation. Solid and dashed lines
represent holon and spin wave propagators in the Ising limit of Hint. The double
solid line denotes the full holon Green’s function. The real space indices refer to
different sites in. (From [313])

This self-consistent equation for Σ(p, ω) can only be solved numerically, in
particular when t > J (strong coupling case).

It is quite instructive to study the Ising case, i.e., when the anisotropy
coefficient in (10.116) is α = 0. In that case M(p,q) simplifies to M(p,q) =
γp−q, ωq = ω0 = 2Jz and (N0)

−1
∑

q γ
2
q = 1

4 . This leads to a p-independent,
i.e., local self-energy

Σ(ω) =
4t2

ω − ω0 −Σ(ω − ω0)
. (10.131)

A numerical solution of that equation shows that the spectral function
A(k, ω) derived from (10.128) has the form of a ladder of spin excitations.
The hole is confined, i.e., it is tied by a string to its origin. Trugman paths are
not included in the Born approximation. Therefore the string of disordered
spins cannot be healed in the t − Jz model as spin-flip processes are not
possible. Figure 10.21 should be compared with Fig. 10.19 where holes are
deconfined.

Of course, this situation differs when the isotropic case, i.e.,Ht−J is consid-
ered. Here A(k, ω) always has k a distinct quasiparticle peak separated from a
quasicontinuum for fixed momentum. The coherent motion of the holes gives
rise to a doubly degenerate quasiparticle band, because of the two sublattices
with minima at momenta (±π/2,±π/2). The dispersion Ek is shown in Fig.
10.22. For a small hole concentration we obtain hole pockets in the Brillouin
zone at those k points. Finally, we notice that the spin-wave velocity ωq/q is
proportional to (1 − δ)2 and vanishes only for a hole concentration of δ = 1.

What remains to be discussed is the relation between the original electron
Green’s function (10.117) and the one for holons (10.128). By expressing âkσ
in terms of holons, thereby taking for the spins on the two sublattices their
average value into account, one can show that for small hole concentrations
G(p, ω) ≃ Gf (p, ω) [313].

An important effect which has been left out so far is that of holes acting
back on the antiferromagnetic properties. An exception is the trivial reduction
of the spin-wave energy due to the number of empty sites or holes. Shraiman

and Siggia have pointed out that a Néel state is unstable under doping and
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Fig. 10.21. Spectral function A(k, ω) for the t−Jz model in units of t with J = 0.1.
The result were obtained by solving (10.129) for a 16× 16 square lattice. (From [313])

Fig. 10.22. Dispersion relation Ek of the quasiparticle band relative to Em =
E(π/2, π/2) normalized by the bandwidth W = E(0, 0) − E(π/2, π/2) and along
symmetry lines in the AF Brillouin zone: J = 0.8. With increasing hole doping
states near S are filled (hole pockets). Inset: allowed k points for a 16 × 16 lattice
along the symmetry lines. (From [313])

that instead a spiral magnetic phase forms at low hole concentrations. The
wavelength of the spiral grows with diminishing hole concentration. Although
the arguments for a spiral phase were originally given for a classical spin
background, one can prove that the instability is also present when quantum
fluctuations are taken into account. The two-fold degeneracy of the dispersive
hole bands is then split and it is found that a spiral state with twisting vector
qs = (1, 1) has a lower energy than a state with q = (1, 0). For illustration
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we show in Fig. 10.23 the two twisted magnetic states. For further details we
refer to the original literature1.

Fig. 10.23. Schematic representation of two spiral spin states with qs along the
(1,1) direction (a), and along the (1,0) direction (b). The dotted line connects spins
with untwisted directions. (From [229])

The previous considerations have started from an ordered AF ground state.
It is known that a Heisenberg antiferromagnet on a square lattice has long-
range order only at T = 0. The Mermin-Wagner theorem excludes that order
for any finite T 6= 0. It is instructive to know which features of the calculated
quasiparticle spectrum require long-range AF order. In order to study the
effect of short-range magnetic order on the spectrum we consider the motion
of a hole at finite temperatures, where long-range order is absent.

For that purpose we have to go over to still another representation of
electron creation and annihilation operators â+iσ, âiσ. We apply a slave-fermion
Schwinger-boson representation by setting

â+iσ = fib
+
iσ , âiσ = f+

i biσ . (10.132)

As before, the spinless fermion operators f+
i create a holon at sites i while the

bosons b+iσ, biσ keep track of the spins [14]. The subsidiary condition is here

f+
i fi +

∑

σ

b+iσbiσ = 1 (10.133)

since a site i is either empty (f+
i fi = 1) or occupied by a spin σ. Thus the

previously independent existence of spins and charges is given up here. Yet
we allow for possible spin-charge separation in the sense that there may be
excitations which solely involve spin degrees of freedom and others which
involve solely charge degrees of freedom. Within that representation the t−J
Hamiltonian has the form
1 see, e.g., [51,103,202,216,313,412]



10.5 The t-J Model 205

Ht−J = −t
∑

〈ij〉σ

(

fif
+
j b

+
iσbjσ + h.c.

)

+ J
∑

〈ij〉
fif

+
i fjf

+
j

[

−1

2
A+
ijAij

]

,

(10.134)
where

Aij = bi↑bj↓ − bi↓bj↑ . (10.135)

First we want to determine the spin-wave dispersion. We assume that there
are no holes or holons, in which case we may replace fif

+
i fjf

+
j by unity. Next

we apply a spin rotation to the b operators on sites of sublattice B by replacing
bj↑ → −bj↓, bj↓ → bj↑. Then a Lagrange multiplier of the form λ

∑

iσ b
+
iσbiσ is

added to (10.134). It ensures that the subsidiary condition
∑

σ〈b+iσbiσ〉 = 1 can
be satisfied. The average taken is here a thermal one. We apply a mean-field
approximation to the product A+

ijAij , in which case

A+
ijAij = 〈Aij〉A+

ij +
〈

A+
ij

〉

Aij − |〈Aij〉|2 (10.136)

with 〈Ai,i+τ 〉 = 〈bi↑bi+τ↓ − bi↓bi+τ↑〉 ≡ ∆. Here i + τ denotes the nearest
neighbors of site i. Because of the mean-field approximation, the J dependent
part of Ht−J can be diagonalized.

With these approximations the Hamiltonian takes the form:

H = λ
∑

i,σ

b+i,σbi,σ − J∆

2

∑

〈i,j〉

∑

σ

(

b+i,σb
+
j,σ +H.c.

)

= λ
∑

k,σ

b+k,σbk,σ −
J∆

2

∑

k,σ

(

b+k,σb
+
k,σ +H.c.

)

. (10.137)

The Hamiltonian can be diagonalized by a bosonic Bogoliubov transformation
similar to (10.124) and we obtain for the spin excitation energy.

E(k) =

√

λ2 − (2Jγk∆)
2

. (10.138)

The excitation energy has a minimum at k = 0 and is gapped. The order
parameter∆ and λ are determined from self-consistency conditions [17]. With
the spin-excitation spectrum determined, we can treat the kinetic energy part
of Ht−J by applying again the self-consistent Born approximation. But this
time temperature Green’s functions have to be used.

A detailed description of these calculations is beyond the scope of this
book. It is worthwhile nonetheless to discuss briefly the outcome. The spectral
function for the slave fermions, i.e., holons computed for a cluster of 12 × 12
sites shows a pronounced quasiparticle peak. At low T , e.g., kBT/J = 0.05
it is particularly strong at k = (π/2, π/2). At a temperature of kBT/J =
0.6 the quasiparticle peak is still pronounced at (π/2, π/2) (see Fig. 10.24)
while at k = (0, 0) it has been replaced by a broad incoherent structure. The
dispersion of the holons at low temperatures is found to be rather similar to
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Fig. 10.24. Spectral density for holons when J/t = 0.3 and kBT/J = 0.6 for
k = (π/2, π/2) and (0, 0). Results are for a 12 × 12 site cluster. (From [202])

the one in Fig. 10.22, although it is not identical with it, because of the mean-
field approximation (10.136) which has been made. The absence of long-range
antiferromagnetic order has therefore little effect on the spectrum as long as
there is strong short-range antiferromagnetic order. In particular, minima are
found again at (±π/2,±π/2) as in Fig. 10.22.

An interesting result is obtained when the Green’s function of the phys-

ical hole is calculated, instead of the one for a holon. In the previous case,
where only spin-wave emission was considered, both Green’s functions were
nearly equal. Here it is found that there is a bound state between a holon
and a Schwinger boson, as the energy ǫB(k) of the physical hole is lower than
the quasiparticle energy ǫ(k) of a holon and a boson. This demonstrates that
within the t− J model there is no spin-charge separation taking place when
holes are doped into a square lattice. This finding is in agreement with the
string picture of a moving hole discussed earlier. There we found that a hole
has a spin bag attached to it. The energy of the bound state has again minima
at (±π/2;±π/2) suggesting that at low doping small pocket-like Fermi sur-
faces are formed in the Brillouin zone. This result, which holds in the absence
of long-range magnetic order, agrees again with the previous result for T = 0.
These findings are expected to break down when the magnetic correlation
length becomes shorter than the diameter of the spin bag. This is the case
at large hole dopings and at high temperatures. The small pocket-like Fermi
surface at (±π/2,±π/2) transforms then into a large Fermi surface to which
all electrons contribute. This subject will come up again in Sect. 12.1 and
especially in 15.5.5.

Summarizing the above discussion, we note that a Mott insulator doped
with holes and described by a t−J model does not fulfill Landau’s criteria for a
Fermi liquid. Nevertheless, there still exist coherent quasiparticle excitations.
Yet when hole doping becomes large, correlations become less important and
Fermi liquid behavior is reestablished. Finally, before concluding we want to
mention an extensive review of the t−J model by Ogata and Fukuyama [349].
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10.6 Mean-Field Approximations

Mean-field approximations, which we have frequently used, require care.
Sometimes they predict symmetry breakings which actually do not occur.
This was pointed out in Sect. 2.4 where a H2 molecule was used in order to
discuss this unwanted phenomenon. The origin of symmetry breaking is an
incomplete treatment of important correlation effects. By breaking a symme-
try some of the correlation effects such as a reduction of charge fluctuations
are simulated. For example, in the case of a H2 molecule a reduction of charge
fluctuations, i.e., ionic configurations can be simulated by an unrestricted SCF
ground state, i.e., one with a broken spin symmetry. On the other hand, there
are certainly solids with broken symmetries existing. In that case a symmetry
broken solution has a lower energy than the phase with unbroken symmetry,
independent of how well correlations are treated.

The challenge consists in finding out in which cases a symmetry broken
solution is an artifact and when it is real. These comments should be kept in
mind when we discuss mean-field approximations for strongly correlated elec-
tron systems. Notwithstanding the above comment, we have seen by studying
the t − J Hamiltonian that mean-field approximations are very helpful. We
were able to gain insight into new physical phenomena. Mean-field approxima-
tions were not made with respect to electrons or holes but rather with respect
to auxiliary or slave fields. This was possible because electron creation and
annihilation operators were written in the form of composite operators which
relate to those auxiliary fields. In the following, different forms of composite
operators are considered. They allow for different kinds of mean field ap-
proximations. Depending on the physical situation one or the other form is
preferable.

In the presence of an AF ground state the forms (10.119,10.120) have been
used, i.e., âi↑ = f+

i and âi↓ = f+
i S

+
i . Another form, which does not require

an AF ground state was introduced in (10.132), i.e, by setting â+iσ = fib
+
iσ and

âiσ = f+
i biσ. The f

+
i ’s are spinless fermion operators while the bosons biσ

take care for the spin degrees of freedom. The subsidiary condition eliminating
unphysical states is here given by (10.132) and the Hilbert space is again the
one without double occupancies of sites.

A third form which plays a prominent role in the so-called resonating
valence bond (RVB) theory is

âiσ = fiσb
+
i ; â+iσ = f+

iσbi . (10.139)

The spin degree of freedom is here attached to the fermionic field and the
corresponding particle is called a spinon while the bosonic operator b+i creates
a charge defect which is named a holon. Contrary to the previous fermionic
holon here it is a boson. There is again a subsidiary condition required which
here is of the form

∑

σ

f+
iσfiσ + b+i bi = 1 (10.140)
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and ensures that a site is either occupied by a holon or a spinon. Note that the
reduced Hilbert space excludes doubly occupied sites. Specifically we denote
with

| 0(i)〉 = b+i | 0〉
| σ(i)〉 = f+

iσ | 0〉 (10.141)

a holon and a spinon at site i. We want to express the t−J Hamiltonian solely
in terms of spinons. This can be done by using (10.139) and the condition
(10.140). We obtain for the kinetic energy

H0 = −t
∑

〈ij〉,σ

(

bif
+
iσfjσb

+
j + h.c.

)

. (10.142)

In order to rewrite the exchange term we introduce the following two
singlet combinations of f -operators:

s+ij = f+
i↑f

+
j↓ − f+

i↓f
+
j↑

τij =
∑

σ

f+
iσfjσ = τ+ji . (10.143)

It is then easy to see that

s↑ijsij = −
(

S+
i S

−
j + S−

i S
+
j

)

+ (ni↑nj↓ + ni↓nj↑) ,

τijτji = −
(

S+
i S

−
j + S−

i S
+
j

)

− (ni↑nj↑ + ni↓nj↓) +
∑

σ

niσ (10.144)

It follows that the Heisenberg exchange along a given bond can be written as

J
∑

〈ij〉
SiSj = −J

4

∑

〈ij〉

[

s+ijsij +

+
1

2
(τijτji + τjiτij)−

1

2

∑

σ

(niσ + njσ)

]

. (10.145)

The quartic terms in this expression are now in a form which immediately
allows for a mean-field decomposition. We introduce the order parameters

χij = 〈τij〉
∆ij = 〈sij〉 (10.146)

and absorb terms proportional to the spinon number into a renormalization of
the chemical potential. This leaves us with following mean-field Hamiltonian

HJ = −J
4

∑

〈i,j〉,σ

(

χjif
+
i,σfj,σ + h.c.

)

+
J

4

∑

〈i,j〉,σ

(

∆ij

(

f+
i,↑f

+
j,↓ − f+

i,↓f
+
j,↑

)

+ h.c.
)

−µ
∑

i

f+
i,σfi,σ . (10.147)
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In order to understand better what these order parameters imply let
us consider a system at half-filling. In this case there are no holons, i.e.,
H0 = 0 and we deal with a Heisenberg Hamiltonian. As pointed out be-
fore the ground state of this Hamiltonian on a square lattice is antiferromag-
netic. A conventional mean-field approximation for the Heisenberg Hamil-
tonian with a staggered field mi = 〈Si〉 = 1

2

∑

σσ′ 〈f+
iσσσσ′fiσ′ 〉 describes

this feature correctly, yet with a relatively poor ground-state energy E0 per
site, i.e., E0/N0 = −2J/4. This has to be compared with the true energy
E0/N0 = −2J · 0.335.

With (10.147) we have applied a more sophisticated mean-field approx-
imation in terms of spinons. The first term in (10.147) describes a band of
spinon excitations with a bandwidth of order J . Obviously, these must be
spin-wave like excitations since charge degrees of freedom are ruled out by a
Heisenberg Hamiltonian. When χij = χ0 for nearest neighbors i and j and
zero otherwise, this term becomes

HRVB = −J
2
χ0

∑

kσ

(cos kx + cos ky) f
+
kσfkσ . (10.148)

We have attached to this Hamiltonian a RVB label, since it is the one used
in the uniform resonating valence bond (RVB) theory. In that approach the
order parameter∆ij = 0. Because of the mean-field approximation manifested
by (10.148), the subsidiary condition (10.140) is considered to be fulfilled on
average only, i.e.,

∑

σ〈f+
iσfiσ〉 = 1. This implies that doubly occupied sites are

no longer ruled out. They are present like in a SCF theory. The dispersion of
the spinons

ǫ(k) = −Jχ0

2
(cos kx + cos ky) . (10.149)

vanishes for kx ± ky = ±π like in Fig. 10.10. The dispersion is that of un-
correlated spinons with an effective hopping matrix element teff = Jχ0/4. To
interpret k points with ǫ(k) = 0 as a Fermi surface (of spinons) would be some-
what misleading. We are dealing with an insulating state and therefore those k
points do not represent a Fermi surface in the usual sense. Note that (10.149)
must not be interpreted as describing spin fluctuations, i.e., magnons. The
latter vanish at points (0,0) and (±π,±π) and not on lines. Within a spinon
description spin fluctuations are particle-hole excitations. Transitions from,
e.g., (π/2, π/2) to (−π/2,−π/2) in Fig. 10.10 give rise to a momentum trans-
fer of (π, π). It is this feature that the surface with ǫ(k) = 0 acts like a Fermi
surface. The ground-state energy based on HRVB is improved as compared
with the one of the Néel state. In fact one finds a value of E0/N0 = −2J ·0.27,
which is lower than the one of the Néel state [498]. From that perspective the
method serves its purposes.

The study of the mean-field Hamiltonian (10.147) has mainly concentrated
on the case that ∆ij 6= 0. Obviously, the order parameter and with it the
Hamiltonian (10.147) do not conserve the spinon number. The model Hamil-
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tonian looks formally very similar to the BCS Hamiltonian for superconduc-
tors (see Chapter 15). The symmetry, which is broken in superconductivity
and by (10.147) when ∆ij 6= 0 is gauge symmetry. The Hamiltonian does not

commute with the particle number operator N̂ , i.e., [H, N̂ ] 6= 0 and therefore
a gauge transformation, which replaces fj → eiφfj and f+

j → e−iφfj , does
not leave H invariant.

A Heisenberg Hamiltonian does not only have a global gauge invariance,
but also a local one, i.e., a U(1) symmetry. Since electrons are localized, we
may perform local gauge transformation fj → eiφjfj without changing H .
In order to ensure that local gauge invariance holds for (10.147) we have to
require the following transformation rules to hold:

fi → eiφifi ; χij = e−iφiχije
iφj ; ∆ij → e−iφi∆ije

iφj . (10.150)

This U(1) invariance allows for the development of a gauge theory for the
above Hamiltonian and also for an extension of it in the presence of holes. For
a detailed discussion we refer to the comprehensive review of Lee et al. [273].
One particular self-consistent solution of the Hamiltonian (10.147) has played
a special role. It is of the form

∆ij =

{

∆0 , if j = i+ x̂

−∆0 , if j = i+ ŷ
, (10.151)

where x̂, ŷ are the unit lattice vectors in x and y direction. The order parame-
ter has here a d-wave symmetry. The excitation spectrum is the same as that
of a superconductor with d-wave pairing, i.e.,

Ek =

√

(ǫ(k))2 +∆2
k

(10.152)

with ǫ(k) given by (10.149) and

∆k =
∆0J

2
(cos kx − cos ky) . (10.153)

We notice that the excitation spectrum is gapped, except at the points
(

±π
2 ,±π

2

)

. These points are often referred to as nodal points. The ground-
state wavefunction has the form of a BCS ground-state wavefunction (see
(15.39)). We want to point out that these findings have little to do with super-
conductivity. We deal here with an unrestricted SCF solution to a Heisenberg
Hamiltonian which, as we want to show, gives a much improved ground-state
energy as compared to the classical Néel state. The spinon excitations resem-
ble again those of a SDW system (see (10.63)), but with a gap of d-wave
symmetry (unconventional or d-wave SDW). Note that here again the occu-
pation of a lattice site by spinons is equal to unity only on average, implying
that double occupancies of sites do occur. The gap in (10.152) vanishes at
(±π/2,±π/2) like for a d-wave SDW.
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Double occupancies of sites can be excluded by applying a Gutzwiller
projector PG(η) with η → ∞ (see (10.71)) to the BCS-like mean-field ground-
state wavefunction |ΦMF〉 of (10.147), i.e.,

| ψ0〉 = PG(η → ∞) | ΦMF〉
| ΦMF〉 =

∏

k

(

uk + vkf
+
k↑f

+
−k↓

)

| 0〉 . (10.154)

The f+
kσ are the Fourier transforms of the f+

iσ and |0〉 is the vacuum state.
The form of the coefficients uk and vk is discussed in Sect. 15.1.2.

The ground-state energy

E0 =
〈ΦMF |PG H PG|ΦMF〉

〈ΦMF |PG|ΦMF〉
(10.155)

can be determined only numerically by using Monte Carlo methods. One finds
for a d-wave order parameter 2 a value of E0/N0 = −2J ·0.319 3 which is very
close to the exact value. The goal to calculate the ground-state energy of a
Heisenberg AF on a square lattice by a sophisticated mean-field approximation
has therefore been achieved.

However, there are much simpler ways based on conventional spin-wave
theory or on the projection method to obtain results of comparable quality.
We mention here the one using the projection method, since results can be ob-
tained analytically, i.e., without resorting to numerical calculations. Starting
point is the Ising part HIsing of the Hamiltonian (10.102) while the remaining
part H1 (see (10.103)) is treated by projection methods. Already lowest-order
perturbation theory in H1 gives an energy change δE0 of the form

δE0

N0
= −2J

(

1

12
+

J

16 · 9 lim
z→0

(

8

z − 4J
+

28

z − 5J
− 46

z − 6J

))

= −2J · 0.083 (10.156)

and therefore a ground-state energy E0/N0 = −2J · 0.333. Details as well as
further improvements when the projection method is used instead, are found,
e.g., in [25].

Another simple method is the application of spin-wave theory. Starting
from the classical Néel state a Holstein-Primakoff transformation (10.121)
is applied. The zero-point energies of the spin waves correct the energy of
the Néel state and yield a value of E0/N = −2J · 0.332 4. So the question
might be asked why we were looking for a mean-field theory in terms of
composite operators when the goal, i.e., an improved ground-state energy
can be obtained much simpler by calculating analytically the lowest order

2 see [16]
3 see [156]
4 see [16]



212 10 Strongly Correlated Electrons

perturbation corrections. The answer is that the main motivation for searching
for a mean-field theory is the hope to gain better insight into the underlying
physics when holes are added to the system. This is the situation we encounter
in the high-Tc superconducting cuprates. Therefore this subject will be taken
up again in Sect. 15.5.

10.6.1 Test of Different Approximation Schemes

In Sect. 10.2.1 we have considered the simplest case of a system with strong
electron correlations, i.e., two electrons distributed over two non-equivalent
orbitals. Here we want to apply several different computational methods in
order to test how well they approximate that particular system. Since the
exact solution of it is known, the model serves as a testing ground for the
ability of those methods to describe strongly correlated electrons. The results
are most interesting.

Starting point is the Hamiltonian (10.6) with U being large. First we
solve the Hamiltonian in the independent-electron or SCF approximation. We
express Unf↑n

f
↓ in terms of δnfα = nfα − 〈nfα〉 and neglect the contribution

Uδnf↑δn
f
↓ . This leads to the following replacement:

Unf↑n
f
↓ → U

(

〈nf↓〉n
f
↑ + 〈nf↑ 〉n

f
↓ − 〈nf↑〉〈n

f
↓ 〉
)

(10.157)

and the resulting SCF Hamiltonian is trivially diagonalized. The resulting
eigenstates are bonding and antibonding states. The corresponding creation
operators (B+

σ ) and (A+
σ ) can be expressed in terms of the operators l+σ and

f+
σ as

B+
σ = l+σ cos θ + f+

σ sin θ

A+
σ = −l+σ sin θ + f+

σ cos θ . (10.158)

For U ≫ V we find for the angle

θ = −(V/U)1/3 . (10.159)

The energies of the two single-particle states are

ǫBσ = ǫl − V

(

V

U

)1/3

ǫAσ = ǫf +
(

V 2U
)1/3

. (10.160)

We notice that in the SCF ground state

|ΦSCF〉 =
∏

σ

B+
σ |0〉 (10.161)



10.6 Mean-Field Approximations 213

the electrons are predominantly in the ligand orbital. Because there is a con-
tribution of the F orbital to the molecular bonding orbital, the probability
is sin2 θ that the F orbital is doubly occupied in |ΦSCF〉. The ground-state
energy is

ẼSCF =
∑

σ

ǫBσ − U〈nf↑〉〈n
f
↓〉

= 2ǫl − 3V (V/U)1/3 (10.162)

and therefore considerable above the true ground-state energy (10.11). Note
that for U → ∞ one finds ESCF = 2ǫl, while according to (10.11), the ground
state energy is Ẽ0 ≃ ǫl + ǫf − 2V 2/∆ǫ. Due to the missing correlations, the
SCF approximation gives unphysical results.

The situation improves if we use an unrestricted SCF approximation (Sect.
2.4), in which case we attribute different orbitals to the two electrons of oppo-
site spin. We find that one electron is localized on the ligand orbital L while
the other electron is predominantly in the F orbital, yet lowers its energy by
hybridization. The ground-state wavefunction takes the form

|ΦUSCF〉 =
{[

1− 1

2

(

V

∆ǫ

)2
]

f+
↑ − V

∆ǫ
l+↑

}

l+↓ |0〉 , (10.163)

and the corresponding energy is

ẼUSCF = E0 −
V 2

∆ǫ
. (10.164)

We notice that this energy is much better than the previous ẼSCF, but the
wavefunction certainly does not describe the real situation correctly. The exact
wavefunction of the two electron system does not break a symmetry. Never-
theless, we ought here to reconfirm the conclusions drawn in Sect. 2.4. There
we stated that, within the independent-electron approximation, symmetry-
broken solutions strongly suppress charge fluctuations. Thus they simulate
correlation effects as far as the energy is concerned, but the wavefunction
remains in error. This point was reemphasized before in this Section.

We continue with density-functional theory. This is an excellent exercise
for applying the basic idea of that theory and various approximations to it.
Thereby we follow rather closely [394]. By setting ǫl = 0 we find from (10.11)
that in the limit U → ∞ the ground-state energy (4.1) is

E[ρ, Vex(r)] = ǫf −
2V 2

| ǫf | . (10.165)

Note that ρ is identified here with the f electron number nf since the total
electron number is fixed. The functional F [ρ] is according to (4.1)
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F [ρ] = E[ρ, Vex(r)]− ǫfρ

= ǫf (1− ρ) +
2V 2

ǫf
, (10.166)

where we have used that the orbital energy ǫf acts on the electrons like an
external potential Vex(r). Since F [ρ] does not depend on Vex(r) (see (4.1)) we
have to express ǫf in terms of ρ. This relation is given by (10.13), i.e.,

ρ = 1− 2V 2

ǫ2f
(10.167)

from which ǫf = −V (2/(1− ρ))1/2 is obtained. Therefore F [ρ] is of the form

F [ρ] = −2
√

2ρ(1− ρ)V . (10.168)

We want to point out that this density functional is exact for the model Hamil-
tonian. In order to derive an exact expression for Exc[ρ] we identify the last
equation with (4.10) and evaluate the Hartree term and T0[ρ].

The Hartree term is given by

EH =
1

2
ρ2U . (10.169)

The term T0[ρ] is the kinetic energy of a fictitious noninteracting two-electron
system in a fictitious external potential η. The latter must be chosen so that
the density ρ is the one of the true ground state. This is necessary because
the correct density ρ must enter the expression for the kinetic energy. The
ground-state energy 2ǫ0 of the noninteracting system is obtained from

∣

∣

∣

∣

−ǫ0
V

V

η − ǫ0

∣

∣

∣

∣

= 0 (10.170)

and therefore given by ǫ0 = η
2 −

√

η2

4 + V 2. From the corresponding eigenvec-

tor we obtain ρ =
2ǫ20

(ǫ20+V
2)

or

ǫ0 = −V
√

ρ

1− ρ
. (10.171)

By equating this expression with the previous one we find for the external
potential

η =
2V (1− ρ)
√

ρ(2− ρ)
. (10.172)

The kinetic energy is derived from

2ǫ0 = T0[ρ] + ηρ (10.173)
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and given by
T0[ρ] = −2V

√

ρ(2− ρ) . (10.174)

The exchange-correlation contribution to the true ground-state energy is
therefore

Exc[ρ] = F [ρ]− EH − T0[ρ]

= −2
√

2(1− ρ)V − 1

2
ρU2 + 2V

√

ρ(2− ρ) . (10.175)

We see that Exc[ρ] must compensate the large Hartree term and is therefore
not small! The exchange-correlation potential follows from (4.14)

vxc[ρ] = −ρU +

√

2

1− ρ
V +O(V ) , (10.176)

where O(V ) denotes additional contributions of order V , which remain regular
when ρ→ 1. Therefore, if V is small it may be neglected in comparison with
the second term. The effective potential Veff which enters the Kohn-Sham
equation (4.15) is therefore

Veff = Vex + vH + vxc

= ǫf +

√

2

1− ρ
V + ..... , (10.177)

with the external potential and Hartree contribution given by Vex = ǫf and
vH = ρ U , respectively.

We want to see whether or not the eigenvalues of the Kohn-Sham equation
may be interpreted as excitation energies. They are obtained from

∣

∣

∣

∣

−EDF

V

V

Veff − EDF

∣

∣

∣

∣

= 0 , (10.178)

i.e.,

EDF
1,2 =

Veff
2

±
√

V 2
eff

4
+ V 2 . (10.179)

We notice that EDF
1,2 are of order V . This shows that we should not interpret

δEDF = EDF
1 − EDF

2 as an excitation energy as is very often done when
density functional theory is applied. In the limit ρ→ 1 or V → 0 we find that
δEDF = 2V whereas from Fig. 10.3 one sees that the low-energy excitation of

the two-electron system is given by δE = 2V 2

∆ǫ =
√
2V

√
1− ρ. This implies

δE = δEDF

√

1− ρ

2
, (10.180)

i.e., for small values of the hybridization V the excitation energy is much
less than the difference of the Kohn-Sham eigenvalues would suggest. We
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want to stress that the above findings hold irrespective of whether or not
any approximation to the density functional is made. This reemphasizes the
notion that density functional theory is a ground-state theory. The eigenvalues
of the Kohn-Sham equation should not be interpreted as excitation energies in
particular when electron correlations are strong. This holds true irrespective
of any approximation to the density functional.

In the following we want to study the modifications that occur when a
local density approximation (LDA) or local spin-density approximation (LSD)
is made. We write

Veff(σ) = ǫf + vH [ρ↑, ρ↓] + vxc[ρ↑, ρ↓, σ] (10.181)

and use a phenomenological local form for the exchange-correlation potential
suggested in [442] for a single site of a Hubbard chain. Thereby the coefficients
which appear in vxc are adjusted so that the energy of the ground state and
first excited state of a hydrogen atom is reproduced.

vxc [ρ, ρσ] = −U
[

0.15ρ
1
3 + 0.46ρ

1
3
σ

]

. (10.182)

Note that at the ligand site L it is vxc ≡ 0. It is seen that the potential
favors spin polarization because it makes it more negative, i.e., attractive.
When the corresponding 2 × 2 Hamiltonian matrix is diagonalized and the
eigenvalues and eigenfunctions are evaluated for U → ∞, we find unphysical
solutions, i.e., the energy increases linear with U . This holds true for the
polarized (LSDA) as well as the unpolarized (LDA) case. Although the Hartree
and exchange-correlation potentials cancel for large values of U when the
exact density functional is used, this does not hold true for the LSDA or LDA
ground-state energies. They diverge as U increases.

The situation is considerably improved when we include self-interaction
corrections (SIC) (see Section 4.2). In accordance with (4.31) we set

ESIC
xc [ρ↑, ρ↓] = ELSD

xc [ρ↑, ρ↓]−
U

2

(

ρ2↑ + ρ2↓
)

− ELSD
xc [ρ↑, 0]− ELSD

xc [0, ρ↓] .

(10.183)
This leads to a modified exchange-correlation potential (10.182)

vSICxc [ρ, ρσ] = −0.15U(ρ
1
3 − ρ

1
3
σ )− Uρσ . (10.184)

When the eigenvalues and eigenfunctions of the corresponding 2 × 2 matrix
are evaluated we find that they agree with the ones of the unrestricted SCF
solutions (10.163,10.164).

Next we consider the case that H is replaced by an effective single-particle

Hamiltonian

H̃ = ǫ̃f
∑

σ

f+
σ fσ + Ṽ

∑

σ

(f+
σ lσ + l+σ fσ) , (10.185)

in which the effect of the interaction term Unf↑n
f
↓ is replaced by renormalized

single-particle quantities ǫ̃f and Ṽ . For simplicity we have again set ǫl = 0. We
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determine ǫ̃f and Ṽ by requiring that the charge distribution of the ground

state | ψ̃0 > of H̃ is the same as the one of the ground state of (10.6), and
furthermore that the expectation value of the hybridization term is the same
in both cases. We make the following ansatz for the ground state of (10.185)

| ψ̃0 >=
∏

σ

(sin ϑ̃f+
σ + cos ϑ̃l+σ ) | 0 > (10.186)

with

tanh ϑ̃ =
−2Ṽ

[

(

ǫ̃2f + 4Ṽ 2
)

1
2

+ ǫ̃f

] . (10.187)

The requirement 〈ψ̃0|nℓσ|ψ̃0〉 = 〈ψ0|nℓσ|ψ0〉 with nℓσ = ℓ+σ ℓσ leads to

〈

ψ̃0 | nℓσ | ψ̃0

〉

= cos2 ϑ̃

=
1

2
+
V 2

ǫ2f
(10.188)

and similarly for nfσ
〈

ψ̃0 | nfσ | ψ̃0

〉

= sin2 ϑ̃

=
1

2
− V 2

ǫ2f
. (10.189)

Furthermore, the condition 〈ψ̃0 | Ṽ f+
σ ℓσ | ψ̃0〉 = 〈ψ0 | V f+

σ ℓσ | ψ0〉 leads to
〈

ψ̃0 | Ṽ f+
σ ℓσ | ψ̃0

〉

= Ṽ cos ϑ̃ sin ϑ̃

= − V 2

| ǫf | . (10.190)

This implies that to leading order

Ṽ =
2V 2

| ǫf | + ..... (10.191)

ǫ̃f =
8V 3

ǫ2f
+ ..... . (10.192)

It is noticed that the energy ǫ̃f of the renormalized f level is larger
than zero, which is the energy of the ℓ level. In addition V is reduced to
Ṽ = V

√

1− nf . The ground state of H̃ is a singlet and there exist four
excited states with excitation energy ǫ̃f . This should be compared with the
excited triplet state of the exact solution and its energy. Within the present
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approximation the two-electron system has also an excited singlet state of
energy 2ǫ̃f .

A similar result is obtained when a slave boson mean-field approximation

is made. This approximation is often used for the description of heavy quasi-
particles (see Chapter 13). The basic idea is to account for strong correlations
by a renormalized hybridization Ṽ and a renormalized f orbital energy ǫ̃f .
Both renormalizations are achieved by auxiliary bosonic degrees of freedom.
The Hamiltonian is rewritten in that case as

HSB = ǫℓ
∑

σ

ℓ+σ ℓσ+(ǫf+λ)
∑

σ

f+
σ fσ+V

∑

σ

(

b+ℓ+σ fσ + bf+
σ ℓσ

)

+λ(b+b−1) .

(10.193)
The boson operator b+ creates an empty f orbital and bf+

σ ensures that an f
electron is created only when the orbital was previously empty. This replaces
the interaction term in (10.6) in the limit U → ∞. The Lagrange parameter
λ refers to the subsidiary condition

∑

σ

f+
σ fσ + b+b = 1 , (10.194)

i.e., the F orbital is either occupied with spin σ or it is empty. In mean-field
approximation we set 〈b+〉 = 〈b〉 = r so that 〈b+b〉 = r2 and

∑

σ〈f+
σ fσ〉 = 1−

r2. The ground-state energy ESB is obtained by requiring that ∂ESB/∂r = 0
and ∂ESB/∂λ = 0. We find that

ESB = ǫf −
V 2

|ǫf |
nf = 1− V 2

ǫ2f
. (10.195)

One notices a missing factor of two in the V -dependent term as compared
with the exact results (10.11). The ground state is a singlet and the excited
states form a quartet (singlet + triplet) but with nearly the correct excitation
energy. The high energy state at |ǫf | of the exact solution has been shifted to
low energies, i.e., it takes part in the quartet (see Fig. 10.25). This shows that
the slave boson mean-field approximation is not suitable for the interpretation
of spectroscopic data.

Altogether the slave boson mean-field approximation yields very reason-
able results, the most serious deficiency being the wrong multiplicity of the
excited states.

It is instructive to investigate a Gutzwiller-type ansatz (see(10.71)) for the
ground-state wavefunction, which we write here in the form of (5.97), i.e.,

| ψG〉 = (1− η̃ nf↑nf↓) | ΦSCF〉 (10.196)

with | ΦSCF〉 given by (10.161). With this ansatz the configuration with a
doubly occupied F orbital is reduced, but the relative weight of the f0 and
f1 configurations in | ΦSCF 〉 remains unchanged. Therefore the ground-state
energy remains grossly in error.
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Fig. 10.25. (a) Exact solution from Fig. 10.3 with ǫℓ = 0 and (b) solution in
slave-boson mean-field approximation where the triplet is replaced by a quartet.
(From [394])

Considerable improvement is attained by starting from a modified Gutzwiller-
type ansatz

| ψMG〉 = (1− η̃nf↑nf↓)
∏

σ

(

sinϑf+
σ + cosϑl+σ

)

| 0〉 . (10.197)

The parameters η̃ and ϑ are determined by minimizing the ground-state en-
ergy. For small values of V

|ǫf | we find

cosϑ = − 2V

| ǫf | + ..... . (10.198)

In distinction to | ΦSCF〉 the occupied single-particle state B+
σ = sinϑ f+

σ +
cosϑ l+σ is here mainly localized on the F site. Reducing the doubly occupied
f state with the help of the prefactor in (10.196) leads to the correct ground-
state energy and density distribution.

The local-ansatz wavefunction

| ψLA〉 = eηδnf↑δnf↓ | ΦSCF〉 (10.199)

with δnfσ = nfσ − 〈ΦSCF | nfσ | ΦSCF〉 (see Sect. 5.4) yields the exact
ground-state energy and f electron number to leading order in V

|ǫf | when η is

determined by minimization of the energy.

10.7 Metal-Insulator Transitions

There are several ways in which a system, which is metallic at high temper-
atures may become an insulator at low temperatures. The simplest and most
trivial one is that of a band insulator with a small band gap. Such a system
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has completely filled bands at zero temperature, while at finite temperatures
a number of electrons are excited from the valence bands into the conduction
bands. They may result in a semiconducting or insulating like behavior de-
pending on the size of the gap. Electron interactions play a secondary role
here, except that they may contribute to the small size of the gap.

Another prototype are systems with a half-filled conduction band, in which
the unit cell doubles at low temperatures due to structural changes. In this
case the Brillouin zone is reduced to half its size as the temperature approaches
zero and the previously half-filled bands become completely filled. Thus we
are back to a band insulator. An example is trans-polyacetelene (CH)n which
is discussed in Sect. 14.1 in a different context. Here the unit cell doubles
because of a dimerization of π bonds (Peierls distortion). Lattice degrees of
freedom are crucial, while electron-electron interactions remain unimportant
for an understanding of the basic physical process.

A generalization of the Peierls distortion is a metal-insulator transition
based on nesting. When the Fermi surface of a metal has parallel sections
in k-space, the charge-density correlation function as well as the spin-density
correlation function diverge at low temperature at a wavevector Q. If Q is a
nesting vector, i.e., a vector which connects two parallel sections of the Fermi
surface, then along the Q direction the system resembles a one-dimensional
one over a finite region in momentum space. Remember that the Fermi surface
of a one-dimensional system has the shape of a slab with ǫk+Q = ǫk. The
divergence of the spin- and charge susceptibility is seen from (11.102). When
χ0(q, ω → 0) is calculated, the energy denominator vanishes for q vectors
on the nesting portion of the Fermi surface. This causes a singularity in the
response function χ0(q) and hence an instability of the system. Thus a metal
with nesting properties of the Fermi surface forms a charge-density (CDW)
or spin-density wave (SDW) ground state. In that case the Fermi surface
is partially or totally reduced due to the formation of a gap. We show in
Fig. 10.26 a Fermi surface with nesting portions and characteristic nesting
vectors Q1 and Q2. In this case only a partial gapping of the Fermi surface
is expected. By the opening of a gap kinetic energy is gained (see Sect. 14.1).
When the Fermi surface is fully gapped the system becomes an insulator. A
simple example considered earlier is that of a square lattice with one orbital
per site at half filling. When electron hopping is limited to nearest neighbor
sites we obtain a Fermi surface, which is enclosing the dashed area in Fig.
10.10. The parallel parts of the Fermi surface are connected by two orthogonal
nesting vectors Q1 and Q2, which are reciprocal lattice vectors of the reduced
Brillouin zone. The divergent static spin susceptibility leads to a SDW, but
as discussed in Sect. 10.4.1 a gap will open only when there is a finite on-site
Coulomb repulsion U present. The gap extends here over the full Fermi surface
and a metal-insulator transition takes place at sufficiently low temperatures.

Another example of a doubling of the unit cell is the onset of antiferromag-
netic (AF) order within the framework of the t− J model. Assume electrons
on a bipartite lattice with a half-filled conduction band. When electrons on
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Fig. 10.26. Example of a Fermi surface with partial nesting. Parts of the Fermi
surface in the vicinity of the nesting vectors Q1, or Q2 are nearly parallel and give
rise to large response functions at those wavevectors.

neighboring sites interact via an antiferromagnetic Heisenberg spin-spin in-
teraction, the system will become an antiferromagnet at sufficiently low tem-
peratures with a corresponding reduction of the Brillouin zone. Again, the
band in the reduced zone is now completely filled and the system becomes an
insulator. Consider La2CuO4, the parent compound of the high-temperature
superconducting cuprates. With La3+ and O2− we have Cu2+ ions with one
hole in the 3d shell. This results in a half-filled 3dx2−y2 conduction band (see
Sect. 12.1). The system is an antiferromagnetic insulator at low temperatures.
But in distinction to a SDW it remains an insulator above the Néel temper-
ature TN ≃ 80 K. Obviously, electron-electron interactions play here a more
important role than simply causing antiferromagnetic spin-spin interactions.

This leads over to a discussion of the role of electron correlations in metal-
insulator transitions. We want to consider the consequences when the Coulomb
repulsion between electrons is much larger than their energy gain due to delo-
calization. In trying to minimize their mutual repulsions, electrons will localize
as much as possible. For a homogeneous electron gas this is achieved by the for-
mation of a Wigner crystal, a topic described in Sect. 3.3. When the electronic
crystal is pinned to the lattice so that it cannot move as a whole, the system is
insulating. It does not have a gap in the excitation spectrum though, since the
Wigner lattice can support phonon-like electronic excitations. Formation of a
Wigner crystal requires quite large values of rs or low densities. This is rather
different when the electrons are closely tied to ions of an underlying atomic
lattice. The overlap of atomic-like wavefunctions between neighboring sites
and hence the kinetic energy gain due to delocalization may be quite small
in that case. An extreme case are 4f electrons which are known to be close
to the nuclei. The mutual overlap of 4f orbitals on neighboring sites can be
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really small and so is the associated energy gain due to delocalization. There-
fore charge order of 4f electrons commensurate with the underlying lattice
structure can take place and connected with it a metal-insulator transition.
The involved densities can be of the order of one electron per atom. A proto-
type system for charge ordering is Yb4As3, a system discussed extensively in
Sect. 13.2. In fact, Yb4As3 changes from a metal to a semimetal and not to
an insulator at low temperature, but that is due to a special feature of the p
bands of the As ions. Note that the related compound Yb4P3 is an insulator.

Most studies for capturing the essence of metal-insulator transitions are
done by using the Hubbard Hamiltonian (10.53). In this model a metal-
insulator or Mott-Hubbard transition, as it is commonly called, is obtained at
half filling and sufficiently large ratio of U/|t|. The Hubbard III approxima-
tion discussed in Sect. 10.4.3 describes this transition in terms of a retarded
Green’s function. The essential assumption is a coherent potential approxima-
tion (CPA). With its help one can treat the effect of the disordered potential
an electron experiences when the other electrons are kept frozen.

Fig. 10.27. Local spectral density (or equivalently – Im G (r = 0, ω)) for a half-filled
Hubbard system with a semi-circular density of states. Results for different ratios
U/D (D is the half-bandwidth) are obtained from DMFT and apply to infinite
dimension. (From [146])

An improved approximation takes into account, that the disorder potential
is a dynamic one, since the positions of the other electrons fluctuate. This is
accounted for in the DMFT as well as in the dynamical CPA or equivalents.
They were discussed in Chapter 9. The fluctuating disorder potential results
in a new feature of the metal-insulator (M-I) transition. Between the lower
and upper Hubbard band a narrow band appears which is symmetric with
respect to the Fermi energy. At a critical ratio of U/|t| this band disappears
and a M-I transition takes place. This aspect of the Mott-Hubbard transition
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was first found for infinite dimensions by DMFT [146] and is shown in Fig.
10.27.

However, care has to be taken when interpreting that finding. The nar-
row band is found only for a paramagnetic ground state. The DMFT, being a
single-site approximation, has problems in stating under which conditions a
system is a paramagnet or an antiferromagnet. It can compare the energies of
the two ground-states. Yet because of missing intersite correlations that com-
parison contains considerable uncertainties. The situation is improved when
instead a cluster DMFT is used (see Sect. 9.2), in which case the ground state
of a square- or cubic lattice is found to be an antiferromagnetic insulator and
the narrow central band is absent. Assuming a paramagnetic ground state,
the details of the density of states change somewhat when the momentum
dependence of Σ(p, ω) is included by a procedure outlined in Sect. 9.2 (see
Fig. 10.28).

Fig. 10.28. Density of states for a paramagnetic Hubbard model on a cubic lattice
at half-filling when Σ(p, ω) is calculated within the FSCP method (solid line) and
when a single-site approximation is made implying a momentum independent Σ(ω)
(dotted line). U is in units of t. (From [227])

One would like to know which low-energy excitations give rise to the nar-
row peak in the density of states around ω ≃ 0. Similar as in Fig. 9.3 the peak
results from a narrow band of quasiparticle like excitations. They must involve
predominantly spin degrees of freedom. The latter couple increasingly weakly
to charge degrees of freedom as U (in units of t) approaches the critical value
Uc at which the peak disappears. Therefore the width of the peak must be
related to the exchange interaction J . It is however not simply proportional to
it. In the insulating phase we are left with the J dependent part of Ht−J only,
i.e., with spin-wave excitations. They are uncoupled from charge excitations,
do not contribute to the electronic DOS and have a bandwidth of order J .
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It should be noticed that there is considerable uncertainty what the critical
value Uc is at which a M-I transition takes place, even for the simple case of
a square lattice.

The description of a metal-insulator transition in a real system by a one-
band Hubbard model is, of course, a highly idealized one. An important gen-
eralization is the inclusion of more than one orbital per site. Due to different
overlap of those orbitals with the ones of neighboring sites the criteria for
a metal-insulator transition, or more precisely for localization, may first be
satisfied by one of the different orbitals. Electrons in that orbital become local-
ized while electrons in other orbitals are still delocalized. It may also happen
that the criterion is fulfilled first by two of the orbitals. This is the case for
some of the intermetallic uranium compounds to which the dual model applies.
The latter is discussed in Sect. 13.3. Here 5f electrons localize in some of the
jz orbitals while they delocalize in others. Hund’s rule correlations play an
important role in establishing such an incomplete Mott-Hubbard transition.

Another feature one should be aware of is the following. Approaching a
Mott-Hubbard transition may cause redistributions of orbital occupancies at
a given site. In order to demonstrate this point by means of a gedanken experi-
ment, take Li metal. If we were able to increase the lattice constant arbitrarily,
moving this way towards the atomic limit, we would observe a redistribution
of electrons in 2s and 2p orbitals. A metal-insulator transition would take
place at some stage of the increase of the lattice constant.

Up to here we have always presumed a Hubbard model at half filling and
varied the size of the hopping matrix element as compared with the on-site
Coulomb repulsion U . One might also consider an approach to the Mott-
Hubbard transition, when U/|t| is kept fixed while the filling or chemical
potential is slightly changed. Some aspects of this topic are discussed in Sect.
12.1, where we deal with doped cuprates.

10.8 Numerical studies

Due to its importance for understanding strongly correlated electrons as func-
tion of temperature, the Hubbard model has been studied by many different
numerical methods in particular near or at half filling. It cannot be our aim
here to discuss all these approaches. Instead we limit ourselves to a few compu-
tational schemes. They give an impression of what can be presently achieved.
Thereby we will consider often a Hubbard Hamiltonian on a square lattice
because of its relevance for high-temperature superconductivity.

The numerical method which comes immediately to mind is, of course, ex-
act diagonalization of a cluster with, e.g., open boundary conditions. However,
the Hubbard model has four states per site: empty, singly occupied with spin
σ and doubly occupied. Therefore, the dimension of the involved Hilbert space
grows like NH = 4N where N is the number of sites. For a 16 sites cluster
this implies a total of 43 · 109 states and puts enormous requirements on the
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computer memory. By exploiting various symmetries together with the elec-
tron number conservation this number of states can be considerably reduced.
Those symmetries, respective conservation laws include the conservation of
magnetization (S2

tot = const.), the translational symmetry (i.e., momentum
conservation), and the point group symmetry (i.e., parity and angular momen-
tum conservation). The full SU(2) symmetry (i.e., conservation of S2

tot) cannot
be used, since it is practically not possible to set up a basis of eigenstates of
S2
tot. In order to give an explicit example we consider the strong correlation

limit of the Hubbard model at half filling, i.e., the t-J model. The Hilbert
space is here the same as for the Heisenberg Hamiltonian. On a square lattice
with 40 sites there are 240 configurations. Thus the dimension of the Hilbert
space is NH ≃ 1012. Restricting ourselves to the S2

tot = 0 sector reduces the
dimension to NH ≃ 140 · 109 (i.e., 40!/(20! 20!)). The space group has 160
symmetry elements (i.e., 40 translations times a 4-fold symmetry axis). To-
gether with spin inversion symmetry we end up with a basis of approximately
NH = 4.3 · 106 states to be handled.

The matrices which have to be diagonalized are of dimension NH × NH .
They are sparse and have only a relatively small number of nonvanishing
matrix elements. Matrices up to NH ≃ 107 have been treated by applying the
Lanczos algorithm or variations of it. In Appendix F the Lanczos method is
described and it is shown how the ground state and low-energy excited states
of the system can be computed. Yet we would like to be able to calculate
various physical properties even at finite temperatures, i.e., for T > 0.

Although a generalization of the Lanczos method to finite temperatures
is possible, the Quantum Monte Carlo technique has proven in this case an
invaluable tool. Starting point is the partition function

Z = Tre−βH . (10.200)

SinceH0 andHint given by (8.22) do not commute, we decompose exp[−β(H0+
Hint)] according to Suzuki and Trotter by dividing β into L different imaginary

time slices, i.e., β = L∆τ . This enables us to write

e−βH =
[

e−∆τ(Ho+Hint)
]L

≃
[

e−∆τH0e−∆τHint
]L

. (10.201)

The error introduced by the finite size of the time steps ∆τ is of order
O(∆τ2tU). By reducing ∆τ it can be made as small as necessary. With
(10.201) we can factorize the right-hand side of (10.200) into

Z = Tr
[

e−∆τH0e−∆τ [U
∑

i ni↑ni↓−µ
∑

i ni]
]L

. (10.202)

By introducing the chemical potential µ we have gone over to a grand canon-
ical description. The electron-electron interaction can be rewritten as a one
particle term by making for each time slice use of the identity



226 10 Strongly Correlated Electrons

e−∆τU(ni↑−1/2)(ni↓−1/2) =
e−

U
4
∆τ

2

∑

ξi=±1

e−∆τξiλ(ni↑−ni↓) . (10.203)

Here λ must satisfy the equation cosh(∆τλ) = exp(∆τU/2). We do not prove
that equation but refer to [183] instead. Equation (10.203) can be checked im-
mediately by applying the right-hand side to the four possible configurations
of site i. Note that ξi(τ) is a discrete Hubbard-Stratonovich field which for
each time slice can take the two values ±1. The on-site Coulomb repulsion U
between electrons has been replaced here by a fluctuating discrete Ising field
ξi acting on an electron. It should be compared with the continuous field zi(τ)
used instead in Sect. 11.3.1.

Equation (10.203) enables us to rewrite (10.202) in a form which factorizes
the spin up and down contributions

Z = TrξTr

[

L
∏

ℓ=1

e−∆τH0e∆τ
∑

i(λξi(ℓ)−µ
′)ni↑

]

×
[

L
∏

ℓ=1

e−∆τH0e∆τ
∑

i(−λξi(ℓ)−µ
′)ni↓

]

. (10.204)

Here we have set µ′ = µ − U/2 and the index ℓ refers to the ℓ-th time slice.
We introduce an effective Hamiltonian for electrons of spin σ on time slice ℓ
be defining

Hσ(ξ(ℓ)) =
∑

ij

c+iσhσ(ξi(ℓ))cjσ

hσ(ξi(ℓ)) = −tδ〈ij〉 + δij (−µ′ + λσξi(ℓ)) , (10.205)

where δ〈ij〉 = 1 when i and j are nearest neighbors and zero otherwise. Thus
hσ(ξi(ℓ)) contains an effective, spin-dependent random local field for time
slice ℓ. Then the partition function can be expressed in terms of the effective
Hamiltonian as

Z = TrξTr
∏

σ=±1

L
∏

ℓ=1

eHσ(ξ(ℓ))∆τ . (10.206)

Since Hσ(ℓ) is bilinear in the c+, c operators, the trace over the fermions can
be taken explicitly. The result is

Z =
∑

{ξ}
det L↑(ξ)det L↓(ξ) , (10.207)

where the sum is over all configurations of the Ising field ξi(ℓ). The matrix
Lσ(ξ) has dimensions N2 ×N2 where N is the number of sites and is of the
form

Lσ(ξ) = 1 +BσLB
σ
L−1 . . . B

σ
1 (10.208)
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with Bσℓ given by

Bσℓ = e−∆τhσ(ξ(ℓ)) . (10.209)

The step going from (10.206) to (10.207) is proven in Ref. [183] to which we
refer. It makes use of the identity

Tre−c
+

i Aijcje−c
+

i Bijcj = det
[

1 + e−Ae−B
]

(10.210)

which is proven there too. The sum over the Ising variables in (10.208) is done
with the help of the Monte Carlo Method where the role of the Boltzmann
weights (see Appendix (H)) is taken by the product detL↑(ξ)detL↓(ξ) [38].
Indeed, for the Hubbard model at half filling and with nearest neighbor hop-
ping only, this product is always positive. We conclude this by first noticing
that under these circumstances the Hubbard Hamiltonian is invariant under a
particle-hole transformation ciσ = (−1)ic+iσ. The prefactor (−1)i ensures that
the sign differs for nearest neighbor sites. This is needed for the kinetic energy
term to remain invariant under this transformation. The term λσ

∑

i ξi(ℓ)niσ
in (10.205) goes over into −λσ

∑

i ξi(ℓ)(1− niσ). This implies that

detL↓(ξ) =
∏

iℓ

eλ∆τξi(ℓ)detL↑(ξ) (10.211)

and therefore that the product detL↑(ξ)detL↓(ξ) is non-negative for all con-
figuration ξ. The Monte Carlo importance sampling is done with probabilities

P (ξ) =
1

Z
detL↑(ξ)detL↓(ξ) . (10.212)

By selecting C independent configurations with a probability distribution
given by (10.212) the thermal average of an arbitrary operator A is then
given by

〈A〉 = 1

C

∑

{ξ}
A(ξ) , (10.213)

where A(ξ) is the matrix element of A calculated for a given ξ configuration.
For hole doped systems the product of the two determinants may become
negative, an example of the famous sign problem for fermions. Then we must
replace (10.212) by

P (ξ) =
|detL↑(ξ)detL↓(ξ)|
∑

{α}
|detL↑(ξ)detL↓(ξ)|

. (10.214)

In order to find the correct thermal average 〈A〉 we have to include the
sign changes by defining the quantity

s(ξ) = sgn (detL↑(ξ)detL↓(ξ)) (10.215)

and using it in
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〈A〉 = 〈As〉
〈s〉 . (10.216)

The average is calculated by using P (ξ) as given by (10.214). When 〈s〉 be-
comes small implying that there are nearly as many positive and negative
products detL↑(ξ)detL↓(ξ) the method looses its advantages. For a given sta-
tistical error the number of required independent configurations in the sam-
pling procedure increases like 〈s〉−2. One can show that with lowering of the
temperature 〈s〉 decreases exponentially, thus limiting the method to higher
temperatures. The average 〈s〉 decreases also when U is of the order or larger
than the bandwidth. Figure 10.29 shows how 〈s〉 changes with temperature
for a system with moderate hole doping and strong correlations.

Fig. 10.29. Averaged sign 〈s〉 of the product detL↑(ξ)detL↓(ξ) for a 8 × 8 square
lattice with 〈n〉 = 0.87 and U = 8t as function of temperature. The plot shows the
restrictions of Monte Carlo calculations to high temperatures. (From [398])

Monte Carlo calculations for the Hubbard model on a square lattice with
nearest neighbor hopping have led to a number of interesting results. Despite
the limitations to temperatures T/t > 0.3 results for an antiferromagnetic
ground state could be extracted [183]. The order parameter is much smaller
though than a mean-field treatment would suggest. The findings are made
possible by considering a set of N × N lattices of increasing size. By extrap-
olating to the T = 0 limit for each lattice and by providing for a finite-size
scaling analysis to the bulk limit, various ground-state properties have been
obtained. They reconfirm that the half-filled system is an insulator with a gap
in the excitation spectrum for all values of U 6= 0. As previously discussed,
this is due to nesting properties of the Fermi surface.

Another interesting finding obtained by the same method concerns the
single-particle spectral weight A(k, ω) when the system is hole doped. Results
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Fig. 10.30. Spectral weight A(k, ω) shown by the intensity of dark colour and spin-
excitation energies ωspin/t as obtained from a QMC calculation for the Hubbard
model on a square lattice with different deviations from half filling. (a): 〈n〉 = 0.95,
i.e., 5 % hole doping. (b): 〈n〉 = 0.72, i.e., 28 % hole doping. The lattice is 8 × 8
and U/t = 8. The Fermi energy is at ω − µ/t = 0. (From [378])

are shown in Fig. 10.30 for small doping, i.e., 〈n〉 = 0.95 and large doping,
i.e., 〈n〉 = 0.72. In the former case spectral weight changes dramatically as
the Fermi energy is crossed. We notice the presence of an upper and a lower
Hubbard band. At the same time spin-wave like excitations are found. They
are obtained from the computed magnetic susceptibility and explain why the
spectral weight of the quasiparticle-like low-energy band is essentially limited
to the reduced antiferromagnetic Brillouin zone. This is quite different when
the doping is large. Here spin waves can no longer be identified and conse-
quently the spectral weight of the low-energy excitations is appreciable in
the whole, i.e., paramagnetic Brillouin zone [378]. Another interesting result
obtained from QMC calculations is the behavior of the equal time spin-spin
correlation function

S(q) =
1

3

∑

i

〈s(Ri) · s(0)〉 e−iqRi (10.217)

where the sum extends over the sites of the square lattice.
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Fig. 10.31. Magnetic structure factor S(q) as obtained by QMC calculations for a
10 × 10 square lattice with U/t = 4. (a): for hole doping δ = 1 − 〈n〉 = 0.18 and
(b): δ = 0.5. (From [139])

At half filling S(q) has a divergent peak at Q = (π, π) because of AF
order. Yet, when the system is hole doped the peak splits into four. We de-
note the corresponding q values by qinc. The incommensurate peaks S(qinc)
have finite height with a value which scales like 1/δ where δ = 1 − 〈n〉 is
the doping concentration [139]. Furthermore, qinc seems to be of the form
qinc = (π, π ± cδ), (π ± cδ, π) with c being constant. This indicates short-
range antiferromagnetic order with an antiferromagnetic correlation length
ξm which scales like ξm ∼ 1/δ1/2. The function S(q), shown in Fig. 10.31 for
different hole doping concentrations, is obtained for a 10 × 10 square lattice
and U = 4t.

Another approach used for finite temperatures is the Finite Temperature
Lanczos Method. The main idea is to combine the Lanczos method described
in Appendix E with a stochastic sampling of the full Hilbert space spanned by
the different configurations. Since only operations of the type |ψ〉 = H |φ〉 are
needed and the matrices are very sparse, one can treat larger systems by full
diagonalization. A detailed description of the method is found in Ref. [212].

10.9 Break-down of Fermi Liquid Description

In Sect. 7.2 we have discussed the concept of quasiparticles and of Fermi
liquids. The basic assumption of Fermi liquid theory is a one to one corre-
spondence between the low-energy excitations of an interacting electron sys-
tem and those of a noninteracting system with renormalized parameters. It
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is surprising that even in systems with strong electron correlations the Fermi
liquid concept is applicable in many cases. An extreme case are systems with
heavy quasiparticles. Here the renormalization of the effective quasiparticle
mass may exceed a factor of hundred when compared with the free electron
mass. Heavy quasiparticles will be discussed at length in Chapter 13. Despite
of this Fermi liquid theory is still applicable. But there are also a number of
situations where a Fermi liquid description is inapplicable. In the following
we want to discuss a few of them.

At first we consider the Hubbard model (10.53) away from half filling when
U/|t| ≫ 1. In that case two Hubbard bands form. The number of states which
are available, e.g., for intraband excitations depends on the filling factor n.
This was pointed out before and is illustrated in Fig. 10.13. A one to one
correspondence between the excitations in a Hubbard band with partial fill-
ing and those of a nearly free electron gas is here not possible. It was also
pointed out in Sect. 10.4.3 that in the Hubbard III approximation the imag-
inary part of Σ(p, ω) does not vanish like ω2 when the limit ω → 0 is taken
but remains instead constant. This is due to static disorder scattering. The
self-energy resembles therefore that of free electrons scattered by impurities
with a scattering rate τ−1, i.e.,

ImΣ(p, ω) = i/τ . (10.218)

An important difference between the Hubbard model in Hubbard III approx-
imation and impurity scattering is that the former system is translationally
invariant while the latter is not. Therefore, in the presence of elastic impurity
scattering, one can in principle always replace the momentum p of an elec-
tron, which is no longer conserved, by three other electronic quantum num-
bers. They are denoted by the compact index n and define the single-particle
eigenstates in the presence of a given distribution of scattering centers. When
the retarded Green’s function is expressed in term of them, the self-energy
vanishes, i.e.,

Gnn′(ω) =
δnn′

ω − ǫn + iδ
(10.219)

and the system is a Fermi liquid because the distribution of the ǫn is similar
to that of the ǫp. For a translationally invariant system with momentum
conservation like the Hubbard model, a similar argument cannot be used.

Another interesting example of a breakdown of Fermi liquid behavior is
obtained when a Mott-Hubbard system with strong electron correlations is
slightly doped with holes. Here a square lattice deserves special attention
because it is considered to be the minimum model for the Cu-O planes of the
high-temperature superconducting cuprates. In Sect. 10.5 we have discussed
the t − J model which is the effective low-energy version of the Hubbard
Hamiltonian. There it was shown that near half filling there is no one to
one correspondence between the low-energy excitations of the system with
a few holes and those of independent electrons with a Fermi surface which
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encloses half of the Brillouin zone. A different question is whether such a
correspondence exists but with charge carriers of a density which equals the
hole concentration. This seems to be the case, since we have seen in Fig.
10.24 that for k vectors near (π/2, π/2) a quasiparticle-like peak shows up
in the spectral density A(k, ω). Its dispersion can be interpreted as that of a
quasiparticle. Also, the self-energyΣ(p, ω) calculated with the FSCP operator
method is in the low-frequency limit of the form (7.21), which is characteristic
for a Fermi liquid.

10.9.1 Marginal Fermi Liquid Behavior

A number of cuprates have properties like the optical conductivity, Raman
scattering intensity or nuclear relaxation rate which cannot be explained
within the frame of Fermi liquid theory. Best known is the anomalous behav-
ior of the resistivity. In the normal state of several superconducting cuprates a
temperature dependent resistivity of the form ρ(T ) = AT rather than ρ ∼ T 2

is observed experimentally. It came as a surprise that many of the anomalous
properties can be explained by making a single, yet rather bold assumption,
namely that the imaginary part of the density susceptibility χe(q, ω) as well
as of the spin susceptibility χ(q, ω) is proportional to

Imχ(e)(q, ω) ∼
{−N(0) (ω/T ) , for |ω| < T

−N(0) sgn ω , for T < |ω| .
(10.220)

Both susceptibilities are response functions. They describe the response of
the system to a space and time dependent perturbation acting on the density
and spin density, respectively. Up to here we have not yet discussed the effects
of correlations on these two functions, in particular what their form is when
a Fermi liquid description applies. For the spin susceptibility this is done in
Chapter 11, in particular in Sect. 11.35. From the form of Imχ(q, ω) one
can determine Reχ(q, ω) via Kramers-Kronig relations. Associated with the
response function is a corresponding contribution to the electron self-energy
Σ(p, ω). This is plausible, since an electron (or hole) moving through the
system acts as a time- and space-dependent perturbation of the medium. A
pictorial way how Σ(p, ω) is affected is seen in Fig. 10.17, where the role of
r(k, ω) is played here by χ(q, ω). As a result of (10.220) the following form of
Σ(p, ω) is obtained without proof

Σ(p, ω) = g2N2(0) [ω ln(x/ωc)− iπx/2] (10.221)

where x = Max(|ω|, T ) and g is a coupling constant. Furthermore, ωc is a high-
frequency cut off. We notice that the self-energy is quite different from the
one in a Fermi liquid theory. As discussed in Sect. 7.2 we find that for a Fermi

5 see, e.g., Fig. 10.15
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liquid ReΣ(p, ω) ∼ ω and ImΣ(p, ω) ∼ ω2 in the zero temperature limit. A
metallic system with a self-energy given by (10.221) is called a marginal Fermi
liquid [463]. The renormalization constant Z(p) in the single particle Green’s
function (7.22) can be calculated from (7.20). In the present case it reduces to
Z(p) ∼ ln−1(ωc/ǫp) and vanishes at the Fermi energy where ǫp goes to zero.
Thus the momentum distribution n(p) has is no longer a discontinuity at pF
which in a Fermi liquid theory is a signature of the Fermi surface (see Fig.
7.1). Likewise, there are no quasiparticles existing in the low-frequency limit,
in which case the Green’s function becomes completely incoherent.

This raises the question whether a one band Hubbard model, considered
to be the minimal model for the Cu-O planes in the high-Tc superconduct-
ing materials can show under special circumstances a marginal Fermi liquid
behavior.

Very accurate calculations for the self-energy Σ(p, ω) of the zero tempera-
ture retarded Green’s function have been done by applying the FSCP operator
technique to a Hubbard model on a square lattice. It is found that the form
(7.21) for the self-energy Σ(p, ω) and therefore Fermi liquid-like behavior is
prevailing in all cases, i.e., independent of the doping concentration. In passing
we note that it is necessary to apply the fully-consistent projection operator
method. A simplified treatment in which only the diagonal self-energy matrix
elements Σ̃ii(z) are calculated self-consistently yields erroneously a marginal
Fermi liquid behavior for very small hole doping concentrations. We mention
that feature in order to make the reader aware of the accuracies which treat-
ments of this kind of problem require. However, quantum Monte Carlo as well
as FSCP operator calculation show an interesting feature which we want to
discuss briefly.

Fig. 10.32. (a): Density of states for a doped Hubbard system on a square lattice
with x = 0.123 when the FSCPM is applied [226]. (b): The same function when a
(4×4) cluster with similar doping concentration is used in a CDMF treatment. The
temperature is in units of |t| [468].
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It is well known that the density of states of a square lattice with nearest-
neighbor interactions has a logarithmic van Hove singularity in the center of
the band. At half filling the Fermi energy ǫF coincides with this singularity.
It turns out that the self-energy Σ(ω) has consequently a form like (10.221).
Thus, at half filling, the system is expected to behave like a marginal Fermi
liquid. However, that changes when the system is doped, e.g., with holes.
In that case the Fermi energy moves away from the van Hove singularity
and Σ(p, ω) reduces again to (7.21) in the low-frequency limit. It came as a
surprise that at a hole concentration of x = 0.123, i.e.,of nearly 1/8 the Fermi
energy returns to the peak in the DOS [226]. This is due to a doping-dependent
transfer of spectral density between the two Hubbard bands. A similar result is
found in CDMF theory for a 4×4 cluster [468]. A comparism of the two results
is shown in Fig. 10.32. Since the singularity has been replaced by a high peak
the self-energy Σ(ω) shows again Fermi liquid behavior, i.e., ReΣ(ω) ∼ ω
and ImΣ(ω) ∼ ω2 for ω → 0. However, due to the narrow peak of the DOS,
the self-energy at higher frequencies resembles more the one of a marginal
Fermi liquid. Also we expect that at this doping concentration the system is
particularly sensitive to instabilities which reduce the DOS. This is of interest
in view of the stripe formation of holes, which takes place at x = 1/8 in some
of the cuprates (see Sect. 15.5.6).

10.9.2 Charged and Neutral Quasiparticles

A quite different reason for non-Fermi liquid behavior is found in the low-
temperature phase of Yb4As3, a system with heavy quasiparticles. This sys-
tem is discussed at length in Sect. 13.2. It has a first-order phase transition
near T0 = 292 K and is metallic in the high temperature phase and semi-
metallic in the low-temperature phase. The change is connected with partial
electronic charge order in form of well separated Yb3+ chains with an effec-
tive spin 1/2 per site. In such a chain the holes are expected to be immobile
(Mott-Hubbard insulator). It is well known that a Heisenberg spin chain has
a low-temperature specific heat of the form C = γT like a metal. It is due
to spin excitations (spinons) which obey Fermi statistics6. The coefficient γ
is large here because of a weak coupling of the spins in a chain and therefore
the specific heat resembles that of heavy quasiparticles. But the charge carri-
ers, which are mainly 4f holes in the high-temperature phase consist in the
low-temperature phase of a small number of As 4p holes. Therefore one may
speak of spin-charge separation and a breakdown of the conventional Fermi
liquid picture. The spin excitations take place in the Yb3+ chains while the
charge excitations are associated with As p holes. A one-to-one correspon-
dence between the excitations in the low temperature phase and those of an
independent electron system is no longer given. In fact, we are dealing here
with two Fermi liquids, i.e., one with charge-neutral heavy quasiparticles (spin

6 Note that in 1D bosons can be transformed into fermions and vice versa.
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excitations) and the other with charged light quasiparticles (As 4p holes). The
light quasiparticles observed in cyclotron resonance experiments are scattered
off by the neutral heavy quasiparticles. This results in a large A coefficient in
ρ(T ) = AT 2. While only the light quasiparticles contribute to the resistivity,
the thermal conductivity is dominated by the neutral, i.e., heavy ones. This
explains why the system has many properties of an ordinary metal with heavy
quasiparticles.

10.9.3 Hubbard Chains

A breakdown of the Fermi-liquid approach is also taking place in one dimen-
sional (1D) systems. Consider again the Hubbard model. For 1D it was solved
exactly by Lieb and Wu [282]. For half filling, an analytic form can be derived
for the ground-state energy per electron E0/N . It is found that

E0

N
= −4|t|

∞
∫

0

dxJ0(x)J1(x)

x [1 + exp (xU/2(2|t|))] , (10.222)

where the Jν(x) are Bessel functions. From this expression, the following
asymptotic form can be derived for small ratios U/|t|:

E0

N
= −4|t|

π
+
U

4
+

7ζ(3)

8π3

U2

|t|

= −4
|t|
π

+
U

4
− 0.017

U2

|t| , (10.223)

where ζ(x) is the zeta function. In the opposite limit, i.e., for |t|/U ≪ 1, we
obtain the result

E0

N
= −4t2

U
ln 2 , (10.224)

precisely the energy of a one-dimensional Heisenberg antiferromagnet with
J = 4t2/U .

Another interesting result is that for the half-filled case the ground state
is insulating for all values of U > 0. It is proven by showing that the chemical
potential for adding an electron, µ+, and that for removing an electron, µ−,
differ, i.e., µ+ > µ−. We encounter the same situation in a semiconductor
with a gap.

The Bethe ansatz technique [31] makes the solution of the 1D Hubbard
model possible. With its help one can derive the explicit form of the ground-
state wavefunction ψ(x1, . . . , xN ), where x1, . . . , xM are the coordinates of the
spin-down electrons and xM+1, . . . , xN are those of the spin-up electrons. One
finds especially that in the limit U → ∞, where double occupancies of sites
are excluded, the wavefunction factorizes into the form [408]

ψ(x1, . . . , xN ) = det
∣

∣eikjxj
∣

∣Φ (y1, . . . , yM ) . (10.225)
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We have introduced here “pseudo coordinates” y1, . . . , yM for the spin-down
electrons, thereby omitting all empty sites. The first part is a Slater determi-
nant of noninteracting spinless fermions with momenta k1, . . . , kN describing
the charge degrees of freedom of the electron system. In contrast to (2.15), the
spin functions are here excluded, i.e., one is dealing with spinless fermions.
The second part Φ(y1, . . . , yM ) is the exact wavefunction of a 1D Heisenberg
spin chain. In fact, the form (10.225) for the ground-state wavefunction can be
guessed from elementary considerations, instead of using the Bethe ansatz so-
lutions. For this purpose consider the effective Hamiltonian Ht−J of (10.101),
which holds for large values of U/|t|. When J = 4t2/U = 0, i.e., for U → ∞,
the electrons cannot exchange their positions within the chain. The eigen-
states of Ht−J prove to be degenerate with respect to the electron spins. Only
the hopping term of Ht−J is left in this limit, the ground state of which is
the Slater determinant of noninteracting spinless fermions. As the interaction
J is turned on, the 2N -fold spin degeneracy is lifted. Taking the expectation
value of Ht−J given by (10.101) with respect to the Slater determinant of
the spinless fermions, we arrive at an effective Hamiltonian Heff = 〈Ht−J〉
describing the spin degrees of freedom. The following result is obtained [408]

Heff = −2t

π
N0 sin(πn) + Jeff

∑

i

(Si · Si+1 − 1/4) . (10.226)

As pointed out before, empty sites between the spins are omitted in the term
proportional to Jeff . The effective coupling constant Jeff is given by

Jeff = n2J

(

1− sin(2πn)

2πn

)

, (10.227)

where n = N/N0 is the electron density (as before N0 is the number of sites).
Jeff decreases rapidly with departure from half filling. In ψ(x1, . . . , xN ) spins
can only interact when they are nearest neighbors. The density dependence
of Jeff is related to the probability that this interaction does occur, and is
determined by the different configurations of the Slater determinant. The
ground state of Heff is that of a 1D Heisenberg chain, i.e., Φ(y1, . . . , yM ), with
only the positions of the down spins specified.

The factorization (10.225) of the ground-state wavefunction into one part
involving charge degrees of freedom and another involving spin degrees of
freedom only constitutes a remarkable result. It is then not surprising that
also the excitations separate into a class involving spin degrees of freedom
and another class involving only charge degrees of freedom. A near separation
of these two classes of excitations showed up first when only two electrons
were considered (Sect.10.2.1). It is a general feature of strongly correlated
electronic systems.

An intuitive interpretation of spin-charge separation has frequently been
made by considering a Hubbard chain at half filling in the limit of large U .
In that case double occupancies of sites are strongly reduced and one can



10.9 Break-down of Fermi Liquid Description 237

Fig. 10.33. Motion of a hole in a Hubbard chain in the limit of large U : (a) a hole
has been generated (shaded site), (b) after three hops the hole has separated from
a domain wall (DW) which it has created. Hole and DW can move independently of
each other.

simulate the antiferromagnetic correlations by a local Néel-like order (Fig.
10.33a). When an electron is removed from the Hubbard chain, the hole is
surrounded by two parallel spins. This changes after the first hop of the hole
to a neighboring site has taken place which requires an energy Jeff/2. Thereby
a domain wall has been created with two neighboring parallel spins. This is
a spin excitation (spinon). As the hole continues hopping, it is surrounded
by anti-parallel spins. Under these conditions, it can move freely, i.e., without
cost of magnetic energy (compare with Fig. 10.33b). Also the domain wall may
move without loss of magnetic energy. However, this argument disregards the
attractive δ-function like potential between the hole and the domain wall,
which in one dimension should always result in a bound state between the
two. Thus the problem is more subtle than the above argument suggests.
Nevertheless, we gain an intuitive picture of how dimensionality enters spin-
charge separation. As this separation persists to very low energies, we find two
types of elementary excitations namely of spins and of charges and the system
is no longer a Fermi liquid. The statement that a 1D Hubbard chain does not
represent a Fermi liquid is provable if we study the momentum distribution
n(p). In the limit U → ∞, we may use the wavefunction (10.225) to calculate
〈c+pσcpσ〉. We find that n(p) does not have a discontinuity at pF , but rather a
singularity of the form [418]

n(p) = −1

2
C |p− pF |α sgn (p− pF ) . (10.228)

The exponent α is found to be α = 1/8 in the limit considered here [420].
On account of the missing discontinuity, the system does not have a Fermi
surface in the usual sense.

Correlation functions prove to be more difficult to compute for the 1D
Hubbard model because they cannot be obtained directly from Bethe-ansatz
solutions for the ground- and excited states. We can solve this problem by
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deploying conformal field theory [122,405]. Here the behavior of the spin-spin
and density-density correlation functions for large distances is related to phys-
ical quantities (i.e., compressibility κ and velocity vc of charge excitations).
They can be derived from the Bethe-ansatz solutions. For example, it is found
that the spin-spin correlation function 〈Szi Szj 〉 for large distances |Rj − Ri|
between lattice sites j and i decays like

〈

Szi S
z
j

〉

∝ cos [2pF (Ri −Rj)]

|Ri −Rj |η
ln1/2 |Ri −Rj | . (10.229)

The exponent η(= 1+πn2κvc/2) is calculated to be 3/2 for all values of band
filling, provided U → ∞. The same value is found for arbitrary values of U ,
provided n = 1 (half-filled case).

In contrast, the density-density correlation function 〈ninj〉 decays at large
distances like

〈ninj〉 ∝
cos [4pF (Ri −Rj)]

|Ri −Rj |4(η−1)
. (10.230)

One notices a different power of the denominators in (10.229 - 10.230) as
well as a different oscillatory length of the cosine functions. This is again an
indication of spin-charge separation. The doubling of the argument of the co-
sine function in (10.230) is due to spinless fermions. They require twice as
much volume in momentum space as the same number of spin 1/2 fermions,
of which two can occupy a given k state; consequently, the Fermi momen-
tum becomes twice as large. For free electrons the corresponding expressions
for 〈ninj〉 and 〈Szi Szj 〉 are both proportional to cos[2pF (Ri − Rj)] and de-
scribe Friedel oscillations and Ruderman-Kittel-Kasuya-Yoshida (RKKY) os-
cillations, respectively. It should be pointed out that the behavior of n(p) and
〈Szi Szj 〉 corresponds to that found for other model Hamiltonians for 1D elec-

tronic systems as proposed by Tomonaga7 and Luttinger8. For this reason the
1D Hubbard system has also been called a Tomonaga-Luttinger liquid9. For
a number of other properties of the 1D Hubbard model derivable from the
Bethe-ansatz solution see Ref. [232].

10.9.4 Quantum Critical Point

Another example of non-Fermi liquid behavior is found in systems with a
quantum critical point (QCP). We speak of a QCP when, as a function of an
external control parameter, a phase transition ends with a transition temper-
ature Tc = 0. The external parameter can be pressure, magnetic field, change
in chemical composition etc. Near such a point the behavior of the system is
dominated by quantum fluctuations rather than thermal fluctuations. Yet in

7 see [452]
8 see [295]
9 see [166]
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an electronic system with a QCP quantum fluctuations are those processes
which go beyond a SCF theory. They are just the correlation contributions
to, e.g., the ground-state energy or wavefunction of a system. In Chapter 6
we have discussed them extensively. When the functional integral formalism
is used like in Sect. 11.3, quantum fluctuations show up in form of the τ de-
pendence of the Hubbard-Stratonovich fields ξ(τ) and η(τ). It is obvious that
quantum fluctuations, i.e., correlation effects influence the critical interaction
strength at which, e.g., a metal becomes an antiferromagnet or a ferromagnet
at T = 0.

Fig. 10.34. Two types of phase transitions ending in a quantum critical point (QCP)
as function of an external parameter r. (a) Absence of long range order at T 6= 0
in low dimensional systems like a 2D Heisenberg AF due to strong fluctuations.
(b) Long-range order which terminates in a QCP at rc. Classical, i.e., temperature
dependent fluctuations of the order parameter are indicated in dark. In the quantum
disordered regime a Fermi liquid description prevails. (From [469])

The simultaneous effect of thermal- and quantum fluctuations determines
the phase diagram of a system. Here we distinguish between two different
cases. In one case a phase transition is possible only at T = 0 like in a 2D
Heisenberg antiferromagnet. The thermal fluctuations destroy any long range
order at finite temperature because of their high density in two dimensions
(Mermin-Wagner theorem). In the second case long-range order is diminished
by a variable external parameter r. At a critical value rc of that parameter
Tc → 0 and a quantum critical point is approached. Both cases are illus-
trated in Fig. 10.34. Above the QCP we deal with a quantum critical regime.
The boundaries of that regime are approximately given by the condition that
kBT ≃ ωc where ωc is a typical energy of long-distance fluctuations of the
order parameter. It depends on t = (T − Tc)/Tc like ωc ∼ tνz. The exponent
ν relates the correlation length ξ to t, i.e., ξ ∼ tν and the exponent z relates
the correlation time τc to the correlation length, i.e., τc ∼ ξz . The correlation
time is the time it takes for a fluctuation of the spatial extend ξ to decay.
From ωcτc ≃ 1 the above relation follows.
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Within the quantum critical regime a Fermi liquid description does not
apply. The order parameter fluctuations couple here to electronic low-energy
modes. That results in a self-energy, which does not have the form required
for a Fermi liquid, i.e., ImΣ(k, ω) ∼ ω2 for small ω and T ≪ ω. A detailed
description of Σ(k, ω) is still missing though, in particular since details of the
Fermi surface become important. On some magnetic transitions in electron
systems light has been shed by the work of Hertz [178] and Millis [324].

Considerable experimental work has been devoted to CeCu6−xAux. Here
a phase transition takes place between an AF, which exists for x < 0.1
and a system with heavy quasiparticles we deal with when x > 0.1 [286].
It was found that for x = 0.1 and T < 1K the specific heat behaves like
C(T )/T ∼ − lnT/T0 while the resistivity is of the form ρ(T ) = ρ0 + AT
over more than one order of magnitude in temperature. The material is con-
sidered a prototype for non-Fermi liquid behavior near a QCP. The unusual
temperature dependence of the resistivity can be qualitatively explained by a
strong interplay between quantum fluctuations such as spin fluctuations and
isotropic impurity scattering. For examples, scattering of electrons by anti-
ferromagnetic spin fluctuations is strongest near lines on the Fermi surface
separated by the AF wavevector Q, i.e., the so-called hot lines. Without im-
purity scattering those contributions are of little importance because they
are short circuited by the contributions from the remaining cold parts of the
Fermi surface. Remember that for the average scattering rate τ−1 the relation
τ−1 = τ−1

hot + τ−1
cold holds, where both contributions enter with their respective

weight. Without impurity scattering τ−1
hot ≪ τ−1

cold leading to the above men-
tioned short circuitry. As a result the resistivity is ρ ∼ τ−1

cold ∼ T 2. Yet, when
impurity scattering is present, the two contributions are no longer so differ-
ent, i.e., the hot lines become important. Therefore strong deviations from
the T 2 behavior are expected [387]. Detailed discussions of quantum phase
transitions are found in Refs. [69, 395].

Last not least we want to point out that systems with fractionalized exci-
tations discussed in Chapter 14 are clearly outside a Fermi liquid description.
This concludes the brief survey of non-Fermi liquid systems.
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Transition Metals

In order to understand transition metals thoroughly, a proper description of
their magnetic properties proves important. They have been fascinating and
intriguing physicists for a long time. It is the interplay of delocalized versus
localized features of electrons that challenges theorists. This takes place in the
presence of fairly strong correlations, in particular in 3d systems. The question
posed is whether the correlations are so strong that important atomic prop-
erties caused by Hund’s rules are significant in solids too. To give a specific
example: we would like to know to what extent the spin of an Fe site in a solid
resembles the one of a single Fe atom. In order to work out criteria for magnetic
order, correlations among the electrons must be properly treated. Otherwise, a
symmetry broken ground state might be found in calculations merely because
it has reduced charge fluctuations at an atomic site which simulate incom-
pletely treated correlations and diminish Coulomb repulsions. This reduction
is most clearly seen by considering “strong ferromagnets”. They have a filled
majority-spin band and a partially filled minority-spin band. Therefore, only
electrons with minority spin may move and charge fluctuations are strongly
reduced as compared with the nonmagnetic case. If we fail to sufficiently treat
electron correlations in the nonmagnetic state, we may overestimate the en-
ergy gain due to magnetic order and, therefore, favor too much a ferromagnetic
ground state. Since correlations are quite strong in d electron systems, there
are important incoherent excitations appearing in some of them. They show
up in photoemission experiments as satellite or shake-up peaks.

In studying transition metals we wish to begin with a discussion of the
ground-state wavefunction. It will give us an insight into where those sys-
tems are with respect to the two extremes, i.e., uncorrelated electrons and the
strongly correlated or Hund’s-rule-dominated limit. Finding this out requires
the use of a model Hamiltonian. Density-functional-based ab initio calcula-
tions are of no use here since they avoid calculating many-body wavefunctions.
Calculations using quantum chemical methods to determine the ground state
have not yet been performed, yet are expected to become feasible in the near
future. The model Hamiltonian used here is the five-band Hubbard Hamilto-
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nian. The discussion of the ground state is followed by a discussion of excited
states.

Correlations have three different effects on the energy dispersion of exci-
tations, i.e.,

(a) the dispersion curves obtain a finite lifetime and consequently they broaden,
while without correlations they would remain infinitely sharp;

(b) there are k-dependent energy shifts of the dispersion curves which gener-
ally result in a reduction of the d band widths;

(c) shake-up or satellite peaks appear when the ratio of the one-site Coulomb
repulsion to the d-band width becomes sufficiently large.

Finally we discuss the role of correlations when finite temperatures are con-
sidered. They have profound effects on the magnetic properties. With in-
creasing temperature, transition metals show more and more local moment
features, while itineracy and delocalization of d electrons seem to become less
important. An example are the magnetization curves of Fe, Co and Ni. When
plotted as a function of temperature they resemble Brillouin curves that one
expects to obtain when a localized electron picture applies. In order to de-
scribe this cross-over, the simplest possible model, i.e., that of a one-band
Hubbard Hamiltonian given by (8.22) we will use. Technically the treatment
of finite temperatures is done by means of the functional integral method (see
Sect. 11.3.1) to which a single-site approximation is applied. It is supposed to
take care of the most important fluctuations when the ferromagnets Fe, Ni or
Co are considered, although it is not clear whether at high temperatures there
are no small ferromagnetic clusters remaining. The approximation is certainly
inappropriate when Pd or transition metal alloys like Ni3Ga are considered.
They are paramagnetic yet close to a ferromagnetic phase transition. Here the
amplitudes of short-range magnetic fluctuations are relatively small, and long
wavelength (q ≃ 0) fluctuations are the most important ones. This leads to
the (self-consistently renormalized) spin-fluctuation theory.

11.1 Ground-State Wavefunction

For a discussion of correlations in the ground state of transition metals we
use a model Hamiltonian for the five d orbitals. We assume that the electrons
interact with each other only when they are at the same site. The s- and
p-electrons are neglected. Their effect is understood to be incorporated in the
effective interaction parameters of the d-electron system.

Operators a+iσ(ℓ) (aiσ(ℓ)) which create (destroy) electrons at site ℓ in the
atomic orbital i are introduced. Orbitals at different sites are assumed to be
orthogonal with respect to each other. We choose the model Hamiltonian to
be of the form
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H = H0 +
∑

ℓ

H1(ℓ)

H0 =
∑

νσk

ǫν(k)nνσ(k) ,

H1(ℓ) = U
∑

i

ni↑(ℓ)ni↓(ℓ) +

(

U ′ − J

2

)

∑

j>i

ni(ℓ)nj(ℓ)

−2J
∑

j>1

si(ℓ)sj(ℓ) . (11.1)

The notation niσ(ℓ) = a+iσ(ℓ)aiσ(ℓ), ni(ℓ) =
∑

σ niσ(ℓ) and si(ℓ) = (1/2)
∑

αβ

a+iα(ℓ)σσσαβaiβ(ℓ) has been used here. The Hamiltonian H0 describes the canon-
ical d bands with energy dispersions ǫν(k), where ν is a band index; the latter
are known from LDA calculations. The creation operators for the correspond-
ing Bloch eigenstates are

c+νσ(k) =
1√
N0

∑

iℓ

αi(ν,k)a
+
iσ(ℓ)e

ik·Rℓ . (11.2)

The vectors Rℓ denote the positions of the N0 different sites and the αi(ν,k)
stand for the projections of the Bloch states onto the atomic orbitals. The
occupation-number operators nνσ(k) are

nνσ(k) = c+νσ(k)cνσ(k) . (11.3)

The operator H1(ℓ) describes the interactions at site ℓ. It contains three
parameters, i.e., U , U ′ and J . The Coulomb repulsion of two electrons in the
same d orbital is denoted by U while the one of electrons in different orbitals
is U ′ when their spins are opposite and (U − J) when they are parallel. For
the definition of the exchange integral J compare with (2.27) and (2.2). A
rotational invariant environment implies that U = U ′ +2J . The nonmagnetic
SCF ground state of the Hamiltonian is of the form

|Φ0〉 =
∏

ν,σ
|k|6kF

c+νσ(k)|0〉 . (11.4)

We are interested here in the residual interactions only Hres(ℓ) = H1(ℓ) −
〈H1(ℓ)〉, i.e., we assume that the SCF part of H1(ℓ) is included in H0. In this
case niσ(ℓ) in Hres(ℓ) has to be replaced by δniσ(ℓ) = niσ(ℓ) − 〈niσ(ℓ)〉 and
there is also a term of the form Ja+i↑(ℓ)a

+
i↓(ℓ)aj↑(ℓ)aj↓(ℓ) appearing in Hres(ℓ).

Imagine that |Φ0〉 is decomposed with the help of (11.2) into a sum of products
of operators a+iσ(ℓ). Each term in the sum represents a different configuration,
two of which appear in Fig. 11.1. They differ considerably in their respec-
tive interaction energy: configuration (a) has a comparatively small repulsion
energy, while that of configuration (b) is large due to a significant deviation



244 11 Transition Metals

Fig. 11.1. Schematic representation of a favorable configuration (a) and an unfavor-
able configuration (b) contained in a nonmagnetic SCF ground-state wavefunction
|Φ0〉. The circles symbolize atoms and the five segments represent the different d
orbitals. The average d electron occupancy per atom is 2.5. One notices that in (a)
electrons obey Hund’s-rule correlations. We also note that in (b) charge fluctuations
between different sites are large.

of the atomic charges from their mean values. One notices also that in con-
figuration (a) the electrons are predominantly aligned according to Hund’s
rule. Thus it is expected that correlations increase the relative weight of that
configuration considerably, whereas they strongly suppress configurations of
the type depicted in Fig. 11.1b.

For a more quantitative discussion we choose the following variables Aij(ℓ)
for the wave operator Ω

A
(1)
ij (ℓ) =

{

δni↑(ℓ)δni↓(ℓ) i = j

δni(ℓ)δnj(ℓ) i 6= j

A
(2)
ij (ℓ) = si(ℓ)sj(ℓ) , (11.5)

so that (5.60) reads

|Ω) =

∣

∣

∣

∣

∣

∣

1 +
∑

ℓ,ν

∑

i,j

η
(ν)
ij A

(ν)
ij (ℓ)



 . (11.6)

The site-independent coefficients η
(ν)
ij are obtained from (5.62) and (5.63).

While the A
(1)
ij (ℓ) reduce density or charge fluctuations between orbitals at

a given site ℓ, the variables A
(2)
ij (ℓ) generate Hund’s-rule correlations. One

should notice that the variables (11.5) resemble the ones of the Local Ansatz
(5.86). When the expressions (5.62), (5.65) are evaluated, we make the addi-
tional approximation that correlations at different sites are treated as being
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Fig. 11.2. Mean-square deviations ∆n2 of the charges from their average value
(charge fluctuations) for a bcc structure as a function of d band filling. Upper curve
without and lower curve with inclusion of electron correlations. The parameters are
U′

W
= 0.5 and J

W
= 0.1 and U = U ′ + 2J has been assumed (Kanamori parameteri-

zation). (From [134])

independent of each other. Thus we keep only those matrix elements in which

A
(ν)
ij (ℓ), H1(ℓ

′) and A(µ)
mn(ℓ′′) refer to the same site, i.e., for which ℓ = ℓ′ = ℓ′′,

an approximation proposed by Friedel and coworkers and called the “R = 0
approximation” [221,453]. Note that a similar local approximation is done in
the DMFT. In what follows we present a number of results of such a model
calculation.

We consider first a nonmagnetic ground state. Of particular interest are
the degree of suppression of charge fluctuations, the importance of Hund’s-
rule correlations, and the various correlation contributions to the ground-state
energy.

a) Partial Suppression of Charge Fluctuations
A measure of the degree of suppression of charge fluctuations is the mean
square deviation

∆n2 =
(

Ω|n2(ℓ)Ω
)

− (Ω|n(ℓ)Ω)
2

,

where n(ℓ) =
∑

i

ni(ℓ) (11.7)

is the total d electron number operator for site ℓ. Results for various degrees of
d band filling nd are shown in Fig. 11.2 for a parameter choice of U/W = 0.7
and J/W = 0.1. HereW denotes the d bandwidth. One notices that ∆n2 . 1,
which implies that, e.g., for nd = 3.5 only configurations with three of four
d electrons at a site have appreciable weight. All configurations with larger
charge fluctuations are strongly suppressed.

b) Build-up of Hund’s-Rule Correlations
A measure of the degree of spin alignment at an atomic site is the quantity



246 11 Transition Metals

Fig. 11.3. On-site spin correlations S2 (11.8) as a function of d band filling for a
bcc structure (Hund’s-rule correlations). Upper curve: atomic limit. Lower curve:

independent-electron approximation. The solid curve corresponds to the correlated
ground state, i.e., |Ω) given by (11.6). The parameters are U′

W
= 0.5 and J

W
= 0.1

(Kanamori parameterization). (From [134])

S2 =
(

Ω|S2(ℓ)Ω
)

, (11.8)

where S(ℓ) =
∑

i si(ℓ). We show these results in Fig. 11.3, where S2 is com-
pared with S2

SCF and S2
loc. These are the corresponding expectation values of

S2(ℓ) when the nonmagnetic SCF ground state is used (i.e., Ω = 1), and when
the ground state is in the localized limit |Φloc〉, i.e., for large atomic distances.
We can see from the figure that the relative spin alignment

∆S2 =
S2 − S2

SCF

S2
loc − S2

SCF

(11.9)

is rather constant and approximately 1/2, which indicates that, for the above
choice of parameters, one is - with respect to Hund’s rule correlations - half
way between the cases of uncorrelated and fully localized electrons. With in-
creasing ratio U/W , the value of∆S2 increases continuously towards∆S2 = 1.
There exists no particular threshold value of the ratio U/W at which a local
moment sets in. Instead, according to Hund’s rule, the alignment of d elec-
trons at an atomic site increases steadily as the electron interactions increase
in units of W .

c) Ground-State Energy
We consider of particular interest the correlation energy’s contribution to the
cohesive energy. The prevailing opinion states that the s electrons contribute
an amount to the cohesive energy which is approximately independent of the
d-band filling. We can thus attribute the variation in the cohesive energy to
the d electrons [124, 125]. For an analysis, it suffices to restrict oneself to a
bcc structure. Furthermore, it is convenient to subtract from all interaction
energies the energy of nd electrons equally distributed among the different d
spin orbitals, i.e.,
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Fig. 11.4. Various energies per site as function of d-electron number for a bcc
structure when U ′/W = 0.5 and J/W = 0.1. (1): ∆Eatom; (2): Ekin; (3): 〈H〉 − Ẽ0,
where 〈H〉 is the energy of uncorrelated electrons; (4): with the inclusion of density
correlations; (5): (E0 − Ẽ0), where E0 is the energy of the correlated ground state.
(From [134])

Ẽ0 =
nd
2
(nd − 1)

1

9
(U + 8U ′ − 4J)

=
nd
2
(nd − 1) Ū , (11.10)

where Ū is the average repulsive energy. We obtain the prefactor by calculating
the interaction energy of one electron with a second one. On an isolated atom,
the d electrons are not equally distributed among the spin orbitals; instead,
they prefer parallel spin alignment (first Hund’s rule). The gain in interaction
energy compared with Ẽ0 is therefore

∆Eatom = −1

2
ñd(ñd − 1)

1

9
(U − U ′ + 5J) , (11.11)

where

ñd =

{

nd if nd ≤ 5 ,
10− nd if nd > 5 .

(11.12)

∆Eatom has a minimum for nd = 5, which corresponds to a maximal spin
alignment.

In a solid, d electrons gain kinetic energy by delocalization. This energy
gain Ekin is shown in Fig. 11.4 for a bcc structure. Delocalization results in
fluctuations of the d electron number of an atom, and therefore in an increase
in interaction energy. In the SCF or independent-electron approximation, the
interaction energy of electrons in equally populated spin orbitals is
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Eint
SCF =

n2
d

2

9

10
Ū . (11.13)

The increment in energy as compared with Ẽ0 is then

∆Eint
SCF =

nd
2

(

1− nd
10

)

Ū . (11.14)

The sum
(

Ekin +∆Eint
SCF

)

is shown in Fig. 11.4 as a function of d-band filling.
Again a bcc structure has been considered and allowance has been made for
different partial occupancies of eg and t2g orbitals. We can see from Fig. 11.4
that, for d-band filling in the range 4 ≤ nd ≤ 6, the energy of the state
with localized d electrons (curve (1)) has a lower energy than the SCF state
(curve (3)). Hence, in the independent-electron approximation, any symmetry-
breaking solution which reduces the charge fluctuations and allows for partial
spin alignment will be favored in that range of nd values.

As pointed out before, charge fluctuations are also reduced by electron
correlations rather than symmetry breaking. When taking into account den-
sity as well as spin correlations, we find that the energy is always lower for
delocalized than for localized electrons. Most of the energy reduction is due
to density correlations.

The cohesive energy is the difference between the energy of localized elec-
trons and that of the correlated ground state, i.e., between curves (1) and (5)
in Fig. 11.4. It shows the well-known double-peak structure as a function of
nd with a maximum value of 0.3W or 1.5 eV when W = 5 eV is assumed,
a point in qualitative agreement with the known d electron contributions to
experimental binding energies. A more quantitative discussion would require
the incorporation of s electrons and, in particular, of s− d charge transfers.

11.2 Satellite Structures

One important effect of electron correlations are satellite structures or shake-
up peaks which appear in spectral densities and are seen in photoemission
experiment.

Let us now consider photoemission from band states of Ni or Fe. In a
photoemission experiment, a hole is generated in a d band. Correlation effects
cause additional electron-hole excitations to accompany such a process. The
essential features for Ni are a broad structure (main line) due to the d bands
with a width of order of 4 eV and a satellite peak positioned about 6 eV
below the Fermi energy ǫF . Calculations of d bandwidths within the LSD
approximation yield results which are too large by approximately 10 % for Fe
and 25 % for Ni. Also the satellite structure remains unexplained within that
approximation.

One method of improvement is the application of the GW approxima-
tion [15]. For Ni this results in a band narrowing of the right size and also
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explains the broadening of the quasiparticle peaks. Yet the satellite struc-
ture at 6 eV remains unexplained, which is hardly surprising since explaining
the satellite peak requires a good treatment of short-ranged correlations, and
that is outside the scope of the GW approximation. There have also been
perturbation calculations which yield shifts, lifetime effects and also shake-up
processes. But in order to explain the latter quantitatively one must determine
the scattering matrix. Since the hole number in Ni is small, i.e., 0.6 holes per
atom, one may use the Kanamori limit (see Sect. 10.4.4) and improvements
of it1. Here we want to show how the projection technique may be applied to
that problem.

Starting point is the retarded Green’s function matrix (8.5). We select the
variables {Aµ(k)} and include, as was previously explained,

A(0)
ν (k) = c+ν↑(k) (11.15)

because we want to calculate eventually the Green’s function for this operator.
Without loss of generality, we have set σ =↑. But the set of Aµ(k) should also
include those local two-particle–one-hole operators which are obtained when
[H1(ℓ), a

+
i↑(ℓ)]− is calculated. They are of the form

A
(1)
ij (ℓ) =

{

a+i↑(ℓ)δni↓(ℓ) , i = j

a+i↑(ℓ)δnj(ℓ) , i 6= j

A
(2)
ij (ℓ) =

1

2

(

a+i↑(ℓ)s
z
j (ℓ) + a+i↓(ℓ)s

+
j (ℓ)

)

A
(3)
ij (ℓ) =

1

2
a+j↓(ℓ)a

+
j↑(ℓ)ai↓(ℓ) . (11.16)

The density- and spin operators are the same as previously defined (see Sect.
11.1). The selected relevant operators Aµ(k) are therefore of the form (11.15)
and

A
(τ)
ij (k) =

1√
N0

∑

ℓ

A
(τ)
ij (ℓ)eikRℓ , τ = 1, 2, 3 . (11.17)

For a given value of k their total number is 1 + 25 + 20 + 20 = 66. When
the 66 × 66 matrices L and χχχ are computed (see (8.15, 8.10)), the R = 0
approximation is made again. Those matrix elements which involve products

of more than three of the operators H1 and A
(τ)
ij (ℓ) are neglected. For more

details we refer to [461].
The single-particle excitation spectrum of paramagnetic Ni which results

from the above calculations is shown in Fig. 11.5. The following set of parame-
ters has been used: U ′/W = 0.56, J/W = 0.22, and an anisotropy parameter,
∆J/J = 0.14. They are obtained from fits of experiments which measure the
multiplet structure of Ni ions embedded in a simple metal such as Ag [312].
One notices a strong satellite structure around – 1.2W . With a bandwidth of

1 see [201,203,283,359]
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Fig. 11.5. Single-particle excitation spectrum of Ni with a d electron number of
nd = 9.4 and the following choice of parameters: U ′/W = 0.56, J/W = 0.22,
∆J/W = 0.031; (a) by applying projection techniques (b) in SCF approximation.
(From [461])

W = 4.3 eV as obtained by spin averaging the LSDA bandwidths [475], this
maximum is approximately 6.8 eV below the top of the d bands which should
be compared with an experimental value of 6.3 eV [100, 196]. The structure
of the satellite peak reflects the form of the atomic d8 multiplet. Isotropic
exchange splits the latter into three peaks corresponding to a 1S singlet, de-
generate singlets 1G and 1D and degenerate triplet states 3P and 3F . The
energy difference between 1S and 1G is 5J and the one between 1G and 3F
is 2J . The three structures at -1.9W , -1.1W , and -0.7W show a comparable
energy splitting. An exchange anisotropy splits the main peak at -1.1W into
smaller peaks.

11.3 Temperature-Dependent Magnetism

As pointed out above, a description of magnetism at finite temperatures re-
quires distinguishing between two different situations. One concerns the mag-
netism of the transition metals Fe, Co and Ni. Here spin fluctuations involve
large amplitudes and seem to be nearly local. How local remains an open ques-
tion, but in the lowest approximation one may assume a single-site approxi-
mation. Quite another situation prevails when nearly ferromagnetic materials
like Pd and Ni3Ga or weakly ferromagnetic systems like ZnSn2 and Sc3In
are considered. The most important magnetic fluctuations in those materials
have small amplitudes and long wavelengths. They require, therefore, a differ-
ent description than the ones in Fe, Co or Ni. The RPA-like spin-fluctuation
theory is an appropriate tool here. We shall start with local spin fluctuations
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and afterwards deal with the self-consistently renormalized spin-fluctuation
theory which aims at long wavelengths.

11.3.1 Local Spin Fluctuations

A very useful tool for describing local spin fluctuations is the functional inte-
gral method. It replaces the interactions of an electron with the other electrons
by fictitious space- and time-dependent external fields acting on that electron.
Stated differently, the fictitious fields have the same effect on an electron as
would the interactions with the other electrons. A Gaussian average over these
external fields must be taken. In the classical limit, these fields depend only on
space and not on time and play a similar role as the fluctuating forces acting
on a Brownian particle. In this (static) approximation, only a uniform field
- the Stoner field - is left when we take the limit T = 0. Therefore, no cor-
relations remain in the zero temperature limit. This shows that ground-state
correlations result from the time dependence of the fictitious fields. There are
a number of ways to go beyond the static approximation, the most advanced
ones working with a dynamical coherent potential. They are discussed in Sect.
9.2 to which we refer here. However, at T 6= 0, we find correlations even within
the static approximation. They result from the spatial fluctuations of the ficti-
tious fields; they are studied in order to explain, among other phenomena, the
large entropy changes near the magnetic ordering temperature Tc in Fe and Ni
and the Curie-Weiss susceptibility above Tc. We shall start out by introducing
first the functional integral method before we apply it to the description of
local spin fluctuations.

The functional-integral method provides a scheme for calculating approx-
imately the partition function Z of a system of correlated electrons. This
problem is reduced to finding appropriate approximations for the spatial and
temporal behavior of these fictitious fields. For a demonstration we consider
here the simplest possible example, namely that of an atom with one orbital
which is coupled to a heat bath and an electron reservoir. The Hamiltonian
of the system is assumed to be

H − µNel = (ǫ0 − µ) (n↑ + n↓) + Un↑n↓ . (11.18)

Here ǫ0 is the orbital energy and U is the Coulomb repulsion of two electrons
in the atomic orbital. Furthermore, nσ is the number operator for an electron
with spin σ in that orbital. The partition function is easily evaluated, i.e.,

Z = Tr
{

e−β(H−µNel)
}

= 1 + 2e−β(ǫ0−µ) + e−β[2(ǫ0−µ)+U ] . (11.19)

The first term is the contribution from the state with the empty orbital, while
the second and third terms result from the states in which the orbital is singly
and doubly occupied, respectively. In order to express the partition function
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as that of an electron in a fluctuating external field, the following operator
identity is used (Hubbard-Stratonovitch transformation2):

e−βA
2

=

+∞w

−∞
dx e−πx

2−2i(βπ)1/2xA . (11.20)

The identity becomes immediately obvious by completing the square in the
exponent.

Equation (11.20) is easily generalized to the product of two commuting
operators AB. The electron interaction Un↑n↓ is of this form, i.e., A =

√
Un↑,

B =
√
Un↓ and [A,B]− = 0. We start with the identity

AB =
1

4
(A+B)

2 − 1

4
(B −A)

2
(11.21)

and, by applying (11.20), obtain

e−βAB =

+∞w

−∞
dxdy e−π(x

2+y2) e
√
πβ(B−A)x−i√πβ(A+B)y . (11.22)

If we introduce z = x+ iy and d2z = dxdy(= (i/2)dzdz∗, where ∗ denotes the
complex conjugate), we can write this expression in the form

e−βAB =

+∞w

−∞
d2z e−π|z|

2

e−
√
πβ(Az−Bz∗)

=
〈

e−
√
πβ(Az−Bz∗)

〉

GA
. (11.23)

Here 〈. . . 〉GA stands for taking a Gaussian average over the complex fictitious
field z.

For the special model under consideration, the noninteracting part of the
Hamiltonian H0 = (ǫ0 −µ)n with n = n↑+n↓ commutes with the interaction
part H1 = Un↑n↓. Thus,

Z = Tr
{

e−β(ǫ0−µ)ne−βUn↑n↓

}

(11.24)

with
e−βUn↑n↓ =

〈

e−
√
πβ(n↑z−n↓z

∗)
〉

GA
. (11.25)

Often a different composition of n↑n↓ is of advantage. If we set

n↑n↓ =
1

4
n2 − s2z , (11.26)

with sz = (n↑ − n↓)/2 and change variables, it follows from (11.22) that

2 see [193,437]
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e−βUn↑n↓ =
βU

4π

+∞w

−∞
dξdηe−(βU/4)(ξ2+η2)eβU(szξ−inη/2) . (11.27)

When this expression is substituted into (11.24), the partition function be-
comes

Z = Tr

{

βU

4π

+∞w

−∞
dξdηe−(βU/4)(ξ2+η2)e−βHeff (ξ,η)

}

, (11.28)

where the effective Hamiltonian Heff(ξ, η) is given by

Heff = (ǫ0 + iUη/2− µ)n− Uszξ . (11.29)

The partition function is thus reduced to that of a one-particle Hamiltonian
in the presence of two fields ξ and η, over which a Gaussian average is taken.
The two fields act on the spin and on the density of the electrons, respectively.

For interacting electron systems H0 and H1 = AB do not commute.
In spite of this we would like to split off a factor exp(−βH0) in order
to treat the remaining part by appropriate approximations. This can be
done by introducing time-dependent operators A(t) according to (7.1), i.e.,
A(t) = exp(iH0t)A exp(−iH0t). In terms of them we may write

e−i(H0+H1)t = e−iH0T e
−

tr

0

dτH1(τ)
. (11.30)

This equation is proven by differentiating both sides. Setting

y(t) = e−iH0tT e
−i

tr

0

dτH1(τ)
, (11.31)

we find by differentiation

dy(t)

dt
= −iH0y(t)− ie−iH0tH1(t)T e

−i
tr

0

dτH1(τ)
, (11.32)

where H1(τ) in the last term comes before the T product because t is larger
than any of the values of τ . Using (11.30), we write (11.31) as

dy(t)

dt
= −i (H0 +H1) y(t)

= −iHy(t) . (11.33)

After integration we obtain the left-hand side of (11.30).
In a next step we change the product i · t into β so that (11.30) goes over

into

e−β(H0+AB) = e−βH0Tτ e
−

βr

0

dτA(τ)B(τ)
. (11.34)
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The “time” ordering operator Tτ is defined in analogy to (7.64). The decom-
position (11.30) has to be made now for each imaginary “time” τ . For this
purpose the interval [0, β] is divided into M segments ∆τ = β/M . Finally
the limit M → ∞ is taken (compare with Sect. 10.8). With the functional
differential

D2z(τ) = lim
M→∞

M
∏

i=1

(

d2z (τi)

M

)

, (11.35)

we obtain from (11.34)

e−β(H0+AB) = e−βH0

w
D2z(τ) exp



−π
β

βw

0

dτ |z(τ)|2




×Tτ exp



−
√

π

β

βw

0

dτ [A(τ)z(τ) −B(τ)z∗(τ)]



 .(11.36)

When dealing with a lattice of sites with one orbital each, the field z(τ)
contains an additional site index i, and so do the operators A(τ) and B(τ).
For example, when

H1 = U
∑

i

ni↑ni↓ , (11.37)

AB →∑

iAiBi with Ai =
√
Uni↑ and Bi =

√
Uni↓.

As we have already pointed out, the computation of the partition function
Z of an interacting electron system becomes equivalent to that of noninteract-
ing electrons moving in complex auxiliary fields zi(τ). These fields fluctuate
in space indicated by the site label i and time τ , thus connecting the the-
ory of interacting electrons to that of disordered systems. There electrons are
moving in randomly distributed external potentials.

In the following discussion, the static approximation will play an important
role. It neglects the τ dependence of zi(τ). Stated differently, when we use the
Fourier decomposition

zi(τ) =
+∞
∑

ν=−∞
zi(ν)e

−iωντ , ων =
2πν

β
, (11.38)

only the term zi(ν = 0) = zi is kept. The partition function Z becomes

Zstat =

∫

d2ze−βΩ̃(z) ,

βΩ̃(z) = π|z|2 − lnY (z) (11.39)

with
Y (z) = Tr

{

e−β(H0−µNel)e−
√
πβ(Az−Bz∗)

}

. (11.40)
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Neglecting the τ dependence of z(τ) is equivalent to assuming that H0 and
H1 commute. This is the case if we treat the system in the classical high-
temperature limit instead of in the quantum mechanical one.

Even within the static approximation, the evaluation of the partition func-
tion usually proves impossible without further approximations. Here we shall
discuss the saddle-point approximation, i.e., the method of steepest descent
as it is often called. It operates on the principle that for large values of β, i.e.,
low temperatures, the largest contribution to the integral (11.39) comes from
the region near the minimum of Ω̃(z). The stationary conditions are thereby

∂Ω̃(z)

∂z
= 0 and

∂Ω̃(z)

∂z∗
= 0 .

We should consider first that in the case of only one real variable x an expan-
sion around the stationary point xs yields

exp
[

−βΩ̃(x)
]

= exp
[

−βΩ̃(xs)
]

exp

[(

−β
2

∂2Ω̃

∂x2

)∣

∣

∣

∣

∣

x=xs

(x− xs)
2

]

(11.41)

and, after performing the integral in (11.39), the partition function goes over
into that of the saddle-point approximation

Zsp =

√

√

√

√

2π

β
(

∂2Ω̃/∂x2
)

x=xs

e−βΩ̃(xs) . (11.42)

When Ω̃ depends on two variables x1 = x, x2 = y (or z and z∗), the argument

under the square root is replaced by (2π)2/
[

β2 det
(

∂2Ω̃/∂xν∂xµ

)]

. In the

zero-temperature limit, i.e., β → ∞, the partition function reduces to that of
a mean-field theory. Indeed, in that limit only the term π|z|2 of βΩ̃(z) (11.39)
contributes to the second derivative and the square root reduces to 1. The
electron then moves in a constant field zs. Thus

lim
β→∞

Zsp = ZMFe
−βΩ̃(xs) . (11.43)

Now we shall apply the saddle-point approximation to the example of a
single orbital coupled to an electron reservoir (11.18). We return to (11.24,
11.25) and write the partition function as

Z = Tr
{〈

e−β(E↑n↑+E↓n↓)
〉

GA

}

(11.44)

with

E↑ = ǫ0 − µ+
√

πU/β z ,

E↓ = ǫ0 − µ−
√

πU/β z∗ . (11.45)
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From (11.39) it follows that

βΩ̃(z) = π|z|2 − ln
[(

1 + e−βE↑
) (

1 + e−βE↓
)]

. (11.46)

The stationary point is

zs =

√

βU

π

1

1 + eβE↓
,

z∗s = −
√

βU

π

1

1 + eβE↑
. (11.47)

If these values are substituted into (11.45) we obtain

E↑ = ǫ0 − µ+ U 〈n↓〉MF ,

E↓ = ǫ0 − µ+ U 〈n↑〉MF . (11.48)

The averages are

〈nσ〉MF =
1

1 + eβEσ
. (11.49)

This demonstrates the mean-field character of the saddle-point approximation.
The above expansion started from a form of Ω̃ in the static approximation.

If we also include in the expansion the time variable τ and the fluctuations
around the static path, we can show that the saddle-point approximation
corresponds to the random-phase approximation.

After having explained the main features of the functional integral method
we return to our primary problem, i.e., a proper description of the magnetism
of Fe, Co and Ni. As pointed out before, when the magnetization of these
itinerant d-electron systems is plotted as a function of temperature it resem-
bles that of localized electrons. Similarly, the observed changes in the specific
heat of Fe at the magnetic ordering temperature Tc correspond to changes in
the entropy of order kB ln 3, as for localized electrons. In a band picture, this
value is much smaller because only electrons near the Fermi energy are in-
volved in the magnetic ordering. Other experimental findings are in agreement
with this. For example, the susceptibility above the magnetic ordering tem-
perature χ(T ) shows Curie-Weiss-like behavior, i.e., χ(T ) ∝ (T −Tc)−1. If the
independent-electron theory applied, the susceptibility would be Pauli-like,
i.e., independent of T as long as T ≪ TF , where TF is the Fermi temper-
ature. Also the observed Curie temperature Tc itself is much smaller than
the one obtained from a band theory. For example, in a band calculation
based on the LSD approximation, a finite temperature enters only through
the Fermi distribution function which replaces the step function when the oc-
cupied single-electron states are determined [compare (4.22)]. The transition
from a magnetic to a nonmagnetic state is described in band theory as shown
in Fig. 11.6a.

In order to compute the temperature-dependent magnetization in the sim-
plest way we use a one-band Hubbard Hamiltonian (8.22) instead of the multi-
band one (11.1). It is a highly simplified model Hamiltonian for a transition
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Fig. 11.6. Effect of finite temperatures on ferromagnetic order. (a) Conventional
band theory: the difference in population of Bloch states with spin up and down
decreases continuously with increasing temperature. Above Tc, the two populations
are equal to each other and the magnetization vanishes at each site. (b) Localized
description: the spins at different sites fluctuate more and more with increasing T .
At T ≥ Tc the net magnetization is zero. (c) Correlated delocalized electrons: the
magnetic moment at different sites fluctuate in magnitude and direction due to finite
temperatures.

metal which, for example, does not allow for intra-atomic correlations like
Hund’s-rule coupling. On the other hand, it has the virtue of relative simplic-
ity, sufficient to attempt generalizations to a five-band Hamiltonian. In order
to apply the Hubbard-Stratonovitch transformation, the interaction part must
be written in a quadratic form, three examples of which are listed below:

U
∑

i

ni↑ni↓ =
U

4

∑

i

n2
i − U

∑

i

(szi )
2
, (11.50a)

=
U

4

∑

i

n2
i −

U

3

∑

i

s2i , (11.50b)

=
U

4

∑

i

n2
i − U

∑

i

(ei · si)2 . (11.50c)

Here ni = ni↑ + ni↓ and szi = 1
2 (ni↑ − ni↓) = σzi /2. Furthermore, ei is an

arbitrary unit vector at site i. The last two forms have the advantage that
they are rotationally invariant. If no approximations were made in evaluating
the functional integrals, it would not matter which of the three forms (11.50)
is chosen. In practice, rather drastic approximations become necessary when
performing these calculations. In particular, the static approximation is often
made. In that case, the final result depends rather sensitively on the partic-
ular quadratic form chosen. This shows one of the intrinsic difficulties of the
functional integral approach. We will be using here the form (11.50a), known
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to reduce to the Hartree-Fock result when a saddle-point approximation is
made.

For describing the magnetic properties the partition function Z must be
known. It is expressed in terms of the thermodynamic potential Ω as Z =
exp(−βΩ). We calculate Ω by applying the functional integral technique and
make the static approximation. According to (11.39, 11.40)

Z =

∫

d2z e−βΩ̃(z) , (11.51)

with

Ω̃(z) =
U

4

∑

i

|zi|2 −
1

β
lnTr

{

e−β[H̃0(z)−µNel]
}

(11.52)

and

H̃0(z) = H0 −
U

2

∑

i

(ni↑zi − ni↓z
∗
i ) . (11.53)

The complex space-dependent external field zi (two-field case) acts on the
electron density ni and on the magnetization szi . This is seen if we introduce

xi =
1

2
(zi + z∗i ) , iyi =

1

2
(zi − z∗i ) (11.54)

and rewrite
nj↑zj − nj↓z

∗
j = 2szjxj + injyj . (11.55)

When set into (11.53) we obtain

H̃0(x, y) = H0 −
U

2

∑

jσ

(σxj + iyj)njσ . (11.56)

The prefactor σ = ±1 is depending on the spin direction. One notices that
H̃0(x, y) has the form of a one-particle Hamiltonian in the presence of disorder.
The latter is caused by the fields xi and yi, which lead to different energies at
different sites. This finding proves important because it links the problem of
correlations at finite temperatures to another important branch of solid-state
theory, namely disordered systems [74]. Originally enunciated by Hubbard,
this link has furthered progress in both fields. For example, the important
concept of the coherent potential approximation described in Sect. 9.1 has
been applied equally successfully to disordered systems and to correlations in
transition metals.

It is usually assumed that the disorder caused by the fields yi is less im-
portant than that caused by the field xi. In view of the discussion presented
in Sect. 11.1, where we showed that density correlations play an important
role, this distinction does not seem justified. However, for the sake of sim-
plicity, and because we are particularly interested in understanding magnetic
quantities like the magnetization or susceptibility at finite T , we shall also



11.3 Temperature-Dependent Magnetism 259

eliminate the fields yj by simply replacing them by yj = n̄, i.e., the average
site occupancy. In doing so the two-field problem is reduced to a one-field
problem. Because of the elimination of the yi, the Hamiltonian H̃0 is reduced
to a one-particle Hamiltonian with a random field xi acting at sites i on the
spins of the electrons. Equation 11.51 reduces to

Zst =

∫

∏

i

(

βU

4π

)1/2

dxie
−βΩ̃(x,T ) . (11.57)

The potential Ω̃(x, T ) is obtained from Ω̃(x, y, T ) given by (11.53) by replacing
y2i by n̄2 and H̃0(x, y) by H̃0(x) with

H̃0(x) = H0 + Un̄
∑

i

ni −
U

2

∑

iσ

σxiniσ . (11.58)

One notices that the field yi has been treated in a SCF or Hartree-Fock
approximation. If we also treat the field xi with a saddle-point approximation,
we find

xi = 〈ni↑ − ni↓〉 (11.59)

and the Hamiltonian H0(x) goes over into the SCF Hamiltonian

HSCF =
∑

i6=j
tija

+
iσajσ + U

∑

iσ

niσ +
U

2

∑

i

〈ni↑ − ni↓〉SCF (ni↑ − ni↓) .

(11.60)
The expectation value is over a thermodynamic ensemble with respect to
HSCF. The Hamiltonian (11.60) may be used in order to calculate a phase di-
agram for ferromagnetic or antiferromagnetic phases within the independent-
electron approximation.

Returning to the alloy (or disorder) problem as defined by (11.58), it is
interesting to rewrite Ω̃(x, T ) in the form of increments

Ω̃(x) =
∑

i

Ω̃1(xi) +
∑

i6=j
Ω̃2(xi, xj) + . . . . (11.61)

The first term corresponds to a single-site approximation. When one limits
oneself to it, the expression (11.57) for Zst factorizes into N0 independent
integrals. Neglecting correlations between fields at different sites is justified
when the important fluctuations in the electronic system are predominantly
local. A different point of view would be to assume that fields at neighbouring
sites are strongly correlated and change only slightly from site to site. This
assumption would put emphasis on the long-wavelength fluctuations and sug-
gest using only the terms Ω̃2(xi, xj) in (11.61). This is appropriate when
correlations are relatively weak.

We know from the theory of random alloys that the best single-site ap-
proximation is the CPA (see Chapter 9). Therefore, we proceed according to
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it. The Hamiltonian H̃0(x) given by (11.58) describes a system of noninteract-
ing electrons with site diagonal disorder. In order to determine the coherent
potential, we have to know the concentration c(xi) of sites with a given value
of the external field xi. It is reasonable to assume that this concentration is
given by

c(xi) =
e−βΩ̃1(xi)

∫

dxie−βΩ̃1(xi)
. (11.62)

This ensures that the concentration matches the weight with which each value
xi enters the partition function Zst, see (11.57). The effective medium is char-
acterized by the one-particle Green’s function

G̃σij(ω) =
1

N0

∑

k

e−ik·(Ri−Rj)

ω − ǫk − 〈Eσ〉 −Σσ(ω) + µ
, (11.63)

where Ri,Rj are site positions. The kinetic energy is simply

ǫk =
1

N0

∑

i6=j
tije

ik·(Ri−Rj) (11.64)

and the average energy 〈Eσ〉 is defined by

〈Eσ〉 =
∫

dxic(xi)Eiσ (11.65)

with

Eiσ =
U

2
(n̄− σxi) . (11.66)

The frequency-dependent self-energy Σσ(ω) is determined by requiring that
the site average of the single-site t matrix vanishes, i.e., 〈t̃σi 〉 = 0 (see (9.12)).
This leads to the CPA equation for Σσ(ω) from which this quantity can be
determined. Within the effective medium, a given site i of the system acts like
an impurity. Its scattering potential is

viσ(ω) = Eiσ − 〈Eσ〉 −Σσ(ω) . (11.67)

The corresponding scattering Hamiltonian is here complex and of the form

Hscatt(i) = Σσviσ(ω)niσ . (11.68)

After the self-energy Σσ(ω) has been determined one may proceed by
computing the thermodynamic potential Ω̃1(xi). It follows from (11.52) when
the scattering Hamiltonian Hscatt(i) is included. It is beyond the scope of this
introductory book to elaborate further on the computation of Ω̃1(xi). Instead
we refer to the literature, (see, e.g., Ref. [224]). Here we want to discuss the
different forms it may have.
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Fig. 11.7. Functional form of Ω̃1(xi, T ) in the local moment case. (a) For T < T0

the two minima have different depth. (b) Form of the function Ω̃1 for T > T0.

Consider a ferromagnetic system in which case Ω̃1(xi) may have the form
shown in Fig. 11.7. At T = 0 the function has two minima of different depth.
Which one is lower depends on the sign of the magnetization M0. The site
i, when considered as an impurity embedded in a ferromagnetic effective
medium, lines up ferromagnetically with its surroundings. For temperatures
larger than a characteristic temperature T0, the two minima are symmetric
with respect to xi = 0. Obviously, T0 is the Curie temperature. This situ-
ation is called the local-moment case. For better physical insight, we apply

the two-saddle-point approximation. The two saddle points x
(+)
i and x

(−)
i are

obtained from ∂Ω̃1(xi)/∂xi = 0. Here the average external field

〈x〉 =
∫

dxic(xi)xi (11.69)

is of the form

〈x〉 = x(+) + x(−)e−β∆F

1 + e−β∆F
. (11.70)

The subscript i is omitted from now on, since there is nothing special about
site i. ∆F denotes the difference between the two minima, i.e., ∆F =
Ω̃1(x

(−))− Ω̃1(x
(+)). It can be shown and, in fact, is plausible that for large

values of U the positions of the minima are related by x(+) = −x(−) = x∗.
From (11.70) we find 〈x〉 to be

〈x〉 = x∗ tanh(β∆F/2) . (11.71)

Note that ∆F is a function of 〈x〉. The last relation resembles the mean-field
approximation of a Heisenberg ferromagnet, provided one replaces ∆F by

∆F = ν〈x〉Jex , (11.72)
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where Jex is the exchange interaction of a localized spin with its ν nearest
neighbors. Therefore, the single-site approximation provides a link between
the itinerant Hubbard Hamiltonian and localized spins as they appear in a
Heisenberg Hamiltonian. Clearly, for T > T0 the susceptibility shows Curie-
Weiss behavior.

It is worth noticing that the ordinary Stoner theory of ferromagnetism dis-
cussed subsequently is obtained when we evaluate the integrals at one saddle

point x
(+)
i only. Moreover, the present theory will fail when the temperature

T is of order kBT & ∆F .
Of particular interest is also the entropy obtained for the local-moment

case shown in Fig. 11.7 since it reflects the localized-spin picture. The entropy
S of a system of noninteracting electrons moving in a random alloy consists
of two parts

S = S1 + S2 . (11.73)

The first part S1 is the entropy of independent electrons. It is (per lattice site)

S1 = −kB
∑

σ

−∞
∫

−∞

dωNσ(ω) {f(ω) ln f(ω) + [1− f(ω)] ln [1− f(ω)]} ,

(11.74)
where Nσ(ω) is the spin-dependent density of states. The second part S2 is a
configurational entropy determined by the number of different ways in which
one can distribute different sites in external fields xi when their respective
concentrations are c(xi). This part is given by

S2 = −kB〈ln c(xi)〉 , (11.75)

and the average is defined as in (11.69). When the two-saddle-points approx-
imation is made, S2 reduces to the simple form

S2 = −kB
[

c(+) ln c(+) + c(−) ln c(−)
]

, (11.76)

where c(±) = c(x(±)). When the system is nonmagnetic, we have c(+) = c(−) =
1/2 and S2 = kB ln 2, which is the entropy per site of a spin 1/2 system. We
notice that the alloy analogyn again provides for a description of the local
features of correlated itinerant electrons.

Before continuing we want to point out that it may happen that the rel-
ative heights of the two minima in Fig. 11.7a are inverted. In that case, a
ferromagnetic state is not stable. Since the spin of the impurity i is aligned
antiferromagnetically to the medium, we expect an antiferromagnetic ground
state here. A second type of behavior of Ω̃1(x) is shown in Fig. 11.8, in which
only one minimum exists at T = 0 with or without an additional shoulder
at negative x. If there is only one deep minimum, only fluctuations around
it will be of importance. This case - known as the case of no local moment -
applies primarily to metals with weak ferromagnetism and also to systems in
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Fig. 11.8. Functional form of Ω̃1(xi, T ) for T = 0 when only one minimum is
present. The case (1) with a pronounced shoulder seems to apply to Fe, while Ni
corresponds more to case (2). When Ω̃1 has one deep minimum only, local moments
are absent.

Fig. 11.9. Magnetization 〈m〉, inverse susceptibility χ−1 and amplitude of the local
moment

√

〈m2〉 for Fe as a function of temperature T in units of the bandwidth W .
The inset shows the model density of states. (In analogy to [172])

which the interactions are relatively weak. One can show that here 〈x2i 〉 ∝ T
at low temperatures. We obtain again a Curie-Weiss behavior of the magnetic
susceptibility, but as discussed below for a different physical reason than in
the local-moment case. As pointed out before, weak ferromagnetism requires
a proper treatment of long-wavelength fluctuations. Although a single-site
approximation is inappropriate in that case, we have mentioned weak ferro-
magnetism here in order to point out the different form which Ω̃1(xi) can take
when a single-site approximation is made.

The above theory has been applied to Fe and Ni [172,173]. We begin with
ferromagnetic iron, using for its description a single band. The d-electron
number is nd = 7.2 or n = 1.44 per orbital. We choose for the d bandwidth a
value of W = 6 eV. The model density of states for the bcc structure is shown
in the inset of Fig. 11.9. The parameter U is chosen so as to obtain a zero-
temperature magnetization per orbital of 〈m(T = 0)〉 = 0.44µB (= 2.2 : 5).
The value should not be compared with the one used in Figs. 11.3, 11.4 because
we use here a one-band model. After calculating Ω̃1(xi), we find that at T = 0
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Fig. 11.10. Calculated density of states in the dynamical CPA (solid curve) for
paramagnetic Ni. The density of states of noninteracting electrons is shown by the
dotted curve. (From [223].)

the function has one minimum and a pronounced shoulder as indicated in Fig.
11.8. The results depend greatly on the choice of parameters and it is therefore
also possible that Ω̃1(xi;T = 0) has two minima instead. In any case, Fe must
be considered as belonging to the local-moment case. Figure 11.9 shows the
temperature dependence of 〈m(T )〉, which is close to a Brillouin function. The
inverse susceptibility is almost linear in T , indicating a Curie-Weiss behavior.

Fcc Ni has n = 1.8 (= 9.0 : 5) d electrons per orbital. The reproduction
of a moment 〈m(T = 0)〉 = 0.12µB (= 0.62 : 5) requires a value of U = 6.7
eV when a bandwidth of W = 4.8 eV is chosen. When Ω̃1(xi) is calculated,
we find that it has one minimum and a light shoulder only. Nevertheless, we
cannot speak of being in the regime of no moment since 〈m2(T )〉1/2 remains
practically unchanged when the Curie temperature is crossed. The Curie tem-
peratures estimated within the single-site approximation are Tc ≃ 2000 K for
Fe and Tc ≃ 700 K for Ni. They are much smaller than the values which would
follow from a Stoner theory, but still somewhat larger than the experimental
values of Tc = 1044 K and 630 K, respectively.

The static approximation can be improved by employing a dynamical CPA
approximation, like DCPA or DMFT (see Sect. 9.2). Without going into more
detail it is instructive to look at the outcome of this generalization. We present
results for Ni here [223] because a comparison can be made with those obtained
in the preceding section. There the projection technique was applied. In Fig.
11.10 we show the density of states of Ni in the DCPA approximation. It
is obtained from the Green’s function of the effective medium when using
(9.35). A model density of states for noninteracting electrons on a Ni fcc
lattice is assumed and parameter values are U/W = 1.7, kBT/W = 0.018 and
W ≃ 4.76 eV are chosen. Furthermore, n = 1.8 which corresponds to nine d-
electrons. One notices that the DCPA leads to a narrowing of the free-electron
density of states and a satellite structure. This agrees with the findings in Sect.
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11.2 which are based on the projection method and shown in Fig. 11.5. The
ratio U/W differs considerably in the two cases because in one case it is a
single-band model which is treated while in the other it is a multiband model
Hamiltonian. It is interesting that the density of states obtained in the static
CPA is broader than the one of noninteracting electrons, a consequence of the
strong spin fluctuations. The latter are considerably suppressed in the DCPA
which contrary to the static CPA reduces to the correlated ground state in the
zero temperature limit. Finally we want to mention that the DCPA reduces
the Curie temperature by roughly a factor of 1/2 as compared with the static
CPA.

11.3.2 Long-Wavelength Spin Fluctuations

We continue by discussing spin fluctuations in nearly ferromagnet systems
like Pd and Ni3Ga and weakly ferromagnetic compounds like ZrSn2, Sc3In,
Ni3Al or Ni0.43Pt0.57. In the former case the magnetic susceptibility χS is
strongly enhanced due to a large enhancement factor S = (1 + F a0 )

−1
named

after Stoner. It is due to the interactions of quasiparticles as discussed previ-
ously in Sect. 7.2 (compared with (7.98)). In Pd as well as Ni3Ga the Landau
parameter F a0 & −1 which implies closeness to a divergence in χS and hence
to a ferromagnetic instability. This has as a consequence that overdamped
magnetic excitations (paramagnons) exist. Weak ferromagnets have F a0 . −1
and are identified by a low Curie temperature Tc, e.g., Tc = 28 K for ZrZn2
and Tc = 6 K for Sc3In.

In order to study magnetic fluctuations in almost or weakly ferromagnetic
systems we assume that the electrons interact through a hard-core interaction.
The model Hamiltonian is therefore of the form

H =
∑

kσ

ǫkc
+
kσckσ +Hint ,

Hint =
U

Ω

∑

kpq

c+k↑ck+q↑c
+
p↓cp−q↓ . (11.77)

Alternatively, one may assume a system of lattice sites with an on-site Hub-
bard interaction

Hint = U
∑

i

ni↑ni↓ . (11.78)

Depending on convenience, either form of the interaction will be used in the
following analysis.

The above repulsive short-range interaction results in an enhancement of
the magnetic susceptibility and eventually in ferromagnetic order, depending
on the size of U . In order to demonstrate this, we decompose Hint according
to (11.50a) into a density-dependent and a spin-dependent part by writing

ni↑ni↓ =
1

4
n2
i − (szi )

2
(11.79)
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and consider just the spin-dependent part, i.e.,

H̃int = −U
∑

i

(szi )
2

. (11.80)

We remark that we could have also chosen the decomposition (11.50b) which
is rotationally invariant in spin space; for the present purpose however (11.80)
is sufficient. With this interaction we want to calculate the susceptibility, but
first a few definitions and general relations need to be listed.

We relate the magnetization, i.e., the thermodynamic expectation value of
the magnetization operatorM(r), to an external magnetic field h(r, t) through

〈M(r, t)〉 =
∫

d3r′dt′χ (r− r′, t− t′)h (r′, t′) . (11.81)

This defines the magnetic susceptibility tensor χ(r, t). Causality requires that
χ (r− r′, t− t′) = 0 for t < t′, which implies that the Fourier transform is

χ(q, ω) =

∫

d3r

+∞
∫

−∞

dtχ(r, t)e−i(q·r−ωt)

=

∞
∫

0

dtχ(q, t)ei(ω+iη)t . (11.82)

In order to ensure convergency, an infinitesimal imaginary part has been added
to the frequency. Another consequence of causality is that the real and imagi-
nary parts of χ(q, ω) = Re{χ(q, ω)}+ i Im{χ(q, ω)} are connected with each
other through Kramers-Kronig relations. We have

Re{χ(q, ω)} =
1

π
P

+∞
∫

−∞

dω′ Im{χ(q, ω′)}
ω′ − ω

, (11.83)

where P implies the principal value of the integral. Another general relation
to be used later is given by the fluctuation-dissipation theorem3. It relates the
fluctuations of the system described by a correlation function to the dissipa-
tions described by the imaginary part of a susceptibility.

We continue with the discussion of the above Hamiltonian by calculat-
ing the static spin susceptibility. In mean-field approximation the interaction
(11.80) contributes a molecular field

hmf = − U

µB
〈szi 〉 (11.84)

3 see [50,254]
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to the effective field heff acting on an electron spin. The spin susceptibility
in the presence of H̃int is therefore related to the one in the absence of the
interactions, χ0, through

Ω−1〈M〉 = χh = χ0 (h+ hmf) , (11.85)

where Ω is the volume of the probe. The external field h(r) is assumed to be
constant and for an isotropic system the tensor χ is proportional to the unit
matrix. With Ω−1〈M〉 = 2µB〈sz〉 this results in

〈M〉 = χ0Ωh

1− Uχ0/2µ2
B

. (11.86)

The susceptibility of a system of free electrons is χ0 = 2µ2
BN(0), where N(0)

is the density of states (per spin) at the Fermi energy and therefore

χ =
2µ2

BN(0)

1−N(0)U
. (11.87)

Thus within this mean-field approximation, the Landau parameter F a0 is

F a0 = −N(0)U . (11.88)

Almost ferromagnetic materials like Ni3Ga or Pd are characterized by a pos-
itive value

[1−N(0)U ] ≪ 1 , (11.89)

i.e., U is close to the critical interaction strength Uc = 1/N(0) at which a
ferromagnetic instability occurs. The above mean-field theory goes back to
Stoner and Slater, who applied it to the magnetic phase of transition metals
and their alloys. Despite great successes in explaining a number of important
properties (for example, the noninteger Bohr magneton number of the spon-
taneous magnetization, low-temperature specific heat, large cohesive energy),
the mean-field theory also has severe shortcomings. They were discussed ex-
tensively before. Therefore, we have to go beyond the mean-field theory by
including spin fluctuations. Hereby one has to realize that a treatment of fluc-
tuations around a mean-field equilibrium configuration is not sufficient since
the equilibrium state itself changes when fluctuation are considered. It is no
longer that of the mean-field theory. When this change is accounted for, we
arrive at the self-consistent renormalization theory4.

We describe now the changes in the equilibrium state due to fluctuations.
We use a simple, yet sufficiently accurate approach, based on the concept of
Onsager’s reaction field [352]. The reaction field allows a step to be taken
beyond the mean-field approximation. It describes the changes in the molec-
ular field acting on a spin when the latter takes a different direction. These

4 see [330] and also [179]
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changes occur because a spin contributes to its own molecular field. Accord-
ing to Onsager, this contribution, the reaction field, must be subtracted when
determining the effective field orienting the spin.

For a discussion of the reaction field, consider the general spin Hamiltonian

H =
∑

ij

λijSi · Sj . (11.90)

The molecular field at site i is given by

hmf(i) =
2

gµB

∑

j

λij 〈Sj〉 , (11.91)

where g is the Landé factor. The reaction field is then given by

hr(i) =
2

gµB
〈Si〉

∑

j

λij 〈Si · Sj〉 , (11.92)

i.e., the alignment of a spin at site i influences that of a spin at site j through
the spin-spin correlation function. The effective molecular field heff(i) which
must be added to the external field h(i) when calculating the spin alignment
is then given by

heff(i) = hmf(i)− hr(i)

=
2

gµB

∑

j

(〈Sj〉 − 〈Si〉 〈Si · Sj〉) . (11.93)

Using the fluctuation-dissipation theorem we can relate the correlation func-
tion 〈Si · Sj〉 in the paramagnetic phase to the imaginary part of the space-
and frequency-dependent susceptibility χij(ω) by

g2µ2
B 〈Si · Sj〉 =

1

π

∫

dω
1

1− e−βω
Im {χij(ω + iη)} . (11.94)

From the last two equations and (11.87), we can derive the static susceptibility.
We apply those relations to the Hamiltonian H̃int of (11.80) in which case
λij = Uδij and the effective molecular field becomes

Heff(i) =
U

µB
〈szi 〉

[

1−
〈

(szi )
2
〉]

. (11.95)

Note that the spin is treated here classically. In analogy to (11.87), we obtain

χ(T ) =
2µ2

BN(0)

1−N(0)U
[

1−
〈

(szi )
2
〉] , (11.96)

a substantial improvement on the previously presented mean-field theory. For
example, the temperature dependence of χ(T ) now occurs on a temperature
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scale much lower than the Fermi temperature TF . We can see this change if
we use (11.94) with g = 2, which in the present case reads

〈

(szi )
2
〉

=
1

4πµ2
B

+∞
∫

−∞

dω
1

1− e−βω
Im {χii(ω + iη)} . (11.97)

For temperatures which are high compared with the frequency spectrum of
χij(ω), this equation reduces to

〈

(szi )
2
〉

=
kBT

4πµ2
B

P

+∞
∫

−∞

dω

ω
Im {χii(ω + iη)}

=
kBT

4µ2
B

χii(ω = 0) . (11.98)

An important point to be added is that in almost ferromagnetic materials
and weakly ferromagnetic systems χii(0) is T independent. This occurs be-
cause the Fourier transform χ(q, T ) shows a Curie-Weiss behavior only for
small values of q when the present theory is generalized to arbitrary q values.
Therefore Ω−1

∑

q χ(q, T ) = χii is practically T independent. We observe a
different behavior in systems with local moments discussed before. There the
susceptibility has a Curie-Weiss behavior also for large q components and, in

contrast to (11.98), the expectation value
〈

(szi )
2
〉

is almost T independent.

When (11.98) is inserted in (11.96), we obtain for almost ferromagnetic
metals a temperature-dependent susceptibility of the form

χ(T ) =
2µ2

BN(0)

[1−N(0)U ] +AT
, (11.99)

where A = N(0)UkBχii/4µ
2
B. Note that in deriving this relation we have

assumed that kBT is larger than the characteristic frequency spectrum of
the spin excitations (classical limit). As shown below, this spectrum is low in
almost ferromagnetic metals.

For weak ferromagnets the denominator vanishes at a Curie temperature
Tc, i.e.,

1−N(0)U +ATc = 0 . (11.100)

For temperatures T > Tc, we obtain from (11.99)

χ(T ) =
2µ2

BN(0)

A

1

T − Tc
. (11.101)

As pointed out before, the origin of the Curie-Weiss-type susceptibility differs
here from that in systems like Fe or Ni.

We consider next spin fluctuations around the equilibrium state at T = 0
described by the poles of the full frequency- and wavevector-dependent spin
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susceptibility χ(q, ω) [207]. The inclusion of spin fluctuations changes the
mean-field equilibrium state and that effect has to be included in the theory.
We will include here only paramagnons, that is, spin fluctuations in almost
ferromagnetic metals [27]. After a discussion of χ(q, ω), we determine their
influence on the conduction-electron effective mass.

We obtain the susceptibility χ(q, ω) in mean-field or RPA approximation
if we replace χ0 in (11.86) by the frequency and wave-number dependent
expression

χ0(q, ω) =
2µ2

B

Ω

∑

p

f(p)− f(p+ q)

ω − ǫp+q + ǫp + iη
. (11.102)

The function corresponds to the creation and subsequent annihilation of an
electron-hole pair of momentum q and energy ω in response to an external
perturbing field h(q, ω) (electron-hole bubble in the language of diagrams).

For a derivation of χ0(q, ω) and χ(q, ω) consider an external field h(r, t) =
h(q)ei(q·r−ωt). The Zeeman term to be added here to the Hamiltonian (11.77)
is

HZe = −
∫

d3rM(r) · h(r, t)

= −M(−q) · h(q)eiωt , (11.103)

whereM(q) is the Fourier transform ofM(r). The last equation can be written
as

HZe = µB [s+(−q)h−(q) + s−(−q)h+(q) + 2sz(−q)hz(q)] e
iωt , (11.104)

where h± = (hx ± ihy) and similarly s± = (sx ± isy). Next the equation of
motion for

M+(q) = −2µB
∑

k

c+k−q↑ck↓ (11.105)

is set up. It is
Ṁ+(q) = i [(H +HZe) ,M+(q)]− . (11.106)

The commutator is easily evaluated. Products of four operators are factorized
in a mean-field-like approximation so that we obtain

i
d

dt
c+k−q↑ck↓ =

(

ǫk − ǫk−q +
U

Ω

∑

p

〈np↑ − np↓〉
)

c+k−q↑ck↓

−U
Ω

〈nk−q↑ − nk↓〉
∑

q′

c+k−q′−q↑ck−q′↓

+µBh+(q) 〈nk+q↑ − nk↓〉 eiωt . (11.107)

The expectation value is taken with respect to the unperturbed system. One
notices that the time evolution of M+(q) involves h+(q) only. For a nonmag-
netic system 〈np↑〉 = 〈np↓〉 = f(p), which is the Fermi function. Obviously,
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the time dependence of the operator c+k−q↑ck↓ is of the form eiωt. Using this
and taking the sum over k we obtain

− 1

2µB
〈M+(q, ω)〉 = −

(

1

2µB
〈M+(q, ω)〉

U

Ω
+ µBh+(q)

)

×
∑

k

f(k− q)− f(k)

ω − ǫk−q + ǫk + iη
. (11.108)

The added term iη is in accordance with (11.82). With the notation

u(q, ω) =
1

Ω

∑

k

f(k− q)− f(k)

ω − ǫk−q + ǫk + iη
(11.109)

(11.108) reduces to

1

Ω
〈M+(q, ω)〉 =

2µ2
Bu(q, ω)

1− Uu(q, ω)
h+(q) . (11.110)

The susceptibility χ+−(q, ω) is defined through

1

Ω
〈M+(q, ω)〉 = χ+−(q, ω)h+(q) , (11.111)

with the result that

χ+−(q, ω) =
2µ2

Bu(q, ω)

1− Uu(q, ω)
. (11.112)

This form of χ+−(q, ω) is referred to as RPA. Setting U = 0 one finds that
χ0(q, ω) = 2µ2

Bu(q, ω), which proves (11.102). The function u(q, ω) is known
as Lindhard’s function. The sum over k in (11.109) can be explicitly per-
formed, but the result is a rather lengthy expression, which we do not want to
write down explicitly. In the limit ω → 0 it simplifies, in which case we obtain

u(x) = N(0)

[

1

2
+

1− x2

4x
ln

∣

∣

∣

∣

1 + x

1− x

∣

∣

∣

∣

]

; x =
q

2kF
. (11.113)

A special feature of u(x) is a singulary in the derivative at x = 1 (or q = 2kF ).
Related with it are characteristic oscillations in u(x) (Rudermann-Kittel-
Kasuya-Yoshida oscillations in case of spin response and Friedel oscillations
in case of charge response). Lindhard’s function describes the excitation of an
electron out of the Fermi sea so that a hole is left behind. It is the response
of a noninteracting electron system to an external perturbation. Furthermore,
it is plausible that the generated electron-hole pair can be represented by a
product of two Green’s functions, one of which describes the electron and the
other the hole,

u(q, ω) =
i

2π

∫

dω′
∫

d3p

(2π)3
G0(p, ω

′)G0(p+ q, ω′ + ω) . (11.114)
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Fig. 11.11. Electron-hole bubble which describes Lindhard’s function in form of a
diagram. Integration is with respect to the internal variables p, ω′.
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Fig. 11.12. t-matrix tαβγδ(p1,p2,p3,p4). When particles with the center of mass at
rest scatter, it depends on momentum transfer q and frequency ω only, i.e., t(q, ω).

G0(p, ω
′) is the Green’s function for free electrons and holes. In terms of

diagrams the product of the Green’s functions is an electron-hole bubble (see
Fig. 11.11). Expressing u(q, ω) in terms of Green’s functions has the advantage
that we can generalize the susceptibility to interacting electron systems. In the
simplest mean-field approximation this was already done in (11.112) where U
enters. However, by using Green’s functions and Feynman diagrams we can go
beyond the mean-field approximation in a systematic way. We describe this
generalization here although we do not need it for the paramagnons we want
to describe. However, we will need it in Chapter 15 when we discuss possible
Cooper pair formations due to spin fluctuations.

When the electron is interacting with the hole, their mutual scattering
is described by a t-matrix. It depends on the momenta and spins of the in-
and outgoing particles (see Fig. 11.12) and plays the role of an effective,
retarded interaction Veff(q, ω). This makes it differ from the instantaneous
bare interaction vq in (3.4, 3.5). In case of rotational invariance in spin space
the t-matrix, which is a spinor, can always be expressed in terms of two scalar
functions. We saw that already in Sect. 7.2 (see (7.95))

tαβγδ = δαγδβδ t
s + σαγσβδ t

a . (11.115)

Note that both terms contain singlet and triplet parts. That is discussed in
more detail in Sect. 15.5 when dealing with singlet and triplet pairing.

When approximations to the t-matrix are made, we must ensure that they
do not violate conservation laws. Approximations usually consist in selecting
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Fig. 11.13. Diagrams in FLEX approximation for the computation of the ground-
state energy in the Hubbard model. Dashed lines symbolize the bare interaction U ,
solid lines represent electron Green’s functions. (From [35]).

among all possible diagrams only a very limited number with the property
that they can be summed up to infinite. This corresponds to selecting and
summing up special terms in perturbation theory. Conservation laws require
relations between approximations to the t-matrix and those for the self-energy
Σ(p, ω) of the Green’s function. Rules have been derived by Baym [22] which
ensure conserving approximations. For the Hubbard Hamiltonian they are in
short the following:

When we choose a set of diagrams for the t-matrix, and related with it
for the ground-state energy, then a generating function Φ(G;U) is associated
with this selection. It depends on the Green’s function G(p, ω) and on the
two-particle interaction U . In order that this approximation be a conserving
one, the self-energy Σ(p, ω) contained in G (see (7.16)) must be identified
with the functional derivative

Σ(G;U) =
δΦ(G;U)

δG
. (11.116)

When temperature Green’s functions are used as discussed in Sect. 7.1.2,
the function Φ is closely related to the free energy F . Its diagrammatic repre-
sentation is formally the same as for the ground-state energy. More precisely,

βF (G;U) = Φ(G;U)− Tr(Σ(G;U)G) . (11.117)

For the ground-state energy of the Hubbard model and also for Φ the diagrams
shown in Fig. 11.13 are chosen. They have the advantage that they can be
summed up to infinite and consist of bubbles and ladders. Note that the
number of bubbles always increases by two, since only electrons of opposite
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+ ...+

+ + + ...
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Fig. 11.14. Self-energy diagrams which ensure conservation laws when chosing for
the ground-state energy the diagrams in Fig. 11.13.

spins are interacting in the Hubbard model. We also want to point out that
the interaction denoted by dashed lines in that figure is the bare repulsion U .
The self-energy is obtained according to (11.116) by cutting an electron line in
each of the diagrams of Fig. 11.13. The resulting diagrams are shown in Fig.
11.14. Note that solid lines denote the full Green’s function, i.e., the one with
the self-energy included. The bubble corresponds therefore to ū(q, ω) where in
(11.114) G0 is replaced by G. We see that three types of scattering processes
contribute to Σ(p, ω). The first row contains a molecular field or Hartree
contribution (first diagram) plus a sequence of terms. We can interpret the
latter as a replacement of one of the dotted lines in the second diagram by

Ueff(q, ω) =
U

1− (Uū(q, ω))
2 . (11.118)

The factor (Uū(q, ω))
2
results from the geometric series with the number of

bubbles increasing by two in each term. The second and third row of diagrams
in Fig. 11.14 describe repeated interactions in the particle-hole and particle-
particle channel, respectively. One notices that in both cases the t-matrix
has the form of ladders. Concerning the case we are interested in here, i.e.,
close to a ferromagnetic instability, the particle-hole channel is crucial, while
in superconductivity the particle-particle channel is the important one. This
subject will be taken up again in Sect. 15.5.

As discussed before, the self-energy Σ(p, ω) has to be determined self-
consistently since G(p, ω), containing Σ(p, ω) enters the diagrams for it. This
can be done by numerical work only. The above approximation scheme is
often called fluctuation-exchange or FLEX approximation [35]. It describes
spin- as well as charge fluctuations. While the FLEX is limited to an onside
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Fig. 11.15. Diagrams which correspond to the mean-field or RPA form of the spin
susceptibility. The particle-hole t-matrix is denoted by tph.

interaction, the rules of conserving approximations apply also to more general
forms, i.e., momentum dependent two-particle interactions. In that case also
electrons with parallel spins can interact when they are situated on different
sites. The limitation to bubbles and ladders has the advantage of allowing for
infinite summations. Yet, there is no reason why the diagrams which are left
out, e.g., those with overlapping interaction lines, should be unimportant. In
fact, for a good description of the short-range part of the correlation hole they
have to be taken into account. However, in that case, as has been repeatedly
pointed out, it is much better to work in r-space rather than in k-space and to
use projection techniques rather than diagrams. The FLEX and its limitations
will be further discussed in Sect. 15.5 where strong correlations become very
important.

In order that correlation functions or susceptibilities are treated by con-
serving approximations additional rules to those for the one-particle Green’s
function are required. We shall not discuss them here, since in practice they
are not applied. One would not be able to evaluate the resulting diagrams.
Instead, when one determines the susceptibility by starting from ū(q, ω), this
function is calculated with Green’s functions in FLEX approximation. The
electron interactions are included by using the t-matrix in the particle-hole
channel as it appears in the second row of Fig. 11.14. Explicitly we find

χ+−(q, ω) =
2µ2

Bū(q, ω)

1− Uū(q, ω)
. (11.119)

The corresponding diagrams are those of the RPA and shown in Fig. 11.15.
However, here Green’s functions in FLEX approximation are used. Therefore,
Eq. (11.119) is a renormalized RPA susceptibility.

The renormalization of the susceptibility can also be done self-consistently.
As we have seen above, a selection of diagrams for the ground-state energy
or free energy like in Fig. 11.13 implies a selected set of diagrams for the self-
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energy Σ(p, ω) like in Fig. 11.14. The latter enters the Green’s function in the
diagrams for the susceptibility. But the susceptibility is related back to the
free energy in an applied magnetic field h via −∂2F/∂h2 = χ. Alternatively,
we may relate the susceptibility to the second functional derivative of the
generalting function Φ(G;U). This implies that the diagrams in Fig. 11.13 are
broken each at two different places instead of one as for Σ(G;U).

When these different relations are solved self-consistently by choosing the
RPA diagrams shown in Figs. 11.13, 11.14, we speak of the self-consistent
renormalized RPA (SCR) of Moriya and Kawabata [231, 331]. When the cal-
culations are done for finite temperatures by using temperature Green’s func-
tions one finds like in (11.99) a term linear in T in the denominator of the
susceptibility. Thus a Curie type of susceptibility results here from a dia-
grammatic expansion approach. This way an interpolation between itinerant
magnetism and that of local moments is achieved.

For a discussion of paramagnons, which is our next goal, it suffices to work
with the simple RPA form of (11.112). Paramagnons are overdamped long-
wavelength spin fluctuations. They are present if the interaction U is slightly
less than the critical value Uc, at which the system becomes unstable against
ferromagnetic order. Therefore we are interested in the behavior of u(q, ω) in
the limit of long wavelengths and low frequencies. For this purpose it is useful
to introduce the dimensionless quantities q̄ = q/2kF and ω̄ = ω/vFkF . For
small values of ω̄ and q̄ the function u(q, ω) reduces to

u(q, ω) = 1− 1

3
q̄2 +

iπ

4

ω̄

q̄
. (11.120)

When this expression is substituted into (11.112) we find

χ+−(q, ω) =
2µ2

BN(0)

1− I

1− q̄2/3 + iπω̄/4q̄

1 + I
1−I

q̄2

3 − iI
1−I

π
4
ω̄
q̄

, (11.121)

where for almost ferromagnetic systems (1− I) = [1 −N(0)U ] ≪ 1.
The pole of χ(q, ω) describes the dispersion of the spin fluctuations (para-

magnons). The latter is given by

ω = −i 2
π
vF

(1 − I)

I
q

= −isq , (11.122)

where

s =
2

π

(1− I)

I
vF (11.123)

is the paramagnon velocity. One notices that the spin fluctuations are over-
damped. Because (1 − I) ≪ 1, the paramagnon velocity is small compared
with the Fermi velocity vF of the electrons.

The inelastic part of the differential neutron scattering cross-section is
proportional to Im{χ+−(q, ω)}, i.e.,
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d2σ

dΩ̂dω
= σ0

k′

k
Im {χ+−(q, |ω|)}

{

[1 + n(−ω)] , ω < 0 ,
n(ω) , ω > 0 ,

(11.124)

where dΩ̂ is an angular segment and q (= k′ − k) and ω (= E′ − E) are the
momentum and energy transfer respectively, from the neutron to the probe.
The quantities of the outgoing neutron are labeled by a prime. The parameter
σ0 is usually independent of q and ω. The function n(ω) = [exp(ω/kBT )−1]−1

represents a Bose factor.
From (11.121) we obtain

1

2µ2
BN(0)

Im {χ+−(q, ω)} =
π

4

ω̄

q̄

1

((1− I) + (I/3)q̄2)
2
+ (I2π2/16)(ω̄/q̄)2

.

(11.125)
This expression can be rewritten in the form

1

2µ2
BN(0)

Im {χ+−(q, ω)} =
1

(1− I) + Iq̄2/3
· ω̄Γ (q̄)

ω̄2 + Γ (q̄)2
, (11.126)

where

Γ (q̄) =
4q̄

πI

(

(1− I) + Iq̄2/3
)

(11.127)

denotes the Lorentzian linewidth. We show the form of Im {χ+−(q, ω)} in Fig.
11.16. It is peaked at an ω value given by (11.122) and the peak becomes more
pronounced as q and (1 − I) decrease. When comparing theory with experi-
ments one should take into account that (11.126,11.127) are based on an RPA
rather than on a renormalized RPA. In order to incorporate approximately
the effects of the latter, one replaces I by Ī(q). In this case Γ (q̄) is of the
general form

Γ (q̄) = γq̄
(

1/χ+− + cq̄2
)

(11.128)

[remember that χ+− = χ+−(0, 0) ∝ (1 − I)−1]. The experimental data for
systems like Ni3Ga, Pd, TiBe2 and Ni3Al follow well the form predicted by
(11.126) and we can determine experimentally the parameters γ and c in
(11.128).

Another effect of spin fluctuations is that they enlarge the effective mass
m∗ of conduction electrons in the vicinity of the Fermi surface. The mass en-
hancement can be determined according to (4.35) if we compute Σ(p, ω) as
defined in (7.16). Although not done here, this computation can be carried out
by starting from (7.15) and making appropriate approximations when evalu-
ating the left-hand side of that equation. Instead, we treat the susceptibility
χ+−(q, ω) as the propagator of a bosonic excitation, i.e., a paramagnon, with
which the conduction electrons interact. The result is a self-energy Σ(p, ω)
and a mass renormalization m∗/m, as obtained from other boson excitations
with which the electrons interact, e.g., phonons. Let r(k, ω) denote a general
boson propagator and g the coupling constant of the interaction with the
conduction electrons. Then Σ(p, ω) is of the form
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Fig. 11.16. Plot of Im {χ+−(q, ω)} for fixed value of q̄ = q/2kF as a function of
ω̄ = ω/vF kF . For small values of q the peak becomes more and more pronounced so
that one may speak of a quasiparticle-like excitation (paramagnon). (From [94].)

Σ(p, ω) = g2
∫

d3k

(2π)3

∫

dω′

2π
r(k, ω′)G(p − k, ω − ω′) . (11.129)

A proof of this equation is found, for example, in [116] or [4]. One may as-
sociate a diagram with it of the form shown in Fig. 11.17. Here the boson is
given by r(k, ω) = (2µ2

B)
−1χ±(k, ω) and g = U . We have seen before that

the interaction U becomes in general renormalized. Since it is an adjustable
parameter anyway we consider it here as containing already possible renor-
malization effects. Starting from (11.129) one can show that m∗/m as given
by (4.35) reduces to the form [133]

m∗

m
= 1 +

g2N(0)

2k2F

∞
∫

0

dk kr(k, 0) . (11.130)

For the bosonic propagator due to paramagnons we find from (11.121)

r(k, ω) =
N(0)

1− I − iπ
2

ω
kvF

+ 1
12

k2

k2F

. (11.131)

When this expression is inserted into (11.130) we obtain for (1− I) ≪ 1

m∗

m
= 1 + 3I2ln

(

1 +
k2c

12k2F

1

1− I

)

. (11.132)

The momentum kc is a cutoff which has been introduced for the k integration.
For Pd, kc ≃ 1.6kF . Without it one would have to use the original form of the
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Fig. 11.17. Feynman diagram for the self-energy Σ(p, ω) when conduction electrons
of momentum p and energy ω (solid line) interact with bosonic excitations (wavy
line). The electron propagator is G(p−k, ω−ω′) while the propagator of the boson is
r(k, ω′). We show also one of the ladder diagrams when the boson is an overdamped
spin-wave excitation in which case r(k, ω) is given by (11.131). Dash-dotted lines
represent the on-site interaction U .

Lindhard function instead of the expansion (11.120). We notice that m∗/m
diverges logarithmically as I = N(0)U approaches the value 1. Finally, there
is a correction factor 3/2 to (m∗/m − 1) when the overall mode counting is
done better than here.

Up to here we have assumed that the conduction electrons have a spherical
Fermi surface so that u(q, ω) defined by (11.109) is given by Lindhardt’s
function. That function, which we have explicitly written down only in the
long wavelength and low frequency limit (see (11.120)) has its maximum in
the static limit at q = 0 where u(0, 0) = 1. Therefore, with increasing values
of U the denominator in (11.112) vanishes first at q = 0. However, that may
change when, e.g., the Fermi surface has nesting properties like the one of the
Hubbard model on a square lattice near half filling. For a nesting vector Q
defined by the requirement that ǫp ≃ ǫp+Q over a finite part of the Brillouin
zone, the function u(q = Q, ω) may become very large or even diverge. Then
a magnetic instability will occur at q = Q. When Q is a reciprocal lattice
vector we may have an antiferromagnetic instability. When U is slightly less
than the critical value Uc defined by

N(0)Ucu(Q, 0) = 1 (11.133)

the system will contain overdamped antiferromagnetic spin excitations.
In analogy to (11.121) we want to expand χ(q, ω) for small (q−Q) and ω.

First we expand the bare susceptibility, i.e., uQ(q, ω). The subscript should
indicate that this is not the usual Lindhardt function but the modified form
in the presence of a nesting vector Q. In analogy to (11.125) we assume that
the real and imaginary parts of uQ(q, ω) are related to each other by
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lim
ω→0

Im uQ(q, ω) = π
ω

Γ (q)
uQ(q, 0) , (11.134)

where Γ (q) is a characteristic energy of spin fluctuations with momentum q.
We expand uQ(q, 0) with respect to (q−Q) and write

uQ(q, 0) = uQ(Q, 0)− q2/ξ20 . (11.135)

Furthermore, we set near the AF instability, i.e., for U . Uc

1−N(0)UuQ(Q, 0) = (ξ0/ξ)
2

. (11.136)

The correlation length ξ is a measure how close we are to an AF instabil-
ity. When these expansions are set into (11.112) we obtain for overdamped
antiferromagnetic spin fluctuations

1

2µ2
BN(0)

Imχ−+(q, ω) = π
uQ(Q, 0)

Γ (q)

ω(ξ/ξ0)
4

(1 + q2ξ2)2 + (π2ω2/Γ (q))2(ξ/ξ0)4
.

(11.137)

These spin fluctuations play a role in the interpretation of experiments on
high-Tc superconducting cuprates when they are in the normal and in the
superconducting state. They also contribute to the binding of electrons to
Cooper pairs [324].
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Transition-Metal Oxides

Several correlation effects found in transition metals reappear in amplified
form in some of the transition-metal oxides. In fact, correlations can be so
strong that Mott-Hubbard transitions from a metallic to an insulating state
may occur. When these systems are doped with holes, often rich phase dia-
grams result, among them a variety of magnetic phases. Not only spin-, but
also orbital order plays a significant role. Both types of order may influence
each other. Manganites are much studied systems in this respect. They have in
addition a significant technical potential. The cuprate perovskites are another
class of very extensively investigated materials, interesting because of their
extraordinary superconducting properties, discussed in Chapter 15. Only in
a few cases can one perform true ab initio calculations based on wavefunc-
tion methods for those strongly correlated systems. They are of interest even
though calculations within the LDA to density-functional theory have been
able to describe well or even predict numerous experimental findings. Yet it
is also known that calculations of that kind become unreliable when corre-
lations are strong, like in some of the transition metal oxides. An extension
to LDA+U described in Sect. 4.4 has been partially successful here. How-
ever, those calculations are no longer free of parameters and the involved
approximations are uncontrolled. Therefore, it is important to design simpli-
fied models with the help of which we may better understand qualitatively
and often semiquantitatively the basic physical properties of the oxides.

In this chapter we start out with a discussion of cuprates. They are proto-
types of doped correlation-induced insulators. After that we continue with the
phenomenon of orbital ordering. Although this type of order was first observed
in rare-earth systems such as CeB6, we shall limit ourselves here to its ap-
pearance in transition metal oxides. Finally the discussion turns to examples
of the interplay between charge-, structural-, spin- and orbital orderings.
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12.1 Doped Charge-Transfer Systems: the Cuprates

Most of the high-temperature superconductors, in particular those with the
highest transition temperatures are cuprates with a perovskite structure. This
explains the exceptional interest this class of materials has generated. How-
ever, the doped cuprates have also very interesting physical properties in the
metallic normal state. Many of them can be linked to strong-electron cor-
relations which prevail in those systems. In the most studied cuprates the
important structural element are copper-oxide planes with a unit cell CuO2.
Planes are formed from octahedra, pyramids or squares. In each case the Cu
atom is surrounded by O atoms as shown in Fig. 12.1.

Fig. 12.1. Different Cu based perovskites which play an important role in high-
Tc superconductivity. An important element are layers and chains (YBa2Cu3O4) of
oxygen shared CuO4 plaquettes. (Courtesy of T. Takimoto)

Examples are La2CuO4, where the planes are formed from octahedra;
YBa2Cu3O7, where they are formed from pyramids (actually, the Cu atoms
are slightly buckling here); and Nd2CuO4, where they are built from squares.
La2CuO4 and Nd2CuO4 are insulators while YBa2Cu3O7 is a metal, in fact
a superconductor when temperatures are low enough.

In La2CuO4, the CuO6 octahedra are elongated due to a Jahn-Teller dis-
tortion. The Cu–O distances are 190 pm within the plane and 240 pm perpen-
dicular to it. The distortion lifts the degeneracy of the Cu d orbitals, which
in octahedral symmetry is twofold (eg = {dx2−y2 , d3z2−r2}) and threefold
(t2g = {dxy, dxz, dyz}).

There is direct experimental evidence for strong-electron correlations in
the Cu–O planes. We consider La2CuO4 as an example and start by simply
counting electrons. The valency of La is 3+, which implies that two La atoms
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donate six electrons. Oxygen has a valency of 2- and therefore O4 accommo-
dates a total of eight electrons. This leaves for Cu a valency of 2+ implying
a 3d9 configuration (remember that a Cu atom has a [Ar]3d104s1 electron
configuration). The hole in the 3d-shell is placed into the highest antibonding
Cu–O state, which has predominantly 3dx2−y2 character (Fig. 12.2). With one
hole per formula unit of La2CuO4, one would expect that system to be metal-
lic with a half-filled conduction band, provided the picture of independent-or
weakly correlated electrons holds. In reality the material is an antiferromag-
netic semiconductor with a Néel temperature of TN ≃ 280 K. Semiconducting
behavior is also found at temperatures T > TN and is therefore not related to
a doubling of the unit cell when antiferromagnetic order is present. Instead,
it results from strong correlations of the electrons in the Cu–O planes. We
are dealing here with what is usually called a Mott-Hubbard insulator (see
Sect. 10.7). As will be discussed later, a more appropriate description is that
of a charge-transfer insulator, for which the Hubbard band splitting is a pre-
requisite. Correlations are also responsible for the observed antiferromagnetic
ground state. Similar arguments apply to Nd2CuO4.

Fig. 12.2. Bonding between a Cu2+ and two O2− ions. Only the 3d9 electrons of
Cu and the 2p2x(y) electrons of O are assumed to hybridize with the Cu d-states.
The antibonding σ∗ orbital has predominantly dx2−y2 character and contains the
hole of the unit cell. The bonding σ orbital is predominantly of px(y) character. The
splitting of the dν-orbitals is caused by a CEF of tetragonal symmetry.

La2CuO4 can be doped with holes by partially replacing La3+ by Sr2+

or Ba2+. Similarly, Nd2CuO4 can be doped with electrons by a replacement
of Nd3+ by Ce3.5+. The Cu–O planes of YBa2Cu3O7 contain holes without
modification of the material, because charge is moved from the planes into the
chains (self-doping). Often Cu–O planes or pairs of planes are separated by
blocks of insulating layers. One important family are the bismuth strontium
calcium copper oxides, named BSCCO. Members of that family are labeled



284 12 Transition-Metal Oxides

according to the sequence of the numbers of the metallic ions. For example
BSCCO-2212 is Bi2Sr2Ca1Cu2O8. For illustration the unit cell of three differ-
ent compounds is shown in Fig. 12.3.

Fig. 12.3. Schematic representation of the crystal structure of some Bi-based cooper
oxide superconductors: Bi-2201, Bi-2212 and Bi-2223 (From [180])

12.1.1 Quasiparticle–like Excitations

We want to understand and describe the dispersion of a small number of
doped holes in a Cu-O plane. First we note that the electronic structure of
the cuprates has been investigated with the help of LDA calculations. They
reproduce neither the semiconducting behavior of La2CuO4 nor the magnetic
properties of the ground state. However, they reproduce well other properties
of the systems, such as the electronic charge distributions, which depend only
slightly on the strong correlations. This can be explicitly checked by comparing
the calculated charge densities with those obtained from quantum chemical
calculations on negatively charged planar clusters of (CuO3)nO(n = 1, . . . , 4).

An insulating ground state is obtained when the LDA is replaced by
LDA+U. Yet, in order to include properly the strong electron correlations
and at the same time to describe the CuO2 planes as detailed as possible, one
has to apply wavefunction based methods, using a CASSCF calculation as a
starting point. Before demonstrating this, we want to show which features of
the excitation spectrum relate solely to the lattice structure.
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We consider first the following simple Hamiltonian of noninteracting par-
ticles in hole-, instead of electron representation

H0 = ǫd
∑

iσ

ndσ(i) + ǫp
∑

jσ

npσ(j) +
∑

〈ij〉σ
Vij
(

d+iσpjσ + p+jσdiσ
)

. (12.1)

Fig. 12.4. Cu 3dx2−y2 and O 2px(y) orbitals which hybridize most strongly and
form the lowest bonding and highest antibonding states. Blue: positive and red:
negative sign of atomic wavefunction. For the orbitals at positions 1 and 2, αij = 0,
while for those at positions 3 and 4, αij = 1.

The notation 〈ij〉 refers as usual to pairs of nearest neighbors i and j. The
operator d+iσ creates a hole with spin σ in the Cu 3dx2−y3 orbital at site i and
the operator p+jσ does the same with respect to the O 2px (or 2py) orbital
at site j (Fig. 12.4). The corresponding hole number operators are ndσ(i)
and npσ(j). The hybridization between the two types of orbitals is given by
the matrix element Vij . From Fig. 12.4 we observe that Vij = (−1)αij t with
αij = 0 or 1 depending on the position of the O atom relative to the Cu
atom. There are three orbitals per unit cell CuO2 which are connected by
the hybridization term. After diagonalizing the 3 × 3 Hamilton matrix the
following three bands are obtained.

ǫ1,2(k) =
ǫp + ǫd

2
±

√

(

ǫp − ǫd
2

)2

+ 4t2pd

(

sin2
kxa

2
+ sin2

kya

2

)

,

ǫ3(k) = ǫp . (12.2)

We show a plot of the bonding and antibonding bands ǫ1,2(k) in Fig. 12.5a.
Note that in electron representation the bonding band is predominantly of
oxygen 2p character, while the antibonding band is primarily of 3d-character
(compare with Fig. 12.2). In hole representation the situation is reverse.
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Fig. 12.5. (a) Bonding, antibonding and nonbonding solutions ǫ(k) in hole repre-
sentation as given by (12.2) for a square lattice. The parameter values are ǫp − ǫd =
3.6eV and tpd = 1.3eV. Also shown is the Brillouin zone for a square lattice. (b)
Results of LDA band-structure calculations for La2CuO4 in electron representation.
The Brillouin zone is for a body-centered tetragonal phase and is shown in the in-
set. Therefore the notation differs from that in (a). The X point corresponds to M
while the Z point is in the kz direction. Notice the similarity of the bonding (B)
and antibonding (A) bands to those in (a). The 15 intermediate bands correspond
to the ones formed from the remaining four d-orbitals and to nonbonding bands.
(From [315])

One notices that the bonding and antibonding bands agree reasonably
well with those of a full LDA calculation shown in Fig. 12.5b. In both cases
La2CuO4 is found to be metallic. The reason is, of course, different in the two
cases. While in (12.1) Coulomb repulsions are excluded, they are included in
the LDA but treated insufficiently.

We want to return to the following question: what is the dispersion of a
propagating hole doped into a CuO2 plane? For such a purpose we first have
to understand the most important changes in the density of states caused
by strong-electron correlations. As pointed out previously, La2CuO4 would
be metallic and not an antiferromagnetic semiconductor were it not for those
correlations. The density of states corresponding to the bands in Fig. 12.5a
is shown in Fig. 12.6a and illustrates that point. From the discussions of
the Hubbard model in Sect. 8.2 (consult also Sect. 10.4), we would expect a
density of states of the form shown in Fig. 12.6b, i.e., with the antibonding
band of predominantly d-character split into a lower and an upper Hubbard
band.

In drawing Fig. 12.6 it has been assumed that the splitting of the anti-
bonding band into two Hubbard bands is larger than the one between the
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Fig. 12.6. Schematic plot of the density of states for the CuO2 planes at half filling
in electron representation: (a) within the independent-electron approximation; B
and A denote contributions from the bonding and antibonding band, respectively,
NB labels the one from the nonbonding band; (b) in the presence of a Hubbard-band
splitting, LHB and UHB denote the lower and upper Hubbard bands. The latter is
separated from the NB peak by a charge transfer gap; (c) when the singlet-triplet
(S,T) splitting of a hole on a Cu and an O site is taken into account (Zhang-Rice
singlet).

bonding and antibonding one, i.e., the Hubbard interaction U is larger than
the difference in the orbital energies (ǫd − ǫp). Therefore we are dealing here
with a charge-transfer insulator1 where the excitation gap is of order (ǫd− ǫp)
rather than U . The opposite case, i.e., when (ǫd − ǫp) ≫ U gives raise to a
Mott-Hubbard insulator for which the excitation gap is given by U .

However, the situation is more complex than that. When a hole is doped
into La2CuO4, it goes predominantly into a 2p orbital of an oxygen ion because
two holes on a Cu site would strongly repel each other. Together with the hole
on a Cu site, it forms a spin singlet state commonly named after Zhang and
Rice and schematically shown in Fig. 12.7. It is the same type of singlet state
discussed in Sect. 10.2.1 with the difference that the ligand orbital denoted
there by L is replaced here by a superposition of four equivalent oxygen p
orbitals and that two holes instead of two electrons are considered. When the
formation of a singlet is taken into account, the density of states is of the form
shown in Fig. 12.6c. This reasoning will be confirmed in the discussion that
follows.

1 see [127,128,505]
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Fig. 12.7. Schematic presentation of a Zhang-Rice singlet formed by two holes on
a CuO4 plaquette. Because of a large repulsion of two holes on a Cu site, the second
hole is primarily situated on O 2p-orbitals.

After these introductory considerations we want to compute the dispersion
of a doped hole by a wavefunction based calculation using quantum chemical
methods. It is parameter free and therefore free of arbitrariness. Because the
correlations are strong, a simple SCF calculation is not a good starting point.
The corrections required would be too large. However, a CASSCF calculation
(see Sect. 5.1) is suitable for our purpose. It should include the most im-
portant correlations so that the remaining ones are weak and can be treated
by perturbation theory or CEPA. For a CASSCF treatment the active space
must be defined. In order to find it consider a system to which one hole has
been added. Then one plaquette in the system will accommodate two holes
as symbolized by the square in Fig. 12.7. This plaquette together with its
surrounding is identified with the correlated local state |Rnσ} in (7.114) from
which the quasiparticle Bloch state |ψN−1

kν 〉 is constructed. The state |Rσ} is
schematically shown in Fig. 12.8. A quantum number n is not required here.
If the Coulomb repulsion of two holes on a Cu site were infinitely strong, the
singlet state formed on the special plaquette would have the form

|ψ〉 = 1√
2

(

d+↑ p
+
↓ − d+↓ p

+
↑

)

|0〉 . (12.3)

When applied to the state |0〉 with no hole on the plaquette, the operator
d+σ creates a hole at the Cu site, while p+σ creates a hole on the four surrounding
O sites (see Fig. 12.7), i.e.,

p+σ =
1

2

(

p+1σ + p+2σ − p+3σ − p+4σ
)

. (12.4)

This is the Zhang-Rice singlet, i.e., the analogue of the Heitler-London singlet
of a H2 molecule. By now the choice of the active space has become clear.
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Fig. 12.8. Plaquette with an added hole of spin ↑ forming a Zhang-Rice singlet.
The nearest neighbor plaquettes are ferromagnetically aligned with the added hole
and form a spin bag or spin polaron.

For the plaquette with the two holes it must comprise the 3dx2−y2-orbital
of the Cu sites and in addition the combination (12.4) of 2px(y)-orbitals. As
explained in Sect. 7.3.3 calculations of |Rσ} require only the treatment of
an embedded cluster of sufficient size. We include here the distinct plaquette
together with its four nearest-neighbor plaquettes. For these five plaquettes
also the apical oxygens are taken into account. The employed basis set used
has triple-zeta quality. The cluster is embedded into a much larger system by
a proper embedding scheme. For an initial guess of the spin orbitals the ones
obtained from a SCF calculation for a hypothetical Cu 3d10, O 2p6 closed-
shell configurations are used [192]. Note that we base all calculations on the
software MOLCAS [328].

We recall that in a CASSCF calculation the wavefunction |ψ〉 is written as
a linear combination of configurations |m〉, i.e., |ψ〉 = ∑

m αm|m〉. This is a
spin and symmetry adapted superposition of Slater determinants. The Slater
determinants in turn are constructed from orthonormal spin orbitals of the
active space. Those are supplemented by orbitals which remain occupied in
all determinants. The orbitals are variationally optimized simultaneously with
the coefficients αm. If it helps understanding, one may consider a CASSCF
calculation for the special plaquette and its surrounding as a determination
of the single-site scattering matrix SI in (5.53).

We find the following results. The Zhang-Rice singlet is essentially a su-
perposition of three configurations, i.e., |d1x2−y2 , p

1〉 given by (12.3) as well as

|d2x2−y2 , p
0〉 and |d0x2−y2p

2〉 where p is the combination (12.4) of 2px(y)-orbitals.
Note that Fig. 12.2 which is based on uncorrelated electrons is unsuitable in
order to decide which of the 2p-orbitals is occupied by the added hole. The
respective weights of the three configurations are found to be 0.70, 0.14 and
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0.112. The deviations from a Heitler-London-like state are appreciable, since
the latter requires that |d1x2−y2 , p

1〉 has weight 1. Therefore the correlation

strength in the cuprates as defined (10.1-10.2) should not be overrated. The
missing 5% in the sum of the three weights is due to the inclusion of the apical
oxygens. The latter play a role in generating a ferromagnetic surrounding of
the plaquette with an added spin σ hole (see Fig. 12.8). Because of that partic-
ular feature one often speaks of a spin-bag or ferromagnetic polaron [313,403].
Experiments prove that doped holes go predominantly to O sites as found by
the quantum chemical calculations. They are based on electron energy loss
spectroscopy (EELS) [346]. In those experiments, a 1s electron of an O atom
is excited into an empty valence state at the same site. Changes with doping
of the p hole number on the O sites are therefore directly measurable.

Of special interest is the dispersion of the (generalized) Zhang-Rice singlet
when it moves in form of a Bloch wave through the system. To a large extent
it is determined by the geometry of the lattice. For a square lattice it is of the
general form

ǫ(k) = −2teff (cos kxa+ cos kya) + 4t′eff cos kxa cos kya

−2t′′eff (cos 2kxa+ cos 2kya) (12.5)

Fig. 12.9. Hopping matrix elements between different plaquettes. The shown clus-
ters, properly embedded, were used for the determination of the effective matrix
elements teff , t

′
eff and t′′eff of Zhang-Rice singlets.

where the hopping matrix elements t, t′ and t′′ refer to processes shown in Fig.
12.9. Also shown in that figure are the embedded clusters for which teff , t

′
eff

2 see [83,191]
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and t′′eff were calculated. Hopping processes between 4th nearest-neighbor pla-
quettes and beyond are neglected. For holes moving in an antiferromagnetic
background one has teff = 0, i.e., the hole has to remain on the sublattice on
which it was generated. In processes characterized by t′eff and t′′eff , hopping
takes place within the same sublattice and therefore both matrix elements
differ from zero. We obtain the corresponding unrenormalized or bare hop-
ping matrix elements t, t′ and t′′ by fully spin polarizing the background.
In that case the hole does not drag a bag along and we find t = 0.54eV,
t′ = 0.31eV and t′′ = 0.12eV. The renormalized parameters are determined
in close analogy to Sect. 7.3.3. A finite cluster like the one shown in Fig. 12.9
will always give a finite value of teff instead of zero, since the mismatch of
the spin order is limited to the size of the cluster when the matrix element
Hij (with i, j being nearest neighbor plaquettes) is calculated. However, fi-
nite clusters are sufficient when matrix elements are calculated for hopping
processes which take place on the same sublattice. They are also suitable for
the paramagnetic state when the antiferromagnetic correlation length is of
the order of the cluster size. From those calculations we obtain t′eff = 0.13eV
and t′′eff = 0.05eV. These values are surprisingly close to the one of Ref. [440],
where a t−J model was applied with the value of J adjusted to experiments.
They lead to a dispersion shown in Fig. 12.10 and hence to the formation
of hole pockets at (π/2, π/2) when the doping level increases. The implicit
assumption is hereby that a change in doping concentration leads merely to
a shift in the chemical potential. It is also found that the energy difference
∆E = E(N + 1) + E(N − 1) − 2E(N) > 0 is a few eV. Here E(N ± 1) are
the energies of the electron addition and electron removal states. That im-
plies that CASSCF calculations yield an insulating state for the undoped N
electron system.

Fig. 12.10. Dispersion of the Zhang-Rice singlet labeled S in Fig. 12.6 without
and with the dz2 orbital excluded (dashed line). Thin solid line: lowered chemical
potential due to a small hole doping. (From [192])
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Fig. 12.11. Fermi surface of La-Bi 2201 at different doping concentrations nc =
0.10− 0.16. UD 18 K (OP 32 K) means underdoped (optimally doped) sample with
superconducting Tc = 18 K (32 K). The presence of two Fermi surfaces, i.e., pocket
as well as arc might be due to sample inhomogeneities. (From [317])

High resolution ARPES experiments find lense-like hole pockets at small
doping (see Fig. 12.11). In the quasiparticle approximation used here, we can-
not reproduce the different intensities of the two sides of the hole pockets
which are observed experimentally. However, the asymmetry can be under-
stood by realizing that for a Hubbard system at half filling and U/|t| ≫ 1
the momentum distribution nσ(k) is not constant but varies as nσ(k) =
1
2 + (2gt/U)2(cos kxa+ cos kya), where g = 1

4 − 1
3 〈sisj〉 and i and j are near-

est neighbors. For small hole doping we find small hole pockets, as shown
schematically in Fig. 12.12.

When the hole doping is large, long-range antiferromagnetic order is de-
stroyed and only short-range antiferromagnetic correlations remain. Assume
that the latter extend over an area of the size of the cluster shown in Fig.
12.8. In that case teff 6= 0 and a value of teff = 0.1eV obtained from CASSCF
for a cluster of eight plaquettes is reasonable. When set into (12.5) we obtain
a dispersion for the quasiparticles, which in distinction to Fig. 12.10 has max-
ima at (±π,±π) instead of (±π

2 ,±π
2 ). The effect of teff > 0 is to move up the

excitation energy at (π, π) seen in that figure. When the chemical potential is
adjusted to the hole concentration we obtain a large electron Fermi surface.
It is centered at the Γ point and the volume enclosed by the Fermi surface
varies according to changes in the electron, not hole number. The intermedi-
ate regime is difficult to cover within the present computational schemes. It
would require a Green’s function approach based on CASSCF. Nevertheless,
we attempt here a phenomenological description for increasing hole concen-
tration.



12.1 Doped Charge-Transfer Systems: the Cuprates 293

Fig. 12.12. Momentum distribution for a half-filled Hubbard model on a square
lattice in the strong correlation limit when the system is doped with holes. Note the
asymmetric rim of the lenses in nk near (±π/2,±π/2) which are actually seen in
ARPES experiments (see Fig. 12.11). (Courtesy of R. Eder 1993)

Assume an AF ground state and a hole concentration which is sufficiently
small, so that we have hole pockets in the Brillouin zone. At the edges of the
pockets the excitation energy is zero, but outside the pockets all electronic
excitations are gapped. This implies that charge as well as spin response to
external perturbations remains small at low energies. When the hole concen-
tration increases the hole pockets grow, the asymmetry between the edges
increases (see Fig. 12.12) until eventually a Fermi surface of the form shown
in Fig. 10.26 evolves. Thus density and spin response increase in parallel, since
a growing number of low-energy excitations becomes possible. Eventually, at
a certain hole concentration nch a full (large) Fermi surface has evolved and
the system has become a conventional Fermi liquid. For nh < nch and at low
temperatures the electron system behaves like having a pseudogap because of
the reduced low-energy response. The pseudogap refers to both charge and
spin response. This subject will be taken up again in Chapter 15.

The above calculations aimed at determining the dispersion of the Zhang-
Rice singlet. In order to reproduce the spectral density sketched in Fig. 12.6
we have to proceed differently, i.e., by using Green’s functions and a model
Hamiltonian. Thus we have to compute the spectral function from

A(k, ω) = − 1

π
ImGR(k, ω)

=
1

π

ImΣ(k, ω)

[ω − ǫk −ReΣ(k, ω)]2 + [ImΣ(k, ω)]2
. (12.6)

The retarded Green’s functions cannot be determined with the same accuracy
as the dispersion shown in Fig. 12.10, in which quantum chemical accuracy



294 12 Transition-Metal Oxides

was achieved. Instead, we have to compromise by using a simplifying model
Hamiltonian. We choose the following one, again in hole representation

H = H0 +
∑

〈jj′〉σ
tpp(j, j

′)
(

p+jσpj′σ + h.c.
)

+ Ud
∑

i

nd↑(i)nd↓(i)

+Up
∑

j

np↑(j)np↓(j) + Upd
∑

〈ij〉
nd(i)np(j) + Upp

∑

〈jj′〉
np(j)np(j

′) .

(12.7)

Like (12.1), the Hamiltonian includes Cu 3dx2−y2 and O 2px(y) orbitals only
(Emery model). The noninteracting part H0 is given by (12.1). The remaining
part contains the Coulomb repulsion Ud between two holes on a Cu site and
Up < Ud between two holes on an O site. Repulsions between a d-hole on a Cu
site and a p-hole on a neighboring O site are denoted by Upd. Also included
is a direct O–O hybridization term tpp′ . Doped holes go predominantly to O
sites since ǫp < ǫd. This was demonstrated before by the quantum chemical
type of calculations and is in agreement with experiments.

The parameters of the Hamiltonian are usually fitted to a constrained LDA
calculation, where energy changes are calculated away from the ground-state
density distribution. For example, nd(i), the d-electron number at a Cu site i,
is constrained to a given value ncd(i) and the ground-state energy functional
E[n] is minimized under this subsidiary condition, i.e.,

E[ncd(i)] = min







E[n] + λ

∫

MT

d3r [nd(r) − ncd(r)]







. (12.8)

Here λ denotes a Lagrange parameter which ensures that the subsidiary con-
dition is met. The integral is taken over a muffin-tin sphere, i.e., over the
volume of the Cu atom i. The energies E[ncd(i)] describe, within the LDA, the
response of the system due to a local change of the d-electron number (charge
fluctuation). In order to determine the parameters of the Hamiltonian (12.7),
equivalent constrained calculations are done for its self-consistent field part
HSCF. By bringing the result of the two calculations into agreement, one may
determine the parameters of H . The results for La2CuO4 are listed in Table
12.1.

The spectral function A(k, ω) can be calculated within the above model in
two ways. One is by numerical studies of small clusters, e.g., by diagonalization

Table 12.1. Parameter values in eV as obtained from a constrained LDA [200]

ǫp − ǫd tpd tpp Ud Up Upd Upp

3.6 1.3 0.65 10.5 4 1.2 0
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of four units of CuO2 with periodic boundary conditions. The second and
preferable one is to determine A(k, ω) by application of the projection method
outlined in Sects. 5.4.1 and 8.1.

We define spectral functions Amn(k, ω) for a set of operators {An(k)} by
relating them to the (retarded) Green’s functions

Gmn(k, t) = −iθ(t)
〈

ψ0

∣

∣

∣

[

A+
m(k, t), An(k, 0)

]

+

∣

∣

∣
ψ0

〉

, (12.9)

or more precisely, to the imaginary part of their Laplace transforms

Gmn(k, z) =

(

Am(k)

∣

∣

∣

∣

1

z − L
An(k)

)

+

, (12.10)

[for notation see 8.1]. According to (7.9) the relationship is

Amn(k, ω) = − 1

π
lim
η→0

Im{Gmn(k, ω + iη)} . (12.11)

The Liouvillean L refers to the Hamiltonian (12.7), but with Upd = 0, for sim-
plicity. The operators {An(k)} specify the relevant variables (or microscopic
processes) to which we limit the calculations. Their choice is discussed below.

We use (8.18) in order to rewrite (12.10) in matrix notation as

G(k, z) = χ(k) [zχ(k)−ωωω(k)]−1 χ(k) , (12.12)

with the susceptibility and frequency matrix defined by

χmn(k) = (Am(k) | An(k))+

ωmn(k) = (Am(k) | LAn(k))+ , (12.13)

respectively. The memory matrix is zero here since calculations are restricted
to the Liouville space spanned by the set {Amn}. For a given value of k, the
dimension of the matrices is given by the number of selected variables. The
static expectation values (12.13) can be computed by the methods described
in Chapt. 8, but the details are quite involved [460].

The proper choice of the relevant operators {An(k)} is essential for a
high-quality, yet simple, calculation of the spectral density of the electronic
excitations. In the present case they must first of all include the hole operators

Ap(α,k) = p+αk↑ , Ad(k) = d+k↑ , (12.14)

where α = 1, 2 is a band index required because there are two O atoms per unit
cell. But the Fourier transforms p̄+αk↑, d̄k↓ of the local operators p̄

+
i↑ = p+i↑np↓(i)

and d̄+j↑ = d+j↑nd↓(j) must also be included in the set {An(k)}, i.e.,

Ap̄(α,k) = p̄+αk↑ , Ad̄(k) = d̄+k↑ . (12.15)
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They ensure a properly reduced weight of configurations with doubly occupied
Cu and O orbitals, which is an effect of the on-site repulsions Ud and Up. If we
were to limit the {An} to (12.14-12.15), the calculations would correspond to
a Hubbard I approximation (Sect. 8.2). However, there are other microscopic
processes which also need to be included.

Fig. 12.13. Two processes which cause a spin flips of a hole on a Cu site. Process
(a) becomes ineffective in the limit Ud → ∞.

As discussed before, the ground state of two 3d- and 2p-holes consists
of a linear superposition of the states p+↑ p

+
↓ |0〉, d+↑ d+↓ |0〉 and the singlet

2−1/2
(

p+↑ d
+
↓ − p+↓ d

+
↑

)

|0〉, where |0〉 denotes a plaquette consisting of a Cu

dx2−y2 orbital and the four nearest neighbor O 2px(y) orbitals, without any
holes. We have to ensure that the most important microscopic processes lead-
ing to the correlated ground state are also included in the treatment of the Cu–
O plane. Therefore we must also include among the set of operators {An(k)}
the following ones

Af (k) =
1√
N

∑

I

e−ik·RIp+I↓S
+
I

Aa(k) =
1√
N

∑

I

e−ik·RIp+I↑nd↓(I)

Ac(k) =
1√
N

∑

I

e−ik·RIp+I↑p
+
I↓dI↓ . (12.16)

There are N unit cells labeled by I with lattice vectors RI . The operator
S+
I = d+I↑dI↓ causes a spin flip of a hole at the Cu site I, while p+Iσ denotes
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Fig. 12.14. Oxygen (dashed lines) and Cu (solid lines) spectral weight in electron
(not hole) representation calculated by projection techniques. The parameter values
are (in units of tpd): Ud = 8, Up = 3, tpp = 0.5, and ǫp − ǫd = 4. (a) half filling and
(b) 25 % hole doping. The dotted line indicates the position of the Fermi energy. S,
T and NB label singlet, triplet and nonbonding contributions. Fig. (a) should be
compared with the schematic plot in Fig. 12.6(c). (From [460])

the combination (12.4) for a unit with the Cu site I in the center. Spin flips
of holes on Cu and O sites as described by Af (k) are microscopic processes
required in forming singlet and triplet states of two holes. Two different pro-
cesses leading to a spin flip are shown in Fig. 12.13. The other operator needed
for a description of singlet and triplet states is Aa(k), which describes antifer-
romagnetic correlations between holes on Cu and O sites. A Cu-orbital with
two holes, which appears as an intermediate step in Fig. 12.13a is described
by the variable Ad̄(k). The intermediate configuration in Fig. 12.13b with no
hole on the Cu site is described by the charge transfer operator Ac(k). The
operators (12.16) follow directly by applying L to (12.15). With a total of nine
operators, the 9 × 9 matrix (12.12) has to be diagonalized for each k point.
The static expectation values 〈A+

m(k)An(k)〉 are evaluated self-consistently
by using the fluctuation-dissipation theorem

〈

A+
m(k)An(k)

〉

=

+∞
∫

−∞

dωAmn(k, ω)f(ω) , (12.17)
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where f(ω) is the Fermi function. A proof of this theorem is found in text
books like [342]. The calculations remain unchanged when in (12.14 - 12.16)
the spin indices are interchanged. The resulting spectral densities for p- and
d-holes and electrons are shown in Fig. 12.14 for half filling and for 25 % hole
doping. They show good agreement with the results of numerical diagonaliza-

Fig. 12.15. Dispersion of the Zhang-Rice singlet (in hole representation) when the
ground state is paramagnetic. Parameters (in units of tpd): Ud = 6, Up = 0, and
ǫp − ǫd = 4. The hole concentration is nh = 1.25 (25 % hole doping). (From [460]).
Also shown are the results of quantum Monte Carlo calculations for a 4 × 4 CuO2

cluster and (kBT )
−1 = 10t−1

pd (open squares) and of an exact diagonalization of a
2× 2 cluster of CuO2 units (solid squares). (From [95]).

tion of the Hamiltonian for four CuO2 units3. The basic structure sketched
in Fig. 12.6c is reproduced. In the above calculations a nonmagnetic ground
state has been assumed, but we could have equally well used an antiferro-
magnetic one. The difference is not important when general features of the
spectrum are considered because the energy scale for magnetic order is small
as compared with the bandwidths.

Consider first the case of half filling. One notices in Fig. 12.14a a structure
labeled S which, when analyzed, can be shown to have predominantly singlet
character. The peak from the corresponding triplet configuration is labeled T
in the same figure. The high density of states near zero energy corresponds to
the nonbonding oxygen band and is denoted by NB in that figure. The singlet
structure is separated by a gap of order (ǫp − ǫd) from the upper Hubbard
band. The latter corresponds to a d9 → d10 transition, i.e., to filling the
Cu d-shell. As discussed before, we are dealing here with a charge transfer
insulator. Other examples of insulators of that kind are CuO, CuCl2, CuBr2
as well as NiCl2 and NiBr2. When we dope the system with 25 % holes, we

3 see [424,449]
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also find a transfer of spectral weight from the upper Hubbard band to the
singlet states (see Fig. 12.14b). A diagonalization of the 9×9 Green’s function
matrix yields a dispersion curve Eν(k) (ν = 1, . . . , 9) for each eigenmode. The
one of lowest energy, i.e., that of the singlet is found to have a dispersion as
shown in Fig. 12.15. It resembles very much the one obtained by quantum
chemical calculations and shown in Fig. 12.10 if we used in the corresponding
equation (12.5) a value of teff ≃ 0.14eV. Such a value corresponds to a small
antiferromagnetic correlation length, i.e., of order of the Cu–Cu distance. This
seems reasonable in view of the large hole doping concentration. The above
findings demonstrate that the projection method provides a convenient tool
for the treatment of strong electron correlations. These findings complete the
description of holes in the CuO2 planes.

12.2 Orbital Ordering

Orbital ordering requires orbital degeneracy. This prerequisite is fulfilled in 4f -
as well as 3d- and 4d-electronic systems. In rare-earth compounds spin-orbit
interactions are strong. Therefore the states are classified according to the
total angular momentum J . Hund’s rules determine the J value of the ground
state of the incomplete 4f shell. The first rule states that electrons occupy the
f -shell (or similarly the s-, p- or d-shell) so that they maximize their total spin
S. Should this prescription not uniquely specify the electronic configuration
the second rule applies. It states that the degeneracies are to be removed in
favor of the particular configuration which maximizes the total orbital angular
momentum L. The third rule applies to incomplete f -shells only and requires
that J = L − S for a less than half-filled shell and J = L + S if the shell
is more than half filled. The (2J + 1)-fold degenerate ground-state multiplet
is split by the crystalline electric field (CEF) set up by the neighboring ions.
When the 4f electron number is odd, it follows from Kramers’ theorem that
each CEF energy level is at least two-fold degenerate. This Kramers’ degen-
eracy is a consequence of time-reversal symmetry. If the 4f electron number
is even, the CEF levels can be nondegenerate. Beyond the required Kramers’
degeneracy, additional degeneracies may be present depending on the point
symmetry of the rare-earth site. Interactions between neighboring sites may
lead to orbital ordering. It is favoured when the CEF levels are degenerate
or nearly degenerate. Because of the strong spin-orbit interactions it involves
necessarily not only charge-, but also spin-degrees of freedom, as manifested
by J .

The situation is different for d electrons in transition metal oxides. Here
CEF splittings are much larger than the spin-orbit interactions. Therefore the
latter may be neglected in first approximation and the states may be classified
separately according to their orbits and spins. In a cubic environment the 5-
fold orbital degeneracy is split into a t2g triplet and a eg doublet (see Fig.
12.16) with the former being lower in energy in most cases. Orbital ordering
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Fig. 12.16. d orbitals split by a crystalline electric field of cubic symmetry into a
eg doublet and t2g triplet.

can occur if the degenerate energy eigenstates are only partially filled. It is
caused by anisotropic hybridizations together with Hund’s rule coupling. The
Jahn-Teller effect plays also an important role here.

We recall that in the cuprates the hole in the 3d shell of Cu2+ is in the eg
doublet. Because of a slight elongation of the surrounding oxygen octahedron
in z direction however this eg doublet is split, with the dx2−y2 being higher in
energy (see Fig. 12.2). This implies that the hole is in that orbital. We have
also seen that the hybridization with the oxygen ions results in an effective an-
tiferromagnet interaction JSiSj between neighboring Cu sites like in the one-
band Hubbard model (see Fig. 12.8). However, the situation is quite different
in oxides in which neighboring oxygen octahedra, unlike in the cuprates, share
edges instead of corners. Here two orthogonal oxygen p orbitals are hybridiz-
ing with neighboring Cu sites (see Fig. 12.17). This implies a ferromagnetic
interaction between the Cu spins. The interaction is caused by configurations
with two holes in an intermediate state of the hybridizing oxygens. Hund’s
rule correlations on that oxygen site favor ferromagnetic alignment of these
two holes in different 2px(y) orbitals. This proves that the indirect exchange
between two Cu2+ spins, or more generally, two transition-metal ions depends
on the path which the exchange takes. It is over a 90◦-angle in edge-sharing
octahedra and over a 180◦-angle in site-sharing octahedra. The latter situation
was previously found in the Cu–O planes. This structural dependence is part
of the Goodenough-Kanamori rules [148]. Those rules are useful for the deter-
mination of interatomic spin-spin interactions between two transition-metal
ions. The latter are mediated either by direct hopping processes between the
two ions or by a shared anion (often oxygen) in between. The rules state
that the interactions, called superexchange, are antiferromagnetic when the
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effective interaction is between d orbitals which are half-filled and when it is
mediated by one orbital of an anion. The latter is in most cases oxygen (see
Fig. 12.17b). The interaction of two Cu2+ ions in the Cu–O planes serves as an
example here. We recall that the dx2−y2 orbital is singly occupied and there-
fore half filled. When two orbitals of the anions are participating, the coupling
is ferromagnetic (see Fig. 12.17a). In both cases the effect is proportional to
t2, where t is the hopping matrix element to the anion. The interactions are
also ferromagnetic when hopping takes place from a half-filled to an empty
orbital or from a filled to a half-filled one. This is called double exchange.
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Fig. 12.17. Hybridization between a Cu 3d- and oxygen 2p-orbital: (a) when neigh-
boring oxygen octahedra share edges, and (b) when they share corners (compare
with Fig. 12.4). Only orbitals involved in a d–d bonding are shown. In (a) the cou-
pling is ferromagnetic while in (b) it is antiferromagnetic.

An example is here hole doped LaMnO3, in which hopping of holes con-
verts Mn3+ sites into Mn4+ sites and couples the Mn ions ferromagnetically. In
manganites which have perovskite structure, the Mn3+ ions are in a 3d4 con-
figuration with strong Hund’s-rule correlations. Thus a high-spin state forms
with S = 2. Three of the four d electrons occupy t2g orbitals. The fourth elec-
tron is in the eg doublet and we deal here with a twofold orbital degeneracy.
The coupling is ferromagnetic (double exchange) since an electron in an eg
orbital hops into an empty eg orbital at a neighboring site. This is shown in
Fig. 12.18. An enormous amount of research went into the study of mangan-
ites because of the colossal magnetoresistance found in some of them. There
is a high-tech potential associated with that physical effect.

There are a number of different forms of orbital degeneracies observed
in the transition-metal oxides. In the vanadates the V3+ ions are in a 4d2

configuration with the electrons being in t2g states with strong Hund’s-rule
correlations. Therefore they form a S = 1 high-spin state. In the titanates Ti3+

is in a 4d1-configuration and hence again in a t2g orbital. The ruthenates have
Ru4+ in a 4d4 configuration. All d electrons are in t2g orbitals since Hund’s-
rule correlations are not strong enough to overcome the t2g−eg CEF splitting.
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Fig. 12.18. Double exchange due to hopping of an eg electron into an empty eg
orbital of a neighboring site.

Therefore one of the t2g orbitals is doubly occupied while the remaining two
electrons form a S = 1 state.

Fig. 12.19. Different types of cooperative orbital order in perovskite structures
(A2BO4). Centers of the MO6 octahedra (B-sites) are shown by large filled and
empty spheres which represent two different highest occupied d orbitals. Oxygen
ions are marked by small open spheres. Small spheres at the body center cubes
denote A-sites, e.g., La, Ca or else. (From [168]).

As pointed out before, orbital degeneracy may be lifted by orbital order-
ing. In perovskite structures the various types of cooperative ordering can be
divided into four different classes which are shown in Fig. 12.19. They differ in
symmetry properties of the ordered state. The following considerations intend
a microscopic description of the different forms of orbital ordering. Starting
Hamiltonian is one of the form of (12.7) but here generalized to five d bands
and three p bands. From this Hamiltonian we want to eliminate the oxygen
p orbital degrees of freedom and to replace them by effective interactions be-
tween different transition metal ions. This can be done by a Schrieffer-Wolff
transformation of the form described in Sect. 10.2.2. Consider a d orbital with
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index ν = 1, 2 at site i and an orbital ν′ at site j which couple via an oxy-
gen ion as shown in Fig. 12.17. Then we obtain an effective hopping matrix
element tνν′ between sites i and j of the form

tνν′ =
V

(O)
iν V

(O′)
jν′

(ǫp − ǫd)
(12.18)

in hole notation. Here V
(O)
iν is the hopping matrix element between the d

orbital ν at site i and the oxygen orbital O and similar for V
(O′)
jν′ . Therefore

we may start from the multiband Hubbard Hamiltonian

H = −
∑

〈ij〉

∑

νν′σ

(

tνν′a+νσ(i)aν′σ(j) + h.c.
)

+H1 , (12.19)

with H1 given by (11.1). The direct hopping matrix element between orbital
ν at site i and ν′ at site j is assumed to be included in tνν′ too.

From (12.19) we want to extract an effective Hamiltonian for the low-
energy excitations in the spirit of Kugel and Khomskii [256], thereby taking
into account that correlations are strong. It should involve spin- and orbital-
degrees of freedom. The latter act like an isospin τττ which fulfills the same
commutation relations as the spin operators, i.e., [τn, τm] = iǫnmℓτℓ. But
before we derive the effective Hamiltonian we want to point out the important
role of the Jahn-Teller effect. For that purpose we consider a single electron in
a degenerate orbital, e.g., in an eg orbital. The ion Mn3+ in LaMnO3 serves
as a specific example. The neutral atomic configuration of Mn is [Ar] 3d54s2

and therefore Mn3+ is in a 3d4 configuration. As pointed out before, the t2g
orbitals are singly occupied in a high spin S = 3/2 configuration. They couple
with the fourth d electron, which is in an eg orbital to S = 2. When the
latter hops to a neighboring site, the matrix element depends on the angle θij
between the spins Si and Sj of the two sites involved. More specific

t(i, j) = t cos (θij/2) . (12.20)

This form of the hopping matrix elements gives preference to a ferromagnetic
coupling of neighboring sites. The latter is forced by the kinetic energy, which
is optimal when θij = 0. We speak here of double exchange.

The degeneracy of the eg doublet, a result of the local site symmetry, is
lifted by the Jahn-Teller (J–T) effect. The latter consists of a distortion of
the oxygen octahedron in the xy-plane and results in a lowering of the energy.
This is seen as follows. From degenerate perturbation theory we know that the
energy gain due to a symmetry-breaking perturbation, which here is a strain,
is linear in that perturbation. Yet the energy loss due to the accompanying
elastic energy is only quadratic in the strains. Therefore an orbital symmetry
breaking by a lattice deformation will always lead to a gain in energy. The
deeper the energy minimum, the larger the size of the deformation of the
octahedra.
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a)

b)

Fig. 12.20. (a) Jahn-Teller (J-T) distortions of Γ3-symmetry in the form of ǫ1, ǫ2
strains on an octahedron; (b) two forms of cooperative J-T distortions corresponding
to (α) C-type and (β) G-type ordering, see Fig. 12.19. (From [384]).

For a more detailed discussion of the J–T effect, we introduce the orbitals

|ϕ1〉 = |d3x2−r2〉 , |ϕ2〉 =
∣

∣d3y2−r2
〉

(12.21)

as basis for the effective isospin. The two orbitals are obtained from the origi-
nal two eg orbitals (see Fig. 12.16) by a rotation in the two-dimensional space,
i.e.,

|ϕ(ϑ)〉 = cosϑ/2 |d3z2−r2〉 + sinϑ/2
∣

∣dx2−y2
〉

(12.22)

when for ϑ the values 4π/3 and −4π/3 are chosen. The deformations of the
octahedra i in the ab-plane are of Γ3-symmetry and described by the Hamil-
tonian

HJT = −g
∑

i

(ǫ1(i)τz(i) + ǫ2(i)τx(i)) , (12.23)

with the strains ǫ1 and ǫ2 given by

ǫ1 =
1√
2
(ǫxx − ǫyy) ; ǫ2 =

1√
6
(2ǫzz − ǫxx − ǫyy) . (12.24)

The corresponding deformations are depicted in Fig. 12.20a. While ǫ1 favors
either the orbital |d3x2−y2〉 or |d3y2−z2〉 depending on the sign of g, the strain
ǫ2 mixes the two.
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Cooperative J–T transitions can be of different type as shown in Fig.
12.20b. Thereby the total volume change must be kept as small as possible in
order not to loose additional elastic energy. One way to achieve this is by an
antiferro-orbital arrangement of the distorted octahedra. In addition to the
J–T effect the octahedra of the perovskite structure are often tilted like in
La2CuO4. This tilting may affect considerably the hopping matrix elements
of the electrons.

Fig. 12.21. Hybridization between two dyz orbitals; (a) when the bond is in z
direction; (b) when it is in x-direction.

Now we proceed to derive an effective Hamiltonian by replacing the virtual
hopping processes by effective intersite interactions similar as done before for
the t-J model at half filling or as described more generally in Sect. 10.2.2. To
be specific, we consider as an example two neighboring sites i and j(= i+ δ)
with two electrons in orthogonal orbitals dxz and dyz , a situation which applies
to the d electrons of the perovskite Sr2VO4. Note that the two orbitals do not
hybridize. Furthermore, we discuss first the nearest-neighbor interaction along
the z axis (see Fig. 12.21a). We assume that the two electrons have opposite
spins because of an AF coupling. This allows for singlet as well as triplet
states. We introduce again an isospin matrix τ̂z for each of the two sites. In
the present case we assign the eigenvalue τz = 1 to the dxz orbital and τz = −1
to the orbital dyz. The state of a d electron at site i is denoted by |τz;σz〉i and
includes the orbital index τz as well as the spin index σz . We want to reduce
the Hamiltonian for sites i and j to an effective one acting on a 8-dimensional
Hilbert space. The latter is spanned by states of the form |τz ;σz〉i⊗|τ ′z;−σz〉j .
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The aim is to find the matrix elements Heff
αβ of the effective Hamiltonian in

this reduced Hilbert space.
First we consider the matrix elements in the subspace with τz = τ ′z . By

applying (10.15 - 10.17b) to this problem we obtain as intermediate state
a doubly occupied orbital with energy U in the part of the Hilbert space
perpendicular to the reduced one. Therefore, like in the t-J model the effective
Hamiltonian is of the form Jexsisj with Jex = 4t2νν/U . The subscript ν refers
here to the dxz or dyz orbital. The determination of the remaining matrix
elements with τ ′z = −τz is more involved. In the intermediate state the two
electrons are in different orbitals at one of the site. They can be in a singlet
state with energy Es = U ′ + J or in a triplet state with energy Et = U ′ − J .
The energies U ′ and J have been defined in (11.1). In accordance with Hund’s
rules Et < Es. The electron return process, i.e., HPQ in (10.17a) leads to four
final states labeled 1 to 4, i.e.,

|τz ;σz〉i ⊗ | − τz;−σz〉j ; | − τz;−σz〉i ⊗ |τz;σz〉j and

| − τz;σz〉i ⊗ |τz ;−σz〉j ; |τz ;−σz〉i ⊗ | − τz;σz〉j . (12.25)

The first state is the original one and the second state has the electrons on
site i and j interchanged. The remaining two states correspond to an isospin
flip and to a spinflip of the original state, respectively.

The Hamiltonian matrix elements are of the following form: Heff
11 =

−(t2/2)(1/Es + 1/Et) and Heff
12 = −Heff

11 because of the intersite exchange
of the electrons. The matrix element Heff

13 = −t2(−1/Es + 1/Et) because of
the isospin exchange and Heff

14 = −Heff
13 because of the spin exchange. The

different signs in the matrix elements are immediately obtained by using for
the singlet and triplet states the analog of the first and third line of (10.7).
The hopping matrix element t stands for tνν with ν = 1(dxz) and ν = 2(dyz).
Since i and j are neighboring sites along the z axis it is t11 = t22. We notice
that spin and isospin remain uncoupled, at least as long as spin-orbit interac-
tions are neglected, as done here. The spin couplings are rotational invariant
but the isospin couplings are not. From this property of the coupled spins and
the known matrix elements, we can construct the effective Hamiltonian in
terms of the spin and isospin operators s(i) and τττ (i), respectively. The matrix
elements for (τz)i = (τz)j were obtained before. We rewrite it here so that the
isospin appears explicitly

H
(1)
eff1

(i, j) =
8t2

U
(sisj − 1/4) (τz(i)τz(j) + 1/4) . (12.26)

The Hamiltonian differs from zero only when the spins couple antiferromag-
netically.

The effective Hamiltonian for antiferro-orbital ordering, i.e., when (τz)i =
(−τz)j follows from the above and is found to be
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H
(2)
eff (i, j) =

4t2U ′

(U ′)2 − J2
(τττ (i)τττ (j)− 1/4) (sisj + 3/4)

+
4t2J

(U ′)2 − J2
(τττ (i)τττ (j)− 1/4) . (12.27)

One can check easily that this form reproduces the previously derived matrix
elements of Heff . The second term is independent of the spin coupling, while
the first term favors ferromagnetic spin alignment. This is due to Hund’s-rule
correlations. The ground-state wavefunction is therefore a product of a spin
triplet times an antisymmetric, i.e., singlet isospin part. The ground-state
energy is

E0 = − 2t2

(U ′ − J)
. (12.28)

Next we consider for the same two orbitals dxz and dyz the effective inter-
action between neighboring sites in x instead of z direction. The positioning of
two dyz orbitals is shown in Fig. 12.21b. It is apparent that the hybridization
matrix element −tνν in (12.18) is largest for two dyz-orbitals, i.e., t22 ≫ t11
and furthermore that t12 = 0. To lowest approximation one often accounts
only for t22 = t and neglects all other hopping terms. An analysis analogous
to the previous one yields an effective Hamiltonian of the general form

Heff(i, j) = [a+ b (τz(i) + τz(j)) + c τz(i)τz(j)]

+s(i)s(j) [a′ + b′ (τz(i) + τz(j)) + c′ τz(i)τz(j)] . (12.29)

The constants can be expressed again in terms of U,U ′ and J but we do not
reproduce their explicit forms. A point of interest is that only the z component
of the isospin appears. This implies that there is no dynamics with respect to
the orbital degrees of freedom, i.e., there are no isospin flips. The ground state
of a two-site, two-electron system turns out to be a spin triplet multiplied by
an orbital singlet. The ground-state energy is E0 = −t2/(U ′−J) and therefore
is higher than for a bond in z direction (see (12.27)). With Heff(i, j) defined
for the z and x and similarly for the y direction one can apply a mean-field
approximation and determine a phase diagram involving the different types
of ground states. Examples are given below. A similar analysis can be applied
to different orbital degeneracies like the two-fold degenerate eg orbitals.

The situation simplifies very much if we set tνν′ = tδνν′ , a rather drastic
assumption in view of the previous discussion. Then we have as well rotational
invariance in isospin space and the effective Hamiltonian reduces to the simple
form

Heff =
∑

〈ij〉

(

J1s(i)s(j) + J2τττ(i)τττ (j) + J3
(

s(i)s(j)
)(

τττ(i)τττ (j)
)

)

. (12.30)

In the following we want to discuss some material-specific properties.
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12.2.1 Manganites: LaMnO3 and related compounds

The structure of LaMnO3 consists of MnO6 octahedra with Mn3+ (3d4) in the
center. The octahedra share corners and form infinite, stacked layers. As such
LaMnO3 serves as a parent compound of other systems which differ in the
number of layers formed periodically. The double layer compound La2Mn2O7

is an example, which is discussed later. The manganites have attracted im-
mense attention. It was triggered by the discovery of a colossal magnetore-
sistance (CMR) which some of the systems show4. The latter is intimately
connected with the strong correlations which prevail in these materials.

Fig. 12.22. Distortion of the MnO6 lattice of GdFeO3-type due to tilting of the
octahedra. The resulting structure is orthorhombic. (From [142]).

The ground state of LaMnO3 is insulating. It is the result of a delicate
balance between different interactions of orbital-, spin- and lattice-degrees
of freedom. As pointed out before, the 3d4 electrons of Mn occupy the t2g
orbitals in form of a high-spin state with S = 3/2, the fourth electron is in
a eg-state and couples ferromagnetically to form a S = 2 state. The crystal
structure deviates considerably from the ideal perovskite structure, because
the MnO6 octahedra are strongly tilted (see Fig. 12.22). This tilting is related
to a J–T distortion of the octahedra. The Jahn-Teller effect is cooperative and
antiferro-distortive. Spin ordering is of A-type (see Figs. 12.19 and 12.23) while
orbital ordering is of C-type. The angle ϑ in (12.22) is not known precisely,
because it is difficult to determine it experimentally. One technique which
has been applied is anomalous X-ray scattering associated with the K-edge

4 see, e.g., [77,220]
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absorption [336]. A distortion of the octahedra respective orbital order shows
up here in an otherwise forbidden (3, 0, 0) reflection. A theoretical analysis is
found, e.g., in Ref. [443].

The stacking of the ferromagnetic planes is shown in Fig. 12.23. In the
z direction electrons on neighboring sites are in the same orbital. Their spin
coupling is antiferromagnetic via superexchange and mediated by oxygen sites.
This is also what is obtained from LDA+U calculations [281]. It is worth
noticing that the transition temperatures for spin ordering Tcs and orbital
ordering Tco are quite different, i.e., Tcs = 145 K while Tco = 780 K.

Fig. 12.23. Orbital order in LaMnO3 in form of an antiferro-orbital arrangement
of d3x2−r2 and d3y2−r2 orbitals. The precise value of ϑ in (12.21) is not yet known.
(From [450]).

Fig. 12.24. Charge- and orbital ordering in La0.5Sr0.5MnO3 as confirmed by reso-
nant X-ray scattering. (From [450]).
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When La3+ is partially replaced by Sr2+ we deal with a hole doped system.
At half filling of the lower e′g orbital, i.e., for La0.5Sr0.5MnO3 charge order of
the Mn3+ and Mn4+ takes place. One sublattice is occupied by Mn3+ and
the other by Mn4+ ions. In addition there is orbital ordering of the Mn3+

sites as confirmed by resonant X-ray scattering [336] (see Fig. 12.24). Expla-
nation of charge ordering requires the inclusion of electron repulsions between
neighboring sites. Charge order of the form shown in Fig. 12.24 reduces those
repulsions to a minimum.

Fig. 12.25. Left panel: Crystal structure of LaSr2Mn2O7 and La2−2xSr1+2xMn2O7

consisting of MnO6 octahedra and (La,Sr)-cations (circles). Lattice constants are
(x = 0.5) a = 3.874Å, c = 19, 972Å. Right panel: Structural and magnetic phase
diagram of bilayer La2−2xSr1+2xMn2O7 in the doping range 0.3 < x < 1.0. Charge
order (CO) occurs in the range 0.5 6 x 6 0.65. Near x = 0.7 no long-range order is
observed. CAF: canted AF order, AFI: antiferromagnetic insulator. (From [382]).

In the following we want to discuss briefly the double-layer manganite sys-
tems La2(1−x)Sr1+2xMn2O7 in order to demonstrate possible reentrant charge
ordering caused by electron correlations. The structure consists of double lay-
ers of MnO6 octahedra with rock-salt like MnO slabs in between. It is shown
schematically in Fig. 12.25. When x = 0.5 we deal with LaSr2Mn2O7, an an-
tiferromagnetic compound with equal number of Mn3+ and Mn4+ ions. This
suggests charge, and orbital ordering, which has in fact been observed. The
phase diagram of La2(1−x)Sr1+2xMn2O7 is very complicated. In Fig. 12.25 we
show this to exemplify how electron correlations can lead to a rich variety
of phases by slight modifications of materials. It also shows that the materi-
als we understand reasonably well are obviously just the beginning of a vast
manifold, with various competing interactions and instabilities.
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Replacing in La2SrMn2O7 the La3+ ions by Sr2+ implies hole doping.
Therefore the following Hamiltonian seems appropriate for a description of
charge- and spin-degrees of freedom,

H =
∑

ijσ

tij
(

c+iσcjσ + h.c.
)

+ U
∑

i

ni↑ni↓ + V
∑

〈ij〉
ninj

−JH
∑

i

Sisi + J
∑

〈ij〉
SiSj . (12.31)

The compact index i = (ℓ, λ) includes a layer index λ = 1, 2 and a site index
ℓ within a layer. The first three terms of the Hamiltonian describe the kinetic
energy of the eg electrons, their on-site Coulomb repulsion and the repulsion
when they are placed on nearest-neighbor sites. The latter repulsion plays an
important role in charge order. The term before the last one describes the
Hund’s-rule energy of eg electrons by their coupling to the high-spin S =
3/2 configuration of the localized t2g electrons. Finally there is an intersite
spin-spin interaction of neighboring S = 3/2 spins associated with the t2g
orbitals via superexchange. The orbital eg degeneracy is still missing in (12.31)
but the problem would become too complex to be treated in a reasonably
transparent way here. Therefore we concentrate on charge order only and
disregard possible additional orbital order at this stage.

For a discussion of charge order we want to limit ourselves to a single layer
instead of treating the double layer and assume that charge order is the same
in both layers. So one might wonder why we fail to consider La1−xSrxMnO3

rather than La2(1−x)Sr1+2xMn2O7. The answer is that LaMnO3 has a cubic
structure in which charge order in the presence of hole doping has not yet
been observed.

Furthermore, for a study of charge degrees of freedom, the last two terms
in (12.31) may be neglected. We assume that U ≫ t > V . In order to describe
charge order, we introduce two sublattices A and B and treat V on a mean-
field level. The on-site interaction U is treated in CPA as outlined in Chapter
95. For a square lattice with four nearest neighbors we may write the first
three terms in (12.31) for a paramagnetic system in the form

H = V
∑

iǫA,σ

4
∑

δ,σ′

a+iσaiσb
+
i+δσ′bi+δσ′ + U

∑

ℓǫA,B

nℓ↑nℓ↓

+t
∑

〈ij〉σ

(

a+iσbjσ + b+jσaiσ
)

. (12.32)

Here we have replaced the c+ℓσ operators by the ones a+iσ, b
+
jσ for the sublat-

tices A and B, respectively. Hopping processes have been limited to nearest
neighbors. In CPA the above Hamiltonian is replaced by a single-particle
Hamiltonian in the presence of disorder, i.e.,

5 see, e.g., [184]
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H =
∑

iǫA1σ

EAσ a
+
iσaiσ +

∑

jǫB1σ

EBσ b
+
jσbjσ + t

∑

〈ij〉σ

(

a+iσbjσ + b+jσaiσ
)

−2NV nAnB . (12.33)

Here nA/B are the average occupation numbers of sites on sublattice A and
B, respectively. As before, N is the total number of sites. The orbital energies
EAσ and EBσ are given by

EAσ = 4V











nB with probability 1− 1

2
nA

nB + U with probability
1

2
nA

, (12.34)

by assuming that 〈a+iσaiσ〉 = 〈a+i−σai−σ〉 and similar for b. The expression for
EBσ is analogous. Solving this Hamiltonian by the CPA is almost identical
to the case discussed in Sect. 9.1, except that we deal here with two sublat-
tices. They are connected by the hopping matrix element t. Therefore, for the
averaged Green’s function ḠA(k, ω) of sublattice A, we may write

ḠA(k, ω) = Ḡ
(0)
A (ω) + Ḡ

(0)
A (ω)tkḠ

(0)
B (ω)tkḠA(k, ω) (12.35)

and similar for ḠB(k, ω). Here tk = −2t(cos kx + cos ky) is the energy disper-
sion caused by nearest neighbor hopping given in units of the lattice constant.

The Ḡ
(0)
A/B(ω) are averaged Green’s functions in the absence of any hopping

and (9.15) applies here. Therefore

ḠA(k, ω) =
1

ω −ΣA(ω)− t2k/ (ω −ΣB(ω))
(12.36)

and similar for ḠB(kω). The CPA requires that on average the t-matrix van-
ishes (see (9.12)). This yields two equations of the form of (9.13). More specif-
ically, we obtain

ΣA(ω) = 4V nB + UnA/2

− (4V nB −ΣA(ω)) Ḡ
(0)
A (ω) (4V nB + U −ΣA(ω)) (12.37)

and similar for ΣB(ω). These equations have to be solved for ΣA(ω) and
ΣB(ω) under the constrain that nA + nB = 2n with n denoting the average
number of electrons per site. We are interested in computing the changes in
charge ordering with temperature. Therefore we go over to the temperature
Green’s functions discussed in Sect. 7.1.2. The occupation numbers nα (α =
A,B) are related to the average Green’s functions Ḡα(k, iωn) through

nα =
2T

N

∑

k,n

Ḡα(k, iωn) . (12.38)

These two equations have to be solved self-consistently.
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Fig. 12.26. T-V phase diagram for one layer of the double-layer compound
La2(1−x)Sr1+2xMn2O7 with n = 1 − x = 0.3 (solid line) and 0.5 (dashed line).
Inset: occupancies nA (solid line) and nB (dashed line) as function of V (all energies
in units of t) for n = 0.5 and U → ∞. (From [184]).

Whether solution with nA 6= nB can be found depends on the size of
V which enters the equations. We show in Fig. 12.26 the phase diagram for
different values of n = 1− x as function of temperature T and V . The on-site
repulsion is U = 2 in units of t. One notices a reentrant charge order for an
interval of V values which depends on n. In that regime the ground state
is homogeneous. However, at finite temperatures charge order sets in, and
disappears again at even higher temperatures. The absolute temperatures in
Fig. 12.26 for reentrant behavior are much too high for possible observation.
This is a consequence of having assumed a nearest-neighbor interaction only.
Reentrant charge order is not obtained in a self-consistent field approximation
and therefore a true correlation effect. However, it can be shown that also
polaron formation can lead to reentrant charge order.

In case of a ratio Mn3+/Mn4+ = 1, i.e., for x = 0.5 one would expect
charge ordering with a vector Q = (12 ,

1
2 , 0). Instead, a superstructure with

Q = (14 ,
1
4 , 0) is observed [240]. This is due to a Jahn-Teller distortion as a

result of which orbital ordering takes place. As previously discussed the elec-
trons of the Mn3+ ions order alternatingly in d3x2−r2 and d3y2−r2 orbitals in
a staggered fashion. Above 100 K the superstructure reflections in X-ray scat-
tering disappear, indicating that charge and orbital order have been destroyed
by melting. Charge order for a ratio of Mn3+/Mn4+ = 1 is also observed in
other systems like La0.5Ca0.5MnO3 or Pr0.5Sr0.5MnO3 [451].

When hole doping is large the correlation energy decreases while the av-
erage distance between electrons increases. Then charge order is disfavoured
(see Fig. 12.24). The magnetic interaction terms in (12.31) become important
then. The double exchange term −JH

∑

i Sisi favors ferromagnetic (FM) cou-
pling of Mn sites in the metallic state while the last term in (12.31) due to
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superexchange favors an antiferromagnetic arrangement of the two layers at
x = 0.5. In the latter case we deal with an insulating state since the unit cell
has doubled. Both types of exchange are shown in Fig. 12.27.

Fig. 12.27. Left side: AF coupling of the two layers in stoichiometric (x = 0.5)
charge ordered LaSr2Mn2O7 due to superexchange in z direction. Right side: FM
coupling between layers induced by double exchange (0.3 < x < 0.4). Within a plane
the FM spin arrangement is also due to double exchange, the mechanism of which
is shown in Fig. 12.18.

The spin-wave spectrum of the double layer has been measured6 and cal-
culated7. It consists of an acoustic and an optical branch. The dispersion in
z direction is found to be smaller by a factor of 10−2 as compared with the
one in the x − y plane. The weak exchange coupling between layers results
from the large separation of the double layers from each other. In the doping
regime 0.4 < x < 0.5 AF superexchange competes with FM double exchange
with the result that a canted AF phase is formed. It can be considered as a
superposition of an AF and FM component. For doping x 6 0.4 the eg con-
duction band turns more and more d3z2−r2 like. Therefore double exchange
along the z axis becomes dominant. In that case the superexchange term in
(12.31) may be neglected. Before closing we want to reemphasize that the
formation of polarons, which is only indirectly related to electron correlations
and therefore has been discarded here, has a strong influence on the phase
diagram.

12.2.2 Vanadates: LaVO3

In the vanadate LaVO3 the V3+ ions are in a 3d2 configuration. Therefore
only t2g orbitals are partially occupied and the eg orbitals need not be con-
sidered. The structure is tetragonal, i.e., the octahedra are not tilted. But
they are J–T distorted and the distortion is of type G (see Fig. 12.28). Since
Hund’s-rule coupling is strong, the two d electrons are in a high-spin state

6 see [62,182,364]
7 see [61,406]
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S = 1. The system is a Mott-Hubbard insulator. Electronic structure calcu-
lations show that at every V site the dxy orbital is singly occupied [326]. The
second d electrons occupy a dxz or dyz orbital in an alternating fashion (see
Fig. 12.28). The orbital order is of G type and follows from the J–T transition.
The magnetic ordering is of C type for the following reason. The singly occu-
pied dxy orbitals cause an AF coupling within the ab planes. Along the z axis
an alternating occupation of a dxz and dyz orbital is favored by double ex-
change; hence as observed experimentally ferromagnetic order is established.
The transition temperatures for orbital ordering TO and magnetic long-range
order TN are nearly the same, i.e., TO = 141 K (1st order transition) and
TN = 143 K (2nd order transition). This is quite distinct from other orbitally
ordered systems where TO is usually much higher than TN .

Fig. 12.28. Spin and orbital order in LaVO3. Spin ordering is of type C while
orbital ordering is of type G (compare with Fig. 12.19). Not shown is the singly
occupied dxy-orbital on each lattice site. (From [450]).

12.2.3 Ladder Systems: α′–NaV2O5

The interest in the layered quasi-one dimensional (1D) perovskite α′–NaV2O5

originates from the observation of a spin gap in the low-temperature suscepti-
bility of that compound. In order to understand the significance of this finding
some background information is required.

In Sect. 10.2.2 we have discussed the appearance of a SDW in a metal
due to nesting properties of the Fermi surface. The description given there
applied to weakly correlated systems. A one-dimensional metal is insofar spe-
cial as the Fermi surface has here the form of a slab. The nesting condition is
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therefore fulfilled at each point of the Fermi surface. Consequently, a charge
density wave (CDW) forms and a gap opens over the whole surface. If the
conduction band is half filled, this results in a dimerization, i.e., the CDW is
accompanied with a lattice distortion. The unit cell is doubled. This is known
as Peierls transition. It occurs at a wave vector q = 2kF and at a transition
temperature controlled by the interchain coupling. In Chapter 14 we discuss
the case of trans-polyacetylene, which is a prototype for a Peierls transition
with an alternating change occurring in the C-C-bond length.

Surprisingly a similar dimerization can occur in a 1D-insulator, but here
with respect to the spins. This is a spin-Peierls transition. A prerequisite for it
is an antiferromagnetic interaction between spins on neighboring sites8. There
are a number of organic spin-chain systems in which a spin-Peierls transition
has been observed, but there exist hardly any inorganic chain systems which
show that phenomenon. Noticeable exceptions are CuGeO3 and α′–NaV2O5

[171, 205]. The reason for the rareness of spin-Peierls transitions in inorganic
chain systems is presumably that they are overruled by magnetic interchain
coupling.

In α′–NaV2O5 a spin-Peierls transition has been observed at Tc ≃ 33 K.
The systems consist of double chains of oxygen pyramids. The V atoms in the
center of the base of the pyramid are aligned along the b-axis (see Fig. 12.29).
In the homogeneous high-temperature phase the V atoms have valency V 4.5+

and hence an average of 3d0.5 per site. Yet the system is not metallic. The
low-temperature monoclinic structure can be understood only, if in addition
to spin dimerization a charge ordering transition of V 4+ and V 5+ ions takes
place. For T < Tc the magnetic susceptibility shows a behavior typical for
spin chains, i.e., the spin excitations are isotropically gapped.

In order to understand the system, one has to take into account that
around 33 K there are actually two phase transition very close to each other,
i.e., a first-order transition at Tc1 = 33 K and a second-order transition at
Tc2 = 32.7 K. Experiments suggest that at Tc1 charge ordering takes place on
the V sites, i.e., there are lattice sites with ordered V 4+ ions and other sites
with V 5+ ions. However, that does not imply that all lattice sites participate
in charge ordering. Some experiments indicate also that in the Trellis lattice
structure shown in Fig. 12.29 only every other ladder charge orders [294]. This
finding has been questioned, so that at present uncertainty remains. However,
the measured magnetic excitations with q vector perpendicular to the lad-
ders are in accord with the assumption of alternating ordered and disordered
ladders. At Tc2 an isotropic spin gap opens which suggests a dimerization of
spins, here in the charge ordered A chains (see Fig. 12.29). Associated with
the dimerization is a lattice distortion which shortens the distances between
sites forming dimers and elongates the remaining intersite distances. There-
fore α′-NaV2O5 is another example of an intricate interplay between charge
ordering and gapped spin excitations. In order to obtain better insight into

8 for early work see [73,380]



12.2 Orbital Ordering 317

Fig. 12.29. (a): Layered perovskite structure of α′–NaV2O5 consisting of chains
of oxygen pyramids that contain the V atoms aligned along the crystal b axis.
The layers are stacked along c axis. Na atoms (grey spheres) are centered above
the ladder plaquettes. (b): ab-plane of the Trellis lattice structure consisting of V-
V ladders alternatingly shifted along b by half a lattice constant. This leads to a
quasi-’triangular’ structure for V-V-rung units. An orthorhombic high-temperature
unit cell is indicated. (c): A ladders with zig-zag charge order and B ladders with
dimerization. (From [28].)

the underlying physics, the system was studied by a LDA+U calculation [496].
However, despite their usefulness the calculations do not explain why the sys-
tem remains insulating even above Tc1 as experimentally observed. Therefore,
a description in terms of an extended Hubbard model seems more appropriate.

The model Hamiltonian is the one of (11.1) but extended to the following
form

H =
∑

〈ij〉R

tR
(

a+iσajσ + h.c.
)

+
∑

〈ij〉L

tL
(

a+iσajσ + h.c.
)

+
∑

〈ij〉I

tI
(

a+iσajσ + h.c.
)

+
∑

〈ij〉D

tD
(

a+iσajσ + h.c.
)

+
∑

〈ij〉R

VRninj +
∑

〈ij〉L

VLninj +
∑

〈ij〉I

VIninj + U
∑

i

ni↑ni↓ .

(12.39)

The indices R,L,D and I refer to V ions on a rung, a leg and a diagonal
between two rungs of a ladder, while the index I refers to nearest neighbor
V sites belonging to different ladders (see Fig. 12.29). The interactions and
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hopping matrix elements are illustrated in Fig. 12.30. The problem can be
considerably simplified if we limit the configurations to those with one electron
per rung. In that case the Hamiltonian can be reduced to one of a pseudospin.
It ensures insulating behavior even above the charge ordering temperature.
The pseudospin τ(i) = 1

2 describes a 3dxy electron in rung i with τz(i) = + 1
2

when it occupies the left and τz(i) = − 1
2 when it occupies the right V atom of

the rung. The Hamiltonian projected onto the Hilbert space of the pseudospins
is of the form

VD

VR

tR

tDtL

VI

t I

VL

Fig. 12.30. Square segment of a ladder of V ions with different, i.e., frustrated
intersite repulsions used in a model Hamiltonian. Dashed lines connect to nearest
neighbor sites on a leg belonging to another ladder. Solid lines connect sites on the
same ladder.

H =
∑

〈ij〉L

K(i, j)τz(i)τz(j) +
∑

〈ij〉LL′

I(i, j)τz(i)τz(j)

+
∑

i

2t̃R(i)τx(i) . (12.40)

In the first term the sum refers to nearest neighbors i, j within a ladder. There
are three of them per V site. This term favors configurations in which the
nearest neighbors of an occupied V site within the same leg are unoccupied.
The second term refers to nearest neighbors belonging to different ladders and
minimizes the electron repulsions between them, while the last term describes
hopping between two V ions forming a rung. The Hamiltonian (12.40) has the
form of an Ising model in a transversal magnetic field.

The spin interactions between all neighboring V ions are of the superex-
change type. They take place via oxygen ions. The couplings constant differ
when the ions i, j are on the same ladder and when they belong to neighbor-
ing ladders of type A and B, respectively. Therefore we want to couple the
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spin interactions with the charge degree of freedom. We write for the modified
parameters in (12.40)

K(i, j) = 2VL + δK(Si,Sj)

I(i, j) = VI + δI(Si,Sj)

t̃R = tR +
∑

〈ij〉R

δtR(Si,Sj) (12.41)

without specifying here the adjustable parameters δK, δI and δtR. Due to
these modifications charge (τττ ) and spin (S) degrees of freedom are coupled.
As a consequence the optical conductivity which probes charge excitations of
rungs shows signatures of coupled spin excitations even above Tc2 .

From LDA+U calculations values of t̃R ≃ −0.2eV and K ≃ I = 0.7eV
are obtained [28]. We want to draw attention to the frustration caused by
the Coulomb repulsions and also by the antiferromagnetic spin interactions
between V ions belonging to different ladders (see Fig. 12.29). Considering a
single ladder only and discarding the spin interactions, we obtain a zig-zag
charge order when the ratio K(i, j)/4t̃R = λ exceeds a critical value λc = 1.
When the interladder interaction I(i, j) becomes equal or larger than K(i, j),
the zig-zag order melts, and the charge order changes to one of V 4+ ions on
one side of the ladder and V 5+ ions on the other side. Estimates from LDA+U
calculations show that K ≈ I. Therefore, due to frustration the system has
many states with nearly the same energy. This quasi-degeneracy can be lifted
by distortions of the lattice.

The driving mechanism for spin dimerization is the spin interaction energy
obtained from superexchange. Due to the quarter filling of the lattice the
intermediate states do not only consist of doubly occupied sites as we found
it to be the case in the Hubbard model at half filling (see (10.99)). Instead
they include also rungs with two or no electrons instead of one. Furthermore,
the effective exchange constant depends on the form of charge order, e.g.,
it is different for zig-zag order and order with all V 4+ sites on one side of
the ladder. On a given ladder there is a competition between dimerization of
rungs and zig-zag charge ordering. This can be optimized by a different order
in alternating ladders. While in ladders of type A electrons are mainly ordered
in a zig-zag order, in ladders of type B they mainly dimerize in rungs. This
takes place at Tc1 . Due to the frustration which has to be counterbalanced, the
transition temperature is low compared with other charge-ordered transition-
metal oxides. Just below Tc1 there is a spin gap resulting from dimerization in
type-B ladders but no gap in A-type ladders. With increasing charge ordering
below Tc1 the zig-zag order in the type A ladders increases and the interrung
hopping decreases. At this stage the spin excitations in the type A ladders are
gapless like in a spin chain. Below Tc2 a dimerization of rungs takes also place
in type A ladders. Associated with it is a spin-Peierls transition with a spin-
gap opening in type A ladders. This is seen in Knight shift experiments [478]
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and supports the assumption of alternating type A and B ladders. From the
above it is seen that an understanding of the properties of α′-NaV2O5 requires
quite an advanced theoretical modeling. Despite of this we have included that
system here as an example of how advanced modern material sciences have
become and of the important role electron correlations play hereby.

12.2.4 Other Oxides

Of particular interest are ruthenate perovskites, one reason being that Sr2RuO4

seems to be a spin-triplet superconductor. The Ru4+ ions are in a 4d4 config-
uration. Hund’s-rule correlations are not strong enough to dominate the CEF
and therefore all d electrons are in t2g orbitals. We deal here with a S = 1
state. In distinction to Sr2RuO4 the compound Ca2RuO4 is a Mott-Hubbard
insulator. Localization of electrons takes place below TMH = 350 K, while AF
magnetic order sets in at Tc = 110 K. The metal-insulator transition is under-
stood best by assuming that it is the dxy orbital of the t2g manifold which is
doubly occupied [10,187]. This may be due to distortions of the RuO6 octahe-
dra in c direction. The spins of electrons in dxz and dyz orbitals at neighboring
sites are coupled antiferromagnetically through superexchange.

In the titanate LiTiO3 the Ti3+ ions are in a 3d1 configuration and there-
fore only t2g orbitals have to be considered. Experimentally Néel order is
observed below TN = 130 K [233]. However, neither J–T distortions nor or-
bital ordering is observed at any temperature. Apparently the hopping matrix
elements are sufficiently large so that J–T distortions do not form. When the
lattice constant is increased by replacing La by Y, hopping is reduced and
orbital order sets in. At low temperature the system is a ferromagnet with
Tc = 30 K due to double exchange.



13

Heavy Quasiparticles

One characteristic feature of strong electron correlations is the appearance of
low-energy scales. In Sect. 10.2.1 a simple model was used to demonstrate this
phenomenon. In addition, that simple model contains key ingredients of the
Kondo effect1.

The Kondo temperature TK quantifies the low-energy scale which appears
when a magnetic impurity with strongly correlated valence electrons is placed
into a metal. In a system in which the magnetic ions form a lattice, such
as CeAl3, CeRu2Si2, CeCu2Si2, Yb4As3, YbAl3, UBe13, NpBe13, UPt3 or
UPd2Al3, the low-energy excitations may form coherent states. As a result
the effective mass of the quasiparticles can be several hundred times the free
electron mass; thus, it may become larger than, e.g., the mass of µ mesons.
When the aforementioned situation occurs, those particles are classified as
heavy quasiparticles or heavy fermions.

Although most of the heavy fermion systems contain 4f or 5f ions, heavy
quasiparticles are also found in LiV2O4, where d electrons are involved. That
system is, however, special insofar as it has a geometrically frustrated lattice
structure. Strongly correlated electrons on frustrated lattice structures are
an interesting problem in itself and therefore we will examine the subject
separately in Sect. 14.3.

Heavy-fermion systems with heavy quasiparticles satisfy the following re-
quirements:

(a) The low-temperature specific heat C = γT has a coefficient γ of order 1 J
mol−1 K−2, rather than 1 mJ mol−1 K−2 as, e.g., in the case of sodium
or copper metal;

(b) the Pauli paramagnetic susceptibility χs is similarly enhanced as γ, and;
(c) the ratio R = π2k2Bχs/(3µ

2
effγ) is of order unity. Here µeff is the effective

magnetic moment of the quasiparticles. It is obtained, e.g., from measure-
ments of the spin susceptibility at elevated temperatures.

1 see Sect. 10.3
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Fig. 13.1. Qualitative plot of the specific heat C(T) of a heavy-fermion system like
CeAl3. Also shown is the specific heat of LaAl3, a system without 4f electrons.

Sometimes a condition for the resistivity ρ(T ) = AT 2 with large prefactor
A is added. The quantities γ and χs are both proportional to the quasiparticle
density of states at the Fermi levelN∗(0). The latter is proportional tom∗, i.e.,
the effective mass of the fermionic excitations. Large values of γ and χs can
therefore be interpreted by ascribing a large m∗ to the quasiparticles. When
the ratio R (Sommerfeld-Wilson ratio) is calculated, the density of states
N∗(0) drops out since χs is also proportional to N∗(0). For free electrons
R = 1. Therefore, when conditions (a)-(c) are met, we may assume a one-
to-one correspondence between the quasiparticle excitations of the complex
metallic system with strong electron correlations and those of a free-electron
gas, provided we use the effective massm∗ instead of the free-electron mass. A
ratio R 6= 1 indicates that quasiparticle interactions are not negligible. As the
temperature increases to values above T ∗, the excitations lose their heavy-
fermion character; the specific heat levels off as indicated in Fig. 13.1, and
the susceptibility changes from Pauli- to Curie-like behavior. With increasing
temperature the rare earth or actinide ions behave more and more like ions
with well-localized f electrons.

Another interesting phenomenon is the following. With respect to the ther-
modynamics at low temperatures, the f electrons of constituents like Ce seem
to be placed right at the Fermi energy, giving rise to the large density of
states (Fig. 13.2). However, it takes approximately 2 eV in a photoemission
experiment to excite a 4f electron of Ce into an unoccupied conduction elec-
tron state above the Fermi energy (see Fig. 10.9). What at first sight seems
to be a contradiction proves in fact to be none. The two parts in Fig. 10.9
merely demonstrate that there are two types of electronic excitations: namely,
low-energy excitations involving predominantly spin degrees of freedom and
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Fig. 13.2. Quasiparticle density of states as obtained from the low-temperature
thermodynamics. The high value near ǫF is due to the f electrons and is absent
when, for example, Ce is replaced by La.

high-energy excitations involving charge degrees of freedom of the 4f elec-
trons.

It is important to realize that there are quite different microscopic ori-
gins of heavy quasiparticle excitations. Originally it was thought that the
Kondo effect is the only source of such behavior. That turned out to be incor-
rect. At present, a number of different model systems are known. The most
widespread is, indeed, the Kondo-lattice model which applies to Ce systems
and to a number of Yb compounds as well. But heavy quasiparticles may also
form due to partial charge order in a system. The semimetal Yb4As3 is such
an example. In U intermetallic systems an orbital selective partial localiza-
tion of 5f electrons is responsible for the heavy quasiparticle; UPt3 as well
as UPd2Al3 serve as examples. Nearness to a quantum critical point like in
YMn2 or special lattice structures like the pyrochlore lattice with geometric
frustration (for example, LiV2O4) may also result in the formation of heavy
quasiparticles. Finally the Zeeman effect may cause heavy quasiparticle-like
behavior as in Nd2−xCexCuO4.

Apparently, the low-lying excitations characterizing systems with heavy
quasiparticles (so called heavy-fermion systems) involve predominantly spin
degrees of freedom. Direct evidence of this is seen in the entropy associated
with the excess specific heat at low temperatures. It is of order S ≃ kBlnν per
f or d site. Here ν denotes the degeneracy of the ground-state of the atomic
f(d) shell. As in the case of a Kondo impurity, one spin excitation is asso-
ciated with each (e.g., Ce) site. The excitation energy is of order kBT

∗ and
defines a characteristic low-energy scale of the system. The lower T ∗ is, the
smaller is the change in the f or d charge associated with the excitation (see
the model discussed in Sect. 10.2.1) Eventually we may speak of an approxi-
mate separation of excitations with spin and with charge degrees of freedom.
This does not imply that, for example, for a Kondo lattice system TK and
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T ∗ are the same temperatures. Instead, one expects in most cases T ∗ < TK .
This difference originates in the magnetic interactions between different Ce or
actinide ions. They are coupled by the RKKY interaction via the conduction
electrons and that interaction can favor ferromagnetic as well as antiferro-
magnetic spin alignment. We lose this interaction energy when nonmagnetic
singlets are formed: model calculations for two Kondo impurities [217] show
that antiferromagnetic correlations between the magnetic sites weaken the
energy gain caused by singlet formation.

This argument suggests that singlets should not form when the magnetic
interaction energy per site exceeds the singlet formation energy (Doniach cri-
terion). In systems like CeAl2, CePb3, and NpBe13 this seems to be the case,
since at low temperatures they become antiferromagnets. The difficulties in
dealing with Kondo lattices result from the two regimes where the formation
of local singlets dominates on one side, and where the magnetic interactions
dominate on the other. For both regimes separate mean-field theories are
available which convert the many-body quantum problem into a classical one.
But there is no unifying approach available yet which incorporates the two
limiting cases.

We will be mainly dealing with the heavy quasiparticle phase that forms
below a temperature Tcoh < T ∗ when the single-site excitations lock together.
The formation of heavy quasiparticles does not only show up in the thermo-
dynamic properties of a system, but also in de Haas-van Alphen experiments2

and photoemission studies3. Heavy quasiparticles may lead to strong mass
anisotropies at the Fermi surface, a result which raises the question of how
one can calculate the Fermi surface and the anisotropic masses for a sys-
tem of strongly correlated electrons. For Kondo lattice systems, renormalized
bandstructure calculations have proven a successful computational scheme for
doing so; we can calculate Fermi surfaces as well as the strongly anisotropic
effective masses for those systems with only one adjustable parameter.

13.1 Kondo Lattice Systems

Heavy fermion behavior in Ce intermetallic compounds is, to our knowledge,
always due to the Kondo effect. In the following we will often refer to CeRu2Si2
which is a prototype for Kondo lattice systems. As pointed out before, coherent
excitations in the form of heavy quasiparticles build up below a temperature
Tcoh. This temperature can be approximately determined by measuring the
temperature dependent resistivity ρ(T ) (Fig. 13.3). In dilute magnetic alloys
it increases rapidly below T ∗ due to the Kondo effect. Yet below Tcoh the
function ρ(T ) decreases strongly because of the formation of coherent Bloch-
like states, and one observes a behavior ρ(T ) = AT 2 typical for Fermi liquids.

2 see, e.g., [12,289,422]
3 see [87]
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Fig. 13.3. Schematic plot of the temperature dependent resistivity ρ(T ) of a Kondo
lattice system. Below Tcoh a typical Fermi liquid behavior is observed, i.e., ρ(T ) ∝
T 2, while near T ∗ the behavior resembles that of a metal with Kondo impurities.

When T increases above Tcoh, the mean-free path of the (spin-dominated)
excitations of the f electron system becomes so short that coherence can
no longer be maintained and the heavy quasiparticles disappear gradually.
For Tcoh ≤ T ≤ T ∗ the specific heat contains large contributions from the
incoherent parts of the f electron excitations. This temperature interval can
be nicely described by a theory based on a Noncrossing Approximation (NCA).
A discussion of that theory would however go beyond the introduction to the
correlation problem we intend to give here. For more details of this NCA-
based theory, see [130], or for an extensive account of the method see [34]
which also lists the original literature.

When T ≫ T ∗ the f electrons can be treated as localized and their local
moments are seen to interact weakly with the spins of the conduction electrons
(effective s−f exchange interactions). The system can then be treated as a col-
lection of Kondo impurities and coherent heavy quasiparticles no longer exist.
The Fermi surface encloses a volume in momentum space given by the conduc-
tion electrons only, i.e., excluding the 4f electrons. In the case of CeRu2Si2
it is therefore the same as the one of LaRu2Si2. This has been confirmed by
photoemission spectroscopy (see Fig. 13.4). The situation differs for T < Tcoh,
where the 4f electrons of CeRu2Si2 contribute to the Fermi surface.

13.1.1 Renormalized-Band Theory

We want to show that the Fermi surface of a system with heavy quasiparticles
can be calculated by Renormalized Band Theory. But in order to understand
that approach it is instructive to consider first the case of a single, e.g., Ce
impurity embedded in a sea of conduction electrons.

When a magnetic impurity forms a singlet with the conduction electrons, it
acts like a nonmagnetic scattering center. A nonmagnetic scattering potential
can be characterized by energy-dependent phase shifts ηl(ǫ) [242], where l
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Fig. 13.4. Photoemission results for (a) LaRu2Si2 in comparison to (b) CeRu2Si2
at T = 25K, i.e., above the Kondo temperature T ∗ = 15K of that system. Band
structures are very similar for both compounds. In CeRu2Si2 there are still signatures
to be seen near zero energy of the heavy quasiparticles [88].

denotes the angular momentum quantum number of the scattered electron.
Friedel’s sum rule relates the phase shifts at the Fermi energy, i.e., ηl(ǫF ), to
the charge – Ze bound by the scattering potential,

Z =
2

π

∑

l

(2l+ 1) ηl (ǫF ) . (13.1)

The energy dependence of the phase shifts near ǫF is directly related to the
density of low-lying excitations. The local enhancement of the density of states
(per spin direction) due to the presence of the impurity, δN(ǫ), follows from
(13.1) as

δN(ǫ) =
1

π

∑

l

(2l+ 1)
dηl(ǫ)

dǫ
. (13.2)

If we start from the Anderson Hamiltonian (10.23), it becomes evident
that the f phase shift (l = 3) is of particular importance. In order for the
ground state of a Ce impurity to have an f electron number close to nf = 1,
the phase shift ηl=3(ǫF ) would have to be in the vicinity of π/[2(2l + 1)],
provided all f orbitals are degenerate. This is, however, never the case. The
lowest J multiplet of a Ce ion is J = 5/2 and the crystalline electric field splits
the (2J+1)-fold degenerate multiplet into a sequence of Kramers doublets. In
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Fig. 13.5. Qualitative plot of the f phase shift ητ (ǫ) near ǫF . At ǫF , ητ (ǫF ) ≃ π/2.
The dashed line has a slope of 1/kBT0. The remaining phase shifts of the s, p, and
d electrons are practically constant over energies of the order of kBT0.

the ground state only the lowest doublet is occupied; we characterize it by a
pseudospin index τ = ±1. Therefore, among the different f electron scattering
channels, only those with the symmetry of the crystal-field ground state have
a non-vanishing phase shift labeled ητ (ǫ). According to the above sum rule,
ητ (ǫF ) must be close to, but slightly less than π/2 in order to bind nearly one
f electron. We show a schematic plot of ητ (ǫ) in Fig. 13.5. Close to ǫF , the
following expansion holds for the ητ (ǫ):

ητ (ǫ) = η (ǫF ) +
1

kBT0
(ǫ− ǫF ) +

∑

ǫ′

φτ,−τ (ǫ, ǫ
′) δn−τ (ǫ

′) (13.3)

with η(ǫF ) ≃ π/2. The linear term defines a characteristic temperature T0
and leads to an excess density of states at ǫF per pseudospin

δNτ (0) =
1

πkBT0
, (13.4)

where T0 is closely related to the Kondo temperature TK . From Fig. 13.5 we
learn that the excess density of states is limited to an energy range kBT0
around the Fermi surface. It corresponds to the singlet-triplet excitation en-
ergy, which here is smeared out over an interval of order kBT0.

The last term on the right-hand side of (13.3) describes the effect on the
phase shift ητ (ǫ) of a distribution δnτ ′(ǫ′) of quasiparticles which might be
present, i.e., it represents quasiparticle interactions. For completeness we have
included it within the spirit of Landau’s Fermi liquid theory and it is absent
when only one quasiparticle is considered. Since we want to set the stage for
computing the Fermi surface we will presently ignore it, but we will show
interesting quasiparticle interaction effects in Appendix D.

After having formulated the single impurity Kondo problem in terms of
phase shifts, we want to apply a similar procedure to the Kondo lattice case.
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A gas of noninteracting quasiparticles near the Fermi energy is parameterized
by the direction dependent Fermi wavevector kF and Fermi velocity vF , i.e.,

E(k) = vF (k̂)(k− kF ) . (13.5)

Here k̂ denotes the direction on the Fermi surface. The renormalized band
method determines the band structure for a given effective potential. As
pointed out before, this potential can be completely described by a set of
energy-dependent phase shifts {ηAl (ǫ)}. Here A denotes the different atoms in
the unit cell, and l is the orbital angular momentum quantum number. The
phase shifts contain all necessary information about the periodic potential.
Consider, for example, CeRu2Si2. The phase shifts at the Fermi energy ǫF ,
i.e.,

{

ηAl (ǫF )
}

=
{

ηCe
l (ǫF ) , η

(Ru)ν
l (ǫF ) , η

(Si)µ
l (ǫF )

}

; ν, µ = 1, 2 , (13.6)

determine the Fermi surface of the material. The partial electronic densities
nAl are given by4

nAl =
2

π
(2l+ 1) ηAl (ǫF ) , (13.7)

and knowing all the ηAl is equivalent to knowing the Fermi surface.
The Fermi velocities and hence effective masses are obtained from the

derivatives
{

η̇Al (ǫF )
}

=

{

(

dηAl (ǫ)

dǫ

)

ǫ=ǫF

}

. (13.8)

There is an important constraint which must be observed by the phase
shifts: the volume ΩF in reciprocal space enclosed by the Fermi surface must
equal half the number of valence electrons nval (including the f electrons) per
volume of the unit cell (Luttinger’s theorem), i.e.,

nval =
2

(2π)
3ΩF

(

ηAl (ǫF )
)

. (13.9)

This condition reduces the number of parameters ηAl (ǫF ) by one.
From the treatment of a single Kondo impurity we know that the strong

correlations are linked to the phase shift for l = 3 of the Ce site, i.e., to
ηCe
l=3(ǫ). All other phase shifts ought to remain essentially unaffected by the
correlations of f electrons and thus are taken from an LDA calculation. After
all phase shifts except ηCe

l=3(ǫ) have been determined from LDA by treating
the f electron of Ce as part of the core, the Fermi surface is already fixed to
a considerable extent; only the phase shift ηCe

l=3(ǫ) remains to be determined.
After the discussion related to (13.3) it is apparent that only the phase shifts
ηCe
τ (ǫF ) among the different l = 3 channels differ from zero. We present an

4 see [242]
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Fig. 13.6. Contours of equal 4f charge density for a free Ce3+ ion and for Ce3+

ion in cubic symmetry (Courtesy of U. Walter).

example of the 4f charge density in Fig. 13.6, where the reader can see that it
reflects the cubic symmetry. Close to the Fermi energy, the phase shift ηCe

τ (ǫ)
can be parameterized by the resonant form

ηCe
τ (ǫ) = arctan

Γ̃

ǫ̃− ǫ
. (13.10)

The parameters ǫ̃ and Γ̃ denote the center of the narrow f -like band and its
width, respectively (see Fig. 13.7). Thus ǫ̃ differs slightly from ǫF . Instead
of using the parameterized form (13.10), we can alternatively expand ηCe

τ (ǫ)
near the Fermi surface in the form of

ηCe
τ (ǫ) = ηCe

τ (ǫF ) +
1

kBT ∗ (ǫ− ǫF ) +
∑

τ ′,i,ǫ′

Φiττ ′ (ǫ, ǫ′) δniτ ′ (ǫ′) . (13.11)

Comparing this expansion with (13.3), we notice a difference in the prefactor
of the linear term as well as in the interaction term due to the presence of
a lattice. We use the slope of the phase shift at ǫF to define a characteristic
temperature T ∗. Its value fixes the width of the resonance at ǫF (Fig. 13.7)
and the effective mass of the quasiparticles of f character as well. The last
term in (13.11) describes the effect of other quasiparticles, which may be
present either on neighboring sites i of the Ce site or on the site itself (i = 0).
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Fig. 13.7. Density of states multiplied by the respective bandwidth versus energy
(schematic): (a) when a renormalized band calculation is done, (b) from a LDA
calculation for a Ce compound like CeRu2Si2. In a system with Yb3+ (4f13) ions
like YbRh2Si2 the role of electrons and holes is interchanged. Note that the energy
scales in (a) and (b) differ [507].

The Pauli principle prevents two f electrons from occupying a Ce site with
the same quantum number τ . Since the quasiparticles have predominantly 4f
character, we have as a consequence Φ0

ττ = 0. Here we are interested only
in the energy dispersion ǫqp(k) of a single quasiparticle, i.e., when no other
quasiparticles are present, and the last term in (13.11) is zero. The theory
then contains the parameters ηCe

τ (ǫF ) and T
∗ only, which can be expressed in

terms of ǫ̃ and Γ̃ if desired.
The partial density of states derived from (13.10) is proportional to η̇Ce

τ (ǫ)
and is shown in Fig. 13.7a. A band calculation within LDA would yield a
qualitatively similar picture as indicated in Fig. 13.7b with Γ̃ and ǫ̃ replaced
by Γf and ǫf , respectively. The calculated LDA values of ǫf and Γf are,
however, of order 0.1 eV and far too large due to an inadequate treatment
of the strong f electron correlations within that approximation (Sect. 4.3).
Here we determine Γ̃ and ǫ̃ by using relation (13.10) and by requiring that
the γ value in the specific heat be correctly reproduced when the calculated
quasiparticle dispersions are employed for its determination. Because of the
constraint (13.9), renormalized band calculations constitute a one-parameter
theory. A schematic summary of the different computational steps is given in
Table 13.1.

Within the frame of renormalized band calculations the calculated f bands
are modified as follows:

(a) the crystal-field splitting is adequately taken into account
(b) the f resonance width is reduced
(c) the center of gravity of the f resonance moves closer to the Fermi energy.

After the bands have been determined, we can calculate the Fermi surface
cross sections measured in a de Haas-van Alphen experiment as well as the
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Table 13.1. List of the different computational steps taken in renormalized band-
structure calculations. (From [507])

Fig. 13.8. Plot of some of the calculated parts of the Fermi surface of CeRu2Si2
[511]. Of the four closed hole sheets only the heavy hole sheet ψ is shown. (Courtesy
of G. J. McMullan)

effective masses. Consider CeRu2Si2 as an example. The Fermi surface con-
sists of five separate sheets: four of them are closed hole surfaces while the
remaining one is a multiply-connected electronic surface with extremal orbits
of rather different character (Fig. 13.8). Listed in Table 13.2 are some of the
measured extremal areas of the Fermi surface with the corresponding effective
masses. We compare these experimental findings with the results of conven-
tional bandstructure calculations based on the LDA and with those of renor-
malized bandstructure theory. As far as the measured Fermi-surface topol-
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ogy is concerned, the deviations between LDA calculations and renormalized
band calculations are relatively small. However, in contrast to the former, the
renormalized band calculations reproduce well also the large measured mass
anisotropies. The contributions from the large hole surface ψ with a measured
m∗ ≃ 120m0 dominate the specific-heat coefficient γ ≃ 350mJ mol−1K−2 to
which T ∗ (or Γ̃ ) have been fitted. We may thus conclude that we can obtain
the anisotropic mass ratios without any additional fit parameter.

Of interest is also the Fermi surface of CeCu2Si2 as obtained by Zwicknagl

from renormalized band theory. The main sheet of the very heavy quasipar-
ticles with m∗/m ≃ 500 is shown in Fig. 13.9. It differs considerably from
LDA results and has a characteristic nesting vector Q = (0.23, 0.23, 0.52) in
units of reciprocal lattice vectors. The latter connects flat, i.e., nesting parts
of the Fermi surface and gives rise to a spin-density wave (SDW) formed by
the heavy quasiparticles. Theory provides here a simple explanation for the
so-called A phase in that material, which has been investigated for almost
twenty years. The SDW phase with µ ≃ 0.1µB and TSDW ≃ 0.7K has been
identified by neutron scattering experiments. Small changes in the f electron
count induce noticeable changes in the heavy quasiparticle sheet. This ex-
plains the extreme sensitivity of that material to deviations from the ideal
stoichiometry.

It is instructive to leave the quasiparticle picture for a moment and shift
our focus to the microscopic picture of f electrons in rare-earth intermetallic
Ce systems. Their effective hybridization with the conduction electrons is
strongly renormalized. We can explain this easily. A conduction electron can
hop onto a 4f orbital of a Ce ion only when the latter is empty; otherwise,
the large Coulomb repulsion between the 4f electrons comes into play. For
simplicity we assume only one f orbital per Ce site. But when the f electron
number nf is close to one, i.e., nf . 1, the f orbital is unoccupied only with
probability (1−nf ). The effective hybridization is thus strongly reduced. This
results in the large density of low-lying excitations or, alternatively, in a self-

Table 13.2. Comparison of de Haas-van Alphen data for CeRu2Si2 [289] with the-
oretical results. Shown are some of the extremal areas of the Fermi surface (areas in
megagauss) and the effective mass ratios m∗/m0. Unlike the LDA, the renormalized
band theory (RB) reproduces well the large observed mass anisotropies. (From [511])

CeRu2Si2 Experiment LDA RB

Area Mass Area Mass Area Mass

Orbit Field [MG] ratio [MG] ratio [MG] ratio

α (110) 4.7 12.3 ≈ 10 ≈ 1.5 ≈ 10 ≥ 10

ǫ (110) 25,0 19.7 23 1.2 20 ≈ 20

δ (001) 12.2 4.0 24 1.5 26 2.1

ψ (100) 53.6 120 70 ≈ 62 ≈ 100
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Fig. 13.9. CeCu2Si2: Main Fermi surface sheet of heavy quasiparticles ( m∗/m ≃
500) calculated with the renormalized band method. It consists of modulated
columns which are oriented parallel to the tetragonal axis. The calculations adopt
the CEF scheme of Ref. [149] consisting of a doublet ground state separated from
an excited quartet by a CEF splitting δ ≃ 330K. Therefore δ ≫ T ∗ ≃ 10K (ob-
tained from the γ-value). The nesting vector Q = (0.23, 0.23, 0.52) connects flat
(“nesting”) parts of the Fermi surface. (From [429,510])

energy Σ(ω) = −Aω with A ≫ 1. In fact, we know from (4.35) that A ≃
m∗/m. The large coefficient A is closely related to the large slope (kBT

∗)−1

of the phase shift ηCe
τ (ǫ) of the quasiparticles at ǫF .

13.1.2 Large Versus Small Fermi Surface

In the following discussion we want to compare the de Haas-van Alphen mea-
surements of CeRu2Si2 with those of CeRu2Ge2. The only difference between
the two systems is that the distance between nearest neighbors Ce ions is
larger in CeRu2Ge2 than in CeRu2Si2. As a consequence, the hybridization
matrix element V between the 4f electron of Ce with its surrounding is much
smaller in the first case. In fact, there is no Kondo temperature for CeRu2Ge2;
instead, the material is ferromagnetic with a Curie temperature of Tc ≃ 8K.
Therefore, the 4f electron of Ce is well localized and must be treated as part of
the core. Since it does not take part in the formation of the Fermi surface, the
volume in phase space enclosed by the Fermi surface must be less by one elec-
tron per unit cell than in CeRu2Si2, where T

∗ ≃ 15K. This picture has been
confirmed by a series of very successful de Haas-van Alphen experiments5.

5 see [241,289]
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Fig. 13.10. Comparison of the Fermi surface for CeRu2Si2 and CeRu2Ge2 as derived
from de Haas-van Alphen measurements [241,289]. In CeRu2Ge2 the 4f electron of
Ce is well localized, while in CeRu2Si2 it participates in the Fermi surface. The
volume enclosed by the Fermi surface therefore differs by one electron in the two
cases. While the hole sheet is enlarged in CeRu2Ge2, the electronic part is shrunk
in comparison with CeRu2Si2.

A comparison of the two Fermi surfaces is shown in Fig. 13.10. One notices
there that the hole part of the Fermi surface has increased in CeRu2Ge2 as
compared with CeRu2Si2, while the electron part has shrunk. The difference
in the enclosed volumes of the two Fermi surfaces is just one electron. The
observed effective band masses for CeRu2Ge2 are larger by a factor of 1.3 -
4.5 than the ones calculated by band theory within the LDA, a result which
is to be expected. The virtual excitation of higher CEF levels of the J = 5/2
multiplet of Ce3+ as well as spin-wave excitations are not included in the
calculation and will certainly lead to an enhancement of the band masses.
The measured γ coefficient of the low-temperature specific heat agrees well
with the one determined from the measured massesm∗ of the different parts of
the Fermi surface. This implies that there are no other sizeable contributions
to the linear specific heat term.
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Fig. 13.11. Band dispersion for CeCu2Si2 along Z − Γ for low temperatures T ≪
T ∗ (full lines) and high temperatures (dashed lines). The formation of the heavy
quasiparticles leads to a characteristic bending in the occupied part of the spectrum
(courtesy of G. Zwicknagl).

One might speculate what happens when sufficiently high pressure is ap-
plied to CeRu2Ge2. With increasing pressure the hybridization of the f elec-
trons should increase and they should start delocalizing giving rise to a Kondo
temperature T ∗. Denote with T the temperature at which a de Haas-van
Alphen measurement is done. When T ∗ increases so that T ∗ > T > Tcoh the
Fermi surface should become blurred. Landau’s Fermi-liquid theory should no
longer apply because the one-to-one correspondence of the excitations with
those of nearly free electrons is lost. Finally, when at even higher pressures
Tcoh > T , a new enlarged Fermi surface should emerge which includes the
f electrons. The system is again a Fermi liquid and the large specific heat
coefficient γ should match the measured quasiparticle masses.

The transition from a large to a small Fermi surface takes also place when
T is increased so that T > T ∗. This has been verified for CeRu2Si2 by photoe-
mission experiments and was discussed before when the photoemission results
for LaRu2Si2 and CeRu2Si2 were compared (see Fig. 13.4). At this point a
comment is in order on the reflection of heavy-quasiparticle formation in an-
gular resolved photoemission spectroscopy (ARPES). Here one must realize
that photoemission experiments only probe the occupied electron states while
the most pronounced changes in the spectrum when going from T ≫ Tcoh to
T ≪ Tcoh occur in the unoccupied part (for an example see Fig. 13.7). Yet
the characteristic band bending close to ǫF which we show in Fig. 13.11 for
CeCu2Si2 has indeed been observed in CeCoIn5

6.
We conclude by discussing briefly the form of the f electron Green’s func-

tion Gf (k, ω) close to the Fermi surface. It is of the general form of (7.22).
If we assume one band of heavy quasiparticles with dispersion ǫqp(k) only –
then in accordance with the self-energy discussed above – this form reduces
to

6 see [247]
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Gf (k, ω) =
1− nf

ω − ǫqp(k) + iη sgn ω
+Ginc (k, ω) . (13.12)

The first part contains the quasiparticle pole, whereas the second part
Ginc(k, ω) describes an incoherent, weakly structured background. In agree-
ment with the discussion in Sect. 10.3 the f spectral weight near ǫF vanishes
like (1 − nf) for small values of T ∗. The form of (13.12) should be seen in
contrast to the Green’s function of the quasiparticles. According to Landau’s
Fermi-liquid theory, there is a one-to-one correspondence between the low-
energy excitations of a heavy-fermion system and those of a noninteracting
electron gas, provided that parameters like the band masses are renormalized.
Therefore, the quasiparticle Green’s function takes the form

Gqp (k, ω) =
1

ω − ǫqp(k) + iη sgn ω
, (13.13)

as it does for free electrons. The renormalized parameters are contained in the
dispersion ǫqp(k).

13.1.3 Mean-Field Treatment

As we have seen before, in a rare-earth Kondo-lattice system the strong cor-
relations of 4f electrons lead to reduced hybridization matrix elements with
the surroundings. Renormalized band theory takes into account these reduc-
tions and this way is able to compute the strong mass anisotropies found in
de Haas-van Alphen experiments.

In the following we want to show how reduced hybridization matrix el-
ements can be derived from a mean-field treatment of a Hamiltonian with
strong local interactions. As such we choose the Anderson lattice Hamilto-
nian, which is a generalization of (10.23) to the lattice

H =
∑

knσ

ǫn(k)a
+
knσaknσ +

∑

mi

ǫfmf
+
m(i)fm(i)

+
1√
N0

∑

imknσ

Vmσ(k, n)
[

a+knσfm(i)e−ik·Ri + h.c.
]

+
U

2

∑

i,m 6=m′

nfm(i)nfm′(i) . (13.14)

The index i labels the N0 f -sites at positions Ri. Furthermore, the conduc-
tion electron creation operators are denoted here by a+knσ, where n is a band
index; otherwise the notation is the same as in (10.23). In most treatments we
consider the limit of large Coulomb repulsion U of the f -electrons. Then the
f electron number at a site is either 1 or 0; double occupancies of f sites are
strictly excluded. This condition can be accounted for by introducing an aux-
iliary bosonic field b+(i), b(i) as done in Sect. 10.6, where the boson operator
b+(i) creates an empty f state at site i.
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Accordingly, the operator nb(i) = b+(i)b(i) counts the number of empty f
sites i. In a slight generalization of the subsidiary condition (10.139) we have
here in the limit of large U to require that

Q(i) =
∑

m

f+
m(i)fm(i) + b+(i)b(i)

= 1 . (13.15)

In terms of these boson operators and by inclusion of the subsidiary condition
(13.15) with a Lagrange multiplier Λi, the Hamiltonian (13.14) reads

H = Hband +
∑

mi

(ǫfm + Λi) f
+
m(i)fm(i) +

∑

i

Λi
[

b+(i)b(i)− 1
]

+
1√
N0

∑

imknσ

[

Vmσ (k, n) b
+(i)a+knσfm(i)e−ik·Ri + h.c.

]

, (13.16)

where Hband denotes the conduction-electron part of H . Note that U has
disappeared from the Hamiltonian, but consequently we must deal with sub-
sidiary conditions (13.15).

In the mean-field approximation, the condition Q(i) = 1 is replaced by a
weaker one:

〈Q(i)〉 = 1 . (13.17)

This is achieved by replacing b+(i) by the site-independent mean value of the
field operator, i.e.,

b+(i) → 〈b+(i)〉 = r . (13.18)

Thus we end up with the mean-field Hamiltonian

HMF =
∑

knσ

ǫn(k)a
+
knσaknσ +

∑

mk

ǫ̃fmf
+
kmfkm

+
∑

nmkσ

rVmσ(k, n)
(

a+knσfkm + h.c.
)

+ ΛN0

(

r2 − 1
)

(13.19)

with ǫ̃fm = ǫfm + Λ. The Fourier transform f+
km of the operators f+

m(i) has
been introduced and the condition (13.15) has been replaced by 1− nop

f (i) =

r2. The Hamiltonian HMF is a one-particle Hamiltonian and as such can be
easily diagonalized as a function of the two unknowns Λ and r. We rewrite it
in the diagonalized form as

HMF =
∑

kℓτ

Eℓ(k)c
+
ℓτ (k)cℓτ (k) + ΛN0

(

r2 − 1
)

, (13.20)

where the c+ℓτ (k) denote the creation operators of quasiparticles in branch
ℓ with pseudospin τ . We may speak of quasiparticles because the complex
many-body problem has been mapped onto a one-particle problem as before,
when phase shifts were used. The Eℓ(k) are the quasiparticle energies, which
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Fig. 13.12. Quasiparticle energies E1(2)(k) given by (13.22). Also shown is the
original f orbital energy ǫf and the renormalized energy ǫ̃f & µ.

depend on Λ and r. In terms of the c+ℓτ (k) the ground state |Φ0〉 of HMF is
written as

|Φ0〉 =
∏

ℓ,τ
|k|<kF

c+ℓτ (k)|0〉 . (13.21)

For the special case of one conduction electron band only and an f pseudo
spinorbital degeneracy of νf = 2, we find two quasiparticle bands with a
two-fold pseudospin degeneracy and energies

Eℓ(k) =
1

2
{[ǫ(k) + ǫ̃f ]∓W (ǫ(k))}

W (ǫ(k)) =

√

[ǫ(k)− ǫ̃f ]
2
+ 4Ṽ 2 . (13.22)

The -, + signs refer to the bands ℓ = 1 and 2, respectively. Furthermore
Ṽ = rV . If we require that Eℓ(kF ) = µ, where µ is the chemical potential, we
obtain for the renormalized energy of the f level ǫ̃f

ǫ̃f = µ+
Ṽ 2

ǫ(kF )− µ
. (13.23)

Because Ṽ is very small, the renormalized f electron energy ǫ̃f lies slightly
above the Fermi energy. This is shown schematically in Fig. 13.12.

We sketch briefly the derivation of (13.22–13.23). First a+kσ and f+
km are

expressed in terms of the c+ℓτ (k) as
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f+
km =

∑

ℓτ

ym (k; ℓτ) c+ℓτ (k) ,

a+kσ =
∑

ℓτ

xσ (k; ℓτ) c
+
ℓτ (k) . (13.24)

The coefficients xσ(k; ℓτ) and ym(k; ℓτ) must satisfy the normalization con-
dition

∑

m

|ym (k; ℓτ)|2 +
∑

σ

|xσ (k; ℓτ)|2 = 1 . (13.25)

We insert (13.24–13.25) into (13.19) and require that the off-diagonal matrix
elements vanish since the c+ℓτ (k) generate eigenstates of HMF. This gives us
two equations for xσ(k; ℓτ) and ym(k; ℓτ).

The xσ(k; ℓτ) can be eliminated with the help of (13.25) and the remaining
equation for ym(k; ℓτ) is

[ǫ̃fm − Eℓ(k)] ym (k; ℓτ) +
∑

σm′

Ṽmσ(k)Ṽ
∗
m′σ(k)

Eℓ(k)− ǫ(k)
ym′ (k; ℓτ) = 0 . (13.26)

The ym(k; ℓτ) are the probability amplitudes of finding a quasiparticle with
band index ℓ and pseudospin τ in a f state with quantum number m. From
the last equation and Ṽmσ(k) = Ṽ (13.22) follows immediately.

For T = 0 the unknowns r and Λ can be determined by minimizing the
ground-state energy with respect to r, i.e., from

〈

Φ0

∣

∣

∣

∣

∂

∂r
HMF

∣

∣

∣

∣

Φ0

〉

= 0 (13.27)

and from the condition
r2 = 1− nf . (13.28)

Without going into details we merely mention that, after Λ and r have been
determined, one may define a characteristic temperature T ∗ through

kBT
∗ = µ exp

(

− Λ

νfN(0)V 2

)

(13.29)

in terms of which the energy change per site due to hybridization is

∆E = −kBT ∗ (13.30)

while the f electron count becomes

nf = 1− kBT
∗

νfN(0)V 2
. (13.31)

The temperature T ∗ plays the role of a Kondo temperature for a lattice. Its
dependence on microscopic parameters resembles closely that of (10.44), since
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to leading order Λ is given by Λ = |ǫf | when we count the energy from the
Fermi energy ǫF . The above considerations were limited to T = 0. However, we
can easily extend them to finite temperatures. The averages which appear in
the above expressions are then thermodynamic averages with respect to HMF .
Only for temperatures T less than an artificial mean-field critical temperature
Tc, which is on the order of T ∗, does one find a solution of (13.27,13.28)
with r 6= 0. For T > Tc we find that r = 0 and the conduction electrons
decouple completely from the f electrons. The fluctuations δb(i) = b(i)−〈b(i)〉,
neglected in a mean-field theory, prevent such a decoupling for T > Tc. With
increasing orbital degeneracy νf the influence of these fluctuations decreases,
and in the limit νf → ∞ the mean-field theory becomes exact.

Now we want to establish a connection between the mean-field approach
and the renormalized band-structure calculations presented before, since the
resemblance between the two approaches is apparent. The reduction of the
bare hybridization V to Ṽ has its equivalent in the large slope (kBT

∗)−1 of
the f phase shift ηCe

τ (ǫ) at ǫF
7. Similarly, the positioning of ǫ̃f just above ǫF

corresponds to a value of ηCe
τ (ǫF ) slightly less than π/2. In fact, if we start

from the secular equation for the renormalized bands, we can show quite rig-
orously that by a “downfolding” or reduction procedure we obtain an effective
Hamiltonian of the form of (13.19) with the only difference that the f electron
energy is also k dependent, i.e., ǫ̃fm → ǫ̃fm(k) [135]. If the CEF ground state
is only twofold degenerate and if spin-orbit effects for the conduction electrons
can be neglected, the effective Hamiltonian reduces to

Heff =
∑

kτ

ǫ̃f (k)f
+
kτfkτ +

∑

knτ

[

Ṽnτ (k)f
+
kτaknτ + h.c.

]

+Heff
band , (13.32)

where Heff
band is an effective conduction-electron Hamiltonian. The evaluation

of this Hamiltonian corresponds precisely to the renormalized band-structure
method.

13.2 Charge Ordering in Yb4As3: an Instructive
Example

As will be shown in this section, charge ordering can also be the origin of
heavy quasiparticles. Here the system Yb4As3 serves as an excellent example.
We will discuss it at some length for the aforementioned reason, and because
Yb4As3 is an example of a generalized Wigner crystal.

Connected with charge ordering are changes in the lattice. Therefore, we
are dealing here with a case where heavy quasiparticles, charge ordering and
lattice degrees of freedom are intimately connected. Since the compound has
also been extensively studied experimentally, we can gain here good insight
into the manifold processes which may result in heavy fermions.

7 see Eq. (13.11)
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Fig. 13.13. Left panel: Anti-Th3P4 structure of Yb4As3. Large and small spheres
symbolize Yb and As ions, respectively. The Yb ions are residing on four interpen-
etrating families of chains oriented along cubic space diagonals. Right panel: Dense
rod packing presentation of the Yb-chains. In the charge-ordered structure only one

family of chains carries Yb3+ ions with pseudo-spin S = 1/2 whereas the other three
families are occupied with Yb2+ ions having a filled 4f shell.

We begin by showing that at low temperatures Yb4As3 may be consid-
ered an example of a generalized Wigner crystal. As demonstrated before, a
homogeneous electron gas becomes unstable with respect to a lattice forma-
tion when the electron density is sufficiently low. In that case the Coulomb
repulsion of electrons dominates the kinetic energy gain caused by itinerancy
and therefore an electron lattice becomes energetically more favourable than
an electron liquid. However, as shown in Sect. 3.3 the critical mean distance
between electrons is rather large before lattice formation takes place. This
is different when an inhomogeneous system, i.e., a real crystal is considered.
Here the energy gain of electrons due to delocalization may be rather small to
start with, depending on the type of electrons we are dealing with, i.e., on the
size of their specific hybridization matrix elements. Therefore, Coulomb re-
pulsion may prevail already at much higher densities. This holds particularly
true for 4f electrons, because of their closeness to the nuclei and correspond-
ing small hopping matrix elements to neighboring sites. Note that in this case
charge ordering, or the formation of an electronic lattice by the f electrons,
is superimposed on the underlying atomic lattice structure.

A good example is the intermetallic compound Yb4As3, where below a
temperature of Tc = 292K charge order of 4f holes takes place [348]. The
system has a cubic anti-Th3P4 structure. The Yb ions are aligned along four
families of interpenetrating chains pointing along the (shifted) diagonals of a
cube. The structure is shown in Fig. 13.13. It is often referred to as body-
centered cubic rod packing.

An important point to notice is that the distance between two Yb ions
within a chain is larger than the one between ions belonging to different chains.
Thus nearest neighbor Yb ions belong to different families of chains. Counting
valence electrons we notice that As has a valency of −3 which is adding up
to −9. Therefore, three of the four Yb ions must have a valency of +2 while
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the remaining one has valency +3, i.e., Yb4As3 →(Yb2+)3(Yb
3+)(As3−)3.

However, Yb2+ has a filled 4f shell. Therefore there remains one 4f hole per
formula unit. At sufficiently high temperatures, i.e., for temperatures exceed-
ing 300 K the f holes move freely between sites and the system is metallic.
This is confirmed by measurements of the Hall coefficient RH , which yields
a carrier concentration of approximately one hole per formula unit in that
temperature regime. The situation is different at low temperatures. Here the
measured Hall coefficient has a value of (ecRH)−1 = 7 · 1018 cm−3, implying
approximately one itinerant hole per 104 Yb ions (see Fig. 13.14a).
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Fig. 13.14. Left panel: Hall coefficient RH(T ) for Yb4As3 (pro Coulomb). The inset
shows the change at the phase transition temperature Tc. Right panel: resistivity
ρ(T ). At Tc = 292K a phase transition due to charge ordering is taking place. Solid
line: extrapolation of ρ(T ) ∼ T . (From [348])

Thus the system changes from metallic to semi-metallic as temperature de-
creases. This is reflected in the measured resistivity ρ(T ) as seen in Fig. 13.14b.
While for T > 300K the resistivity ρ(T ) decreases nearly linearly with T , it in-
creases again below the first order phase transition at Tc ≃ 292K. At low tem-
peratures ρ(T ) = ρ0 +AT 2 showing that Yb4As3 has become a semimetallic
Fermi liquid. Low temperature thermodynamic properties show typical heavy-
quasiparticle behavior. The γ coefficient of the low temperature specific heat
is γ ≃ 200mJ/(molK2). The spin susceptibility χs is equally enhanced and
the Sommerfeld-Wilson ratio RW = 4π2k2B(χs/(3(gµeff)

2γ) is close to unity.
Here µeff denotes the effective moment of a Yb3+ site and g is the gyromag-
netic factor. The resistivity is ρ(T ) = ρ0 + AT 2 and the Kadowaki-Woods
ratio A/γ2 is similar to that of other systems with heavy quasiparticles. Note
that the large linear specific heat coefficient is found despite the fact that
there are hardly any conduction electrons present at low temperatures.

Here we concentrate first on the nature of the phase transition. It is caused
by the strong correlations of the 4f electrons (holes) and it is crucial for un-
derstanding the heavy quasiparticles which appear at low temperatures. An
analysis of structural data shows that the phase transition is accompanied by
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a trigonal distortion and a change of the space group. The structural transi-
tion is volume conserving. It is triggered by charge ordering of the 4f holes.
The angle between rods which are orthogonal in the cubic phase changes to
α = 90.8o in the trigonal phase. Associated with this change is a spontaneous
elastic strain which is proportional to the charge order parameter. The struc-
tural instability is accompanied by a softening of the c44 elastic mode as T
approaches Tc from above (see Fig. 13.15). This implies that the trigonal elas-
tic strain ǫxy, ǫxz, ǫyz with Γ5 symmetry of the lattice plays a significant role.
A detailed group-theoretical analysis of different elastic constants is found
in [152].
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Fig. 13.15. Temperature dependence of the elastic constant c44(T ). Above the
structural phase transition temperature Tc a strong softening is observed described
by (13.36) and caused by coupling to the Γ5 type charge order parameter. Due to the
first-order nature of the transition the theoretical mean-field transition temperature
Tc0 = 247K is smaller than the actual Tc. (From [152])

After the description of the structural phase transition we want to discuss
its origin. It turns out to be based on strong correlations between the 4f holes.
As pointed out before, at high temperatures the f holes are moving freely
through the system thereby avoiding configurations with two f holes on a Yb
site. At low temperatures however, repulsion between f holes on neighboring
sites comes into consideration. As previously pointed out, nearest neighbor
Yb sites always belong to different families of chains. By avoiding nearest-
neighbor Yb3+ - Yb3+ sites and thus minimizing the short-ranged intersite
repulsion of f holes, the latter are accumulating in one family of chains, i.e.,
they charge order. Therefore at T = 0 one expects that in the idealized case
all Yb3+ ions are situated in one family of chains and that the Yb2+ ions
are in the remaining three ones. Since Yb3+ ions are smaller than Yb2+ ions,
the crystal contracts in the direction of the chains with the Yb3+ ions. In
order to keep the volume of a unit cell constant (otherwise the elastic energy
would increase) the crystal must expand in the direction of the remaining
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three families of chains filled with Yb2+ ions. The above arguments explain
the origin of the structural phase transition including the change in the unit
cell angle.

If each of the sites in the short chains is occupied by a Yb3+ ion, why is the
system a semimetal and not a Mott insulator, since one of the chain families
is having one hole per site? The reason is found when LDA+U calculations
are done. They show that a small number of As 4p holes remains at the Γ
point. They must be compensated by removing the same number of 4f holes,
i.e., by filling additionally some of the 4f shells. The chains containing the
Yb3+ ions are therefore not perfect spin 1/2 chains but have instead in one
out of 104 sites a spin missing (i.e., a Yb2+ ion). This accounts for having one
charge carrier per 104 Yb ions.

Before discussing a microscopic model for the phase transition driven by
electron correlations, we discuss briefly the physics of the softening of the
elastic constant c44.

The temperature dependence of the c44 mode is obtained from a Ginzburg-
Landau expansion of the free energy in terms of the strains ǫij and the com-
ponents Qij of the charge order parameter. The latter is defined by expanding
the changes in the electronic charge distribution ∆ρ caused by the structural
changes in terms of the important charge fluctuation modes ρij(Γ5) of Γ5

symmetry,

∆ρ = Qyzρyz (Γ5) +Qzxρzx (Γ5) +Qxyρxy (Γ5) . (13.33)

For T < Tc the order parameter Qij 6= 0. The free energy contains three con-
tributions. The first (FQ) results from the electronic charge order parameter,
the second (Fel) is due to the elastic energy of the lattice and the third (FQ−el)
describes the interactions of the order parameter with the lattice strains. Thus
we obtain (see [151]):

FQ = F0 +
α

2

(

Q2
xy +Q2

xz +Q2
yz

)

+
β

4

(

Q4
xy +Q4

xz +Q4
yz −

3

5

(

Q2
xy +Q2

xz +Q2
yz

)2
)

Fel =
c044
2

(

ǫ2xy + ǫ2xz + ǫ2yz
)

FQ−el = −g (Qxyǫxy +Qxzǫxz +Qyzǫyz) . (13.34)

The softening of the c44 mode is due to the term FQ−el. At a phase transition
with an unrenormalized transition temperature Θ the coefficient α vanishes
like α = α0(T−Θ). The fourth-order terms in Qij stabilize the ordered state of
the system. For T > Θ the softening of the elastic constant is obtained by min-
imizing F = FQ+Fel+FQ−el with respect to the Qij , which are induced here
by an external strain. Hereby the terms ∼ Q4

ij in the free energy are neglected.

When β > 0 a trigonal charge order parameter Qt =
1√
3
(Qxy, Qxz, Qyz) char-

acterises the ordered phase. In addition Qij and ǫij are proportional to each
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other. The expression for the free energy simplifies therefore to the form

F = F0 +
1

2

(

c044 −
g2

α0(T −Θ)

)

(

ǫ2xy + ǫ2xz + ǫ2yz
)

. (13.35)

The renormalized elastic constant is

c44 = c044

(

T − Tc0
T −Θ

)

, where Tc0 = Θ +
g2

α0c044
(13.36)

denotes the mean-field transition temperature in the presence of the strain
interaction FQ−el. An explanation of the observed first-order phase transition
at Tc < Tc0 requires the inclusion of higher order terms in Qij in (13.34).

Having described the physics of the phase transition, we want to provide
a microscopic model description of it. Thereby we neglect hopping matrix
elements between different chains as well as the small number of As 4p holes.
We write for the effective Hamiltonian

H = −t
∑

µ

∑

〈ij〉σ

(

f+
iµσfjµσ + h.c.

)

+ U
∑

µ

∑

i

niµ↑niµ↓

+ǫΓ
∑

µ

∑

iσ

∆µniµσ +
N

4
cΓ ǫ

2
Γ . (13.37)

The first term describes effective 4f -hole hopping from site i to a nearest
neighbor site j within a chain of a family µ = 1 − 4. From LDA calculations
one can deduce that 4t ≃ 0.2 eV. The second term is due to the on-site
Coulomb repulsion of 4f holes with niµσ = f+

iµσfiµσ and ensures that in the

large U limit Yb4+ states with 4f12 configurations are excluded. The third
term describes the volume conserving coupling of the f bands to the trigonal
strain ǫΓ > 0 with Γ = Γ5. It leads to a deformation potential of the form

∆µ =
∆

3
(4δµ1 − 1) (13.38)

for 4f holes situated in chains, e.g., in [111] direction denoted by µ = 1.
As previously pointed out, the origin of the deformation potential is the

short-range repulsion between holes on neighboring sites. It is treated here
as an effective attraction Veff between holes on next-nearest neighbor sites,
i.e., nearest-neighbor sites of a chain. The fourth term in (13.37) is the elastic
energy in the presence of a trigonal distortion, where N is the number of
sites and cΓ is the background elastic constant. A reasonable value is cΓ /Ω =

4 · 1011erg/cm3
where Ω denotes the volume of a unit cell with a lattice

constant of a0 = 8.789Å. In accordance with the above one may eliminate ǫΓ
in (13.37) and obtain instead an effective interaction term

Hint = −Veff
∑

µ〈ij〉
(niµ − n̄) (njµ − n̄) , (13.39)
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which in mean-field approximation becomes

HMF
int = −2Veff

∑

µ

(n̄µ − n̄)

[

∑

i

(niµ − n̄µ)−
N

8
(n̄µ − n̄)

]

. (13.40)

Here n̄ and n̄µ are the f hole occupation number averaged over all sites and
all sites of chain family µ, respectively. By relating

4

3
ǫΓ∆ = −2Veff(n̄1 − n̄) ,

∆2

cΓ
=

9

4
Veff (13.41)

the ǫΓ dependent terms in (13.37) become equivalent to the interaction
(13.40). When a lattice deforms, the hopping matrix elements usually change,
because the overlap of atomic wavefunctions of neighboring atoms changes.
But this is not important here and therefore is neglected.

The lattice distortion caused by ordering of the f holes shows similarities
to a band Jahn-Teller effect [262], which occurs here as a consequence of
electron interactions. The four-fold degeneracy of the one-dimensional f band
is lifted by a symmetry-breaking trigonal strain. For a rough estimate consider
the case of U = 0. This neglects the effects of strong on-site hole repulsions
on the band Jahn-Teller effect. This simplification is not too bad in the high
temperature phase, where only one Yb site out of four contains a 4f hole.
However, it is very poor at low temperatures when the µ = 1 family of chains
contains nearly one hole per site. The condition for a band Jahn-Teller effect
is ∆2/(tǫF ) > 3 [137]. In that case the symmetry broken solution has a lower
energy than the symmetric one with a four-fold degenerate f band.

The strain ǫΓ (T ) splits the four one-dimensional f bands into one lower
and three upper bands. For Yb4As3, generalized Wigner crystallization and
band Jahn-Teller effect of correlated electrons are therefore alternative points
of view. In passing we note that the Yb3+ sites are not centers of inversion.
This allows for a Dzyaloshinsky-Moriya interaction with interesting conse-
quences regarding the magnetic field dependence of the heavy quasiparti-
cles [409].

The above discussion provides the key for an understanding of the heavy
quasiparticles in the system. As pointed out before, in the charge ordered
state nearly all Yb sites with a 4f hole are in one of the four families of chains
while the remaining three families contain almost no holes. The interacting
crystal-field ground state doublets of Yb3+ behave like an isotropic Heisenberg
spin model. This is not immediately obvious but was shown in [409, 457].
Therefore we are dealing here with almost perfect Heisenberg spin chains. It
is well known from the work of Bonner and Fisher [39] that the specific heat
C = γT and the spin susceptibility χs of a Heisenberg chain is given by

γ =
2

3

kBR

J
, χs =

4µ2
effR

π2J
. (13.42)



13.2 Charge Ordering in Yb4As3: an Instructive Example 347

Here J > 0 is the coupling constant of nearest-neighbor effective S = 1/2
spins:

H = J
∑

〈ij〉
SiSj (13.43)

and R is the gas constant. Note that the Sommerfeld-Wilson ratio is RW = 2
in that case. Thus the large γ coefficient in the specific heat results from spin
excitations in the spin chains. It is present even if Yb4As3 would become in-
sulating. This picture is confirmed by beautiful inelastic neutron scattering
(INS) experiments (see Fig. 13.16). The measured dispersion ω(q) of the spin
excitations agree with old calculations of Cloizeaux and Pearson8. Note that
these are no sharp spin-wave excitations. Rather they represent the lower
bound of a two-spinon continuum. The latter has a square root singularity
in the dynamic structure factor which enters the INS cross-section. There-
fore the two-spinon spectrum is strongly peaked at the lower bound with an
asymmetric tail leading up to much higher energies. This is precisely what is
observed experimentally and proves the one-dimensional character of the spin
excitations. From the data one can deduce a coupling constant J/kB = 25K.
When set into (13.42) the observed size of the γ coefficient is reproduced. In
agreement with this is the observation that Yb4(As1−xPx)3 with x = 0.3−0.4
has a γ coefficient of similar size although that material is an insulator.

Fig. 13.16. Dispersion of magnetic excitations in Yb4As3 in the low-temperature
charge ordered phase measured by INS experiments. Here q is the projection of
momenta on the 〈111〉 chain direction. All data fall onto the theoretical curve
ω(q) = π

2
J sin dq with J/kB = 25K. This proves the one-dimensional character

of the excitations. (From [244,245])

8 see [67]
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The above results show that the microscopic origin of the heavy quasipar-
ticle in Yb4As3 is quite different from that in the Ce compounds. The spin
excitations in the Heisenberg chains are nearly decoupled from the charge
excitations. The effective mass of the As 4p holes is not heavy. The large
A coefficient in ρ(T ) is due to scattering of the light quasiparticles by spin
excitations.

We are faced here with a breakdown of Landau’s Fermi liquid theory al-
though this is not immediately obvious from the low temperature thermo-
dynamic data. In fact, we are dealing here with two Fermi liquids, i.e., one
with charge-neutral heavy quasiparticles (spin excitations) and the other with
charged light quasiparticles (As 4p holes). The light quasiparticles which are
observed in cyclotron resonance experiments are scattered off by the neutral
heavy quasiparticles. This results in a large A coefficient in ρ(T ) = AT 2.
While only the light quasiparticles contribute to the electrical resistivity, the
thermal conductivity is dominated by the neutral, i.e., heavy ones. There is
no longer a one-to-one correspondence between the electronic excitations in
Yb4As3 and those of a nearly free electron system as required by Landau’s
Fermi liquid theory.

13.3 Partial Localization: Dual Role of 5f Electrons

In some of the actinide compounds 5f electrons show an orbital-selective
localization. This concept is known to play an important role for d electrons
in transition metal oxides (see Chapter 12). Its extension to 5f system is
relatively new and has considerable consequences9. In both types of materials
Hund’s rule or intra-atomic correlations play a crucial role. Nevertheless, the
physics of partial localization in transition metal oxides and in 5f systems
is quite different. In 3d systems the large crystalline electric field (CEF) set
up by the atomic surroundings of a transition metal ion lifts partially orbital
degeneracies and causes splitting energies which are often larger than the
bandwidths. A much discussed example are the manganites (see Sect. 12.2).
In a cubic lattice the five d orbitals are split into a t2g triplet and eg doublet
with well separated subbands. When the Hund’s rule energy is larger than
the t2g − eg splitting and when the orbital energy of the t2g multiplet is lower
than of the eg multiplet, the first three d electrons will occupy t2g orbitals and
form a high spin S = 3/2 state. These electrons remain localized. Additional
electrons enter the eg orbitals with spin parallel to the high-spin state and
are delocalized. The situation differs when the CEF splitting is larger than
Hund’s rule coupling. In that case the t2g subband will accommodate up to six
electrons. When the d electron count nd per transition metal ion is nd > 6, only
(nd − 6) of the d electrons are itinerant and contribute to metallic behavior.

In 5f compounds we are confronted with a different situation. The 5f
atomic wavefunctions are closer to the nuclei than d electron wavefunctions
9 see [509,513]



13.3 Partial Localization: Dual Role of 5f Electrons 349

are and therefore CEF splittings are smaller and less important. Yet, Hund’s
rule energies for 5f electrons are larger than for d electrons. Thus when dealing
with a situation where the 5f count per actinide ion nf exceeds two, i.e.,
nf > 2 only those 5f electrons will delocalize which enable the remaining ones
to form a Hund’s rule state. Otherwise the increase in Coulomb energy would
overcompensate the energy gain due to delocalization. This results in orbital-
selective localization In UPt3 with nf ≃ 2.5 the Hund’s rule ground state of
a 5f2 configuration has total angular momentum J = 4. The differences in
Coulomb energies for different J multiplets (only even values of J are allowed)
can be calculated and are found to be

∆U4 = UJ=4 − UJ=0 = −3.79 eV

∆U2 = UJ=2 − UJ=0 = −2.72 eV . (13.44)

Although these are bare Coulomb integrals, i.e., unscreened ones, their differ-
ences are less affected by screening and to first approximation can be regarded
as unchanged. The differences are larger than a typical hopping matrix element
of a 5f electron which is of order t ≃ 0.5 eV. By partially suppressing hopping
processes, Hund’s rule correlations may strongly enhance anisotropies in the
kinetic energy and eventually lead to the coexistence of band-like itinerant
5f states with localized atomic-like ones. Direct evidence for the coexistence
of 5f -derived quasiparticles and local magnetic excitations has been obtained
from neutron scattering experiments10. As will be shown, the dual model pro-
vides for a natural explanation of the heavy quasiparticle excitations found,
for example, in UPt3 and UPd2Al3. Furthermore, there is clear evidence that
in superconducting UPd2Al3 Cooper-pair formation is due to virtual intra-
atomic excitations of localized 5f electrons rather than phonons11. More de-
tails are found in Sect. 15.3. Here we provide first a microscopic justification
for the dual model and afterward demonstrate the emergence of heavy quasi-
particles.

In order to study the role of intra-atomic correlations we consider a model
Hamiltonian for the 5f subsystem, where the hybridization with the con-
duction electrons is accounted for by effective 5f hopping matrix elements.
Note that the model should be considered as an effective Hamiltonian for low-
energy excitations, typical less than 10 meV. The high-energy processes have
been integrated out. The conjecture is that in 5f systems the hybridization
between conduction electrons and 5f states is effectively renormalized to zero
for some orbitals, while it remains finite for others. The simplest example for
demonstrating orbital selection consists of two actinide ions at sites a and b.
In order to model uranium compounds, where LDA calculations often give a
5f count of nf ≃ 2.5, we shall assume a total of five 5f electrons for the two
sites. We assume that the on-site Coulomb repulsion U is large as compared

10 see [181]
11 see [316]
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with the hybridization matrix elements. In this case the ground state is a su-
perposition of different |a; f3〉|b; f2〉 and |a; f2〉|b; f3〉 configurations. They are
coupled by hopping matrix elements. The states at a site are characterized
by the total angular momenta J(a) and J(b), respectively. The differences
between different J states at fixed nf are of the order of the 5f exchange
constant, i.e., 1 eV. Since the spin-orbit interaction is large, we use j − j
coupling and limit ourselves to j = 5/2 single particle states. For the low-
energy excitations the relevant states are |a; f3, J(a) = 9/2〉|b; f2, J(b) = 4〉
and |a; f2, J(a) = 4〉|b; f3, J(b) = 9/2〉. When an electron is transferred from
site a to b and vice versa, the final state is a mixture of different excited multi-
plets, i.e., |a; f3, J(a) = 9/2〉|b; f2, J(b) = 4〉 → |a; f2, J ′(a)〉|b; f3, J ′(b)〉. The
energy loss due to the excitation of different J multiplets must be balanced by
the gain in kinetic energy. The crucial point is that the energy loss depends on
the atomic orbital from which the electron is leaving site a. It also depends on
the relative orientation of J(a) and J(b). By requiring that the overall energy
gain due to hopping is as large as possible, anisotropies in the hopping matrix
elements are enlarged and orbital selection is obtained. With these consider-
ations as background we write down the following model Hamiltonian for N
sites

H = Hkin +Hcoul , (13.45)

where the local Coulomb term is

Hcoul =
1

2

∑

n

∑

jz1 ...jz4

Ujz1jz2 jz3jz4 c
+
jz1

(n)c+jz2
(n)cjz3 (n)cjz4 (n) . (13.46)

Here c+jz (n) creates an electron at site n in state j = 5/2 with jz. The
Coulomb matrix elements are given in terms of Clebsch-Gordan coefficients
and Coulomb integrals UJ :

Ujz1jz2 jz3 jz4 =
∑

J

UJC
JJz

5/2,jz1 ;5/2,jz2
CJJz

5/2,jz3 ;5/2,jz4
. (13.47)

Pauli’s principle limits J to J = 0, 2, 4. Furthermore Jz =
∑4

ν=1 jzν . The first
term in (13.45) is

Hkin = −
∑

jz

tjz
(

c+jz (a)cjz (b) + h.c.
)

+ ǫf
∑

n

c+jz (n)cjz (n) , (13.48)

where ǫf is the orbital energy. We have assumed that the hopping matrix
elements are diagonal in jz.

The Hamiltonian can be diagonalized numerically and the ground state
can be determined. The degree of localization is given by the reduction of the
hopping matrix element for a given jz orbital by intra-atomic correlations,
i.e., by the ratio of the jz projected kinetic energy Tjz and the bare hopping
tjz



13.3 Partial Localization: Dual Role of 5f Electrons 351

Fig. 13.17. Values Tjz/tjz for a two-site cluster with 5 electrons along a line con-
necting linearly the points written below the figure. The numbers 1/2, 3/2, 5/2 refer
to different jz values. The regions I, II, III have a ground state with Jz = 15/2, 5/2
and 1/2, respectively. The UJ are in accordance with (13.44). (From [106])

Tjz
tjz

=
〈

ψGS

∣

∣

(

c+jz (a)cjz (b) + h.c.
)∣

∣ψGS

〉

. (13.49)

Here |ψGS〉 is the ground state for a given f electron number. In Fig. 13.17
results are shown for a cluster consisting of two sites and five electrons. The
parameters resemble the ones for UPt3. One notices strong renormalization
effects and orbital selective localization in some parameter regimes. For ex-
ample, in region I only electrons with jz = 3/2 delocalize. The results agree
qualitatively with those of larger clusters.

After this introduction we point out the origin of heavy quasiparticle ex-
citations in systems like UPt3 and UPd2Al3 and demonstrate the predic-
tive power of the theory. We start by keeping 5f electrons in orbitals with
jz = ±5/2, ± 1/2 as localized. Only those with jz = ±3/2 are kept itinerant.
Since experiments don’t indicate any Kramers’ degeneracy of the localized 5f
electrons, we keep two of them as localized. Note that electrons with |jz| = 5/2
should remain localized since otherwise no J = 4 state could form when going
over from 5f3 → 5f2. It turns out that best results are obtained by construct-
ing the localized 5f2 states from |jz | = 5/2 and 1/2 instead of |jz| = 5/2 and
3/2 states.

The first step is the determination of the self-consistent LDA potentials,
e.g., for UPd2Al3 by keeping two localized 5f electrons as part of the core.
Since UPd2Al3 is an antiferromagnet with TN = 14.5K and µ ≃ 0.83 µB per
U ion, LDA calculations use the observed AF structure. Next the localized
5f2 subsystem is diagonalized, thereby excluding jz = ±3/2 states. Six states
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Fig. 13.18. Coupling of CEF excitations at sites i and j via itinerant electrons, i.e.,
RKKY interactions. Due to the interaction, the discrete excitation energy δ goes
over into a band and eventually into induced magnetic order if the coupling is strong
enough. Magnetic excitons are associate with the resulting band of excitations.

of the 5f2 system can be formed with jz = ±5/2, ±1/2. The Coulomb matrix
elements are evaluated by assuming jj coupling and 5f radial functions of the
ab initio band structure potential. The result is a two-fold degenerate ground
state with Jz = ±3 implying J = 4. The overlap with the Hund’s rule ground
state 3H4 derived from the LS-coupling scheme is 0.865. The two states are
split by the hexagonal crystalline electric field (CEF) of the surroundings of
a U ion. The CEF eigenstates |Γ3〉 and |Γ4〉 are

|Γ3(4)〉 =
1√
2
(|J = 4; Jz = +3〉 (±) |J = 4; Jz = −3〉 ) . (13.50)

The coupling matrix element of the itinerant and localized 5f electrons is
directly obtained from the expectation values of the Coulomb interactions
in the 5f3 states. For the latter the product states |f2; J = 4, Jz = ±3〉 ⊗
|f1, j = 5/2, jz = ±3/2〉 are being used. From the difference 〈f1; 5/2, 3/2| ⊗
〈f2; 4, 3|Ucoul|f2; 4, 3〉⊗|f1; 5/2, 3/2〉−〈f1; 5/2, 3/2|⊗〈f2; 4,−3|Ucoul|f2; 4,−3〉⊗
|f1; 5/2, 3/2〉 of approximately -0.4 eV we are able to determine the transition
matrix element between |Γ3〉 and |Γ4〉, i.e.,

M =

〈

f1;
5

2
,
3

2

∣

∣

∣

∣

⊗ 〈Γ4 |Ucoul|Γ3〉 ⊗
∣

∣

∣

∣

f1;
5

2
,
3

2

〉

≃ −0.2eV . (13.51)

The itinerant f electrons couple with an RKKY type of interaction the CEF
excitations |Γ3〉 → |Γ4〉 with excitation energy δ at different sites i and j. The
Hamiltonian for these coupled excitations is

HCEF = δ
∑

i

|Γ4(i) 〉 〈Γ4(i) |+
∑

〈ij〉
Jex(i − j)Jz(i)Jz(j) . (13.52)

The coupling Jex(i− j) is the one caused by the itinerant electrons. It is indi-
cated in Fig. 13.18. In UPd2Al3 this coupling is strong enough that it induces
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Fig. 13.19. Magnetic excitons in UPd2Al3 observed by inelastic neutron scattering
[29,314] together with a fit given by (13.53). (From [447]).

an AF ground state with Q = (0, 0, π/c), where c is the lattice constant per-
pendicular to the U planes. This is an example of an induced moment system,
a phenomenon well known from 4f rare-earth systems. We refer the reader
who wants to learn more about these systems to various contributions to the
Handbook on the Physics and Chemistry of the Rare Earth [158]12. The AF
CEF excitations, otherwise called magnetic excitons, have been observed by
inelastic neutron scattering13. We show the results in Fig. 13.19 since we will
refer to them repeatedly in Chapter 15. They demonstrate nicely the dual
character of 5f electrons. The system UPd2Al3 behaves like an intermetallic
compound with Pr3+ ions, i.e., a 4f2 system. The magnetic-exciton dispersion
parallel to the hexagonal c∗-axis can be modeled by

ωex (qz) = ωex [1 + β cos (cqz)] , (13.53)

with ωex = 5 meV, and β = 0.814 when averaged over qx, qy. This shows
us that the original CEF is indeed of order 5 meV. The heavy quasiparticle
masses result from a dressing of the conduction electrons with intra-atomic
CEF excitations, or stated more accurately, with induced AF excitons. The
situation resembles that in Pr metal, where a mass enhancement of conduction
electrons by a factor of 5 is obtained from virtual CEF excitations of localized
4f2 electrons15.

For quantitative results the self-energy Σ(k, ω) has to be calculated. The
microscopic process is shown in Fig. 13.20. The wavy line represents the sus-
ceptibility χ(q, ω) of the magnetic excitons. It turns out to be sufficient to
neglect the dispersion of the 5f2 low-energy CEF excitations, in which case

12 see, e.g., [129]
13 see [29,314]
14 see [447]
15 see [133]



354 13 Heavy Quasiparticles

Fig. 13.20. Self-energy of an electron (solid line) due to the emission and reabsorp-
tion of a magnetic exciton (wavy line).

Fig. 13.21. Left panel: Fermi surface of UPd2Al3 calculated within the dual model.
The cylindrical main part and the H centered ellipsoid denoted by γ and β have
effective masses with m∗ = 19 − 33 m, the highest masses are found on the torus
(ξ) (only the most important sheets of the FS are shown). Right panel: Comparison
of experimental dHvA frequencies (black symbols) (From [204]) and calculated fre-
quencies (open symbols). The large parabola corresponds to the main FS cylinder.
(From [509])

the self-energy becomes Σ(ω). This provides for a rather complete picture.
The Fermi surface of UPd2Al3 is obtained from the band structure calcu-
lation with 5f2 kept as part of the core. The band masses mb of the f -
like parts of the conduction electrons are multiplied isotropically by a factor
m∗/mb = 1 − (∂Σ/∂ω)ω=0. The enhancement of the bandmass mb by the
emission and reabsorption of magnetic excitons reduces in this case to

m∗

m
= 1 + 8a2N(0)

|M |2
δ̄

. (13.54)

The prefactor a2 is the weight of the 5f contribution to the conduction
electrons close to the Fermi energy. From band structure calculations it is
known that this weight is nearly 40 %. For an estimate of (13.54) we need
to know N(0) and δ̄ which is the averaged energy of a magnetic exciton. We
extract a value of N(0) = 2.76 states/(eV cell spin) from LDA calculations
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with two 5f electrons in the core and choose a value of δ̄ = 7 meV from
the INS data16. Results for the Fermi surface and for de Haas-van Alphen
frequencies are shown in Fig. 13.21. Also shown are experimental results.
The strongly anisotropic quasiparticle masses are listed in Table 13.3. The
agreement with experiments is surprisingly good. It should be noticed that
once δ̄ is obtained from experiment, the theory does not contain any adjustable
parameters. Similar findings were obtained for UPt3, where the strong mass
anisotropies are again well explained. In this case the theory contains one
adjustable parameter, for which an adjustment of the γ coefficient of the low
temperature specific heat is used.

13.4 Heavy d Electrons: LiV2O4

The spinel LiV2O4 is considered the first d-electron system with heavy quasi-
particle excitations [248]. Note that (YSc)Mn2, which is close to a magnetic
instability shows similar features17. The γ coefficient of the low temperature
specific heat of LiV2O4 is strongly enhanced, i.e., γ ≃ 0.4J mol−1K−2 and
so is the spinsusceptibility. The latter shows for T > θ a Curie-Weiss like
behavior

χ(T ) = χ0 +
c

T + θ
; θ = 63K (13.55)

and for T ≪ θ a Fermi-liquid behavior with a similar enhancement as γ.
No magnetic ordering has been observed down to 0.02 K. The Sommerfeld-
Wilson ratio is of order unity. Furthermore, the resistivity is ρ(T ) = ρ0+AT

2

with a large coefficient A = 2 µΩcmK−2. When the entropy is calculated
from the specific heat data, it is found that S(T = 60K) − S(T = 2K) =
10 Jmol−1K−1. This is close to 2R ln 2 where R is the gas constant and implies
that at 60 K there is nearly one excitation per V ion present. This proves that

Table 13.3. Quasiparticle mass m∗ in unit of free electron mass for UPd2Al3.
Experimental values from de Haas-van Alphen measurements with H ||c (From [204]
and [509])

FS sheet m∗ (exp.) m∗ (theory)

ζ 65 59.6

γ 33 31.9

β 19 25.1

ǫ2 18 17.4

ǫ3 12 13.4

β 5.7 9.6

16 see [396]
17 see [119,474]



356 13 Heavy Quasiparticles

Fig. 13.22. Pyrochlore lattice. The V atoms of LiV2O4 occupy corner sharing sites
(solid dots) of tetrahedra.

correlations are strong in the system, since in a conventional band description
of 3d electrons only a fraction of kBT/ǫF of the conduction electrons takes
part in the excitations.

Spinels have the composition AB2O4. The B ions are surrounded by an oc-
tahedron of O2− ion each, i.e., they form a BO6 complex. They are positioned
at the sites of a pyrochlore lattice (see Figs. 13.22), i.e., each B site belongs to
two tetrahedra. The pyrochlore structure belongs to a class of lattices which
are called geometrically frustrated and are discussed in Sect. 14.3. By this
we mean that if spins with a nearest neighbor AF interaction are attached
to the different sites, then an AF spin alignment is frustrated by the lattice
structure.

Of particular interest are spinels in which the B sites have half-integer va-
lency. Here LiV2O4 is an example. With O2− and Li+ the two V atoms have a
valency of V+3.5, i.e., they fluctuate between 3d1 and 3d2 configurations. An-
other, much studied example is Fe3O4, i.e., magnetite. One Fe3+ ion occupies
an A site while the remaining Fe2+ and Fe3+ occupy the B sites. Magnetite
shows a metal-insulator transition (Verwey transition) of Mott-Hubbard type
at Tv = 120K [467]. It demonstrates that correlations are strong in this sys-
tem. The metal-insulator transition is accompanied by charge ordering, the
precise form of which has been repeatedly a subject of debate.

In addition to LiV2O4 and Fe3O4, there are a number of other spinels with
half-integer valency of the B atoms. We list some of them in Table 13.4.

Table 13.4. Spinels with a half-integer valency of d ions.

M = Ti V V(Cr) Mn

Li(Al)M2O4 LiTi2O4 LiV2O4 AlV2O4 LiMn2O4

(LiCr2O4)

average d-electron count d0.5 d1.5 d2.5 d3.5

per M-atom
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Different models have been proposed to explain the existence of heavy
quasiparticles ion LiV2O4. The geometrical frustration of the pyrochlore lat-
tice is an important ingredient in those theories. We want to discuss two of
them, with quite different starting points. One starts from a conventional LDA
type of band calculation and treats the strong correlations by a RPA. With
the assumption that we are close to a magnetic instability, we can explain the
neutron inelastic experiments as well as γ and χs(T ). The second approach
starts from the strong correlation limit and can explain parameter free the
correct order of magnitude of γ and χs(T ). The latter approach, however, has
not been sufficiently developed in order to explain the neutron data. The hope
is that the two models with their opposite starting points can eventually be
brought to convergence in a regime which is in between the two cases.

It is worth pointing out that the band structure of a pyrochlore lattice
has special features. They are seen best when only nearest-neighbor hopping
processes with matrix element t are taken into account. The Hamiltonian is
then of the diagonal form

H0 =
∑

kασ

(ǫα(k)− µ) c+kασckασ , (13.56)

where α = 1, . . . , 4 is a subband index due to the four atoms per unit cell.
This assumes that there is one orbital per site. The ǫα(k) are given by

ǫα(k) =

{

2t α = 3, 4

−2t
[

1± (1 + ηk)
1
2

]

α = 1, 2

ηk = cos(2kx) cos(2ky) + cos(2ky) cos(2kz) + cos(2kz) cos(2kx) ,

(13.57)

where the kν are expressed in reciprocal lattice units 2π/a. The band structure
is shown in Fig. 13.23. Going beyond nearest neighbor hopping does not result
in any dispersion of the flat band. A finite dispersion is obtained only when we
deal with several orbitals per site and different hopping matrix elements. This
feature is still visible in the calculated density of states for LiV2O4 shown in
Fig. 13.24. The peak at ≃ 1 eV corresponds to the flat band in Fig. 13.23. We
notice that the 3d electrons are in the t2g subbands which are well separated
from the empty eg bands. They are also well separated from the oxygen 2p
bands.

The first model calculation which we discuss starts from the t2g bands
shown in Fig. 13.24. More precisely, a weak trigonal distortion splits the t2g
orbitals into a1g + e′g orbitals. Starting from weakly or nearly uncorrelated
electrons, the strong correlations are treated within a RPA18. One aim is to
explain available quasielastic neutron scattering experiments19. For that pur-
pose the wavenumber and frequency dependent spin susceptibility χ(q, ω) for

18 see [493,504]
19 see [251,274]
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Fig. 13.23. Energy bands for a pyrochlore lattice with nearest neighbor hopping t
and one orbital per site. The dispersionless band is twofold degenerate. (From [206].)

Fig. 13.24. Partial densities of states (DOS) for LiV2O4 obtained from LDA cal-
culations. The sharp peak around 1 eV corresponds to the flat band in Fig. 13.23.
(From [111].)

LDA multiband electrons has to be calculated. This is a generalization of
the calculation outlined in Sect. 11.3.2, where χ(q, ω) was determined for a
one-band system (see (11.109) and (11.112)). As a first step the unenhanced
susceptibility χ(0)(q, ω) must be determined, which is the analogue of u(q, ω)
in (11.109). The frustrated lattice structure only enters here in form of the
energy dispersion ǫkα. It has the effect that Reχ

(0)(q) has broad peaks in dif-
ferent symmetry directions. They are in the same region 0.4Å−1 . q . 0.8Å−1

of q-space in which the main quasielastic neutron scattering is observed. The
structures in χ(0)(q) are amplified when χ(q, ω) is computed (compare with
(11.112)). We then solve the integral equation

χ(r, r′;ω) = χ(0)(r, r′;ω) +

∫

dr′′χ(0)(r, r′′;ω)K(r′′)χ(r′′, r′;ω) , (13.58)

where K(r′′) is the spin-dependent part of the exchange-correlation poten-
tial vxcσ (r) (see (4.21)). Taking the Fourier transform results in χGG′(q, ω)
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Fig. 13.25. Surface in momentum space representing the lower bound of the critical
regime of strongly enhanced slow spin fluctuations. The upper bound is given by a
larger equivalent surface which differs by a momentum |δq| = 0.3a−1 from the one
shown. (From [504].)

where G denotes reciprocal lattice vectors. The peak structure in χ(0)(q) is
found to be enhanced in χ(q), especially when G = G′ = 0. What enters
the calculations is an average of K(r) over the local d electron density. At a
critical coupling Kc the energy denominator in χ(q, ω) vanishes and the sys-
tem becomes magnetic. If we would use the unrenormalized K(r) from LDA
calculations, LiV2O4 would be indeed magnetic with a range of possible q
values, in contradiction with experiments. Thus the LDA potential is appar-
ently strongly renormalized. In fact, the geometrically frustrated pyrochlore
structure prevents the system from becoming an antiferromagnet.

Assuming that K . Kc one finds a broad range of qc values at which
χ(q) = max. The system does not find a single q vector at which the free
energy of antiferromagnetic spin fluctuations is minimized. The competition
between different spin structures is a consequence of geometric frustration. In
Fig. 13.25 we show a surface in k space which defines the lower bound for the
critical regime of strongly enhanced slow spin fluctuations. The upper bound
is given by a larger surface with a difference a|δq| ≈ 0.3 from the one in that
figure. The mean radius of the region of enhanced fluctuations is qc ≈ 0.6Å−1.
This is in good agreement with inelastic neutron scattering experiments on
polycrystalline LiV2O4 samples at T ≤ 2 K. Here short-range AF correlations
with a relaxation rate of Γ (q) ≃ 1 meV were observed in a broad region of
q vectors around |q| ≃ 0.6Å−1. A small relaxation rate is precisely what is
expected near a critical point, i.e., when K is close to Kc.

We use (11.126) in order to write for low frequencies

Imχ(q, ω) = zqχ(q)ω
Γ (q)

ω2 + (Γ (q))2
, (13.59)

where zq is a weighting factor of order unity. By adjusting the value K .
Kc, we obtain a Γ (qc) of the observed size, i.e., of approximately 1 meV.
It reproduces also the large observed linear specific heat coefficient γ. The
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relation is

γ =
k2Bπ

N

∑

q

zq
Γ (q)

(13.60)

and the summation is over the cubic Brillouin zone.
In summary, the strong point of the RPA based theory is the finding of a

broad region in k space around qc ≃ 0.6Å−1 in which, low-energy spin fluc-
tuations are strong. This broad region is intimately related to the frustrated
pyrochlore lattice structure. The nearness to a AF transition is again related
to the frustrated structure which prevents long-range AF order20.

The second approach to heavy quasiparticle formation in LiV2O4 starts
from the strong correlation limit. This seems justified in particular in view
of an observed charge ordering which takes place under pressure [126]. The
analogy to the Verwey transition in Fe3O4 is apparent and is another earmark
of strong correlations. The model Hamiltonian for the d electrons of vanadium
is

H = −
∑

〈ij〉ν
tν
(

c+iνσcjνσ + h.c.
)

+ U
∑

iν

niν↑niν↓ + U
∑

i;ν>µ

niνniµ

+J̃
∑

iνµ

siνsiµ + V
∑

〈ij〉
ninj +

∑

〈ij〉
Jij(Si, Sj)SiSj . (13.61)

Here i is the site index and ν = 1, 2, 3 labels the different t2g bands. The
first term is the kinetic energy term while the next three terms describe the
intra-atomic Coulomb repulsion (compare with (11.1)). For simplicity, the dif-
ferences in Coulomb repulsions between different orbitals have been neglected.
The last two terms are due to the Coulomb interactions and spin-spin inter-
actions between neighboring sites, respectively. Here Si =

∑

ν siν .
Let us assume that U → ∞. Because the average d electron number is

3d1.5 the V ions are either in a 3d1 or 3d2 configuration. Other configura-
tions like 3d0 or 3d3 are excluded by the large U value. Due to Hund’s rule
correlations the 3d2 ions are in a high spin S = 1 state. Furthermore, let us
first set the hopping matrix elements tν = 0. This corresponds to the classical
limit. In order to minimize the Coulomb repulsions V between 3d1 and 3d2

ions, we must have on each tetrahedron two V ions in a 3d1 and two ions in
a 3d2 configuration (tetrahedron rule). It is easily seen that any other distri-
bution of the 3d1 and 3d2 sites increases the total intersite electron repulsion.
The ground-state is in this case macroscopically degenerate because there are
different configurations of order (3/2)N/2, which satisfy the tetrahedron rule
where N is the number of sites. We show one of those configurations in Fig.
13.26. When we connect all sites with S = 1/2 they form loops or rings, pro-
vided periodic boundary conditions are applied. The same holds true for the
S = 1 sites. From LDA calculations we can determine the nearest neighbor

20 For further details, as well as extensions of the theory to finite temperatures we
refer to the original literature [503,504]
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Fig. 13.26. Pyrochlore lattice: Example of a configuration satisfying the tetrahe-
dron rule. Occupied sites with S = 1/2 (black dots) are connected by thick solid
lines which form chains or rings. The same may be done for sites with S = 1 (yellow
dots).

coupling constants Jij(SiSj). One finds J(1/2, 1/2) = 3 meV, J(1, 1) = 24
meV. Because J(1, 1) ≫ J(1/2, 1/2) the spins in the S = 1 chains are much
more strongly coupled than the spins in the S = 1/2 chains .

Note that a Heisenberg S = 1 chain has a gap in the excitation spectrum
(Haldane gap) [167]. Therefore, the low energy excitations are within the
S = 1/2 subsystem. Due to the geometrical frustrations the spin 1/2 loops
or chains are essentially decoupled from the spin 1 chains. They are also
decoupled from each other. A coupling can take place only via the S = 1
chains respective rings, which require excitation energies of order J(1, 1) .
The specific heat of a Heisenberg chain is linear in temperature T . The γ
coefficient as well as the spin susceptibility of a spin chain are given according
to (13.42) by

γ =
2

3

kBR

J(1/2, 1/2)
, χs =

4µ2
effR

π2J(1/2, 1/2)
, (13.62)

where R is the gas constant. The experimental γ coefficient would require a
value of J(1/2, 1/2) = 1.2 meV instead of the calculated 3 meV. However, this
strong coupling model gives nearly the right density of low-energy excitations
required by experiments.

Up to now we have set all kinetic energy terms equal to zero. In Chapter 14
we shall discuss in detail how the macroscopic degeneracy of the ground state
configurations is lifted by tν . It turns out that for small hopping matrix ele-
ments this occurs only to order t3ν/V

2. Therefore, when J(1/2, 1/2) > t3ν/V
2

then the above classical limit is a reasonable starting point for including the
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dynamics of the system. A disadvantage of the above considerations is that
it is difficult to explain the neutron scattering experiments, which show en-
hanced spin fluctuations in the regime 0.4Å−1 . q . 0.8Å−1. That was found
possible in the RPA based model, although the γ coefficient requires correc-
tions by a factor of 30 when the starting point is an uncorrelated system.



14

Excitations with Fractional Charges

Condensed matter physicist became acquainted for the first time with the
concept of fractional charges when Su and Schrieffer [438] discussed excita-
tions in heavily doped trans-polyacetylene (CH)n. Before that the two authors
together with Heeger had shown that in undoped trans-polyacetylene kink ex-
citations may exist which have only a spin and no charge or only a charge
±e but no spin [439]. This phenomenon is known as spin-charge separation.
When the electron system is fully spin polarized it behaves like a system of
spinless fermions, because the spin degrees of freedom are frozen out. If we
then consider a one dimensional π electron system similar to (CH)n but with
one π electron per two carbon sites, only (half filled band of spinless fermions)
then the kink excitations have fractional charge ±e/2. They are related to an
excitation with fermion number 1/2 in relativistic field theory discovered by
Jackiw and Rebbi [211]. However, as pointed out above, fractionally charged
excitations are also obtained in trans-polyacetylene when we keep the spin de-
grees of freedom but dope the system. The magnitude of the fractional charge
is always a rational of e and depends on the degree of doping in this case.

A characteristic feature of spin-charge separation or of fractional charges
in trans-polyacetylene is that both appear within the independent electron ap-
proximation, i.e., they have little to do with electron correlations. Instead they
require the inclusion of atomic displacements, i.e., lattice degrees of freedom.
That is completely different in the fractional quantum Hall (FQH) effect. Two-
dimensional (2D) semiconducting inversion layers in a perpendicular magnetic
field can support excitations with fractional charges, most notable with ±e/3,
which are solely due to electron correlations [454]. A fascinating aspect of them
is that they neither obey Fermi- nor Bose statistics but instead are anyons1.
The name indicates that an exchange of two of these excitations multiplies
the wavefunction by a phase eiϕ where ϕ is neither π like for fermions nor 2π
like for bosons but instead a rational of it. A stringent connection between
fractional charges and fractional, i.e., anyonic statistics would exclude frac-

1 see [271,278,486]
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tionally charged excitations in three dimensions. It is well known, that in three
dimensions only fermions or bosons may exist. Therefore it is of interest to
know whether or not a model Hamiltonian can be found which supports de-
confined excitations with fractional charges in three dimensions [415]. This is
indeed the case. What is required is a system of strongly correlated electrons
on a three-dimensional geometrically frustrated lattice. An example is the py-
rochlore lattice (see Fig. 13.23). When this lattice is half-filled with strongly
correlated electrons, excitations with fractional charges ±e/2 may result. We
will discuss a number of different phenomena which occur when electrons with
strong nearest-neighbor repulsions occupy frustrated lattices in two and three
dimensions. This includes the checkerboard as well as the kagome lattice. In-
teresting features are relations to Pauling’s ice model [354] as well as to gauge
theories. A fascinating aspect is the appearance of magnetic monopoles in spin
ice.

We start with trans-polyacetylene despite the fact that correlations play
no role as far as the basic effect is concerned. However, good insight is gained
into the phenomenon of fractional charges.

14.1 Trans-Polyacetylene

Polyacetylene forms chains (CH)x with x typically of the order of 10 - 40.
Two configurations of (CH)x are known: trans- and cis-polyacetylene. We are
interested here in the trans configuration which is depicted in Fig. 14.1.
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Fig. 14.1. Chemical structure of the two ground states of trans-polyacetylene

Note that an infinite chain has two ground states which differ in the ar-
rangement of single and double C-C bonds. The structure is produced by a
sp2 hybridization of the valence electrons of carbon. Three of its four valence
electrons participate in σ bonding, while one electron does so in π bonding.
The π bond is formed from electrons with 2pz symmetry (Fig. 14.2). There are
two C atoms per unit cell. If the C atoms were equally spaced in trans-(CH)x,
the π band would be degenerate at the edge of the Brillouin zone due to a C2

symmetry. If this were the case, the π band would be half-filled in an extended
zone scheme, and the system would exhibit metallic behavior when the chains
become infinitely long. We do not, however, observe this; instead, infrared
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absorption experiments reveal a gap in the electronic excitation spectrum of
approximately 2 eV.

Fig. 14.2. Schematic picture of the 2pz orbitals which form π bonds.

This gap results from bond alternation. In fact, consecutive C-C bond
lengths dn and dn+1 are found experimentally to differ by a dimerization
length ξ = (1/2)|dn − dn+1| ≃ 2.7 pm. This difference results in a loss of the
C2 symmetry and hence in a gap in the π band at the edge of the reduced
Brillouin zone (Fig. 14.3).

Fig. 14.3. Energy dispersion for a π bond of an equidistant (dotted lines) and a
dimerized (solid lines) chain. The latter requires a doubling of the unit cell and
therefore a reduction of the Brillouin zone. The quantity r0 is closely related to the
average C-C bond length.

The phenomenon of dimerization in polymers has a long-standing history
in quantum chemistry2. It represents a special case of a general instability first
suggested by Peierls for one-dimensional systems with a half-filled conduction
band. We notice from Fig. 14.3 that doubling the unit cell leads to a gain in

2 see, e.g., [257,288]
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kinetic energy, because the states near the edge of the new Brillouin zone have
a lower energy than in the undimerized chain. Peierls showed that this gain in
kinetic energy is always larger than the loss in elastic energy associated with
a distortion. Su, Schieffer and Heeger demonstrated the latter by means of a
model Hamiltonian for the π electron system:

H = −
∑

(i,j)σ

(t0 ± 2αξ) a+iσajσ + 2N0Kξ
2 . (14.1)

The operators a+iσ, aiσ create and destroy a π electron at the carbon site i.
The first term takes into account that the hopping matrix elements between π
electrons at neighboring sites (i, j) depend in the dimerization length ξ, i.e., it
is larger than t0 for the shorter bond and smaller than t0 for the longer bond.
The second term describes the elastic energy which must be associated with
the dimerization of a chain of N0 carbon atoms. We can relate the parameters
α and K to the electron-phonon coupling strength and to an elastic constant,
respectively. The dimerization length acts like an order parameter. It vanishes
for an undimerized chain. A dimerized (CH)x chain has a twofold degenerate
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Fig. 14.4. Soliton or domain wall between an (A) domain to the left and a (B)
domain to the right. (From [439])

ground state denoted by A and B. In state B the double bonds are shifted by
one C site as compared with the ones in state A.

Consider now a soliton or domain wall with the A phase to the left and
the B phase to the right of the wall as illustrated in Fig. 14.4. Denote with ui
the displacements of the C atoms projected onto the chain axis relative to an
undistorted chain. If the C atom at site i = 0 marks the center of the domain
wall than u0 = 0. Because of symmetry uj = −u−j. A trial function for the
uj is

uj = (−1)j+1 ξ

2
tanh

j

2l
, j = ±1,±2, ... (14.2)

and similarly for the bond length dn. In passing we mention that an energy
minimization of the soliton or kink excitation gives l ≃ 7 for reasonable pa-
rameters t0, α and K [439].
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Fig. 14.5. Density of states for a half-filled undimerized chain and a dimerized
one with a soliton or kink state inside the gap. Dotted lines indicate the states
contributing to the midgap state.

The kink gives raise to a midgap state as indicated in Fig. 14.5. It can
accommodate at most two electrons due to Pauli’s principle. The appearance
of a midgap state can be understood simply by the fact that the center of
the kink is undistorted and therefore its energy must be in the center of the
band3. Because of symmetry half of the oscillator strength of the midgap state
must come from the upper (unoccupied) band and half of it from the lower
(occupied) band. Thus when the kink state is empty one electron is missing
from the lower band. Therefore the system is no longer charge neutral but has
a charge −e. However, its total spin is zero, because each state of the lower
band has as an equal amount of electrons in both spin directions. Thus we may
speak of spin-charge separation because the system has a charge but no spin.
If the kink state is singly occupied the system is charge neutral but now has a
spin. Similarly, when the midgap state is doubly occupied there is a net charge
e but the total spin is zero. Note that when we close a trans-polyacetylene
chain to a ring then generating a kink implies automatically generation of an
anti-kink. The latter has two double bonds next to each other. When the kink
state is empty the antikink state must be doubly occupied in order to ensure
charge neutrality.

Next let us assume that electrons are fully spin polarized so that spin
degrees of freedom do not play any role or, what is equivalent, that we deal
with spinless fermions. We want to start again from a half filled conduction
band, which implies here one spinless fermion per two C atoms. In that case
the kink state can accommodate at most one spin-polarized (or spinless) elec-
tron. Again half of the oscillator strength comes from the lower band and half
from the upper one. Therefore when the kink state is empty one half of an
electron is missing and the charge is −e/2. On the other hand, when the kink
state is occupied there is a surplus charge e/2. Thus we are dealing here with
excitations of fractional charge. Thereby the degeneracy of the ground state

3 a more sophisticated phase-shift argument comes to the same conclusion [439]
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is a necessary prerequisite. The topologically protected excitation with frac-
tionalized charge, i.e., the kink or domain wall connects degenerate ground
states. This is the main message of this Section. Note that kink and antikink
are identical in the present case. A topological protection of fractionalized
charges applies also to higher dimensions. This will be seen in the following.

14.2 Fractional Quantum Hall Effect

The fractional quantum Hall effect (FQHE) was discovered by Tsui, Störmer

and Gossard shortly after the discovery of the integer quantum Hall effect
(IQHE) by von Klitzing. While the IQHE can be understood within an in-
dependent electron theory of a disordered system the FQHE is based on
strong electron correlations. Both effects are found in GaAs/GexGa1−xAs
heterostructures or silicon field-effect transistors when a magnetic field B is
applied perpendicularly to the two-dimensional electron liquid. The experi-
mental arrangement is schematically shown in Fig. 14.6. At certain magnetic
field strengths the Hall resistance RH shows pronounced plateaus at which
the resistance R drops to zero.

Fig. 14.6. Experimental arrangement for measuring the quantum Hall effect.

The physics of the quantum Hall effect is very rich and has developed
into a large field of its own. It has been dealt with in a number of good
text books. Examples are Refs. [59, 112, 377, 501] of which [501] is especially
recommended to students. Here we shall restrict ourselves to discuss how the
strong correlations result in a FQHE. The first question to answer is why are
we dealing here with strong correlations? Let us begin with the Hamiltonian
of the system of interacting electrons with band mass m in a magnetic field:
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H =
∑

j

[

1

2m

[

~

i
∇j +

e

c
Aj

]2

+ V (rj)

]

+
1

2

∑

j 6=k

e2

|rj − rk|
. (14.3)

The charge e is chosen to be positive. The potential V (r) is due to the back-
ground and ensures charge neutrality. First consider the Hamiltonian for a
single electron in an external field

He =
1

2m

[

~

i
∇+

e

c
A

]2

. (14.4)

We choose for A(r) the symmetric gauge

A =
B

2
(yx̂− xŷ) (14.5)

where x̂ and ŷ are unit vectors in the plane of the layer.We are interested in the
low-energy physics only. The spin degree of freedom is discarded here, because
the magnetic field is freezing it out. The eigenfunctions of the Hamiltonian
are of the form

ψm,n(r) = e
1
4 (x

2+y2)
(

∂

∂x
+ i

∂

∂y

)m(
∂

∂x
− i

∂

∂y

)n

e
1
2 (x

2+y2) . (14.6)

They are related to Laguerre polynomials. All lengths have been expressed in
units of the magnetic length

lm =

√

~c

eB
(14.7)

which is the basic scale in quantum Hall physics. For a magnetic field of 1T
it is approximately 250 Å. The eigenvalues are

Emn = (n+ 1/2)~ ωc , n = 0, 1, ... (14.8)

where ωc is the cyclotron frequency given by

ωc =
eB

mc
. (14.9)

It is noticed that the eigenvalues depend on n only, which labels Landau
levels with equally spaced energies. Therefore, when we deal with a system of
noninteracting electrons the ground state will be highly degenerate because
of the index m in (14.8). The degree of degeneracy is obtained as follows.
The density of states per spin direction and unit area of a two-dimensional,
homogeneous electron gas is constant and given by NE = m/(2π~2). If the
system is in a magnetic field with energy levels (14.8) the averaged density of
state is NE = 1/(~ωc). Therefore the degeneracy per level is nB = NE/NE =
eB
hc . Since
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φ0 =
hc

e
(14.10)

is the flux quantum in quantum mechanics, we find that nB is also the number
of flux quanta per unit area. By using (14.7) the number of states per unit
area within a Landau level can also be written as

nB =
1

2πℓ2m
. (14.11)

The FQHE is most pronounced when the magnetic field is so strong that
the lowest Landau level is partially filled only. In that case, the ground state of
noninteracting electrons is highly degenerate, a prerequisite for the appearance
of fractional charges. But instead of a noninteracting system, we are dealing
here with a strongly correlated system. The kinetic energy of the electrons
is practical reduced to zero as noticed from (14.8) where for n = 0 only the
zero point fluctuations ~ωc/2 of the cyclotron frequency remain. Therefore
the Coulomb repulsion of the electrons dominates and the ground state must
minimize it. The electronic wavefunctions in the lowest Landau level are

ψℓ0(r) =
(

2ℓ+1πℓ!
)−1/2

zℓe−|z|2/4 (14.12)

where we have introduced the coordinate z = x+ iy in units of the magnetic
length. For a given value of ℓ the wavefunction has a density |ψℓ0(r)|2 as shown
in Fig. 14.7. The quantum number ℓ denotes the angular momentum, yet the
radius of the orbit in that figure should not be mistaken as the cyclotron orbit.
This is seen, when the classical analogue is considered (see Fig. 14.7(b)). Since
all ψℓ0(r) have the same energy, any function

ψ(r) = f(z)e−|z|2/4 (14.13)

with an arbitrary polynomial f(z) in z is also an eigenfunction of (14.4). Note
that when the electronic system is confined to a finite area, ℓ may not exceed
a maximum value.

In order to minimize the Coulomb repulsion of the electrons we have to
find a proper superposition of Slater determinants. Because of (14.13) this
superposition is of the general form

ψ (r1, ..., rN ) = f (z1, ..., zN ) e−
∑

i |zi|
2/4 (14.14)

where f(z1, ..., zN ) is a polynomial in zi. The different terms of it can be
written as products

∏

i z
ℓi
i . Since ℓi is the angular momentum of the i-th

electron (see (14.12)) the total angular momentum of the product is L =
∑

i ℓi.
But L is a constant of motion and therefore only terms in the polynomial with
the same L may be used in constructing ψ(r1, ..., rN ). The main purpose of
f(z1, ..., zN) is to keep electrons well apart in order to minimize their mutual
repulsion. This can be achieved by a Jastrow-type ansatz discussed in Sect.
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Fig. 14.7. (a): Density distribution of an electron in the lowest Landau level with
angular momentum ℓ. (b): classical analogue. (From [501])

5.4.4. Due to the strong correlation limit we are dealing with, we write the
pair wavefunction in (5.106) directly as a prefactor, i.e.,

f (z1, ..., zN ) =
∏

i>j

f (zi − zj) . (14.15)

The expression must also obey Pauli’s principle, i.e., it must change sign when
electrons i and j are interchanged. An ansatz

f (zi − zj) = (zi − zj)
m , m > 0, odd integer (14.16)

fulfills all requirements. The wavefunction is strongly suppressed when zi ap-
proaches zj and it is antisymmetric. Thus we end up with the total wavefunc-
tion suggested by Laughlin

ψL (r1, ..., rN ) =
∏

i<j

(zi − zj)
m e−

∑

i |zi|
2/4 , m = 1, 3, 5, ... (14.17)

It constitutes a major accomplishment of condensed matter theory.
Next we have to find the proper value of m for a given filling factor of the

lowest Landau level, or vice versa, the right filling factor ν for a given value of
m. For that purpose we use a heuristic argument. In a system of N electrons
with wavefunction (14.17) the largest exponent an electron with coordinate
zi can have is (N − 1)m. Therefore its maximal angular momentum is L. It
gives raise to a circle of radius R =

√

2(L+ 1)ℓm (see Fig. 14.7(a)) and area
F = 2(L+ 1)πℓ2m. Given a homogeneous electron distribution, we may write
F = (L+1)/nB because of (14.11). But L ≃ Nm for large electron number N .
Therefore N = nBF/m and ν = 1/m is found to be the corresponding filling
factor of the lowest Landau level. At filling factors 1/3, 1/5 etc. the system is
particularly able to keep electrons apart and minimize their repulsions. This
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is seen from (14.16 - 14.17). A Laughlin wavefunction with m = 1 corresponds
to a completely filled lowest Landau level. It can be shown that in this case the
wavefunction corresponds to a single Slater determinant formed with functions
(14.12) and 1 ≤ ℓ ≤ N . In passing we mention that the Slater determinant
can be written in the form of a Vandermonde determinant

ψ (r1, ..., rN ) =
1√
N !
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Describing the system by one Slater determinant only, neglects correlation
effects by which electron pairs are virtually excited into the next Landau
level. This corresponds to the configuration interactions discussed in Sect. 5.1.
However, because of the large magnetic length ℓm or low carrier concentration
those effects are very small here.

Fig. 14.8. Composite bosons consisting of electrons with three flux quanta attached
each. (From [430])

Returning to the case of filling factor ν = 1/3 we notice that there are
three flux quanta per electron. So let us attach three flux quanta to each elec-
tron. The new objects, i.e., an electron plus three flux quanta attached to it
is a boson, more precisely a composite boson. This is shown schematically in
Fig. 14.8. The boson character follows from the behavior under particle inter-
change. Exchanging two electrons with each of them having a flux φ attached

gives raise to a phase factor exp(iπ
(

1 + φ
φ0

)

). Thus, when an odd number

of flux quanta are attached to an electron it behaves like a boson, while at-
tachment of an even number of flux quanta results in fermions. Since all flux
quanta are used up when composite bosons are formed these bosons are in a
field-free plane. Note that we could have as well associated three flux quanta
of an fictitious opposite magnetic field to an electron with the same result, i.e.,
obtaining composite bosons in a field free system. In mean-field approximation
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the composite bosons interact solely through a short-range repulsive interac-
tion. Therefore, like any interacting boson system in two dimensions, they
Bose condense at low enough temperatures. Condensation of charged bosons
is known from superconductivity where electron pairs, i.e., Cooper pairs act
nearly like boson particles. Characteristic for a superconductor are a dissipa-
tionless current and the Meissner effect. A dissipationless current prevents the
build up of a voltage in the direction of the current. At the same time, via
induction the motion of the flux quanta, which are part of the bosons, set up
an electric field perpendicular to the current. Indeed, a current per unit area
j = nBev in a field B = nB · 3φ0êz where êz is a unit vector perpendicular to
the plane, gives rise to an induced field E = [v ×B]. This results in

eE = 3φ0 [j× êz] (14.19)

and a Hall conductivity σxy = − e
3φ0

as experimentally observed. Needless to

say that similar arguments apply to filling factors ν = 1/5, 1/7 etc.
Consider a system with filling factor ν = 1/3 and assume that the field

is increased by such a tiny amount that there is just one additional flux unit
present. There is no electron available for including this flux quant as part
of a composite boson. Let us move this flux quant to the origin. Thus we
may think of a tiny solenoid at the origin containing one unit of flux. This
implies keeping an area 2πℓ2m at the origin free of electrons. This is achieved
by shifting all electron states ψℓ0(ri) to ψℓ+1,0(ri) (see (14.12)). We do this
by multiplying each function ψℓ0(ri) by zi. This factor causes an additional
phase shift of 2π when electron i is moved in a circle around the origin and
encircles the solenoid. The total wavefunction is therefore of the form

ψex (r1, · · · , rN ) =

N
∏

i

ziψL (r1, · · · , rN ) (14.20)

or, when we move the extra flux to position z0

ψex (r1, · · · , rN ) =
∏

i

(zi − z0)
∏

j<n

(zj − zn)
m
e−
∑

ℓ|zℓ|
2/4 . (14.21)

It follows from the above that the zero in the wavefunction at z0 reduces
the probability of finding an electron close to that point. Therefore, there
is a net positive background charge which we associate with a quasihole. Its
charge is −e/3. This is seen as follows. Assume that we have three flux quanta
at z0 to which we add an extra electron so that the total electron number is
N+1. Then the system is again charge neutral. This implies a charge of −e/3
for one quasihole. Similar arguments can be applied for the construction of a
quasiparticle excitation, which is obtained when the magnetic field is slightly
decreased. When the number of flux quanta is reduced by one, there is an elec-
tron left with two flux quanta only, so that it can not form a composite boson.
By removing three flux quanta and one electron the system is again charge
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neutral, implying that the removal of one flux quantum creates a quasiparticle
or quasi-electron with charge e/3.

The argument can be made more rigorous by moving z0 and with it the
associated positive, yet undertermined charge e∗ of a quasihole adiabatically
around a circle which encloses a flux φ. By calculating the associated geomet-
rical phase (generalized Aharonov-Bohm or Berry phase) one finds

e∗

~c

∮

drA(r) = 2π
e∗

e

φ

φ0
(14.22)

where e∗ is still undetermined. On the other hand, the geometrical phase
change d(γ(z0)) under an adiabatic motion of the quasihole is [30]

d (γ (z0)) = i 〈ψex (z0) |d ψex (z0)〉 . (14.23)

From (14.21) it follows that

dψex

dz0
=
∑

i

(

d

dz0
ln (zi − z0)

)

ψex (14.24)

and furthermore that
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We use that
〈
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and identify the expectation value with the density, i.e.,

ρ(z) =

〈

ψex
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Therfore, when z0 is moved adiabatically around a circle of radius R we obtain

γ = i

∫

ρ(z)d2z

∮

dz0
d

dz0
ln (z − z0) . (14.28)

All z values contribute to the z-integration which are inside the circle. For
them the dz0 integral gives a value of 2πi. Note that the electron density is
ρ = nB/3 since the lowest level is filled by one third. With (14.11) this gives us
γ = −πR2/(3ℓ2m). When this is compared with (14.22) we obtain e∗/e = 1/3
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or more generally for a filling factor ν of the lowest Landau level e∗/e = −ν.
In close analogy one finds for quasi-electrons a charge νe.

Let us repeat the adiabatic motion of a quasihole at z0 along a circle of
radius R, but this time with an additional quasihole positioned at the center
of the circle. Then all arguments up to (14.28) still hold except that πR2ρ
must be replaced by (πR2ρ − ν), since a fraction ν of an electron is missing.
This is so because of the positive background associated with the additional
hole. This change in γ would seem to imply a change in the effective charge e∗

of the quasihole. However, this is unphysical, because e∗ should not depend
on the presence or absence of other quasiholes. Thus the extra phase shift of
∆γ = 2πν must come from exchanging the two quasiholes twice when the
quasihole is moved along the circle. Remember that exchanging two particles
(or holes) is equivalent to moving one particle on a semicircle around the
second one. When the encirclement of a quasihole by a second one gives a
phase change of ∆γ = 2πν, the exchange of two quasiholes gives raise to a
phase factor of eiϕ = eiνπ(= ei∆γ/2), i.e.,

ψ (r1, r2) = eiνπψ (r2, r1) . (14.29)

This is distinct from the case of bosons where ϕ = 0 as well as fermions for
which ϕ = π. The quasiholes therefore obey fractional statistics and are called
anyones [278,486]. The reason for the fractional statistics is, of course, found
in the association of a flux line with a quasihole. So when two quasiholes
are interchanged one has to account for the Aharonov-Bohm phase, which is
building up when a quasihole is moved on a semicircle around another one.

We hope that from the above considerations the origin of fractional charges
in the FQHE has become clear. There is a wealth of additional new phenomena
related to the FQHE. They go beyond the scope of this book, though. For
further studies, we have to refer therefore to the original literature collected
in the following volumes [96, 176, 435].

14.3 Correlated Electrons on Frustrated Lattices

Strongly correlated electrons on geometrically frustrated lattices lead to a
number of new physical phenomena. For most of them experimental realiza-
tions are still missing. Nevertheless, it is very instructive to look at these
systems in more details. Geometrically frustrated lattices have the property
that when a spin is attached to each lattice site with antiferromagentic inter-
actions between neighboring sites, then spins are frustrated. An antiferromag-
netic spin arrangement is only partially possible on these lattice structures.
Simple examples are the triangular, pyrochlore, checkerboard and kagome lat-
tice shown in Fig. 14.9. But there are many other frustrated lattice forms. An
extensive list of them is found, e.g., in Ref. [170].

Later, when we establish a connection between strongly correlated elec-
trons on a frustrated lattice structure and a U(1) gauge theory, it will turn
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(a) (b) (c) (d)

Fig. 14.9. (a) Pyrochlore, (b) checkerboard, (c) kagome and (d) triangular lattice.
The checkerboard lattice can be viewed as a projection of a pyrochlore lattice onto
a plane. Therefore, in both lattices each site has six nearest neighbors connected by
solid lines.

Fig. 14.10. Medial or dual lattice (red) of the pyrochlore, checkerboard, and kagome
lattice. Particles are occupying here links instead of sites. This is indicated for one
particle by a thick solid line on each medial lattice. The vector x labels a square.

out advantageous to work not with the original lattices but with the medial
ones. They are obtained by connecting the centers of the tetrahedra (py-
rochlore lattice) or criss-crossed squares (checkerboard lattice) or triangles
(kagome lattice) with each other. It is easy to see that the resulting medial
lattices are the diamond, square and honeycomb lattice, respectively. They are
shown in Fig. 14.10. In distinction to the original lattices, where particles are
occupying sites, the latter are occupying links of the medial lattices. Of main
concern will be the pyrochlore lattice, because of its three-dimensional nature
and because this lattice structure is quite common in nature. As pointed out
in Sect. 13.4, in spinels of chemical composition AB2O4 the B sites form a
pyrochlore lattice. Examples belonging to this class of materials are LiV2O4

or magnetite, i.e., Fe3O4, of which the former has been discussed at length in
Sect. 13.4. But a number of physical features are much easier to visualize when
we consider a checkerboard rather than a pyrochlore lattice. The checkerboard
lattice may be considered a projection of a pyrochlore lattice onto a plane.
The kagome lattice will also be used in order to demonstrate some interesting
general properties of electrons on frustrated lattices.
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There is considerable literature available on spins on frustrated lattices.
Perhaps the most interesting result is the prediction and subsequent finding of
magnetic monopoles in spin ice4. Here we will be mainly concerned with charge
degrees of freedom of strongly correlated electrons on those lattices5. This
suggest to eliminate the spin degrees of freedom either by assuming spinless
fermions, or what is equivalent,fully spin polarized electrons. Therefore, from
now on we will forget about spin degrees of freedom.

Using spinless fermions implies that a lattice site is either empty or singly
occupied. Double occupancies are ruled out due to Pauli’s principle. Thus
there are two states possible for a lattice site in distinction to the Hubbard
model in the large U limit, where we deal with three states per site. Consid-
ering spinless fermions is not as unrealistic as it might seem. Consider, e.g.,
magnetite Fe3+(Fe2+Fe3+)O4. Here the Fe2+Fe3+ ions occupy a pyrochlore
lattice. The Fe3+ ions are in a 3d5 and S = 5/2 configuration while the Fe2+

ions with 3d6 and S = 2 have one electron with opposite spin direction. Thus
in first approximation only one spin direction may be considered.

Fig. 14.11. The three bands of the kagome lattice. The first Brillouin zone is of
hexagonal shape. The highest band is flat. At 1/3 filling the Fermi energy coincides
with the Dirac points between the first and second band. At those points the energy
depends linearly on momentum. Note similar features, especially a flat band, in the
energy dispersions of a pyrochlore lattice (ses Fig. 13.23). (From [347])

The following Hamiltonian will be studied

H = −t
∑

〈ij〉

(

c+i cj + h.c.
)

+ V
∑

〈ij〉
ninj . (14.30)

4 see [43,55]
5 see [136]
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The operator c+i (ci) creates (annihilates) a spinless fermions on site i. The
kinetic energy term is limited to nearest-neighbor hopping processes and we
assume that t > 0. It is worth noticing that frustrated lattices with nearest-
neighbor hopping have often flat electronic bands, implying local excitations.
This was already seen in Fig. 13.23 where the energy bands of a pyrochlore
lattice are shown. The same feature is found for the kagome lattice. The energy
bands are drawn in Fig. 14.11 where it is noticed that the highest band is
flat. The interaction term V with ni = c+i ci is limited to nearest neighbor
repulsions. We are interested in the case of strong correlations and therefore
assume that V ≫ t. At special fillings of the lattice the strong correlations
lead to strong subsidiary conditions. In the following we shall concentrate on
their effects.

14.3.1 Loop Models

Let us consider a pyrochlore lattice with twice as many sites than particles
(half-filled case). We start out by first assuming that t = 0. This is the classical
limit with no fluctuations. Then the repulsion V between the particles is
minimized when on each tetrahedron two of the four sites are occupied and
two sites remain empty. Any deviation from this prescription, which we call the
tetrahedron rule, will result in an increase of the repulsive energy. This is easily

Fig. 14.12. Part of the pyrochlore lattice with two particles on each tetrahedron.
When these sites are connected open and closed chains cover the finite lattice cluster.

seen since each tetrahedron with three occupied sites requires a corresponding
tetrahedron with one occupied site only. The difference is ∆E = V per such a
pair. Satisfying the tetrahedron rule implies a macroscopic degeneracy of the
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ground state. The degeneracy has an entropy S0 ≃ kB ln(3/2) per tetrahedron
associated with it. This estimate is due to Pauling who applied it to water
ice [355]. The ice rule states that each O2− ion at the center of a tetrahedron
has two H+ ions with a short bond and two with a long bond associated with
it. The equivalence of the ice rule and tetrahedron rule is obvious. One specific
example of the many ground-state configurations obeying the tetrahedron rule
is shown in Fig. 14.12 for a cluster. When we connect the occupied sites of
neighboring tetrahedra by solid lines, interpenetrating open and closed chains
result. In fact, when we require periodic boundary conditions we obtain for
each configuration a complete loop covering of the lattice.

(a) (b)

Fig. 14.13. (a): One of the many ground-state configurations which cover the plane
with loops. By moving a particle as indicated by an arrow we break a loop and end
up with the configuration in (b). The two tetrahedra with three occupied and three
empty sites are connected by a string of occupied sites. Further displacement of a
particle as indicated by an arrow does not increase the repulsion energy. (After [136])

All this can be better visualized when we go over from the pyrochlore
lattice to the checkerboard lattice which we consider from now on. Here the
macroscopic degeneracy of the ground state is Ndeg = (4/3)

3
4
N where N is

the number of sites. The degenerate ground-state configurations consist of all
the different loop coverings of the plane. One example is shown in Fig. 14.13a.
Assume that we add an energy V to that configuration. That suffices to break
up a loop by moving a particle as indicated by an arrow in that figure. At the
ends of the string formed by the opened loop there is one tetrahedron with
three particles and another with one particle only (see Fig. 14.13b). Both are
connected by a string consisting of an even number of occupied sites. Note
that the repulsion energy does not change if we continue to shift a particle as
indicated by the arrow in that figure.

We want to show that the two tetrahedra at the ends of the string carry
a charge of e/2 and −e/2, respectively. This is seen best by adding a particle
of charge e to the ground state as shown in Fig. 14.14a. There are now two
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(a) (b)

Fig. 14.14. (a): Adding a particle costs an energy 4V and results in two neighboring
tetrahedra with three occupied sites each. Shifting a particle as indicated by an arrow
leads to configuration (b) with the same repulsion energy. Continued displacement
of a particle as indicated by an arrow leaves the repulsion energy unchanged.

neighboring tetrahedra with three particles each. Again, the repulsion energy
remains unchanged when a particle is shifted as indicated by an arrow with
the resulting configuration shown in Fig. 14.14b. If we continue to shift a
particle as indicated by the arrow in that figure the repulsion energy remains
unchanged. The two tetrahedra are connected here by a string consisting
of an odd number of occupied sites. Since nothing is distinguishing the two
special tetrahedra from each other, each of them must carry a charge e/2 in
view of the fact that a charge e has been added to the system. But then the
assignment of charges ±e/2 to the two ends of the broken loop in Fig. 14.13b
is natural. Analyzing the origin of the fractional charges one realizes that it is
due to backflow of charge e/2 when a particle is moved. This backflow results
from the requirement that the tetrahedra which are left behind by a moving
particle must again fulfill the tetrahedron rule. It is therefore a consequence of
the strong electron correlations. The same break-up of a charge e into charges
e/2 is found for a half filled pyrochlore lattice. This is shown in Fig. 14.15
where it cannot be as easily visualized as for the checkerboard lattice.

Up to this point we have not included any dynamics in our model, since
we had set t = 0. This is what we want to change now by allowing for t 6= 0.
Thereby we assume that t ≪ V . Of particular interest is to study, how the
macroscopic degeneracy of the ground state is reduced by dynamical processes
caused by t. To order t2/V the degeneracy remains unaffected since the only
possible process is that a particle is breaking a loop as in Fig. 14.13 and
returns again to its original position. This results in a constant energy con-
tribution which is equal for all ground-state configurations. We want to point
out that ring hopping processes of order t2/V do not contribute for spinless
fermions considered here. Clockwise and counter clockwise hopping processes
cancel in that order. But in order t3/V 2 the ground-state degeneracy is nearly
completely lifted. Ring-hopping processes involving three particles do connect
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(a) (b)

Fig. 14.15. The analogue of Fig. 14.14 for a pyrochlore lattice. (a): a particle has
been added to the system; (b) charge e has split into two charges of e/2.

different ground-state configurations. In that order the effective Hamiltonian
is

Heff =
12t3

V 2

∑

{7}
c+j6c

+
j4
c+j2cj5cj3cj1 (14.31)

and the sum is over all hexagons formed from sites of the lattice. For the
checkerboard lattice we rewrite this expression in a pictorial form as

(14.32)

with g = 12t3/V 2 > 0. The sum is taken over all hexagons of the checkerboard
lattice to which the following considerations apply.

The difference between the B and A processes is that in the former case
the site in the center of the hexagon is unoccupied while in the latter case it is
occupied. The different sign results from a different number of commutations
of fermion operators that have to be performed when 〈j|Heff |i〉 is evaluated.
B and A hopping processes act quite differently on a configuration |i〉. While
B processes merely shift loops around, so that 〈j| has the same topological
structure as |i〉 has, this is different for A processes. Here different loops are
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reconnected by Heff |i〉 so that 〈j| has a different topological structure. This
is seen from Fig. 14.16 where both types of processes are shown. In passing
we want to mention that the sign in (14.32) can be removed by a simple
gauge transformation so that the Hamiltonian is amenable to a Monte Carlo
treatment [374]. This does not hold true for the pyrochlore lattice though,
were we are facing the typical sign problem of fermionic systems.

(a) (b)

Fig. 14.16. Ring hopping of typeB (lower hexagon) and of typeA (upper hexagon):
(a) before and (b) after ring hopping. In the first case (type B) the loops merely shift
while in the second case (type A) they are differently connected by ring hopping.

The ground state of Heff for the half-filled checkerboard lattice consists of
a superposition of configurations |φn〉 of the degenerate classical ground state,
i.e., when t = 0. Thus

|ψ0〉 =
∑

n

αn|φn〉 . (14.33)

Numerical diagonalization of Heff for clusters up to 72 sites shows that |ψ0〉 is
charge ordered. The largest contributions to |ψ0〉 are made by configurations
with the largest number Nfl of flipable hexagons. For the afore mentioned
cluster this is a configuration, called squiggle, with Nfl = 24. Because of the
large unit cell the ground state is 10-fold degenerate. In Fig. 14.17 we show
the values of |αi|2 for configurations with a decreasing number Nfl. We are
dealing here with the phenomenon of order by disorder. It is the dynamics
which gives the ordered state a lower energy than the disordered ones.

In a charge-ordered ground state a pair of charges ±e/2, ±e/2 generates
a string of disorder when the fractional charges separate. This causes an en-
ergy increase linear in the length of the string which is connecting the two
charges. Thus the fractional charges are confined by a linear potential similar
to quarks. Before continuing we want to point out that the situation seems to
be different for the 3D pyrochlore lattice. Here the ground state of a related
model, i.e., spin ice remains a strongly correlated liquid and the fractional
charges (monopoles) are deconfined (see Sect. 14.3.4) [407].
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Fig. 14.17. Weighting factor of ground-state configurations with different numbers
of flipable hexagons Nfl (Courtesy of F. Pollmann).

Fig. 14.18. Loss of kinetic energy in proportion to the size of the circles in the
presence of two fractional charges e/2 (plaquettes marked in red) (From [375]).

Returning to the checkerboard lattice we want to determine the tension of
the confining string. We can calculate it by determining the kinetic energy ǫi
at a site i in the presence of two tetrahedra (i.e., criss-crossed sites) with three
particles each. They are positioned at plaquettes 0 and r and the wavefunction
is |ψ̄0(0, r)〉. It is

(14.34)

and the sum is over all hexagons containing site i. The loss of kinetic energy at
different sites is obtained from cluster calculations and is shown in Fig. 14.18.
The total kinetic energy change is found to increase linearly with r. Thus the
restoring force is independent of r, unlike in the presence of a spring. The
string tension τst is defined as the total increase in kinetic energy divided by
r (in units of the lattice constant). It can be determined from the numerical
data and it is found that τst = 0.2g. The same result holds true when a loop
is breaking up with charges e/2, −e/2 at its ends.
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When the two fractional charges are pulled apart so that the confining
energy ∆E = 0.2gr is larger than ∆E ≥ V then it becomes energetically
favourable to create a new pair e/2, −e/2 which is cutting the string into
two pieces. The situation reminds us in many aspects of quark confinement
in QCD. Also quarks experience a constant confining force. When they are
separated too far, quark-antiquark pairs, i.e., mesons are generated. The pre-
vailing picture in that field is depicted in Fig. 14.19. We want to reemphasize
the finding that the confinement of fractionally charged particles in our model
is a direct consequence of the symmetry-broken, i.e., charge ordered vacuum
state. This vacuum is here the ground state |ψ0〉 given by (14.33).

For completeness we want to mention that between two fractional charges
the vacuum is polarized, i.e., there is an alternating increase and decrease of
the local net charge. It is obtained by evaluating

Fig. 14.19. When quark q and antiquark q̃ are separated too far (i.e., by more than
1 fm) a new qq̃ pair (µ-meson) is created. In our model a pair of fractional charges
e/2, −e/2 corresponds to qq̃. (From [101])

δni =
〈

ψ̄0(0, r)|ni|ψ̄0(0, r)
〉

− 〈ψ0|ni|ψ0〉 . (14.35)

Therefore we may argue as well that the confining force is a consequence of the
vacuum polarization caused when fractional charges are separated. The loss
of kinetic energy as well as the vacuum polarization follow directly from the
property that the string consists of occupied sites connecting the fractional
charges. In the vicinity of the string, ring hopping is reduced, since it requires
alternating empty and occupied sites. Similarly, the string modifies the charge
distribution in its surrounding as compared with its average value.

Assume that we start from the ground- or vacuum state |ψ0〉 and that we
pump an increasing amount of energy into the system. Then more and more
loops are broken and we obtain an increasing number of pairs of fractional
charges e/2, −e/2 linked by strings. When those pairs come close to each other
they can recombine differently and form also e/2, e/2 and −e/2, −e/2 pairs.
Eventually we end up with a plasma consisting of particles with fractional
charges e/2, −e/2 and of strings confining them (see Fig. 14.20). The system,
which was previously an insulator has then turned into a metal.
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Fig. 14.20. As the number of broken loops increases, pairs with different com-
binations of ±e/2 may form. Finally a plasma is obtained of fractionally charged
particles with attached strings acting like a glue.

Fig. 14.21. Height representation. Filled circles denote occupied sites with vectors
pointing in the orientational direction. This direction alternates for the two sublat-
tices. Empty circles denote empty sites with vectors pointing against the orienta-
tional direction. On the criss-crossed squares curl f = 0. The height of neighboring
squares changes by one in the direction of the arrows.

The insulator-metal transition can also be studied by using a hight rep-

resentation. As we will see the break up of a loop corresponds here to the
generation of a vortex-antivortex pair. The transition to a metal corresponds
to a proliferation of those pairs (Berezinsky–Kosterlitz–Thouless transition).
In the hight representation each ground-state configuration of the checker-
board lattice is uniquely represented by a vector field f(i) where i is the site
index. The discretized lattice version of curl f vanishes. The vector field is ob-
tained by using the property that the checkerboard lattice is bipartite. This
allows for assigning alternating orientational directions (i.e., clockwise and
counter clockwise) to the different crisscrossed squares (see Fig. 14.21). Each
site has associated with it a vector which points into the orientational direc-
tion when the site is occupied and into opposite direction when it is empty.
The tetrahedron rule requires that on each crisscrossed square curl f = 0 since
two sites are occupied and two sites are empty. Since curl f = 0, the vector
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field vanishes, it can be represented in terms of a scalar or hight field as

f = grad h . (14.36)

For a finite lattice with Nx · Ny crisscrossed squares and periodic boundary
conditions, the height at opposite boundaries h(−Nx/2) and h(+Nx/2) can
differ only by an integer κx(y). It varies from −Nx ≤ κx ≤ Nx and similar
for κy. The quantum numbers κx(y) are topologically protected, i.e., they
are not affected by ring-hopping processes [392]. Application of Heff merely
changes the height of two neighboring plaquettes by±2. States with (κx, κy) 6=
(0, 0) are charge ordered. When, for example, κx > 0 this implies a charge
modulation along a diagonal stripe.

In the height representation it is easily seen that breaking up a loop corre-
sponds to the creation of a vortex-antivortex pair. We merely have to exchange
an occupied site with a neighboring empty site (see the filled and empty circle
in Fig. 14.21). Then two neighboring plaquettes obtain a vorticity of opposite
sign. The vortex and antivortex can separate in analogy to Fig. 14.13. This
motion can be described by a Hamiltonian

Ht−g = Heff − t
∑

〈ij〉
P
(

c+i cj + h.c.
)

P . (14.37)

P is here a projector which projects onto the subspace of configurations with
two fractional charges e/2 and −e/2, or in height presentation with one vortex
and one antivortex. We consider the two parameters in (14.37), i.e., g which
appears in Heff and t as being independent. The above Hamiltonian does not
take into account that with increasing ratio t/V ring hopping on rings larger
than hexagons becomes important. A more advanced theory should also take
8-site, 10-site etc. hopping processes into account and not limit itself to 6-site
rings. Thus a transition from an insulator to a metal can have two origins.
One is within the model described by Heff by means of proliferation of vortex-
antivortex pairs caused by energy input. The other is by extending Heff to
larger ratios of t/V and including hopping on larger rings.

14.3.2 Dimer Models

At this stage we want to come back to the medial lattice representation (see
Fig. 14.10) in order to introduce dimer models. Until now we have concen-
trated on half-filled pyrochlore and checkerboard lattices. We have seen that
they lead to loop coverings of the lattices. If we consider instead those two
lattices at quarter filling, we end up with a dimer model on the respective
medial lattice. The tetrahedron rule is replaced here by requiring that each
lattice site of the medial lattice must have attached to it one occupied link,
i.e., one dimer. The same holds true for a kagome lattice at 1/3 filling. In the
following we want to concentrate on that particular system.
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Looking for ground-state configurations of the Hamiltonian (14.30) with
t = 0 it is obvious that the mutual nearest-neighbor repulsion vanishes when
each triangle contains one occupied site (triangle rule). The effective Hamil-
tonian, which lifts most of the degeneracy of the ground-state configurations
is written here in the form

, (14.38)

and refers to the medial lattice representation (see Fig. 14.10). Ring hopping
takes place on hexagons of the kagome lattice. On the medial lattice, which
here consists of hexagons, that corresponds to flips of dimers. It is g = 12t3/V 2

like for the pyrochlore lattice. In addition, there is a constant energy shift ∆E,
which for a system of N sites has the form

∆E = −N
3

(

4t2

V
+

2t3

V 2

)

+O
(

t4/V 3
)

. (14.39)

Although the kagome lattice is not bipartite it turns out that the sign of g
is irrelevant. It can be changed by a simple gauge transformation. This is
achieved by multiplying each configuration |C〉 by a phase factor

|C〉 → iν(C)|C〉 (14.40)

where ν(C) is the number of particles in |C〉 on any of the three sublattices.
More details are found in [347].

Often a term first introduced by Rokhsar and Kivelson is added to Heff .
In the medial lattice representation it is of the form

(14.41)

and counts all flipable hexagons. It is used to counteract the dimer flipping in
Heff and has the advantage that for the resulting quantum dimer model

HQDM = Heff + δH (14.42)

an exact ground state can be found when µ = g > 0. At this point, often re-
ferred to as Rokhsar-Kivelson point, all ground-state configurations satisfying
the triangle rule have the same weight. This is seen by rewriting HQDM for
µ = g in the form

(14.43)

which is a sum of projectors. When HQDM is applied to a superposition of all
ground-state configurations with equal prefactor we obtain zero. Therefore the
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above statement follows. Knowing the ground state for µ = g, we can search
for the ground state in the vicinity of that point. This way one can prove that
for µ = 0 the ground state consists of resonating plaquettes or hexagons, and
has the form of a plaquette phase [327]. The latter is schematically shown in
Fig. 14.22.

= or

Fig. 14.22. Plaquette phase of a kagome lattice at 1/3 filling. Ring hopping takes
place on the black plaquettes of the medial lattice. The ground state is threefold
degenerate.

Moving a particle from one triangle of the kagome lattice to another (quan-
tum fluctuation) or adding or removing a particle from the lattice produces
fractionally charged excitations with e/2,−e/2 in close analogy to the checker-
board lattice case. They are confined because of the symmetry broken vac-
uum, i.e., charge ordered ground state. The “string” tension is found to be
τst = 0.2g. However, due to the low 1/3 lattice filling it is not possible to
identify a single string of occupied sites connecting the two fractional charges
as found to be the case at half-filling. Instead, in a given configuration there
are several paths of alternating occupied and empty sites connecting the two.

Of particular interest is a study of the spectral density. It is expected
to show fingerprints of the fractional charges. Since fractional charges are
confined by a linear potential, we expect to see excited bound states similar
to the ones known in elementary particle physics between a charmed quark and
antiquark, i.e., charmonium6. The spectral function is written as A(k, ω) =
A+(k, ω) +A−(k, ω) with

A+(k, ω) = − 1

π
Im

〈

ψ0

∣

∣

∣

∣

ck
1

ω + E0 −H + iη
c+k

∣

∣

∣

∣

ψ0

〉

A−(k, ω) = − 1

π
Im

〈

ψ0

∣

∣

∣

∣

c+k
1

ω − E0 +H + iη
ck

∣

∣

∣

∣

ψ0

〉

(14.44)

where E0 is the ground-state energy of the N particle system when H is given
by (14.30) (compare with (7.103)). The resulting k integrated spectral density
is

6 see, e.g., [13,391]



14.3 Correlated Electrons on Frustrated Lattices 389

D±(ω) = − 1

N

∑

k

A±(k, ω) (14.45)

where N is the number of lattice sites.
When D+(ω) and D−(ω) are calculated for a cluster of 27 sites dramatic

changes appear when V/t varies from 0 ≤ V/t ≤ 30. Some of them we want
to discuss.

When V/t is large, or g/t ≪ 1 the confined charges e/2, ±e/2 are on
average far apart because of the small string tension. In that limit bound
states cannot be obtained from a cluster calculation. But we may confine in
that limit calculations to the reduced Hilbert space onto which Ht−g (see
(14.37)) acts. That enables us to treat large clusters. Results for g = 0.01t
using a 108 sites cluster are shown in Fig. 14.23.

Fig. 14.23. Hole- and particle spectral density for a cluster of 108 sites of a kagome
lattice at 1/3 filling. It is g = 0.01t. (From [347])

Most noticeable is the bandwidth of the excitations which is approximately
twice as large as for V = 0. In the hole density of statesD−(ω) a δ-function like
peak is seen at ω = 0. Its origin is that the operator ck=0 = (3N)−1/2

∑

j cj ,
when applied on |ψ0〉, gives an approximate eigenstate of the Hamiltonian
(14.30). A proof is found in Appendix J. The spectrum D+(ω) is shifted by
2V, i.e., by the energy it takes to add a particle.

We can study bound states by formally increasing g/t so that eventually
the first excited state of a pair of fractional charges is inside, e.g., a 75 site
cluster. This is seen in Fig. 14.24 and an estimate when this will happen is
obtained by solving the Schrödinger equation for a particle in a linear poten-
tial. As expected the criterion is that g ≃ t. In future experiments the above
features may serve as fingerprints of excitations with fractional charges.

Before we close this Section we want to discuss briefly which changes we
expect when the spin is introduced. We still want to exclude double occu-
pancies of sites. Therefore, we add a large on-site, Hubbard type of repulsion
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Fig. 14.24. Spectral function A+(k ≃ 0, ω) for different values of g/t ranging from
0.1 - 4.9. One notices a split-off peak for g & 1.3 which is due to an excited state of
a confined pair e/2, −e/2. The cluster includes 75 sites. (From [347])

U
∑

i niσni−σ to the Hamiltonian. Let us assume that we add to a half-filled
checkerboard or pyrochlore lattice an electron with charge e and spin 1/2. As
we have seen before, the charge is breaking up into two pieces e/2 and e/2.
Yet we would like to know what happens to the spin. There will be always a
spin-spin interaction between particles on neighboring sites and only an an-
tiferromagnetic, i.e., Heisenberg type of coupling is of interest here. Like in
the case of spinless fermions the string connecting the two charges e/2 con-
sists of an odd number of sites (see Fig. 14.14b). A Heisenberg chain with
an odd number of sites has a two-fold degenerate, i.e., doublet ground state.
This doublet is representing the spin degree of freedom. Thus the latter is
distributed over the chain as a whole, i.e., the spin degree of freedom is de-
localized. In agreement with this is the observation that a pair e/2, −e/2 of
fractional charges (see Fig. 14.13b) is connected by a string consisting of an
even number of sites. The ground state of such a Heisenberg chain is a singlet
and there is no spin degree of freedom connected with such a particle-hole like
pair created out of the vacuum.

14.3.3 Mapping to a U(1) Gauge Theory

As it turns out, strongly correlated electrons on a half-filled pyrochlore or
checkerboard lattice, or on a 1/3-filled kagome lattice can be mapped onto a
local U(1) gauge theory. The basis of this mapping is the observation that Heff

given by (14.32) and (14.38) conserves the number of occupied links attached
to a site of the medial lattice. This number is two for the half-filled pyrochlore
and checkerboard lattice and one for the 1/3-filled kagome lattice. There-
fore different phases may be attached to the different sites. The invariance of
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Heff against (local) gauge changes manifests the strong relations, which exist
between the requirement of local gauge invariance and the form of the inter-
actions of the particles. Here they enforce the tetrahedron or triangular rule,
respectively. Relations of this kind are a corner stone of elementary particle
physics.

The mapping which we want to demonstrate for the checkerboard lattice at
half filling is similar to the one derived by Fradkin [121] for the dimer model
on a square lattice [347]. We start from the medial square lattice (see Fig.
14.10) with unit vectors ej(j = 1, 2). For each link ab between neighboring
lattice sites a and b of the square lattice we define a particle number operator
n̂ab with integer eigenvalues. In order to limit the number of particles on a
link to zero and one, the effective Hamiltonian must include a term of the
form

Hlim = lim
U→∞

U
∑

i

(

(n̂i − 1/2)2 − 1

4

)

. (14.46)

All configurations with more than one particle on a link i are eliminated by
attaching to them an infinite energy. Before we can express Heff in terms of
the n̂i operators we have to introduce their canonical conjugates, which are
the phase operators φ̂i on links. They satisfy the commutation relations

[

n̂i, φ̂j

]

= iδij . (14.47)

Since the eigenvalues of the n̂i are integers, the spectrum of the φ̂i is in the
range [0, 2π] modulo 2π. The phase operator acts like a shift operator on the

number operator, i.e., exp(im φ̂j)|nj〉 = |nj+m〉 for integer values of m. This
relation follows from the identity

e−imφ̂n̂ eimφ̂ = im

∞
∑

p=0

1

p!

[

n̂, φ̂
]

p
= n̂+m (14.48)

where [n̂, φ̂]p = [n̂[n̂ . . . [n̂, φ̂]] . . . ], i.e., the iteration is performed p times. The

identity of both sides is obtained when n̂ and exp(imφ̂) are commuted. From
(14.48) we obtain

n̂eimφ̂|0〉 = meimφ̂|0〉
= m|m〉 . (14.49)

We are now able to express the effective Hamiltonian in terms of the n̂i and
φ̂i. For the medial, i.e., square lattice it is of the form
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(14.50)
The dots in the first equation reemphasize occupied links. The last term re-
sults from the shift operator and is a sum over all double squares, each of
which contain six links (1, ..., 6) involved in a ring-hopping process. The φ̂ν
alternate in sign, since in a ring-hopping process an empty site goes over
into an occupied one, implying +φ̂ν while the neighboring site changes from
occupied to empty (−φ̂ν±1).

A B

Fig. 14.25. Medial bipartite lattice with sublattices A and B. Occupied links always
point towards A lattice sites while unoccupied links point in opposite direction. The
vectors are used to define an electric field. The configuration corresponds to the one
in Fig. 14.13a. It is noticed that according to (14.53) divE(x) = 0 at each site.

When dealing with a bipartite lattice as is the case here, a vector field can
be associated with each configuration. This was previously done in connection
with the height representation (see Fig. 14.21). Thus the links obtain a direc-
tion with occupied links always pointing from a site of sublattice B to one of
sublattice A. The opposite holds true for empty links (see Fig. 14.25). This
suggest the introduction of an electric field Êj(x) where links j are specified
by two indices, i.e., x and j = 1, 2. Here x is labeling a square of the lattice
and j refers to the two vectors ej shown in Fig. 14.10. With this notation we
introduce two vector fields

Êj(x) = (−1)x1+x2

(

n̂j(x)−
1

2

)

Âj(x) = (−1)x1+x2 φ̂j(x) . (14.51)
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The electric field has been defined so that its average vanishes. The Âj(x)
have here the same sign in a ring with alternating occupied and empty links.
We must also incorporate the constraint, that each lattice site is touched by
exactly two occupied links. This follows from the (tetrahedron) rule that each
crisscrossed square contains two particles. Here the constraint reads

(

divÊ(x)− ρ(x)
)

|Phys〉 = 0 (14.52)

with the lattice divergence of the electric field and ρ(x) are defined by

divE(x) = Ê1(x)− Ê1(x− e1) + Ê2(x) − Ê2(x− e2)

ρ(x) = n1(x) + n1(x− e1) + n2(x) + n2(x− e2)− 2 . (14.53)

For all ground-state configurations ρ(x) = 0. Then divÊ(x) = 0 as seen in Fig.
14.25. It is noticed that the constraint has the form of Gauss’ law. A system
obeying a constraint of this form is said to be in a Coulomb phase [177]. In
terms of Êj(x) and Âj(x) the effective Hamiltonian Heff becomes

Heff = lim
U→∞

U
∑

xj

(

Ê2
j (x)−

1

4

)

+2g
∑

xj

cos

(

∑

2

Âj(x) +
∑

2

Âj(x− êj)

)

.

(14.54)
The oriented sum of the vector potential around one plaquette is

∑

2

Âℓ(x) = Â1(x) + Â1(x + e2) + Â2(x) + Â2(x+ e1) . (14.55)

It is noticed that ring hopping is equivalent to the presence of a B field via
∑

2 Âj(x) +
∑

2 Âj(x− ej) and with it a flux. Thus the Hamiltonian (14.52)
resembles that of compact electrodynamics in 2+1 dimensions [376]. That
model is known to yield confinement of charges under the assumption that
the vacuum state is field free. This is not the case here, since the vacuum state
contains a staggered E field (see (14.51)). Yet, as we have seen before, also in
our model fractional charges are confined, because of a charge-ordered vacuum
or ground state. This state is produced by the dynamics in the system, i.e., by
vacuum fluctuations in the form of ring hopping processes. The confinement
of fractional charges is caused by an increase of disorder in the vacuum state
when the charges are separated.

14.3.4 Magnetic Monopoles

Despite of extensive search, magnetic monopoles originally proposed by Dirac

in 1931 have not been found until now. Dirac had suggested them, because
they give the basic Maxwell’s equations of electromagnetism a more symmet-
ric form than they have presently. It is of considerable interest, that for certain
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magnetic solids, i.e., spin ice, corresponding excitations have been predicted
by Castelnovo, Moessner and Sondhi, which set up a magnetic field like Dirac’s
magnetic monopoles [55]. The difference is that Dirac’s monopoles refer to the
vacuum of Maxwell’s theory while in the solids discussed here, monopoles refer
to a vacuum which is the highly degenerate ground state of spin ice. The ad-
vantage is, that monopoles in spin ice have actually been observed and widened
our physical understanding not only of spin ice but also of monopoles in gen-
eral [43]. Dy2Ti2O7, the material in which magnetic monopoles have been
detected, is a magnetic insulator. The incomplete 4f shell of Dy3+ contains
strongly correlated electrons, yet the large field of magnetism of localized spins
is outside the scope of this book. Nevertheless, it seems justified to describe
briefly this interesting field of research, in particular, since it is related to the
one of fractional charges, i.e., the topic which we considered before.

The Dy ions of Dy2Ti2O7 occupy the sites of a pyrochlore lattice. They
have a large magnetic moment of nearly 10µB. It results from the incomplete
4f shell which contains nine 4f electrons. The lowest J multiplet is according
to Hund’s rules J = 15/2. It is split by a strong crystalline electric field
into a ground-state which is nearly a pure |Jz = ±15/2〉 Kramers’ doublet
and excited states with an energy higher than 30 meV. They are neclected
here. The CEF forces the magnetic moment µµµi to point along the lines, which
connect the centers of neighboring tetrahedra. In the medial diamond lattice
the moments point therefore along the links of the lattice. The interaction
Hamiltonian is

Hint =
J

3

∑

〈ij〉
SjSj +Da3

∑

i,j

[

êiêj
|rij |3

− 3 (êirij) (êjrij)

|rij |5
]

SiSj , (14.56)

with Si = ±1 (Ising case). Here a = 3.5Å is the nearest-neighbor distance,
and the êi are unit vectors pointing in the direction of µµµi, i.e., µµµi = µSiêi.
Furthermore, Si = ±1 and D = 1.4 K. Since we have discarded higher CEF
eigenstates and do not deal with multipolar interaction either the two states
of the doublet remain disconnected by Hint and quantum fluctuations are
absent. The system has converted into a classical one. Note that because of
the large moment µ the dipolar and exchange interactions are nearly of equal
size. An interesting feature of the dipolar interaction term is that the state
which minimizes it is the same, which minimizes a nearest neighbor repulsion.
This can be seen as follows.

Let us represent the magnetic dipole moment µµµi by a pair of magnetic
charges ±Q separated by a vector di so that µµµi = Qdi. Normally one repre-
sents a dipole by fixing µµµ while taking Q → ∞ and d = |di| → 0. Yet, here
it is advantageous and in fact an excellent approximation to fix d =

√

3/2a
which is the distance between the centers of two neighboring tetrahedra or
alternatively, the bond length in the medial diamond lattice. Depending on
the directions of the four magnetic moments of a tetrahedron we have at the
center of tetrahedron n a total magnetic charge qn. The dipole interaction
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term in (14.56) is the same as the interaction energy of magnetic charges qn
of the different tetrahedra. This follows from Coulomb’s law. It is minimized
when all qn = 0, i.e., when on each tetrahedron two of the µµµi point towards the
center and two of them point away from it. This is a configuration in which the
tetrahedron rule is fulfilled everywhere, like in the case of a nearest neighbor
repulsive interactions. Because of the similarity to Pauling’s model for water
ice we speak of the spin-ice rule rather than of a tetrahedron rule. Therefore,
as far as the ground state of Hint is concerned the problem reduces to the one
of (14.30) with t = 0. Indeed, measurement of the entropy of Dy2Tb2O7 have
revealed that up to the lowest temperatures a huge ground-state degeneracy
remains with an entropy of S = 1/2 log 3/2 per site as envisaged by Paul-

ing. As pointed out above, this degeneracy is not lifted here, because of the
absence of quantum dynamical processes, i.e., fluctuations.

Assume that we flip a dipole at site i which costs an energy of order J or
respective D. In that case the neighboring sites on the diamond lattice acquire
a magnetic charge Qd = qm, since in one tetrahedron three moments point
away and one points towards the center, while on the neighboring tetrahedron
three moments point in and one points out. The two magnetic charges on the
diamond lattice can be separated at the cost of an energy

V (rij) =
µ0

4π

q2m
rij

, rij > d (14.57)

according to the magnetic Coulomb law. This is depicted in Fig. 14.26. Mov-
ing one of the two charges to infinite results in a magnetic monopole with
a Dirac string attached to it. Recently it has been shown that the magnetic
charges remain deconfined even when quantum fluctuations in form of ring
exchanges are included [407]. Note that when the magnetic charges obtain a
dynamics, i.e., kinetic energy due to either the inclusion of higher CEF levels
or multipolar interactions, then bound states between a monopole and an an-
timonopole become an issue. They can be computed by solving Schrödinger’s
equation with a lattice version of the potential (14.57), supplemented by the
nearest-neighbor potential when rij = d.

Magnetic monopoles are sparse at low temperatures. It takes an energy of
order J to flip a spin and therefore the density of monopoles drops exponen-
tially fast with decreasing temperature. One way to look for monopoles is by
the string of flipped spins that connects them (see Fig. 14.26). A Dirac string

emanates from each of the monopoles and effects many more spins than there
are monopoles. These strings can be oriented by a magnetic field [333]. In this
setting, deconfinement shows up by the strings fluctuating freely in the direc-
tions perpendicular to the applied field. These fluctuations take a form which
is mathematically identical to a random walk (note that tilting the field can
bias this random walk). The resulting neutron scattering pattern is diffuse –
the absence of long-range order in the strings means that they do not cause
Bragg peaks – and as such a characteristic feature which has been observed
experimentally.
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Fig. 14.26. Two magnetic charges ±qm on the medial diamond lattice at a dis-
tance r. Pulling them apart requires an energy (µ0/4π)q

2
m/r. Therefore the magnetic

charges are deconfined. Note the similarity of the evolving Dirac string with Fig.
14.13. (From [55])

Fig. 14.27. Temperature induced spin flips with an associated generation of mag-
netic charges ±qm at neighboring sites of the dual diamond lattice (a). The magnetic
charges can be separated by an energy proportional to q2m/r (magnetic Coulomb
law). They can also recombine again, so that an equilibrium is attained. An exter-
nal magnetic field B along ẑ provides a field energy −qmBrz which counter balances
the magnetic Coulomb interaction and causes dissociation of the magnetic charges
(b) and (c). New spin flips are required to reestablish equilibrium. The magnetic fluc-
tuations with associated local fields due to the magnetic charges and the associated
local fields can be detected by implanted µ+ muons (d). (From [43])
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Monopoles also give rise to a new form of collective behavior. They form a
magnetic Coulomb liquid [55]. The resulting magnetolyte physics – in analogy
to electrolytes formed by dilute electric charges – is a rich field indeed. In
application of physical chemistry to spin ice, Bramwell et al. [43] have pointed
out an interesting analogy between the creation of separated magnetic charges
and the autoionization of water, i.e., of the decomposition

2H2O = [H3O
+OH−] = H3O

+ +OH− . (14.58)

It corresponds to the transition of two charge neutral tetrahedra into ones
with magnetic charges ±qm. The dissociation constant K which describes
this process increases nonlinearly when an electric field is applied. This leads
in turn to an increase in the electrical conductivity of water, the so–called
Wien effect. Onsager has developed a theory for this increase which can be
directly transferred to the present case, i.e., the break-up of a magnetic dipole
into a monopole and an antimonopole. The electric field is here replaced by
an external magnetic field B. The result of the transfer of Onsager’s theory is
that in the weak field limit the magnetic field dependence of the dissociation
constant is given by

K(B) = K(0)
(

1 + b+ b2/3
)

, b =
µ0Q

3B

8πk2BT
2

. (14.59)

Following a disturbance, the density of monopoles will depend on time in a
characteristic manner which is expected to show up in dynamical measure-
ments such as magnetization curves or relaxation processes. An unequivocal
observation of such an effect poses a challenge to experimentalists.
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Superconductivity

Superconductivity, one of the most fascinating phenomena in solid-state
physics, was discovered in 1911 by Kamerlingh Onnes, but it took 47 years for
a satisfactory microscopic theory of the effect to become available via Bardeen,
Cooper and Schrieffer (BCS) [20]. The major obstacle which theorists were
facing before the appearance of the BCS theory can be summarized as follows.
The superconducting transition temperature Tc is usually of the order 10 K,
which corresponds to an energy of order 1 meV (we are not considering, for the
moment, the more recent high-temperature superconductors). Provided that
superconductivity is based on electron correlations, and taking into account
that the correlation energy of electrons in a metal is of the order 1 eV per
electron, is it then necessary to compute that energy to an accuracy of order
1 ‰ in order to find a superconducting ground state? If so, this would indeed
be an impossible task and would eliminate any hope for a microscopic the-
ory of superconductivity in the foreseeable future. Fortunately, a very special
pair correlation leads to the phenomenon of superconductivity and a detailed
treatment of the remaining correlation contributions is not required in order
to understand the phenomenon as such. All the correlations that are difficult
to treat are left out and enter the theory only in the form of renormalized
parameters. This explains why reliable calculations of the superconducting
transition temperature have so far remained an unsolved problem. They re-
quire the microscopic calculation of those parameters and therefore a detailed
treatment of the correlations, which goes beyond the special pair correlations.

The presence of electron attractions may lead to the formation of elec-
tron pairs (Cooper pairs) [70]. Those pairs may act like bosons, i.e., they can
condense, although their commutation relations deviate from those of bosons.
The transition from Cooper-pair condensation to true Bose-Einstein conden-
sation can be studied in systems with ultracold fermionic atoms. It was a
breakthrough when BCS realized that the superconducting ground state can
be written in the form of a coherent state. The pair state with zero total mo-
mentum is macroscopically occupied. This implies that it is not an eigenstate
to the electron number operator. But in the limit of large electron number N
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the ground state is nearly an eigenstate of both the particle-number operator
N̂ as well as its conjugate, the phase operator α̂. The relative deviation is
∆N/N ≃ ∆α/α ≃ N−1/2 and therefore becomes negligible. It is interesting
to note that the results of the BCS theory can also be obtained by working
with a ground state of fixed particle number (see, e.g., [276]).

A very fruitful period with many new experimental and theoretical findings
followed the appearance of the BCS theory. One milestone was the realization
that superconductivity does not require a gap in the excitation spectrum and
that gapless superconductors do exist, a feature which is now common knowl-
edge. Crucial is the presence of an order parameter and, associated with it,
of a broken symmetry. In the BCS theory it is global gauge invariance which
is broken by the superconducting ground state due to the nonconserved par-
ticle number. The Josephson effect is a prominent and important example
of the many consequences of that symmetry breaking. A summary of that
period up until the late sixties is found in the two volumes of “Superconduc-
tivity” [353] which came out in 1969 and has since been used as a reference in
many laboratories worldwide. After a number of years of relatively slow but
steady progress, which included the discovery of superconductivity in organic
conductors [218] and in compounds with heavy quasiparticles (for reviews
see, e.g., [155, 426]), the field gained immense impetus from the discovery in
1986 of the high-temperature superconducting perovskites by Bednorz and
Müller [26]. The subsequent development has raised the transition tempera-
ture Tc to values as high Tc = 125 K. Examples of the new high-Tc materials
are La2−xSrxCuO4 (Tc ≃ 40 K), YBa2Cu3O7 (Tc ≃ 92 K), Bi2Sr2Ca2Cu3O10

(Tc ≃ 110 K), and Tl2Ca2Ba2Cu3O10 (Tc ≃ 125 K)1.
Soon it was realized and particularly emphasized by Anderson [6] that

systems like La2−xSrxCuO4 are hole-doped Mott- or, more precisely, charge-
transfer insulators. Note that the antiferromagnet La2CuO4 remains an in-
sulator above the Neél temperature despite having one unpaired electron per
unit cell. The important structural element of the high-Tc cuprates are Cu-O
planes with strong correlations which have been discussed at length in Sect.
13.1. Therefore, research on strongly correlated electrons became very signif-
icant and gained tremendously from high-temperature superconductivity.

Two features of superconductivity obtained special attention; the form of
the pair state, and the origin of electron-electron attractions leading to Cooper
pair formation. Before the discovery of the high-Tc cuprates s-wave pairing
was assumed to be the general rule, although there were indications that in
some of the superconductors with heavy quasiparticles the pair state was of a
more complex form. However, in the high-Tc materials electrons turned out to
pair in a d-wave state. The symmetry of the pair state is here lower than the
point symmetry of the lattice. Therefore, we speak of unconventional pairing.
Subsequently, pairing states in other superconductors were reexamined. It was
found that scattering of electrons by impurities averages anisotropies of the

1 see, e.g., [66]
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order parameter over the Fermi surface. Therefore, one would expect that
unconventional pairing, e.g., in the form of a d wave is destroyed when the
mean-free path becomes shorter than the superconducting coherence length.
However, this argument is obviously not valid in general. Exceptions may be
caused by strongly anisotropic potential scattering. The second topic, namely
that of the origin of electron attractions and hence Cooper-pair formation also
initiated many studies.

In principle, pairs may also form when the electron interactions are purely
repulsive, but then they must meet certain stringent requirements. For ex-
ample, the order parameter must change sign in different parts of the Fermi
surface and the interaction must be less repulsive for electrons near the Fermi
surface than away from it. While in the BCS theory phonons are assumed
to be responsible for electron attractions and hence superconductivity, this
has been seriously questioned in the case of the high-Tc superconductors. The
idea that electron-electron interactions might provide the glue for Cooper-
pairs formation in those materials finds support from the observation that
superconductivity often does occur near a magnetic phase transition when
parameters of the system are changed. However, quantitative, verifiable facts
are still scarce.

The situation is different in some superconductors with low transition tem-
peratures Tc involving f electrons. Here we have overwhelming experimental
evidence that pair formation can primarily be due to intra-atomic low-energy
excitations. This is the case in PrOs4Sb3 and UPd2Al3.

More recently, new surprises in the field of superconductivity have arisen.
The long known material MgB2 turned out to be a superconductor with a Tc
= 39 K [339] and most recently iron pnictides [64, 339] like RE FeAsO with
RE = La, Sm were, against all expectations, also found to be superconductors
with rather high transition temperatures, i.e., up to Tc = 55 K. The ruthenate
Sr2RuO4 was found to be superconducting at temperatures below Tc = 1.5 K.
It is a layered perovskite like the cuprates but with Ru taking the positions of
the Cu ions [299]. In fullerenes, superconductivity was observed. Furthermore,
ferromagnetic superconductors have been found, such as UGa2 where super-
conductivity is observed in the vicinity of a quantum critical point, i.e., near
an external pressure where the ferromagnetic transition temperature goes to
zero [397].

Not only can Cooper pairs form but they can also be broken by external
perturbations. Here it plays a role whether or not the perturbation acting on
the electronic system conserves time reversal symmetry. Usually electrons are
paired in time-reversed states like (k, σ) and (−k,−σ). When a perturbation
changes sign when a time-reversal transformation is applied to the conduction
electron system, then this implies that the perturbation acts differently on the
two partners of a pair. It, therefore, breaks them if it is sufficiently strong.
Examples are magnetic impurities which interact through an exchange poten-
tial with the conduction electrons or an external magnetic field. Pair breaking
plays a significant role in the theory of superconductivity.
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Fig. 15.1. Two interacting electrons outside a filled Fermi sphere. When the inter-
action is attractive they form a bound state (Cooper pair).

Another important aspect is Cooper pairing of electrons with unbalanced
spin populations. The latter are generated, e.g., by a Zeeman term in the
Hamiltonian. It is of interest that the same topic applies to pairing of other
particles, like quarks, or of different species of ultracold atoms. In a certain
parameter range this imbalance may lead to inhomogeneous superconducting
states. Its practical application is found in π junctions in superconducting
circuitry.

Superconductivity has become such a large field of research that it cannot
be our aim to cover it in any detail, in particular since there are a number
of good textbooks already available2. Instead we will concentrate on those
aspects of superconductivity, which widen our view on correlations in solids.

15.1 The Superconducting State

The essence of the phenomenon of superconductivity is an instability of the
normal state with respect to the formation of electron pairs, known as the
Cooper pairs [70]. They have a boson-like character and condense similar to
bosons, thereby forming a superfluid. Consider a filled Fermi sphere in momen-
tum space with radius kF and two extra electrons outside of it (Fig. 15.1).
These two electrons are assumed to attract each other through a potential
V (r1 − r2). The origin of this attraction is usually the electron-phonon in-
teraction. But this need not always be the case and is not important at this
stage. The center of mass is assumed to be at rest. None of the other electrons
participate in the interactions. Their only role is to block the interior of the
Fermi sphere for the orbital part φ (r1 − r2) of the wavefunction of the two
extra electrons.

When we take the Fourier transform

φ (r1 − r2) =
∑

k

g(k)eik·(r1−r2) , (15.1)

2 for examples, see Ref. [81,402,448]



15.1 The Superconducting State 403

this implies that
g(k) = 0 for |k| < kF . (15.2)

The function g(k) is the probability amplitude that one electron is in momen-
tum state k and the other is in state −k. When the two electrons are in a spin-
singlet state, antisymmetry of the wavefunction requires that g(k) = g(−k).
The wavefunction φ (r1 − r2) satisfies the Schrödinger equation

(

− 1

2m

(

∇2
1 +∇2

2

)

+ V (r1 − r2)

)

φ (r1 − r2) =

(

E +
k2F
m

)

φ (r1 − r2) .

(15.3)
In Fourier space this equation takes the form

k2

m
g(k) +

∑

k′

g(k′)Vkk′ = (E + 2ǫF ) g(k) , (15.4)

where

Vkk′ =
1

Ω

w
d3rV (r)ei(k−k

′)·r (15.5)

is the Fourier transform of the attractive potential. We have used ǫF = k2F /2m.
In order to study (15.4), it is advantageous to use a form for Vkk′ which

is as simple as possible. The following one is easy to handle:

Vkk′ =







−V
Ω

for ǫF <
k2

2m
,
k′2

2m
< ǫF + ωD,

0 otherwise .

(15.6)

We notice that the attraction is limited to an energy shell of size ωD above ǫF
and that the initial (k) and final (k′) states must both be within that interval
in order for the attraction to become effective. With this choice of Vkk′ we
have

(

−k
2

m
+ E + 2ǫF

)

g(k) = −V
Ω

∑

k′

′
g(k′)

= C . (15.7)

The prime on the summation symbol implies that k′ must satisfy the inequal-
ity

ǫF <
k′2

2m
< ǫF + ωD . (15.8)

From (15.7) we obtain

g(k) =
C

−k′2/m+ E + 2ǫF
(15.9)

and the self-consistency condition
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C =
V

Ω
C
∑

k′

′ 1

k′2/m− E − 2ǫF
. (15.10)

With the abbreviation

ǫ′ =
k′2

2m
− ǫF (15.11)

the density of states (per spin and unit volume) is

N(ǫ′) =
1

(2π)3
4πk′2

dk′

dǫ
. (15.12)

The self-consistency equation (15.10) can then be written in the form

1 = V

ωDw

0

dǫ N(ǫ)
1

2ǫ− E
. (15.13)

Provided that ωD ≪ ǫF , the density of states can be replaced by its value for
ǫ = 0, i.e., N(0) = mkF /2π

2. After integration we find that

1 =
N(0)

2
V ln

(

E − 2ωD
E

)

. (15.14)

For weak attraction [N(0)V ≪ 1] this expression simplifies to

E = −2ωD e−2/N(0)V . (15.15)

A solution of the Schrödinger equation with an eigenvalue E < 0 implies
a bound state of the two extra electrons in the presence of the filled Fermi
sphere. The surprising fact is that in that situation a bound state always exists
independently of how weak the attractive potential V is. This differs from the
case of an electron in a three-dimensional potential well. There a bound state
exists only if the depth V0 of the well exceeds a threshold value Vc which
depends on the diameter a of the well, i.e., Vc = (2ma2)−1. The difference
compared to the one-electron problem lies in the blocking of the states within
the Fermi sphere which are unavailable for the two interacting electrons and
lead to the condition (15.2). The formation of a bound state is therefore a true
many-body phenomenon. The electrons within the Fermi sphere influence the
bound-state formation through the Pauli principle.

Another important point has to do with the form of the binding energy
E, which cannot be obtained by a perturbation expansion with respect to V
owing to the exponential dependence of E on V . The above calculations show
that in the presence of weak electron net attractions the normal state of a
metal becomes unstable with respect to the formation of Cooper pairs.
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Fig. 15.2. Qualitative behavior of the Cooper-pair wavefunction for (a) isotropic
and (b) anisotropic pair states. φl(r) has its first maximum at r ≃ l/kF .

15.1.1 Pair States

Before discussing the ground-state wavefunction of the total electron system
(BCS wavefunction) we ought to consider the form of the function g(k) for a

nonspherical Fermi surface. Instead of g(k) we may write g(k̂, ξ), where the

unit vector k̂ specifies a point on the Fermi surface and ξ denotes the energy
measured from ǫF . Here, we are assuming that g(k̂, ξ = 0) has the same
symmetry properties as the Fermi surface itself (conventional pairing). Later

we will discuss the case when the function g(k̂, ξ = 0) has a lower symmetry
than the Fermi surface (unconventional pairing).

We expand g(k̂) in terms of a set θl(k̂) of orthonormal functions classified
according to the angular momentum l, which have the full symmetry of the
lattice, i.e.,

g(k̂) = g0 +
∑

l>0

gl θl(k̂) . (15.16)

More precisely, θl(k̂) is usually expressed in terms of a linear combination of

spherical harmonics Ylm(k̂) and is fully symmetric under the operations of the
symmetry group of the lattice.

Returning to r space, we expand the pair function φ(r) where r is the
relative coordinate,

φ(r) = φ0(r) +
∑

l>0

φl(r)θl(r̂) (15.17)

in close analogy to (15.16). The θl(r̂) are the Fourier transforms of the θl(k̂),
and r̂ is a unit vector. Of interest is the radial dependence of φ(r), i.e., of
φl(r). It is shown in Fig. 15.2 for the isotropic case, in which only φ0(r) con-
tributes, and for an anisotropic one with a given value of l. In systems with
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strongly correlated electrons, like heavy-fermion systems or the high-Tc su-
perconducting materials, the two electrons (or, more generally, quasiparticles)
which form a pair have only a small probability of occupying the same site,
as this would imply a large Coulomb repulsion between the two electrons.
Therefore, correlations suppress these configurations. The isotropic compo-
nent φ0(r) of φ(r) must then be small or even vanish. In the heavy-fermion
system UBe13, the two quasiparticles forming a Cooper pair cannot be closer
than a U-U distance, which is d = 510 pm. The first maximum of φ(r) should
be at this distance. With k−1

F ≃ 100 pm this requires l = 4 or 6 when ℓ is even.
We therefore expect the pair wavefunction to be strongly anisotropic [135].

The expulsion of a magnetic field from a sample when it is cooled below
the superconducting transition temperature (Meissner effect) is extremely im-
portant, because it proves that a superconductor is not simply a metal with
infinite conductivity but rather a new thermodynamic state. As such, it is
characterized by an order parameter, different to zero in the superconducting
state and vanishing in the normal state. The particular order in a supercon-
ductor must obviously be related to the formation of Cooper pairs. An elegant
formulation of the order parameter is obtained from the two-particle density
matrix
〈

r1σ1; r2σ2

∣

∣

∣ρ(2)
∣

∣

∣ r3σ3; r4σ4

〉

=
〈

ψ+
σ1
(r1)ψ

+
σ2
(r2)ψσ3

(r3)ψσ4
(r4)

〉

. (15.18)

The single-electron field operators ψσ(r) are the same as in (2.2, 2.3). In
the superconducting state, the two-particle density matrix remains finite in
the limit of large distances between pairs of points r1, r2 and r3, r4,

〈

r1σ1; r2σ2

∣

∣

∣ρ(2)
∣

∣

∣ r3σ3; r4σ4

〉

→
〈

ψ+
σ1
(r1)ψ

+
σ2
(r2)

〉

× 〈ψσ3
(r3)ψσ4

(r4)〉
= Φσ1σ2

(r1, r2) Φ
∗
σ3σ4

(r3, r4) . (15.19)

This property of ρ(2) characterizes the superconducting states and is called
off-diagonal long-range order (ODLRO) [495]. The function Φσ1σ2

(r1, r2) be-
haves like a two-fermion wavefunction and can be identified with the one in
(15.1), when only the orbital part is considered; however, it now deals with
quasiparticles instead of bare electrons and we will refer to it as the order
parameter. Generally this order parameter is antisymmetric with respect to
particle interchange, i.e.,

Φσ1σ2
(r1, r2) = −Φσ2σ1

(r2, r1) . (15.20)

In homogeneous systems it depends only on the relative coordinate (r1 − r2).
Being a two-particle wavefunction, the order parameter has the form of a

2×2 matrix which can be decomposed into an antisymmetric part proportional
to the Pauli matrix τ2 and a symmetric part. It is therefore of the general form

Φ = φ(r1 − r2)iτ2 +
3
∑

µ=1

dµ(r1 − r2)τµiτ2 , (15.21)



15.1 The Superconducting State 407

where φ(r) and dµ(r) are four complex functions [275]. From (15.20) it follows
that

φ (r1 − r2) = φ (r2 − r1)

dµ (r1 − r2) = −dµ (r2 − r1) . (15.22)

The corresponding relations for the Fourier transforms are φ(k̂) = φ(−k̂) and

dµ(k̂) = −dµ(−k̂) respectively. The unit vector k̂ defines a point on the Fermi
surface.

When the crystal lattice of the superconductor has an inversion center,
the order parameter (i.e., the pair wavefunction) can be classified according
to its parity. From (15.20) we see that φ(r) has even parity, while the dµ(r)
are odd-parity states.

When the spin-orbit interaction is sufficiently small and may be neglected,
then the spin S of an electron pair is a good quantum number. It is either
S = 0 implying a singlet state or S = 1 (triplet state). If so, the order
parameter may be also written in the form of a state vector as

∣

∣

∣Φ(k̂)
〉

= φ(k̂)|0〉+
3
∑

µ=1

dµ(k̂)|xµ〉 , (15.23)

where

|0〉 = 1√
2
(| ↑↓〉 − | ↓↑〉) , (15.24a)

denotes the singlet state and

|x1〉 =
1√
2
(| ↑↑〉 − | ↓↓〉)

|x2〉 =
1

i
√
2
(| ↑↑〉+ | ↓↓〉)

|x3〉 =
1√
2
(| ↑↓〉+ | ↓↑〉) , (15.24b)

is the triplet state [275]. The |sz, s′z〉 denote states in which the quasiparticles
have spins with z components sz and s′z. While the singlet state is invariant
under spin rotations, the triplet states |xν〉 transform like the three compo-
nents of a vector. This choice proves more advantageous than using the three
eigenfunctions |S = 1, Sz〉 with S = s+ s′.

Consider a superconductor with an order parameter

Φ(k̂) =

3
∑

µ=1

dµ(k̂)τµiτ2

=
(

d(k̂) · τττ
)

iτ2 . (15.25)
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Noticing that
ΦΦ+ = |d|2 + i (d× d∗) · τττ . (15.26)

we compute its norm
1

2
Tr
∣

∣

∣
Φ(k̂)

∣

∣

∣

2

=
∣

∣

∣
d(k̂)

∣

∣

∣

2

. (15.27)

We see that |d(k̂)|2 measures the magnitude of the pair condensate at point

k̂ on the Fermi surface. The direction of the expectation value of the spin
S of an electron pair is given by that of (d∗ × d), which can be verified by

explicitly evaluating 1
2Tr(Φ

+(k̂)SΦ(k̂)).
For a given crystal structure, e.g., cubic or hexagonal, the spin-singlet and

spin-triplet pair function can be expanded in terms of the basis functions
ΦΓi(k̂) of the different irreducible representations Γi of the symmetry group,
where i is a degeneracy index. We write

φ(k̂) =
∑

(Γi)

AΓiΦΓi(k̂) (15.28)

for the spin-singlet and

d(k̂) =
∑

(Γi)

BΓidΓi(k̂) (15.29)

for the spin-triplet order parameter. A list of the different basis functions for
various symmetries is found in [472].

An example of a spin-singlet order parameter in a hexagonal crystal struc-
ture is a d-wave pair state corresponding to the two-fold degenerate irreducible
representation Γ = E1g. In the case, the basis function are

i = 1 : ΦΓ1
(k̂) = k̂xk̂z

i = 2 : ΦΓ2
(k̂) = k̂yk̂z . (15.30)

Specific examples of spin-triplet order parameters are found in [472]. A promi-
nent one is a p-wave pair state in a system of cubic symmetry with basis
functions

dΓ1
(k̂) = k̂x, dΓ2

(k̂) = k̂y, dΓ3
(k̂) = k̂z . (15.31)

The superconducting order parameter has a lower symmetry than the Hamil-
tonian. The symmetry groupGt of the Hamiltonian consists of the space group
G of the crystal, the time-reversal symmetry group with the operation TR,
and the gauge group U(1). Adding a phase α to each electron by multiplying
ψ+
α (r) with eiα (i.e., changing the gauge) leaves the Hamiltonian invariant.

Thus it is
Gt = G⊗ TR ⊗ U(1) . (15.32)

When the spin-orbit interaction may be neglected, the Hamiltonian is addi-
tionally invariant under the spin-rotation group SU(2).
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Fig. 15.3. Amplitude of the order parameter for conventional and unconventional
pairing. The crystal is assumed to have tetragonal symmetry. In both cases the order
parameter can vanish at the Fermi surface. Red sections: positive sign of the order
parameter, blue sections: negative sign. Green section: order parameter of predom-
inantly px symmetry and orange section: of py symmetry. In (a) the symmetry of
the order parameter agrees with the point symmetry of the lattice while in (b) it is
lower than the point symmetry (courtesy of T. Takimoto).

Systems with heavy quasiparticles involve, in most cases, 4f or 5f elec-
trons and therefore spin-orbit interactions are strong. In this case, point group
transformations also rotate the spin. In the limit of strong spin-orbit coupling
we consider the spin variables in (15.24a,b) as those of pseudospins, reflecting
Kramers’ degeneracy.

When superconductivity sets in, some of these symmetries are broken. One
symmetry always broken is gauge symmetry. This is intimately connected with
the formation of Cooper pairs and is in fact obvious from the definition of the
order parameter through 〈ψ+

σ1
(r1)ψ

+
σ2
(r2)〉. When the U(1) symmetry is the

only one broken in the superconducting state, it would be called conventional

pairing. Should the order parameter also break symmetries of the crystal, one
speaks of unconventional pairing. An example is an odd-parity pair state in
a crystal with inversion symmetry. The order parameter has lower symmetry
than the lattice because it does not remain invariant under inversion. In Fig.
15.3 we show examples of the order parameter for conventional and uncon-
ventional pairing; in both cases, the amplitude may vanish at points, lines, or
on parts of the Fermi surface.

Unconventional pairing is realized in the high-Tc cuprates, in the ruthen-
ate SrRu2O4, where p-wave pairing takes place, in some of the heavy-fermion
superconductors (e.g., CeCoIn5 and UPt3) and presumably in some of the
organic superconductors. The superconducting fullerenes seem to have a con-
ventional pair state. A comprehensive review of the subject is found in [414].
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15.1.2 BCS Ground State

In the following discussion we neglect spin-orbit interactions and consider con-
ventional spin-singlet pairing. The important step of generalizing the theory
of a single pair, discussed previously, to the ground-state wavefunction of a
superconductor was done by Bardeen, Cooper and Schrieffer [20]. In contrast
to the previous calculations, all electrons are treated on an equal level. An
appropriate ansatz for the ground state of N electrons would seem to be

ψ̃ (r1, . . . , rN ) = A(N) [φ (r1 − r2)S(1, 2)φ (r3 − r4)

×S(3, 4) . . . φ (rN−1 − rN )S (N − 1, N)] . (15.33)

This is a wavefunction of independent pairs. The antisymmetrizing operator
A(N) ensures that Pauli’s principle is satisfied. The function S(i, j) denotes
a spin singlet (15.24a) formed by electrons i and j. The wavefunction is a
natural generalization to pairs of the SCF wavefunction, an antisymmetrized
product of one-particle states (independent electrons). Equation (15.33) has
been written down for an even electron number. For large electron numbers
like in a solid (i.e., N ≃ 1023) it should not make any difference whether an
even or odd number of electrons is considered.

Although the ansatz (15.33) can, in principle, be used to calculate expec-
tation values of operators [276, 337], it is generally not convenient to do so.
The theory has be cast by BCS into a very elegant form by working with an
alternative form of the ground-state wavefunction. For that purpose we write
for the creation operator of a single pair

φ+0 =
∑

k

g(k)c+
k↑c

+
−k↓ . (15.34)

The subscript 0 indicates that the total momentum of the pair is zero. The
operator φ+0 is boson-like because it involves two fermions. However, some
features distinguish it from a true boson. In particular the commutation re-
lations, which are easily derived, differ from those of a true boson. With φ+0
one can construct a coherent state of the form

∣

∣

∣
ψ̃0

〉

= eφ
+
0 |0〉

= exp

(

∑

k

g(k)c+k↑c
+
−k↓

)

|0〉 , (15.35)

where |0〉 is the vacuum state. Coherent states have the property that they are
eigenstates of the corresponding bosonic creation operator, i.e., in the present
case φ+0 |ψ̃0〉 = ν|ψ̃0〉 with ν ≃ N1/2. They are “almost” eigenstates of the

total particle number operator N̂ and its conjugate, i.e., the phase operator
α̂. The uncertainties in the two eigenvalues are of order

∆N

N
≃ 1√

N
, ∆α ≃ 1√

N
(15.36)
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and vanish in the limit of large N . Note that the uncertainty principle requires
∆N∆α > 1.

By expansion of (15.35) one obtains

|ψ0〉 =
∏

k

[

1 + g(k)c+k↑c
+
−k↓

]

|0〉 (15.37)

(remember that c+kσc
+
kσ = 0). It is customary to set

g(k) = vk/uk , with u2k + v2k = 1 . (15.38)

In this notation the normalized ground state is written as

|ψ0〉 =
∏

k

(

uk + vkc
+
k↑c

+
−k↓

)

|0〉 . (15.39)

We can easily check that the condition (15.36) for a coherent state is indeed
satisfied. We have

〈Nop〉 =
〈

ψ0

∣

∣Σkσc
+
kσckσ

∣

∣ψ0

〉

= 2Σkv
2
k =

2Ω

(2π)3

w
d3kv2k = N (15.40)

and similarly

(∆N)2 =
〈

N̂2
〉

−
〈

N̂
〉2

=
4Ω

(2π)3

w
d3kv2ku

2
k . (15.41)

We notice that the last expression is also proportional to the volume Ω, and
therefore to N . Thus ∆N ≃

√
N in agreement with (15.36). The BCS wave-

function |ψ0〉 can be decomposed into a sum of states (15.33), i.e., normalized
eigenstates |ψ̃N 〉 of the electron number operator N̂ ,

|ψ0〉 =
∑

N

eiαNw
1/2
N |ψ̃N 〉 . (15.42)

Here α is an arbitrary phase which we may attach to each electron by a gauge
transformation. This form is typical for a coherent or Glauber state3. The
coefficients wN depend on N as indicated in Fig. 15.4. Writing the supercon-
ducting ground state in the form of a coherent state has the advantage that we
can perform calculations with it. It does not suffer from the shortcomings of
the wavefunction (15.33), i.e., that in practice expectation values can hardly
be calculated with it. As mentioned before, in the limit of large N a coherent
state |ψ0〉 is an eigenstate of the phase operator, i.e., one may associate a fixed
phase with it.

3 see, e.g., [319]
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Fig. 15.4. Dependence of the coefficients wN on the electron number N . The func-
tion is strongly peaked at the average value 〈N̂〉

The function uk and vk in (15.38) have remained undetermined. They are
obtained by minimization of the energy expectation value

W = 〈ψ0|H |ψ0〉 . (15.43)

For H we use a reduced Hamiltonian of the form

Hred =
∑

kσ

ǫ(k)c+kσckσ +
∑

k,q

V (q)c+k+q↓c
+
−k−q↑c−k↑ck↓ . (15.44)

Working with a state |ψ0〉 which is not an eigenstate of the electron number
operator requires a Hamiltonian with a coupling to a particle reservoir. We
achieve this by taking the zero of the energy ǫ(k) at the chemical potential µ.
We have kept only those interaction matrix elements which scatter electrons
of opposite spins and which have zero total momentum. One can easily check
that

〈ψ0 |Hred|ψ0〉 = 2
∑

k

ǫ(k)v2k +
∑

k,q

V (q)ukvkuk+qvk+q . (15.45)

At this stage, it is useful to introduce hk = v2k and to set q = k′ − k and
V (q) = Vkk′ . The last equation is then written in the form

W = 2
∑

k

ǫ(k)hk +
∑

k,k′

Vkk′

√

hk (1− hk) hk′ (1− hk′) . (15.46)

Minimizing W with respect to hk leads to

∂W

∂hk
= 0 = 2ǫ(k) +

∑

k′

Vkk′

√

hk′ (1− hk′)
1− 2hk

√

hk (1− hk)
, (15.47)

where we have used that Vkk′ = Vk′k. By using the notation

∆k = −
∑

k′

Vkk′

√

hk′ (1− hk′) (15.48)
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Fig. 15.5. Plot of v2
k as a function of ǫk. The function decreases to zero over an

energy interval of order ∆.

we can write (15.47) in the form

2ǫ(k) = ∆k

1− 2hk
√

hk (1− hk)
. (15.49)

From this equation, hk is determined as

hk =
1

2

(

1− ǫ(k)

E(k)

)

(15.50)

with E(k) given by

E(k) =
√

ǫ2(k) +∆2
k . (15.51)

Accordingly, we obtain vk and uk as

vk =

√

1

2

(

1− ǫ(k)

E(k)

)

, uk =

√

1

2

(

1 +
ǫ(k)

E(k)

)

. (15.52)

We plot the function v2k in Fig. 15.5, which describes the occupation proba-
bility of states k in momentum space; compare it to (15.40). We notice that
the Fermi surface is no longer sharp. Instead it is smeared out over an energy
interval of order ∆.

Equation (15.48) has the form of a self-consistency condition, because hk
depends on ∆k. If we make use of (15.50,15.51), this condition can be written
as

∆k = −1

2

∑

k′

Vkk′
∆k′

E(k′)
. (15.53)

In order to extract from it an expression for ∆ in terms of the attractive
potential Vkk′ one again chooses the form (15.6). The region in momentum
space within which Vkk′ 6= 0 is given by |ǫ(k)|, |ǫ(k′)| < ωD, which implies
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∆k =

{

∆ : |ǫ(k)| < ωD ,
0 : otherwise .

(15.54)

From

∆ = ∆
V

Ω

∑

k′

1

2E(k′)
, (15.55)

when we compare it to (15.10), it follows that

1 = N(0)V

ωD
∫

0

dǫ√
ǫ2 +∆2

. (15.56)

Provided that N(0)V ≪ 1 one finds that

∆ = 2ωDe
−1/N(0)V . (15.57)

If we compare this result with (15.15), we notice that the only difference
between the two is a factor of 2 in the exponent. The inclusion of all electrons
in the Cooper-pair formation increases the binding energy when compared
with that of a single pair.

The superconducting condensation energy is obtained by subtracting from
(15.45) the energy of the normal state, i.e., that of a filled Fermi sphere.
Specifically

∆ES =
∑

k

|ǫ(k)|
(

1− |ǫ(k)|
√

ǫ2(k) +∆2

)

− 1

2

∑

k

∆2

√

ǫ2(k) +∆2
. (15.58)

After converting the sum into an integral we obtain

∆ES = 2N(0)

ωD
∫

0

dǫ

(

ǫ− 1

2

2ǫ2 +∆2

√
ǫ2 +∆2

)

. (15.59)

After integration, thereby taking into account that ωD ≫ ∆, we obtain

∆ES = −N(0)

2
∆2 . (15.60)

The excited states of the system are described by the two types of wave-
functions

|ψex(k)〉 = c+kσ
∏

k′ 6=k

(

uk′ + vk′c+k′↑c
+
−k′↓

)

|0〉 (15.61)

and

|ψpair
ex (k)〉 =

(

vk − ukc
+
k↑c

+
−k↓

)

∏

k′ 6=k

(

uk′ + vk′c+k′↑c
+
−k′↓

)

|0〉 . (15.62)

We notice here that
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〈ψex(k)|ψ0〉 = 0 ; 〈ψpair
ex (k)|ψ0〉 = 0 , (15.63)

i.e., the states (15.61,15.62) are orthogonal to the ground state. The |ψex(k)〉
describes single-particle excitations, while the states |ψpair

ex (k)〉 describe pair
excitations.

The excitation energies are calculated from

Eex(k) = 〈ψex(k)|Hred|ψex(k)〉 − 〈ψ0|Hred|ψ0〉 (15.64)

and similarly for the pair excitations. The evaluation of the expectation values
is straightforward as demonstrated before for ∆ES . One finds that the energy
of a single-particle excitation is simply

Eex(k) = E(k) =
√

ǫ2(k) +∆2 , (15.65)

whereas that of a pair excitation is

Epair
ex (k) = 2E(k) . (15.66)

The excitations have a gap in their spectrum, the size of which is given by
∆. For a more detailed derivation of the excitation energies see, e.g., [81,402,
448]. A distinction between single-particle and pair excitations gives valuable
insight but has become obsolete by the introduction of a linear transformation
due to Bogoliubov and Valatin.

γ+k↑ = ukc
+
k↑ − vkc−k↓

γ+k↓ = ukc
+
k↓ + vkc−k↑ . (15.67)

A special feature of the transformation is the superposition of creation and
annihilation operators. This is closely related to the nonconservation of the
particle number in the BCS theory. By applying the above γ-operators to the
BCS ground state |ψ0〉 it is very simple to verify that

| ψex(k)〉 = γ+kσ | ψ0〉

| ψpair
ex (k)〉 = γ+

kσγ
+
−k−σ | ψ0〉 . (15.68)

In terms of the γ operators it is therefore not necessary to distinguish between
single-particle and pair excitations. Since in addition γkσ|ψ0〉 = 0 we may
consider the γ+kσ operators as quasiparticle operators.

Associated with the excitation energy is a quasiparticle density of states.
It is defined by the number N of excited states per spin per energy interval
dEσ

Nσ(E) =
dN

dǫ

dǫ

dEσ
, (15.69)

where (dN/dǫ) = N(0) is the density of states per spin direction in the normal
state.
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The absence of a Fermi surface and the presence of the gap in the excita-
tion spectrum are clear evidence that superconductors are not normal Fermi
liquids. Nevertheless, the excitations can be treated as well-behaved fermionic
quasiparticles with a dispersion given by (15.65). Thus, their distribution is
expected to be given by the Fermi function

f(k) =
1

1 + eβE(k)
, (15.70)

a result which can be rigorously derived when the free energy of a supercon-
ducting system is constructed. Note that k states filled with a quasiparticle are
blocked for virtual pair scattering via Vkk′ (see (15.48) and (15.53)). There-
fore, the self-consistency condition (15.53) changes at temperatures T 6=0 to

∆k = −1

2

∑

(k′)

Vkk′
∆k′

E(k′)
(1− 2f(E(k′))) . (15.71)

The factor 2 in front of f(E(k)) accounts for blocking k and −k for pair scat-
tering. For the BCS interaction and using (15.54), the last equation reduces
to

1 = N(0)V

ωD
∫

0

dǫ√
ǫ2 +∆2

(

1− 2f
(

√

ǫ2 +∆2
))

(15.72)

and yields a relation between ∆ and T. For T = 0 one recovers (15.56). The
superconducting transition temperature Tc is obtained by letting ∆ go to
zero. This results in

1

N(0)V
=

ωD
∫

0

dǫ

ǫ
tanh

ǫ

2kBTc

= ln
2ωDe

γ

πkBTc
(15.73)

where γ = 0.5772 is Euler’s constant [2]. The integral is evaluated, e.g., in [353].
Therefore,

kBTc = 1.14 ωDe
−1/N(0)V . (15.74)

The equation may be used to derive the size of N(0)V for given values of the
Debye frequency and transition temperature. Typical values are 0.18 for Al or
0.4 for Pb. In the latter case we speak of strong coupling superconductivity.

15.2 Cooper Pair Breaking

The concept of pairing as represented in the ansatz (15.39) for the ground state
can be generalized to systems which contain nonmagnetic scattering centers
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(impurities). Via spin-orbit scattering the electrons may relax not only their
momenta but also their spins. Here the Hamiltonian of the electronic system
still has time-reversal symmetry. It is useful to recall the concept of time
inversion.

The time-dependent Schrödinger equation for a single electron

i
∂ψ(t)

∂t
= Hψ(t) (15.75)

remains unchanged under the replacement t → −t, provided we take the
complex conjugate of the wavefunction and replace i by −i. If we include the
spin of the electrons, we have to require that the spin operators s, like any
angular momentum operator, anticommutes with the time-reversal operator
TR, i.e.,

sTR = −TRs . (15.76)

We set s = 1
2σ, which implies that sx and sz are real operators, while sy is

purely imaginary. This follows from the form of the Pauli matrices. Equation
(15.76) is not fulfilled for sx and sz if TR is identified with the operator K,
which changes a function into its complex conjugate. However, the equation
is satisfied by the form

TR = −iσyK , (15.77)

as can easily be checked.
Consider a one-electron Hamiltonian H0 which has time reversal symme-

try, i.e., for which [H0, TR] = 0. When ψn is an eigenstate of H0,

H0ψn = ǫnψn , (15.78)

so is ψn̄ = TRψn. The subscript n stands for the four quantum numbers
of an electron whereas n̄ denotes the time-reversed quantum numbers. The
eigenvalue of ψn̄ is the same as that of ψn, i.e.,

H0ψn̄ = ǫnψn̄ . (15.79)

The generalized ansatz for the superconducting ground state is then

| ψ0〉 =
∏

n

(

un + vnc
+
n c

+
n̄

)

| 0〉 , (15.80)

i.e., the electrons are paired in time-reversed states (Anderson’s theorem). It is
intuitively clear that this concept breaks down in the presence of interactions,
which break the time reversal symmetry of the conduction electron system,
but not of the total Hamiltonian. Examples are an external magnetic field
H or magnetic impurities with spin S. In the former case, the interaction
Hamiltonian is

Hint =
e

2mc

∑

i

(piA+Api)− µB
∑

i

σiH , (15.81)
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where A is the vector potential, while the pi and σi are the electronic
momenta and spins respectively. We notice that changing pi → −pi and
σi → −σi does not leave any of the terms in Hint unchanged. The same holds
true for the interaction

Hint = −Jex
∑

i

σiSδ (R− ri) , (15.82)

between a magnetic impurity with spin S at position R and conduction elec-
trons at positions ri. Note that TR is neither applied to A nor H nor to
S.

Interactions which break time-reversal symmetry destroy superconductiv-
ity, provided they are sufficiently strong. If they become operative, either the
net pairing interaction is reduced (pair weakening) or the Cooper pairs are par-
tially broken (pair breaking). Determining which of the two cases prevails will
depend on the long-time behavior of the correlation function 〈T+

R (0)TR(t)〉.

15.2.1 Ergodic vs. Nonergodic Perturbations

De Gennes has shown that the equation for the superconducting transition
temperature can be related to the Fourier transform of the time-reversal cor-
relation function

g(ǫ) =

∫

dt

2π

〈

T+
R (0)TR(t)

〉

e−iǫt . (15.83)

This relation is found in [81] and we state it here without proof

1 = N(0)V

∫

dǫdǫ′
1− f(ǫ)− f(ǫ′)

ǫ + ǫ′
g(ǫ− ǫ′) . (15.84)

When Hint is time-reversal invariant, i.e., when [Hint, TR]− = 0, then TR(t) =
TR(0) and g(ǫ − ǫ′) = δ(ǫ − ǫ′). In that case (15.84) reduces to (15.72) with
∆ = 0.

When time-reversal symmetry is broken and [H,TR] 6= 0, the time evolu-
tion of the time-reversal operator TR is given by

dTR
dt

= i[H,TR]− . (15.85)

Two distinct cases can arise with respect to the above correlation function,
namely

(a) lim
t→∞

〈

T+
R (0)TR(t)

〉

= η ; 1 > η > 0 ,

(b) lim
t→∞

〈

T+
R (0)TR(t)

〉

= e−2t/τR (15.86)

In case (a) we speak of nonergodic processes which lead to pair weakening

while in case (b) we deal with ergodic behavior which results in pair breaking.
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When pair weakening takes place the transition temperature is reduced to

kBTc = 1.14 ωDe
−1/(ηN(0)V ) . (15.87)

This is seen when (15.86) is set into (15.83) and (15.84). The effect of a non-
time-reversal invariant interaction is just a reduction of the effective electron-
electron interaction. If, however, ergodic behavior prevails we obtain from
(15.86) and (15.83)

g(z) =
1

2π

τR
1 + z2τ2R/4

. (15.88)

With this expression the integrations in (15.84) have to be done. Here it is
very useful to use the identity

tanh
ǫ

2kBT
− 1 = 2kBT

∑

n

eiωnη

ǫ− iωn
, η → +0 (15.89)

where ωn = 2πkBT (n + 1/2) and n runs over all (positive and negative)
integers. It can be proven by comparing the poles and residues of both sides
in the complex ǫ plane. With that identity we can express the Fermi function
in terms of that sum and perform the integration. The result is

1 = N(0)V

∞
∑

n=0

1

n+ 1/2 + 1/(2πTcτR)
. (15.90)

Note that here a cut off at ωD is still missing so that the sum is divergent.
After the cut off is introduced (15.90) becomes

ln(Tc/Tc0) + ψ

(

1

2
+

1

2πTcτR

)

− ψ(1/2) = 0 (15.91)

where ψ(x) is the digamma function [2]. The transition temperature Tc0 is
obtained when Hint = 0. The last relation was first derived by Abrikosov

and Gorkov [3] when they treated the pair-breaking effect of paramagnetic
impurities described by the interaction Hamiltonian (15.82) on superconduc-
tivity. One finds from (15.91) that Tc/Tc0 drops continuously with increasing
pair-breaking parameter 1/τR and vanishes at a critical value of

(

1

τR

)

crit

=
πTc0
2eγ

. (15.92)

A plot of Tc/Tc0 as function of (τRTc0)
−1 is shown in Fig. 15.6.

An important aspect of ergodic, time-reversal symmetry breaking interac-
tions is that they may lead to gapless superconductivity. We have seen before
that unconventional pairing may result in nodes (e.g., d-wave pairing) or node
lines (e.g., p-wave pairing) of the order parameter. At these k points or lines
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Fig. 15.6. Transition temperature Tc/Tc0 as function of the pair-breaking parameter
(τRTc0)

−1 according to (15.91).

the gap is zero. In distinction to unconventional pairing, gapless superconduc-
tivity implies a constant density of states at EF and therefore a specific heat
which is linear in T in the low temperature limit.

Gaplessness can be rederived from the behavior of the time-reversal oper-
ator TR. Let us see under which circumstances the excitation energy En can
be expanded for small order parameter ∆ in the form

En = |ǫn|+
〈

|∆(r)|2
〉

∑

m

|〈n |TR|m〉|2
ǫn − ǫm

(15.93)

where |m〉, |n〉 are single-electron states. When [Hint, TR]− = 0 the matrix
elements 〈n|TR|m〉 6= 0 only when |m〉 and |n〉 are time reversed. Then ǫn =
ǫm and the expression diverges. An expansion of that form is therefore not
allowed. If, however, [Hint, TR]− 6= 0 then 〈n|TR|m〉 6= 0 for a range of |ǫm −
ǫn| ≃ τ−1

R . Replacing the quantum numbers n by p, σ we can write (15.93) in
analogy to (15.84) as

E(p) = |ǫ(p)|+
〈

|∆|2
〉

P

∫

dǫ′

ǫ(p) + ǫ′
g (ǫ′ − ǫ(p))

= |ǫ(p)|+ 1

2

〈

|∆(r)|2
〉

|ǫ(p)|

ǫ(p)2 + (τR)
−2 . (15.94)

An expansion of the form (15.93) is therefore possible. Note that there is
no gap in E(p) in the limit of small ∆. From the last relation we obtain for
the density of states
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NS(E) = N(0)






1 +

∆2

2

E2 − (1/τR)
2

(

E2 + (1/τR)
2
)2






(15.95)

This expression agrees with the one obtained by the more sophisticated
Green’s function method of Abrikosov and Gorkov [3].

We want to apply the above theory to practical cases and will presently
discuss some examples of nonergodic versus ergodic behavior. To illustrate
nonergodic behavior of time-reversal symmetry breaking we give two exam-
ples.

Consider a thin superconducting film of thickness d with a rough surface
but no scattering centers inside the film when a magnetic field is applied
parallel to the film [82]. In that case, we obtain from (15.81) and (15.85) for
an electron

dTR
dt

=
ie

m
(pA+Ap)TR

= −idφ
dt
TR (15.96)

where φ(t) is the phase of the propagating particle. When the electron moves
ballistically from one surface of the film to the other, its phase does not change
(the vector potential has only a component perpendicular to the film which is
symmetric with respect to the film center). At the surface it is scattered into all
directions because of the surface roughness. Therefore, the only contribution
to dTR/dt comes from the parts of the path before it hits the surface for the
first time and after the last hit. Thus 〈T+

R (0)TR(t)〉 remains finite even in the
limit t → ∞. This results in pair weakening caused by the applied field and
therefore we obtain (15.87).

A second example concerns a staggered field hQ imposed onto the conduc-
tion electrons, i.e.,

Hint = −I
∑

k,Q

hQ

(

c+k↑ck+Q↑ − c+k↓ck+Q↓
)

. (15.97)

The Q’s are reciprocal lattice vectors of the magnetic lattice and are restricted
to the first Brillouin zone. This situation occurs in antiferromagnetic super-
conductors. Superconductivity and antiferromagnetism (AF) need not exclude
each other. Early examples were the ternary compounds (RE)Mo6S8 with RE
= Nd, Gd, Tb, Dy, Er; (RE)Mo6Se8 with RE = Gd, Er and (RE)Rh4B4

with RE = Nd, Sm, Er, Tm. A representative for that class of materials is
TbMo6S8 with a superconducting transition temperature of Tc ≈ 1.5 K and a
Neél temperature TN ≈ 0.9 K.4 Later, the quaternary compounds of the fam-
ily RE Ni2B2C with RE = Ln, Er, Tm, Ho, Dy were added. Here DyNi2B2C

4 for a review see [310]
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with Tc = 6 K and TN = 10.6 K is an example of TN > Tc [56, 340]. In the
above cases antiferromagnetism is set up by localized 4f electrons, i.e., by
electrons which differ from the paired conduction electrons. In distinction to
the above, in systems in which antiferromagnetism and superconductivity are
generated by the same itinerant electrons both phenomena work apparently
against each other. Examples are the doped cuprates discussed in Sect. 15.4
and CeCu2Si2, where itinerant SDW antiferromagnetism is expelled by the
onset of superconductivity [45, 341].

In the following we consider conduction electrons in an external staggered
magnetic field. This corresponds to the first group of AF materials. The time-
reversal operator TR does not commute with (15.97). Instead it is

dTR
dt

= 2iHintTR . (15.98)

While [Hint, TR] 6= 0 we find that the operator Y = TRR commutes with
Hint, where R shifts the electron system by a vector connecting the two sub-
lattices. Thus [Hint, Y ]− = 0. This is self-evident; after application of TR the
electron spins change sign which increases their energy in the staggered field.
By shifting the electrons from one sublattice to the other the spin direction
is again in line with the staggered field. This implies that when ψkσ(r) is an
eigenfunction in the staggered field, then so is Y ψkσ(r) with the same eigen-
value. Therefore, we may pair ψkσ(r) with e

iϕY ψkσ(r) where the phase ϕ is
chosen by convenience [19]. Electrons forming spin-singlet Cooper pairs are
preferably located on different sublattices (see Fig. 15.7). This way they can
take but advantage of the external staggered magnetic field. Clearly this re-
quirement affects their mutual attraction, e.g., through phonons. In most cases
it leads to a reduction of this attraction. This results in a decreased upper crit-
ical magnetic fields Hc2 below the onset of antiferromagnetic order [332,508].

The above considerations can be generalized to more complex magnetic
structures than common antiferromagnetism. For example, in ErNi2B2C or
TmNi2B2C the magnetic structures which coexist or compete with supercon-
ductivity are transversely polarized incommensurate spin density waves [296].
It can be shown that the effect of a helical magnetic background on supercon-
ductivity like in HoNi2B2C is nearly identical to the effect of antiferromag-
netism. The interaction between electrons via phonons is similarly reduced as
in the case of pairing in antiferromagnetic Bloch states [5]. Since we are able
to pair electrons properly, despite that [Hint, TR] 6= 0, we may conclude that
in the presence of the interaction (15.97) Cooper pairs are possibly weakened
but not broken.

Now we turn our attention to interactions with ergodic behavior of the
time-reversal symmetry correlation function. An example are paramagnetic
impurities in a BCS superconductor. The interaction is given by (15.82) and
the pair-breaking parameter is here
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Fig. 15.7. Energetically degenerate electronic wave function in an antiferromagnetic
lattice.

1

τR
= 2πnIN(0)J2

exS(S + 1) (15.99)

where nI is the impurity concentration.
A second example is a magnetic field acting on only the electron orbits,

i.e., neglecting the effect on the spins. When the mean free path ℓ is much
less than the coherence length ξ0 = ~vF /∆0 [81], i.e., when we are in the so-
called dirty limit, the pair-breaking theory and therefore (15.91) and (15.95)
do apply. The pair-breaking parameter is found to be of the form

1

τR
=
τtrv

2
F eH

3
(15.100)

where τtr is the transport mean free time [80, 82, 304].
Further details concerning pair breaking are found in a comprehensive

review by Maki [305].

15.2.2 Pairing Electrons with Population Imbalance

Of special interest is the effect of the Zeeman term in (15.81) on supercon-
ductivity. It describes the interaction of an internal or external magnetic field
with the spin of the conduction electrons. We are faced here with the problem
of pairing a different number of spin up and down electrons, i.e., particles with
different chemical potential. Pairing of species with unbalanced populations
takes also place in other fields of physics like in dense quark matter, nuclear
physics or ultracold atoms [54].

Usually the effect of the field on the electron orbits, i.e., the paramagnetic
or orbital term proportional to (e/2mc)(pA+Ap), is dominating the Zeeman
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effect. When the penetration depth of the magnetic field exceeds the super-
conducting coherence length ξ0 (which is a measure of the spatial extent of
the Cooper pairs), the effect of the orbital term results in an inhomogeneous
superconducting state. The magnetic field penetrates the superconductor in
the form of Abrikosov vortices with the latter forming a flux lattice (type II
superconductors).

However, the orbital effect is not always dominant. When the mean free
path is much less than the coherence length (dirty limit) the pair-breaking
effect of the magnetic field due to the orbital term is strongly reduced and
the Zeeman term may become more important. Another case is that of a
superconducting thin film (i.e., of order 10 nm) in a parallel external magnetic
field. Here the effect of the field on the orbits is again strongly reduced because
the cyclotron motion of the electrons is limited by the thickness of the film;
when the film is thinner, then the limitation on the cyclotron motion of the
electrons increases. Finally, in superconductors with heavy quasiparticles the
orbital effect is small because of the large quasiparticle mass. The inverse of
it enters the interaction term.

We assume in the following that the Zeeman term dominates the paramag-
netic one. We will also see that the Zeeman term can lead to an inhomogeneous
superconducting state which is quite different from the Abrikosov flux lattice.
In the following we limit ourselves to a reduced interaction Hamiltonian of
the form

Hint = −µB

∑

i

σiH . (15.101)

Then the quasiparticle excitation spectrum is simply

Eσ(k) =
√

ǫ2(k) +∆2
0 − µBσzH . (15.102)

The Zeeman interaction (15.101) splits the quasiparticle density of states per
spin direction. From (15.102) we find that

Nσ(E) = N(0)Re

{

|E − µBσH |
√

(E − µBσH)2 −∆2
0

}

; σ = ±1 . (15.103)

The total density of states is therefore a superposition of the BCS density of
states

NBCS(E) = N(0)Re

{

|E|
√

(E2 −∆2
0

}

(15.104)

shifted by ±µBH . This effect has been observed experimentally by tunnelling
measurements on thin Al films in a parallel magnetic field [318]. In most cases,
the conduction-electron spin direction is not a good quantum number due to
the presence of spin-orbit interaction. We characterize the magnitude of the
latter by a spin-orbital scattering rate τ−1

so . When this rate is small, i.e., when
τso∆0 ≫ 1, the two spin-split densities of states are slightly mixed (Fig. 15.8).
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Fig. 15.8. Mixing effect of the spin-orbit scattering rate τ−1
so ≪ ∆0 on the spin-split

quasiparticle density of states.

In the case of large spin-orbit scattering, i.e., τso∆0 ≪ 1, we expect a form
which approaches that of (15.104). The Zeeman term has little influence in
that case.

The Zeeman term in Hint can also cause reentrant superconductivity. Con-
sider a superconductor containing magnetic impurities with total angular mo-
mentum J of concentration nI . Furthermore, assume that the impurities in-
teract ferromagnetically with each other and that nI is sufficiently large, so
that superconductivity is suppressed by them. Then the Zeeman energy in
the presence of an applied magnetic field leads to an interaction term

Hint = −
∑

i

σi (µBH − nI(gJ − 1)Jex〈Jz〉) . (15.105)

Here gJ is the Landé factor. The external field and the internal field due to the
impurity polarization may therefore partially cancel each other with the result
that Cooper pairing no longer needs to be suppressed (Jaccarino-Peter effect).
The application of a magnetic field may thus cause a transition from a normal
into a superconducting state, which is indeed an unexpected feature. However,
if the magnetic field becomes too large, superconductivity is again destroyed
by the field. The effect has indeed been observed (see Fig. 15.9). In passing
we want to mention that reentrant superconductivity has also been observed
for different reasons in superconductors with Kondo impurities [309, 335].

Similarly as the orbital term in (15.81) can give rise to an inhomogeneous
superconducting state in the form of a flux lattice, so can the Zeeman term also
give rise to inhomogeneous superconducting states, often referred to as FFLO
states [131, 269]. They require though, that the parameters of the system are
appropriate. This is seen as follows.

Consider the BCS ground state in the presence of the Zeeman term
(15.101). From (15.102) it is seen that for µBH < ∆0 the excitation energy is
always positive. The ground state cannot take advantage of the Zeeman term
because electrons are paired with opposite spins. As long as µBH < ∆0 they
remain paired, i.e., a self-consistent gap function is found. Yet, the normal
state lowers its energy according to
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Fig. 15.9. Field induced superconductivity based on the Jaccarino-Peter effect
(From [323]). The effect was also observed in λ−(BETS)2 FeCl4 [458].
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Fig. 15.10. (a): Pairing in the presence of a supercurrent, given by the shifted Fermi
sphere. (b): Depairing when 1 < qvF /∆0 < 1.36. Black area: unpaired electrons.
Light area: unoccupied states. At the rim of those regions E(k) = 0.

∆EH = −χ0

2
H2

= −N(0)µ2
BH

2 (15.106)

where χ0 is Pauli’s spin susceptibility. When ∆EH exceeds the supercon-
ducting condensation energy, the energy of the normal state becomes lower
than that of the superconducting state; this is given by (15.60). Therefore, at
µHCl

∆ = 1√
2
the superconducting state is expected to go over by a first-order

phase transition into the normal state. The critical field HCl is called the
Clogston limit. Note that this limit holds true in the absence of spin-orbit
scattering only and is modified when τ−1

s0 6= 0. In the following we want to
show that by modifying the Cooper pairing, a superconductor can also re-
spond to the Zeeman term and lower its energy even when τ−1

s0 = 0. This is
possible when the pairing momentum is included in the considerations.

Assume that in the absence of an external field we pair electrons with
a pairing momentum 2q. This corresponds to pairing electrons on a shifted
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qq

spin spin

Fig. 15.11. Depairing in the presence of a Zeeman energy. The depaired region
differ for spin up and down. Dark areas: unpaired electrons. Gray areas: occupied
states according to (15.52). The total current is zero. The spin current is nonzero.

Fermi sphere (see Fig. 15.10a) and implies a supercurrent flowing. The exci-
tation energies are in this case

E(k) =
√

ǫ2(k) +∆2 − vF q cosϑ (15.107)

where ϑ is the angle between k and q. When qvF /∆0 > 1 where ∆0 is the
BCS gap, electrons on one side of the shifted Fermi sphere start to depair
as indicated in Fig. 15.10b. The k states with unpaired electrons are blocked
for virtual pair scattering in (15.44). Therefore, ∆ is reduced and becomes a
function of q, i.e., ∆(q). The depaired region in k space is defined by requiring
that at its surface E(k) = 0.

It turns out that superconductivity is destroyed for q > qs where qs =
1.36∆0/vF . We want to stress that even in the presence of unpaired electrons
the corresponding current is still nondissipative since elastic scattering would
increase the energy of the partially depaired state.

Next we consider the effect of the Zeeman term in the presence of a finite
pairing momentum. The excitation energies are now given by

Eσ(k) =
√

ǫ2(k) +∆2 − qvF cosϑ− µBσH . (15.108)

We can again search for a region of depaired electrons in k space by requiring
that at its surface Eσ(k) = 0. This region is now depending on q and H and
differs for electrons with spin σ = ±1 (see Fig. 15.11). The two parameters
q and H are reduced to one by requiring that in the ground state the total
current must vanish. Such a region does indeed exist and must be excluded
from pair scattering (blocking effect). Due to the unpaired electrons, the spin
susceptibility of the superconducting state differs from zero and the state
can lower its energy in the presence of the Zeeman term. A self-consistent
determination of ∆(H) and computation of the ground-state energy shows
that a superconducting state with finite pairing momentum q can have a
lower energy than the BCS superconductor as well as the normal state. For a
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spherical Fermi surface that regime is given by 0.71 < µBH
∆0

< 0.76. A finite
pairing momentum implies a position-dependent phase of the order parameter
∆ which here is of the form

∆(r) = ∆̄e2iqr . (15.109)

Thus we are dealing here with a spontaneous translational symmetry breaking
and with an inhomogeneous superconducting state. Clearly, there is a priori
no preferred direction of q. Therefore, the order parameter is degenerate with
respect to the direction of q and is generally of the form

∆(r) =
∑

ν

∆̄νe
2iqνr , (15.110)

with qν being the star of q. Strictly speaking, the limitation to the lowest
harmonics holds true only when the ∆̄ν are small. As the order parameter
increases, higher harmonics can become important [68]. Determining which of
the combination of qν gives the lowest ground-state energy can be investigated
either by studying the nonlinear Ginzburg-Landau regime [54] or by solving
the Bogoliubov–de Gennes equations, which are a generalization of the BCS
equations (15.45–15.57) to a spatial-dependent order parameter∆(r) [81,297].
A suggestive choice is

∆(r) = ∆̄ cos 2qr (15.111)

but triangular, octahedral or cubic states are possible as well to mention some
of them [42, 411]. The best combination, i.e., the one leading to the lowest
energy will depend on the form of the BCS pairs (s-wave, d-wave or else), on
the shape of the Fermi surface and on the specific material. In one- and two
dimensions the stable regime of the FFLO state is considerably extended5.
For example, in 1D it is covers the regime 0.71 < µBH/∆0 <∞.

It is instructive to approach the inhomogeneous superconducting state
from the Ginzburg-Landau regime, i.e., when the order parameter is small
and given by (15.109). The free energy near a second-order phase transition
can be expanded in the form

F (r) = α(T ) |∆(r)|2 + a(T,H) |∇∇∇∆(r)|2 + b

2
(T,H)

∣

∣∇∇∇2∆(r)
∣

∣

2

+ higher order terms . (15.112)

As long as only the first three terms are considered, the right-hand side is
independent of r. We have included here a gradient term ∇∇∇∆(r) without a
vector potential in order to allow for a finite pairing momentum. A vector
potential is not required because the effect of the magnetic field on the elec-
tron orbits is neglected. For a ground state with finite pairing momentum
a(T,H) < 0, i.e., the free energy is lowered by a finite value of q. This value is

5 see, e.g., [46,99,188,411]
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stabilized by the inclusion of a higher-order gradient proportional to b(T,H).
Furthermore, we neglect here a weak dependence of the coefficient b(T,H) on
the gradient of ∆(r), which would lift the degeneracy contained in (15.109).
The q value which minimizes the free energy is obtained from

(2q)2 = −a(T,H)/b(T,H) . (15.113)

When a(T,H) > 0 the ground state is homogeneous. In that case the coeffi-
cient α(T ) = c(T −Tc0) with c > 0 where Tc0 is the transition temperature for
zero pairing momentum. The linear dependence of α(T ) on (T − Tc0) follows
by minimizing the free energy given by (15.112) when q = 0.

In the inhomogeneous phase the transition temperature is modified de-
pending on the value of H . When ∆(r) is of the form of (15.109) then close
to Tc the free energy is minimized by

c(T − Tc0) + a(2q)2 +
b

2
(2q)4 = c(T − Tc) (15.114)

or using (15.115) by

c(T − Tc0)−
a2(Tc, H)

b(Tc, H)
= c(T − Tc) . (15.115)

Therefore, the increase in transition temperature is

Tc − Tc0 =
a2

2b2c
. (15.116)

Explicit expressions for the coefficients a(T,H) and b(T,H) are found, e.g., in
[269]. By inducing terms up to order |∆(r)|6 studies of 23 different crystalline
structures show that an octahedron with |qm| = q, m = 1, . . . , 8 gives the
lowest energy.

For Tc/Tc0 < 0.56 the free energy is minimized and the highest values of
H are obtained for q 6= 0. We want to draw attention to the observation that
an inhomogeneous superconducting state requires a mean free path which is
long when compared with the superconducting coherence length ξ0. Other-
wise the inhomogeneous state with a characteristic wavelength of the order of
the coherence length cannot form. Superconductors of low dimension or with
heavy quasiparticles are good candidates for its occurrence. As mentioned
before, in both cases the effect of a magnetic field on the electron orbit is
strongly reduced: in the first case when the field is parallel, e.g., to a layered
system, and in the second because the heavy quasiparticles mass appears in
the denominator of the vector potential term (e/mc)p ·A of the Hamiltonian.
Superconductors with heavy quasiparticle have in addition a small coherence
length ξ0 since vF is small. Indeed, FFLO states seem to have been observed
in λ-(BETS)2GaCl4 [444], λ-(BETS)2FeCl4 [459], (TMTSF)2ClO4 [500] and
most clearly in κ-(BEDT-TTF)2Cu(NCS)2 [290, 416]. The measured phase
diagram of that material is shown in Fig. 15.12.
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Fig. 15.12. Phase diagram of the organic superconductor κ-(BEDT-TTF)2
Cu(NCS)2 as obtained from specific heat measurements in a magnetic field. (Af-
ter [290,389])

An interesting case is CeCoIn5, a d-wave superconductor. This material
has a layered structure. In a magnetic field parallel to the layers one finds
in the high-field regime signatures of a FFLO phase [33, 383]. Nuclear mag-
netic resonance (NMR) and neutron-scattering experiments have shown that
there is also a magnetic-field induced incommensurate SDW appearing in that
regime [235, 258]. The induced staggered magnetization is thereby pointing
perpendicular to the layers. It disappears when the field is increased beyond
Hc2(T ), at which the sample goes over into the normal state. This suggests
that the superconducting order parameter is the principle one and that the
SDW is driven by it. Indeed, it has been shown that via mode coupling a
superconductor with a d-wave order parameter in the FFLO state ∆q in-
duces an equal spin, odd parity order parameter ∆−Q0

with pairing momen-
tum −Q0 together with an SDW magnetization in c direction MQ0+q. Here
Q0 = (0.5, 0.5, 0.5) in units of the reciprocal lattice vectors [325, 494]. The
Ginzburg-Landau free energy which includes mode-mode couplings is of the
form

F = F0 +
aM
2
M2

Q0+q +
bM
4
M4

Q0+q +
a0
2
∆2

−Q0
+
b0
4
∆4

−Q0

+C∆qMQ0+q∆−Q0
. (15.117)

The term F0 is the free energy of the FFLO state. Since ∆−Q0
and MQ0+q

are induced by the order parameter of a FFLO state, they must vanish when
∆q = 0. That implies that the prefactors aM , bM , a0, b0 are all positive.
The mode coupling coefficient C can be computed from the corresponding
Feynman diagram [325]. Here we simply take it as given. Minimizing F we
obtain
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Fig. 15.13. Schematic plot of ∆(x) near a superconductor-normal interface due to
the proximity effect. (a): when the normal metal is nonmagnetic (N) and (b): when
it is a ferromagnet (F). The oscillatory behavior results from a FFLO-like state.
(From [48])

0 =
∂F

∂MQ0+q

= aMMQ0+q + bMM
3
Q0+q + C∆q∆−Q0

0 =
∂F

∂∆−Q0

= a0∆−Q0
+ b0∆

3
−Q0

+ C∆qMQ0+q . (15.118)

For sufficiently small a0 and aM this leads to

M2
Q0+q =

1

bM

[

(C∆q)
2

a0
− aM

]

(15.119)

and explains in a simple way why in CeCoIn5 a SDW with wave vector Q =
Q0 + q is induced by a FFLO state.

It seems that the most important realization of FFLO-like states is in
superconducting π junctions [47, 49]. They have considerable potential for
applications in superconducting circuitry. The π junctions are produced by
sandwiching a thin ferromagnetic layer between two superconductors with s-
wave pairing. A π junction has the property that the superconducting order
parameter has different signs at the two sides of the junction. Therefore, the
phase difference of the order parameter at the two sides is ±π since −1 = e±iπ .
When such a junction is part of a superconducting ring (see Fig. 15.12) the
wavefunction or order parameter within the ring must compensate for this
phase difference when a path is taken within the ring. Thus, the order param-
eter ∆ has a phase exp(2iqx) with 2q = π/L, where L is the circumference of
the ring. However, ∆(x) ∼ exp(2iqx) implies a ground state with a supercur-
rent, provided that the inductance of the ring is sufficiently small (otherwise
setting up a phase-compensating current costs too much energy).
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Fig. 15.14. (a) Unbalanced spin population due to a difference δµ in the chemical
potential of a ferromagnetic thin film when compared with a paramagnetic state.
DOS denotes the density of states. (b) Increase (decrease) in momentum by ∆p as
an electron with spin ↑ (↓) moves from left to right into the ferromagnet. (From [86])

As mentioned earlier a π-shift of the phase of the superconducting order
parameter can be achieved when a sufficiently thin ferromagnetic layer is sand-
wiched between two conventional s-wave superconductors. A combination of a
Cu-Ni alloy for the ferromagnet and Nb for the superconductor works partic-
ularly well here. In a sandwich of this kind Cooper pairs leak from Nb into the
ferromagnetic film. Their amplitude, however, decreases exponentially in the
sandwiched film. Therefore, the latter has to meet thickness requirements de-
pending on mean-free path, spin-orbit interactions etc. in order to ensure that
the superconducting order parameter remains finite in the sandwiched film. In
that case, the order parameter may change its sign in the ferromagnetic film
according to (15.109 - 15.110) because of the exchange field which is present
(see Fig. 15.13). This can be seen in more detail with a nice and simple ar-
gument. Consider an interface between a superconductor and a ferromagnet,
e.g., Nb and a Cu-Ni alloy. Imagine an electron with spin ↑ and momentum p
near pF passing from Nb through the interface into the ferromagnetic layer.
In the ferromagnet its momentum will increase by ∆p because of the increase
in Fermi momentum due to spin population imbalance (see Fig. 15.14). This
electron is paired with a spin ↓ electron of momentum −p+∆p, because when
that electron moves from the ferromagnetic layer into Nb it ends up there with
momentum −p. On the other hand, when a spin ↓ electron with momentum
p moves from Nb into the ferromagnetic layer it looses momentum −∆p and
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therefore is paired with a spin ↑ electron of momentum −p−∆p (see again
Fig. 15.14). Consequently, we find

↑↓ → ↑↓ e2i∆px ; ↓↑ → ↓↑ e−2i∆px (15.120)

where x is normal to the interface. Thus, the singlet (↑↓ − ↓↑) in Nb goes
over in the ferromagnetic film into

(↑↓ − ↓↑) → (↑↓ − ↓↑) cos 2∆p · x+ i(↑↓ + ↓↑) sin 2∆p · x (15.121)

indicating that in the ferromagnet an odd-parity superconducting component
is also generated. Its strength turns out to depend on details of the boundary
(see, e.g., [110]). When φs denotes the even-parity pair wavefunction in the
superconductor, then in the ferromagnet the corresponding part is

φF (x) = α cos 2qx · e−x/ξφs (15.122)

where α depends on the boundary conditions and ξ is a characterising decay
length for Cooper pairs. The momentum q = ∆p depends on the exchange
field in the ferromagnet like q = µBHex/vF . A detailed discussion of the
modifications caused by potential- and spin-orbit scattering as well as of the
proper boundary conditions is found, e.g., in Refs. [86, 210].

The above arguments can be quantified by looking at the linearized equa-
tion for ∆(x). This is possible since the induced superconductivity in the
ferromagnetic film is weak. First, we assume a contact at x = 0 between a
superconductor and a nonmagnetic normal metal. From (15.112) we obtain
for the minimum of the free energy and x > 0

α∆(x) − a
d2∆(x)

dx2
+
b

2

d4∆(x)

dx4
= 0 . (15.123)

Since the film is nonmagnetic, it is a > 0 and we find the solution

∆(x) = ∆Ie
−kx (15.124)

where k =
√

α/a and ∆I = ∆(x = 0) is the order parameter at the interface.
The b term is unimportant here. However, for a ferromagnetic film in a FFLO-
like state it is a < 0 and we find a complex wave vector k = k1 + ik2 with

k21 =
|a|
2b

[

(

1 +
T − Tc
Tc − Tc0

)1/2

− 1

]

k22 =
|a|
2b

[

1 +

(

1 +
T − Tc
Tc − Tc0

)1/2
]

. (15.125)

If the order parameter in the superconductor is chosen to be real, so is the
one in the ferromagnetic film and
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Fig. 15.15. Schematic cross-section through a π-junction consisting of a Nb-Cu/Ni-
Nb sandwich. (From [115])

∆(x) = ∆Ie
−k1x cos k2x . (15.126)

It is seen from (15.126) that when T is close to Tc, then k1 → 0 while k2 reduces
to k22 = |a|/b. A comparison with (15.113) shows explicitly the relation to the
FFLO state. The above arguments are qualitative, since we have not included
any boundary conditions at the interface [238]. A detailed discussion of this
situation is found in the review [48]. In Fig. 15.15 we show schematically the
cross-section of a π-junction. Those junctions can be used in superconducting
circuitry, e.g., as single-flux quantum cells, frequency binary dividers or self-
biased phase qubits.

Before closing we want to draw attention to important progress which has
been made by trapping ultracold fermionic atoms like 6Li in optical lattices
[236]. With the help of the Feshbach resonance and by populating the two
lowest hyperfine levels differently, one can achieve proper conditions for the
appearance of an FFLO state [514]. Indeed, there is evidence that in a one-
dimensional optical lattice filled with 6Li atoms this state has been observed
[280].

Pairing states with finite pairing momentum have also been discussed in
QCD where in dense matter (neutron stars) u and d quarks with different
chemical potentials are expected to pair. A similar situation can arise in
nuclear physics where pairing of particles with different isospins can take
place [54]. For more details we refer to a number of reviews6.

15.3 Cooper Pairing without Phonons

Until now, we have not discussed the origin of the attractive electron-electron
interaction which leads to Cooper pairing. As briefly mentioned earlier, in
most conventional superconductors the electron-phonon interaction causes
that attraction. Its significance for superconductivity was realized after the
discovery that in many superconductors the transition temperature depends
on the isotope mass M of the involved atoms, i.e., Tc ∼ M−1/2. Originally

6 see [48,54,512]
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Fig. 15.16. Eliashberg’s equations for the determination of Tc. They are set up for
the electron self-energy Σ(p, iωn) and for the order parameter ∆k(iωn) in form of
diagrams. A double line symbolizes the full Green’s function G(p, iωn) in the normal
state.

this was puzzling, since the electron-phonon interaction is known to be small
when compared with electron-electron repulsions; how could it lead to an elec-
tron attraction? However, careful investigations showed that when screening
of the electron and lattice system is included, there remains a net attrac-
tion in some domains of space and time [21]. Clearly, the interaction between
electrons via phonons is a retarded one. When an electron moves through a
lattice it attracts the positively charged ions. Since they are heavier than the
electrons, the positive charge accumulation caused by the electron follows the
electron motion with retardation. It attracts other electrons and is the source
of Cooper-pair formation.

The afore mentioned retardation has been set aside in the BCS theory
but is included in Eliashberg’s equations. Those equations take into account
that electrons in time-reversed states can exchange phonons (more generally
bosons) and also that an electron can emit and reabsorb a phonon, acquiring
in this way an enhancement of its effective mass m∗. We can easily write
down these equations in a pictorial way, i.e., in terms of diagrams. This is
shown in Fig. 15.16. The temperature dependent Green’s function formalism
is applied here (see Sect. 7.1). We are only interested in the determination
of the transition temperature Tc. In only that case does the Green’s function
G(k, ωn) in the normal state appear, i.e.,

G (k, iωn) =
1

iωn − ǫ(k) −Σ (k, iωn)
. (15.127)

The wavy lines describe the boson propagator which in the case of phonons is

D (q, ων) = −
ω2
q

ω2
ν + ω2

q

; ων = 2πTν (15.128)
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where ωq stands for the phonon dispersion. Furthermore, g is the coupling
constant, in this case between electrons and phonons and ∆(p, ωn) is the
superconducting order parameter. Due to retardation of the electron-electron
interactions the order parameter is now frequency dependent. The diagrams
in Fig. 15.16 are written in form of equations for Tc as follows,

Σ (p, iωn) = g2T
∑

ν

∫

d3qD (q, iων)G (p− q, i (ωn − ων))

∆k(iωn) = −g2T
∑

m

∫

d3pD (p− k, i (ωm − ωn))

×G (p, iωm)G (−p,−iωm)∆p (iωm) . (15.129)

The diagram for the electron self-energy Σ(p, iωn) is self-explanatory. The
one for the frequency dependent order parameter ∆k(iωn) accounts for the
generation of an electron pair in time reversed states out of the vacuum (re-
member that ∆k ∼ 〈c+kσc+−k−σ〉). The pairing interaction is a retarded one and
represented by a space and time dependent bosonic propagator. The same one
is used for computing the self-energy.

There are computer programs available which solve Eliashberg’s equations
numerically for given ǫ(p), ωq and g and find the right value of T = Tc.
It is noticed that the equation for ∆(p, iωn) generalizes (15.71) in the limit
∆k → 0. In the following we show that bosons other than phonons can provide
for electron-electron attractions and hence Cooper-pair formation.

Although some of the long-known superconductors show an isotope ef-
fect only in a much reduced form, the issue of other than electron-phonon
interactions received major attention only after the discovery of high-Tc su-
perconductors [7]. In the CuO2 planes of the cuprates, electron correlations
are strong. Therefore, considerable efforts went into studying the Hubbard
model on a square lattice as the simplest realization of a strongly correlated
electron system. It was shown by numerical studies on finite systems that a
Hamiltonian of the form (9.22) may indeed have a superconducting ground
state in a certain parameter range of U , t and particle numbers per site [399].
We will deal with pairing in the high-Tc cuprates in more detail in Sect. 15.5.
Those systems are examples where superconductivity occurs in the vicinity of
another second-order phase transition. At such an instability either the den-
sity susceptibility χn(q, ω) or spin susceptibility χs(q, ω) diverges depending
on whether the phase transition is structural or magnetic. It is suggestive that
under these circumstances density or spin fluctuations are contributing to the
Cooper-pair formation.

Above, it has been assumed that the susceptibilities refer to the same elec-
tron system which forms Cooper pairs. In the following, we consider examples
where the bosonic excitations are provided by localized electrons, in particular
f electrons in incomplete 4f or 5f shells. Here experiments and theory occupy
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firmer ground so that much more definite statements can be made than for
the high-Tc materials.

15.3.1 Filled Skutterudite PrOs4Sb12

The filled skutterudites La1−xPrxOs4Sb12 are superconductors with transition
temperatures Tc = 0.74 K for LaOs4Sb12 and Tc = 1.85 K for PrOs4Sb12. The
order parameter very likely has isotropic s-wave symmetry with an element
of uncertainty remaining. The crystal has tetrahedral site symmetry Th. The
only difference between LaOs4Sb12 and PrOs4Sb12 are 4f2 electrons of Pr3+

since La3+ has an empty 4f shell. Furthermore, PrOs4Sb12 has an enhanced
mass m∗/mb ≃ 2.5 when compared with the computed band mass mb and
a large jump in the specific heat at Tc, i.e., ∆C/Tc ≃ 500 mJ/(mol K2), a
hallmark of heavy quasiparticles. The increase in Tc by more than a factor of
two must be caused by the 4f electrons of Pr3+ since the lattice vibrations are
barely affected by the small mass difference between La and Pr. In order to
understand the effect of localized 4f electrons on superconductivity consider
first a Pr3+ impurity in a superconductor. According to Hund’s rules the
ground-state multiplet of a 4f2 system has the total angular momentum J
= 4. The two most important interactions with conduction electrons are the
isotropic exchange interaction

Hex = −2 (gJ − 1)Jex
∑

kqσσ′

(sσ′σJ) c
+
k−qσ′ckσ (15.130)

and the aspherical charge scattering

HAC =

(

5

4π

)1/2
∑

kk′σ

+2
∑

m=−2

I2(k
′s; kd)Q2

[

Y m2 (J)c+k′sσckdmσ + h.c.
]

.

(15.131)
In the first equation gJ is the Landé factor and Jex is the exchange coupling
constant. In the second equation Q2 is the quadrupole moment of the Pr3+

ions and the definition of the Coulomb integrals I2(k
′s; kd) is found, e.g.,

in [132]. The ckdmσ destroy a conduction electron with momentum k = |k|,
in a ℓ = 2 state with azimuthal quantum number m and spin σ while c+k′sσ
creates an electron with momentum k′ in a ℓ = 0 state. The operators Y m2 (J)
are given by

Y 0
2 = (2/3)1/2

[

3J2
z − J(J + 1)

]

/NJ

Y ±1
2 = ±

(

JzJ
± + J±Jz

)

/NJ

Y ±2
2 =

(

J±)2 /NJ (15.132)

with NJ = (2/3)1/2(2J2 − J). The Hamiltonian HAC is of a quadrupolar
type. It causes a transfer of angular momentum ℓ = 2 between the conduction
electrons and the 4f2 shell.
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Fig. 15.17. CEF energy levels as obtained from inelastic neutron scattering (see
[150,261]).

The two interactions differ in one significant aspect. When the conduc-
tion electron system, but not the magnetic ions undergoes a time-reversal
transformation (see (15.77)), Hex changes sign while HAC remains invariant.
Therefore, their effect on Cooper pairs is quite different. While Hex acts as
a pair breaker, HAC supports the formation of Cooper pairs. In a crystalline
environment the (2J + 1)-fold degeneracy of the Hund’s rule ground-state
multiplet J = 4 is split by the crystalline electric field (CEF). The splitting
energies are usually of the order of a few meV. The eigenstates are found
according to the irreducible representations of the point symmetry group.

Inelastic neutron scattering experiments on PrOs4Sb12 have demonstrated
that Pr3+ is in a CEF singlet ground state Γ1 with a low-lying excited triplet

Γ
(2)
t at an energy δ = 8 K [150, 261]. The other CEF levels are much higher

in energy and may be neglected (see Fig. 15.17).
The triplet Γt of Th symmetry is a superposition of two triplets Γ4 and Γ5 of
O4 symmetry. More specifically it is [410]

|Γt,m〉 =
√

1− d2 |Γ5,m〉 + d |Γ4,m〉 , m = 1, 2, 3 . (15.133)

The two triplets are of the form

|Γ5,±〉 = ±
√

7

8
|±3〉 ∓

√

1

8
|∓1〉 ;

|Γ5, 0〉 =

√

1

2
(|+ 2〉 − | − 2〉) ;

|Γ4,±〉 = ∓
√

1

8
|∓3〉 ∓

√

7

8
|±1〉 ;

|Γ4, 0〉 =

√

1

2
(|+ 4〉 − | − 4〉) , (15.134)

where |n〉means |Jz = n〉. Furthermore, from experiments one can deduce that
|d| = 0.26 implying that |Γt,m〉 is mainly of |Γ5,m〉 character. However, |Γ1〉
to |Γ5,m〉 transitions can be induced by HAC but not by Hex, which causes
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transitions to |Γ4,m〉 instead. Therefore,HAC is the dominant interaction here
and it is pair forming. We specialize HAC to cubic symmetry and write it in
a basis of Bloch states in the form

HAC(i) = g
∑

kqσ

∑

αβcycl

Oiαβ q̂αq̂βc
+
k−qσckσe

ikRi (15.135)

where qα = qα/|q| and i is the site index. Furthermore, Oαβ =
√
3/2(JαJβ +

JβJα) where αβ = yz, zx, xy denotes the three quadrupole operators of Γ5

symmetry. The coupling constant g refers here to the coupling of conduction
electrons to CEF levels of the Pr ions. It may be determined by experiments.

We are now in the position to solve Eliashberg equations for Tc. The boson
propagator due to intra-atomic excitations is given by

g2D (q, iων) =
∑

αβr

∣

∣Λrαβ (q̂)
∣

∣

2 2δ

ω2
ν + δ2

(15.136)

with
Λrαβ (q̂) = gq̂αq̂β 〈Γ1 |Oαβ |Γ rt 〉 . (15.137)

It has to be supplemented by the phonon propagator Kph(q, νn) to which the
electrons couple. The way to proceed is as follows. For LaOs4Sb12 where the
mechanism described here is not operative, a phonon with average excitation
energy ω̄q = 26 meV is chosen and the coupling constant is adjusted so
that a transition temperature of Tc ≃ 0.74 K is obtained when (15.129) is
solved. For PrOs4Sb12 we use the same phonons and add the propagator
(15.136). Since g has not yet been determined by experiments we adjust it
so that the right transition temperature is obtained. The required value of
g ≃ 0.04 eV is very reasonable, since it is of similar size as known from Pr3+

ions dissolved in metals. It implies at the same time a mass enhancement
through (4.35,13.54) which is of the observed magnitude. Furthermore, we can
compute Tc(x) for the alloy La1−xPrxOs4Sb12 without any other adjustable
parameter and find good agreement with the observed nonlinear behavior. It
is also gratifying that for Pr(Os1−xRux)4Sb12 a decrease of Tc(x) is predicted
in agreement with observations. Neutron data show that here the excitation
energy δ of the Γt triplet increases with the replacement of Os by Ru. Due
to the larger denominator in (15.136) the transition temperature Tc decreases
with increasing Ru content.

15.3.2 UPd2Al3: Pairing and Time-Reversal Symmetry Breaking

In Sect. 13.3 we have shown that because of strong intra-atomic or Hund’s
rule correlations the 5f electrons of U ions remain localized in some of the f
orbitals while they delocalize in others. The model is supported by numerous
experiments. It was pointed out that inelastic neutron scattering experiments
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show dispersive CEF excitations (magnetic excitons) below the Neél temper-
ature of TN = 14.3 K. Coupling of conduction electrons to those magnetic
excitons explains the strongly anisotropic heavy quasiparticle mass in that
system. Here we want to show that the same excitations act as bosons lead-
ing to Cooper pairing. However, as we shall see, a special form of the order
parameter ∆(p) is required in order that the magnetic excitons can act as a
binding agent [316].

We start from the two lowest energy levels |J = 4, Jz = ±3〉 of the two
localized 5f electrons with a splitting energy due to the CEF of order δ = 7
meV. As explained in Sect. 13.3 interionic interactions lead to induced antifer-
romagnetism. Low-energy excitations in the form of magnetic excitons have
been observed (see Fig. 13.19) providing direct evidence for the dual model of
5f electrons. Their dispersion ωex(q) is described by (13.53). We may solve
Eliashberg’s equations (15.129) by using for the boson propagator the form

g2D (qz , iων) =
I2

2

ωex

ω2
ν + ω2

ex(q)
. (15.138)

The coupling constant I = 0.16 eV is chosen so that with N(EF ) = 1 state /
(eV uc) the correct mass enhancement m∗ is obtained. The latter was derived
in Sect. 13.3 without an adjustable parameter. Therefore, we may use that
result here in order to fix the coupling constant for the simplified density of
states N(ǫF ). We find superconducting order, provided the order parameter
has one of the two forms

∆(p) = ∆0 cos (cpz) or ∆(p) = ∆0 sin (cpz) . (15.139)

There is no solution for an s-wave order parameter. The one proportional to
sin(cpz) requires spin triplet pairing and can be eliminated because it contra-
dicts experiments. For the cos(cpz) solution we find Tc ≃ 3 K. There is no need
to invoke phonons. Instead, the same physics which explains the anisotropic
heavy quasiparticle masses also leads to superconductivity, with a specific
form of the order parameter. It is reassuring that experiments on UPd2Al3
have indeed verified the above spin-singlet form of the order parameter [477].

So why is s-wave pairing excluded while an order parameter of the form
of (15.139) gives a solution with a sizable Tc? The answer is simple: the tran-
sitions from |Γ3〉 to |Γ4〉 are caused by exchange interactions with the con-
duction electrons. Thus they are of magnetic origin and violate time-reversal
symmetry of the conduction electron system as explained in connection with
(15.76) and (15.130) (remember that the time-reversal operation is applied
only to the conduction electrons and not to the localized 5f electrons). Those
processes break Cooper pairs when pairing takes place of time-reversed states.
However, when the order parameter is of the form cos(cqz), electrons are not
paired in time-reversed states but rather in time reversed states followed by a
lattice translation (see the discussion following (15.98)). The partners of a pair
occupy preferably different sublattices. In that case pairing can be achieved
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with a propagator of the form of (15.138) despite violation of time-reversal
symmetry.

15.4 Magnetic Resonances

As we have repeatedly discussed, the glue for the formation of Cooper pairs is
provided by the exchange of bosons between the conduction electrons. These
bosons are either phonons, like in the original BCS theory; intra-atomic ex-
citations, like in the filled skutterudite PrOs4Sb12; or collective excitations
within the same electron systems in which Cooper pairing takes place. Here
we want to discuss how the onset of superconductivity acts back on those
bosons. Thereby we concentrate on bosons involving magnetic degrees of free-
dom. The effect of superconductivity on phonons can also be quite dramatic;
it may stop the softening of phonons and in this way prevent lattice insta-
bility, a situation encountered in V3Si [89]. However, the effect on magnetic
collective excitations seems more general and important. It may lead to new
forms of magnetic resonances which are purely due to superconductivity.

The first observation of this kind of excitation was made by Rossat-Mignod

et al. [390] who found by inelastic neutron scattering a by-now-famous reso-
nance peak below Tc in YBa2Cu3O6+δ, a high-temperature superconductor.
The peak grows in intensity and shifts in energy with decreasing tempera-
ture. Not long thereafter it was suggested that it originates from 2D spin
fluctuations in combination with d wave pairing [272,423]. Later it was found
that the appearance of a magnetic resonance below Tc is a quite general phe-
nomenon. Resonance peaks were observed in UPd2Al3 [396], CeCu2Si2 [428],
CeCoIn5 [427] and also in ferropnictides [65]. The common characteristic found
in all those systems is that in the superconducting state pairing is unconven-
tional. In fact, it turns out that this is a prerequisite for the appearance of a
magnetic resonance induced by superconductivity. The observation of a res-
onance structure even enables us to distinguish between different types of
unconventional pairings and is therefore helpful in identifying the right pair
state.

Generally we have to distinguish between resonances, which are associated
with localized and with delocalized electrons. An example of the former kind
is UPd2Al3. Due to strong intra-atomic correlations the 5f electrons are di-
vided into localized and delocalized ones. The dual model was discussed in
Sect. 13.3 and 15.3.2. Here the magnetic resonance is associated with localized

5f electrons, i.e., with electrons in f orbitals with vanishing renormalized
hybridization matrix elements. Their interaction with itinerant f electrons,
i.e., with those in hybridizing orbitals results in a new resonance structure
when superconductivity sets in. Examples of the second kind are the high-Tc
cuprates or CeCu2Si2 and CeCoIn5. Here the magnetic resonance is associated
with the same electrons which also form Cooper pairs.
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Fig. 15.18. Effect of electron-hole excitations (solid lines) on boson symbolized
by wavy lines. The coupling constant of the electrons to bosons is g̃. Double line:
renormalized boson, single wavy line: bare boson.

In the following we want to discuss one example of each kind. We begin
with UPd2Al3. As pointed out in Sect. 10.3, in UPd2Al3 two 5f electrons of a
U ion in jz = 5/2 and 1/2 orbitals remain localized and form a J = 4, Jz = ±3
ground-state doublet. This doublet is split by the CEF. Due to a coupling of
the CEF excitations at different sites via the conduction electrons (see Fig.
13.20) an AF ground state is induced. Its excitations, called magnetic excitons
have the dispersion shown in Fig. 13.19. As demonstrated in Sect. 15.3.2 they
provide for an electron-electron interaction, which results in superconductiv-
ity with an unconventional order parameter (see (15.139)). Here we want to
discuss the feedback effect of superconductivity on the magnetic excitons.

Any boson described by a propagator D0(q, ω) which is interacting with
conduction electrons is affected by that interaction. This is shown in Fig. 15.18
in the form of a diagrammatic equation. The electron-hole bubble denotes a
susceptibility. Due to the interaction in (13.51) it is, here, the spin suscepti-
bility χ0(q, ω) of the conduction electrons. Let us write the boson propagator
in the standard form, i.e., for real frequencies (compare with (15.138))

D0(q, ω) = − 2ωq

ω2 − ω2
q

, (15.140)

where ωq is here identified with the magnetic excitons dispersion ωex(qz) given
by (13.53). Then from

D(q, ω) = D0(q, ω) +D0(q, ω)g̃
2χ0(q, ω)D(q, ω) (15.141)

it follows that

D(q, ω) = − 2ωq

ω2 − ω2
q + 2g̃2ωqχ0(q, ω)

. (15.142)

The zeros of the denominator define the excitations of the bosonic system.
In the normal state at low energies, i.e., when ω is of order 10 meV it is Re
χ0(q, ω) = const, Im χ0(q, ω) = iγω. Thus, the coupling to the conduction
electrons leads merely to a shift of frequencies and a Landau damping in
the form of a line width of the excitonic excitations. The measured magnetic
excitons modelled by (13.53) already contain this frequency shift and therefore
we may discard it here. However, when a superconducting state is formed,
χ0(q, ω) changes dramatically due to the appearance of a gap. As we shall see,
the form of the order parameter also strongly affects the electron susceptibility.
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We are interested in χ0(q, ω) at T = 0. By absorption of a magnetic
exciton of momentum q and energy ω an electron is moving from a state kσ
to a state k + qσ. The initial state is here the BCS ground state |ψ0〉 (see
(15.39)) while the final state is

|ψf 〉 = c+k+qσc
+
−k−σ

∏

p 6=k,k+q

(

up + vpc
+
pσc

+
−p−σ

)

, (15.143)

i.e., we are dealing with two unpaired electrons. The interaction Hamiltonian
is

H1 = − g̃

N

∑

k,q

c+k+q,ασ
z
αβckβ

(

bq + b+−q

)

(15.144)

where bq annihilates a magnetic exciton with momentum q. We apply H1 for

fixed value of q and evaluate
∣

∣

∣

〈

ψf

∣

∣

∣
c+k+qσckσ

∣

∣

∣
ψ0

〉∣

∣

∣

2

. This gives a coherence

factor (uk+qvk − ukvk+q)
2
. With the expression (15.52) for uk and vk we

obtain from perturbation theory for the response at finite temperature T

χ0(q, ω) =
∑

k

1

4

[

1− ǫkǫk+q +∆k∆k+q

EkEk+q

]

×
[

f(Ek+q) + f(Ek)− 1

ω − Ek+q − Ek + iδ
+

1− f(Ek+q)− f(Ek)

ω + Ek+q + Ek + iδ

]

+
∑

k

1

2

[

1 +
ǫkǫk+q +∆k∆k+q

EkEk+q

]

× f(Ek+q)− f(Ek)

ω − (Ek+q − Ek) + iδ
. (15.145)

As before, f(x) is Fermi’s function. At T = 0 and ∆k 6= 0 the first term in
the second bracket is the only one which is left. It describes the generation
of a spin triplet out of a spin-singlet Cooper pair. The second term describes
the reverse process while the last term is due to the scattering of excited
quasiparticles due to the external perturbation like in the normal state. It
follows that for ω > 0 the function Imχ0(q, ω) is given by

Imχ0(q, ω) =
π

4

∑

k

[

1− ǫkǫk+q +∆k∆k+q

EkEk+q

]

· δ (ω + Ek − Ek+q) . (15.146)

It is noticed that when k and k+ q are on the Fermi surface, i.e., when
ǫk = ǫk+q = 0, then Imχ0(q, ω) can discontinuously increase at the onset
frequency of the quasiparticle-quasihole continuum ωc = Min (|∆k|+ |∆k+q|).
However, that requires that ∆k = −∆k+q, in which case the coherence factor
becomes two. This requirement excludes s-wave superconductors.
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Fig. 15.19. Graphical solution of (15.147) for q ≃ Q. In addition to the magnetic
exciton pole ωm a second pole of D(q ≃ Q, ω) is found at ωr with small damping
only. It arises from the strong frequency dependence of χ0(q, ω). The third crossing
point is strongly damped and therefore uninteresting. (From [60])

A discontinuity in Imχ0(q, ω) leads to a logarithmic singularity in Reχ0(q, ω),
because the two functions are connected with each other via Kramers-Kronig
relations. This in turn results in a resonance as shown below. Since UPd2Al3
is an AF below TN = 14.2 K with Q = (0, 0, π/c) we have to mod-
ify χ0(q, ω) correspondingly. This implies that we have to replace Ek by

E±
k =

√

(

ǫ±k
)2

+∆2
k where ǫ±k = ξak ±

√

(ξb)
2
+m2 with ξak = 1

2 (ǫk + ǫk+Q)

and ξbk = 1
2 (ǫk − ǫk+Q). The two bands ξνk (ν = a, b) are a consequence of the

doubling of the unit cell in the presence of AF long range order. Furthermore,
m denotes the effective staggered field in the AF. We do not want to write
down the corresponding expression for χ0(q, ω) in an AF superconductor. In-
stead, we only want to point out some salient features. The Fermi surface of
UPd2Al3 has little dispersion along the z-axis, i.e., it looks like a cylinder.
On the other hand, the magnetic excitons have little dispersion in the a − b
plane and are well described by ωex(qz) given by (13.53). For both forms of
the order parameter shown in (15.139) it is ∆k+Q = −∆k for k values at
the Fermi surface. Due to its cylindrical shape we find that for T = 0 the
coherence factor in χ0(Q, ω) equals two for all kz momenta.

In order to determine how Cooper-pair formation affects magnetic excitons
we have to solve the equation

ω2 = ω2
q − 2g̃2ωqχ0(q, ω) . (15.147)

When the form of χ0(q, ω) in the presence of AF order is evaluated numerically
and set into that equation, it is found that near q ≃ Q two solutions exist
with small damping (see Fig. 15.19). One refers to the slightly renormalized
magnetic exciton and is positioned at ωm. The second is within the gap region
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(a) (b)

Fig. 15.20. (a) Resonance peak in UPd2Al3 below Tc near qz = π/c as observed
by inelastic neutron scattering. The structure near ω = 1.5 meV is the magnetic
exciton mode (From [396]).
(b) Computed contour plot of ImD(qz, ω) near Q = π/c at T = 0. The low energy
peak is the resonance peak while the one starting near ω = 1.5 meV is the magnetic
exciton. Both peaks disperse upwards in energy like the magnetic exciton does in
the normal state. Bright colour implies high intensity. (From [60]).

at ωr and is due to the strong frequency dependence of Reχ0(Q, ω). In fact,
for ω = 2∆0 the real part of χ0(Q, ω) is strongly peaked for reasons discussed
earlier (Kramers-Kronig). A resonance peak at ωr has been clearly observed
in UPd2Al3 below Tc near qz = π/c. This is seen from Fig. 15.20a [396]. The
computed two peaks are shown in Fig. 15.20b in the form of a contour plot
of ImD(qz, ω).

As previously discussed, the resonance is possible only when ∆k+Q =
−∆k, i.e., when the order parameter changes sign under translation by Q.
This condition is fulfilled by both forms (15.139) of the order parameter; the
observation of resonance cannot distinguish between the two forms. However,
an s-wave order parameter can be excluded with certainty by this experiment.
The resonance in conjunction with the magnetic exciton reconfirms the dual
character of 5f electrons in UPd2Al3.

The magnetic resonance in UPd2Al3 serves as a nice example how su-
perconductivity affects bosons with magnetic degrees of freedom. Here the
boson, which is a magnetic exciton is caused by localized 5f electrons. They
differ from the electrons which form Cooper pairs. The latter are conduction
electrons with a strong component of itinerant 5f electrons.
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Next we study the effect of superconductivity on bosons, which are formed
by the same electrons which form Cooper pairs. Here we choose CeCu2Si2 and
CeCoIn5 as examples. High-temperature superconductors like YBa2Cu3O7−δ
also fit into that category. However, it seems to us that the resonances in the
Ce-based heavy quasiparticle systems are simpler to explain.

CeCu2Si2 has a Fermi surface with nesting properties. It consists of stacked
columns along the c direction. This is shown in Fig. 13.9 for the first few Bril-
louin zones. There are flat parts seen which are connected by a nesting vector
QSDW = (0.22, 0.22, 0.52) in reciprocal lattice units; indeed, a spin density
wave with that Q vector has been observed by neutron scattering [429]. The
Fermi surface with the nesting vector QSDW was determined by renormalized
bandstructure calculations described in Chapter 13. They contain a single ad-
justable parameter, i.e., the slope of the 4f phase shift at the Fermi energy
ǫF . With the heavy quasiparticle bands one can calculate the Lindhard spin
susceptibility χ0(q, ω) in the normal and superconducting state. Its static part
χ0(q) is peaked at QSDW due to nesting. The resonance peak in the super-
conducting state of CeCu2Si2 as well as of CeCoIn5 can be determined within
RPA by computing

χRPA(q, ω) =
χ0(q, ω)

1− Uqχ0(q, ω)
(15.148)

where Uq is due to the interactions of the heavy quasiparticles. As discussed
before, when ∆k = −∆k+q for k,q on the Fermi surface, then Reχ0 has a log-
arithmic singularity due to a discontinuity in Imχ0. In that case the resonance
conditions, i.e., UqReχ0(q, ω) = 1 and Imχ0(q, ω) = 0 can both be fulfilled at
ωres < ωc, as long as Uq > 0. This causes an additional spin excitation below
Tc. When a finite lifetime is given to the quasiparticles, then Uq must exceed
a critical value Uc for the new mode to appear. Instead of Imχ0(q, ω) = 0 we
must require that Imχ0(q, ω)/Reχ0(q, ω) ≪ 1. In CeCu2Si2 a sharp spin res-
onance was found below Tc at q = QSDW by inelastic neutron scattering [428].
One might then ask which forms of ∆k are consistent with the observation of
the resonance. A detailed analysis shows that a discontinuous jump in Imχ0

with an associated singularity in Reχ0 is present for the following order pa-
rameters:

∆k = ∆0 (cos kxa− cos kya) , B1g irred. representation

∆k =

[

∆0 sinkxa sin kza

∆0 sin
1
2 (kx + ky) sin

1
2kza

, Eg irred. representation

(15.149)

with a dispersion of the resonance which is by far the strongest in the B1g

channel. This points strongly towards a dx2−y2 symmetry of the associated
order parameter.
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Fig. 15.21. (a) Fermi surface of CeCoIn5 as obtained from renormalized bandstruc-
ture theory. The arrows connect points which differ by QAF. The dashed lines show
the node position at which the dx2−y2 order parameter vanishes.
(b) Static susceptibility for qz = 0.5 in reciprocal lattice units. (From [107]).

Fig. 15.22. Dispersion of the magnetic resonance in CeCoIn5 along the (q, q, π/c)
direction calculated for an order parameter of dx2−y2 symmetry. For the interaction
the form Uq = UQAF

[1− 0.8(q −QAF)
2/Q2

AF] was used (From [107]).

The situation is similar in CeCoIn5. Here the Fermi surface obtained from
renormalized bandstructure calculations is too complicated to describe by a
single band. We can, however, model it by two bands, i.e., a heavy electron f -
like band hybridizing with a conduction electron band (see, e.g., Fig. 13.12).
The resulting Fermi surface is shown in Fig. 15.21a. It has again nesting
properties with a q vector which coincides with the AF wave vector QAF =
(π/a, π/a, π/c). This is in agreement with neutron scattering data [427]. As
expected, the static Lindhard spin susceptibility of the normal state is found
to be peaked at QAF (see Fig. 15.21b).

When the real and imaginary part of χRPA(QAF, ω) are calculated as previ-
ously explained, one finds a resonance peak only when ∆k = (∆0/2)(coskxa−
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cos kya), i.e., of B1g symmetry. Here the resonance forms slightly below ωc.
This is shown in Fig. 15.22. The observation of the resonance excludes other
proposals which have been made for the form of the order parameter, such
as dxy(B2g) symmetry. The downward dispersion of the resonance, when q
deviates from QAF resembles the one found in hole-doped superconducting
cuprates. The similarity of the resonance in the heavy quasiparticle systems
CeCu2Si2 and CeInCo5 and of hole-doped cuprates, and the same dx2−y2
form of the order parameter found in these three cases gives us hints on the
microscopic origin of superconductivity in these strongly correlated systems.

15.5 High-Tc Superconductors

It is customary to associate high-Tc superconductivity with the supercon-
ducting cuprates although other materials like the Fe pnictides have also high
transition temperatures7. Over the last 20 years an enormous amount of work
has gone into studying the cuprates. What makes their study difficult is a
competition of various instabilities in these systems, which is a characteristic
feature of them. Not only may a superconducting- or pairing instability de-
velop, but a magnetic or structural one may develop as well. Thus different
order parameters interact and compete with each other. This often causes a
sample dependence of experimental results; this can only be avoided by very
carefully prepared and characterized samples.

The most important structural element of the cuprates are copper-oxide
planes with a unit cell CuO2. These planes are formed from octahedra, pyra-
mids or squares and have been extensively discussed in Sect. 12.1. Here we
concentrate on their superconducting properties.

A generic feature of the high-Tc cuprates is that they are antiferromag-
netic charge-transfer insulators when they are undoped. With increasing dop-
ing, which is most often hole doping, antiferromagnetism is suppressed and
superconductivity starts to appear. The phase diagram looks schematically
as indicated in Fig. 15.23. One notices that hole- as well as electron doping
destroys AF long range order, and that holes do it more efficiently. As the
highest values of Tc have been obtained by hole doping, the by-far-largest
amount of research has gone into hole-doped rather than electron-doped sys-
tems. In the following we want to restrict ourselves to the former case and we
will only discuss the right-hand part of the phase diagram.

It can be seen in Fig. 15.23 that the superconducting region has the shape
of a dome, with a small dip at x = 0.12. The highest superconducting tran-
sition temperature is achieved at an optimal hole-doping concentration xop.
When x < xop we speak of underdoped systems and when x > xop of over-
doped systems. If doping becomes too large, superconductivity is suppressed.
In the normal state there is a region where in distinction to an ordinary Fermi

7 see, e.g., [208,219,479]
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Fig. 15.23. Schematic phase diagram for doped cuprates. Right side: hole-doped
La2−xSrxCuO4; left side: electron-doped Nd2−xClxCuO4. In parts from [273].

liquid the system exhibits a pseudogap with respect to spin- as well as density
excitations. It shows up experimentally in the form of a reduced spin- and
density response to external perturbations. When we speak of a reduction in
response, we refer to what is expected if all valence electrons participate in the
formation of the Fermi surface. In addition, there is an area in the diagram
to the right of the line defining the pseudogap region in which the pseudogap
has vanished but where deviations from ordinary Fermi liquid behavior are
found. This region is sometimes called that of a strange metal. There is also a
regime labeled Nernst, where it is found that the Nernst effect is of the same
size as in the superconducting state. This has been taken as an indication
of the presence of preformed electron pairs above the superconducting tran-
sition temperature. For large doping, the system shows normal Fermi liquid
behavior above Tc. In the following we want to discuss the different parts of
that phase diagram. Thereby we have primarily the system La2−xSrxCuO4 in
mind.

15.5.1 Suppression of Antiferromagnetic Order by Holes

When La3+ is replaced by Sr2+ and therefore holes are doped into the system,
the long-range antiferromagnetic order is destroyed first. In Sect. 10.5 we
studied the motion of a hole in an antiferromagnet by means of the t − J
model. This model is considered a minimal model to account for the strong
correlations, which are prevailing in La2CuO4. While the effects of AF order on
the hole motion were studied in detail, the effect of holes on antiferromagnetic
spin fluctuations was neglected, except for a trivial correction. The latter took
into account that holes of concentration x dilute a spin system and modify
the dispersion of spin waves by a factor (1 − x)2. This would imply that
AF order is destroyed only when x = 1, i.e., when no spins are left. Here
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(a)                      (b)                    (c)

Fig. 15.24. Different contributions to the self-energy of the spin-wave propagator
(dashed lines) in schematic form. The most important contribution results from
electron-hole generation (a) while the scattering of spin-waves by holes (b) and (c)
plays a secondary role only.

we want to go beyond that simple estimate and discuss the effect of a finite
hole concentration on the dispersion of antiferromagnetic spin waves. Finding
the critical doping concentration at which long-range order is destroyed is
related to determining the hole concentration at which the spin-wave velocity
vanishes, i.e., vs(x) = 0.

When small amounts of holes are present, they form pockets at (±π/2,±π/2)
in the Brillouin zone. That is where the dispersion E(k) of coherent hole mo-
tion in form of a Zhang-Rice singlet has its minimum (see Figs. 12.10 or 10.22).
In order to calculate their effect on vs, one must determine self-consistently
the Green’s function of spin waves, as well as the Green’s function of holes,
dressed by spin-wave emission and absorption.

Formally this is done by using the slave-fermion Schwinger boson repre-
sentation (10.132) and by introducing in accordance with (7.2) the Green’s
function for holes

Gµν(k, t) = −i
〈

T
(

fµk (t)f
ν+
k (0)

)〉

, µ, ν = a, b (15.150)

The indices µ and ν refer here to the sublattices a and b of the Neél state,
respectively. Similarly, a Green’s function for the Schwinger bosons, i.e., spin
waves can be defined after a Bogoliubov transformation similar to (10.124)
has been performed. The hole propagator is dressed by a self-energy in Born
approximation depicted in Fig. 10.20. Spin waves can be absorbed by creating
electron-hole pairs and they can be scattered by holes. This is schematically
shown in Fig. 15.24. Calculations show that electron-hole excitations produced
by spin waves as well as the inverse processes are much more important than
spin-wave scattering by holes. The spin-bag degrees of freedom or incoherent
part Ginc(k, ω) of the hole propagator Gµν(k, ω) make the largest contribu-
tions here [202]. It leads to the finding that
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vs(q̂) = (1− α(q̂)x)v(0)s (15.151)

where α(q̂) depends slightly on the direction of q. It depends also on the ratio
J/t, i.e., for q̂ = (1,1) one finds α = 30 for J/t = 0.1 and 6.4 for J/t = 0.5. The
values in (1,0) direction differ by less than 5 % from those in (1,1) direction.
Antiferromagnetic long-range order is destroyed when the spin-wave velocity
goes to zero, i.e., when αxcrit = 1. For J/t = 0.3, a value usually assumed for
the high-Tc cuprates, the theory predicts a critical doping concentration of
xcrit ≃ 0.1 for the destruction of AF order8. As discussed in Sect. 12.1, even
when long-range order is destroyed, short-range antiferromagnetic order still
prevails and the spin-bag concept remains valid.

15.5.2 Pseudogap Regime

We continue with a discussion of the normal state with a pseudo gap. A pseu-
dogap appears as a strong drop in the normal state spin susceptibility with
lowering temperatures. This drop starts below approximately 300 - 400 K, i.e.,
far above Tc and has been observed, e.g., in La2−x SrxCuO4, YBa2Cu3O6+x

and YBa2Cu4O8. Apparently, an increasing fraction of the accessible low-
energy excitations freezes out when the temperature decreases, i.e., the system
becomes more and more gapped. Pauli’s temperature-independent suscepti-
bility χs = 2µ2

BN(0) is based on a Fermi surface with a fixed area 4πp2F and
therefore a fixed density of states N(0) at it. A reduction of χs(T ) therefore
looks like the area of the available Fermi surface is shrinking with decreasing
temperature, an interesting feature.

Before we discuss this point in more detail, we first want to consider an-
other possible origin of the pseudogap; preformed Cooper pairs. One might
argue that pairs are formed at a much higher temperature than Tc, i.e., at
a temperature TMF ≫ Tc, but that for TMF > T > Tc they are not phase
locked. Since ∆(r) = |∆|eiΘ(r) this implies that lim

r→∞
〈Θ(r)Θ(0)〉 = 0 instead

of a constant. Thus, the system has an order parameter |∆| 6= 0 character-
izing the pair density, yet it is not a superconductor since the existence of a
supercurrent requires phase locking.

We want to understand why the temperatures can differ at the point where
|∆| 6= 0 sets in and at which phase locking occurs. For that purpose assume
that the density of electrons participating in pairing is low and that binding
is strong. In that case pairs would form which are well separated from each
other. Since they are boson-like they would Bose condensate at a temperature
Tc, which is quite different from the much higher temperatures at which the
pairs form. We recall that this is quite different from the BCS theory where the
spatial extent of a pair, given by the coherence length ξ0 is much larger than
the interpair spacing, i.e., the pairs overlap strongly and cannot be separated.
In doped Mott-Hubbard insulators we expect that we are between the two

8 see, e.g., [202,237,367]
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limits, i.e., the BCS theory and Bose condensation, as long as the density of
the doped holes is small. A proper description of the transition between the
two limits is a subject of its own. The key to the problem is the behavior
of the chemical potential µ. In the BCS theory µ = ǫF , i.e., it is equal to
the Fermi energy. When the attractive potential increases or the electron
density decreases µ/ǫF decreases. Eventually a self-consistent determination
of µ results in µ→ −∞ which is the limit of separated pairs9.

A different approach to phase unlocking of boson-like electron pairs is via
the kinetic energy increase of the superfluid caused by phase changes of the
order parameter. The Hamiltonian describing it can be written in the form

H = 1/2Kp(∇Θ)2 (15.152)

where Kp is the phase stiffness constant. Since the velocity of the super-
fluid is vs = 1

2m∗∇Θ where m∗ is the effective electron mass we find that
Kp = ns(0)/4m

∗. Here ns(0) is the density of the superfluid at T = 0.
Near a Mott-Hubbard transition the stiffness constant is small and phase
fluctuations become large. The unlocking of the phase takes place here in the
form of a Berezinskii-Kosterlitz-Thouless (BKZ) transition in which vortex-
antivortex pairs are created in the 2D system and unbind. The BKZ transition
is well understood. It is driven by a competition between the energy of form-
ing vortex-antivortex pairs and the entropy. Eventually both approaches, i.e.,
the interpolation between the BCS and Bose condensate description and the
one based on vortex-antivortex formations should merge into one.

Electron pairs are observed by the Nernst effect in the regime schematically
shown in Fig. 15.23. A film with a thermal gradient and a magnetic field
applied perpendicular to its surface shows a voltage which is transverse to
that gradient. That is the Nernst effect. In a superconductor film, where an
applied perpendicular external magnetic field penetrates the film in the form
of vortices, the vortices move along the thermal gradient and generate via the
Josephson effect an extra large transverse voltage. An interesting observation
has been made that the large Nernst effect does not only exist below Tc
but also in a wide regime in the normal state [476]. This implies that we
must have vortices in the normal state as well; however in distinction to the
superconducting state vortices in the normal state build up and decay with
time. Therefore we expect a reduced density of states for energies less than
the binding energy of pairs, i.e., a pseudogap. From Fig. 15.23 it is apparent
that preformed or unsynchronized pairs cannot alone explain the phenomenon
of a pseudogap, since it appears in a much wider regime of the phase diagram
than the enhanced Nernst effect does.

This brings us back to a partial gapping of what would be the large Fermi
surface if all valence electrons contributed to it. It is the Fermi surface we
would have if correlations were weak enough, such that we would not have to
consider a Mott-Hubbard transition. As we have discussed earlier, small hole

9 For more detailed information the reviews [63,277,287] should be consulted.
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doping generates lenses of holes in the Brillouin zone at (±π/2;±π/2) (see
Figs. (12.10)). At their edges the excitation energy goes to zero. The density
of states associated with the hole pockets is denoted by N∗(0). The resulting
Pauli spin susceptibility is χs = µ2

BN
∗(0)/(1+F a0 ) and small where the Lan-

dau parameter F a0 is due to effective quasihole-quasihole interactions. As T
increases, larger parts of the gapped portion of the Fermi surface become ac-
cessible. Therefore, χs increases with T and differs from Pauli’s temperature-
independent susceptibility. A detailed theoretical analysis has to account for
temperature changes in the gapped part of Fermi surfaces caused by spin
disorder and associated changes in the quasiparticle dispersion discussed in
Sect. 12.1. Remember that with increasing temperature short-ranged AF cor-
relations are reduced, which increases the values of teff (see (12.5) and the
discussion of it). This affects the dispersion of the Zhang-Rice singlets and
hence the Fermi surface. In addition, the singlets start to break up and the
number of triplets increases as the temperature rises.

There have been attempts to describe the above scenario by a mean-field
approach based on composite operators introduced in Sect. 10.6. The electron
operators â+iσ, âiσ (see 10.100) are expressed as products of fermionic spinon
operators f+

iσ(fiσ) and bosonic holon operators b+i (bi) (see (10.139)). The t−J
Hamiltonian, which is considered to be the minimal model for describing the
strongly correlated hole-doped CuO2 planes, is then expressed in terms of the
spinons and holons before a mean-field approximation is made. In Sect. 10.6
we discussed in detail the case of half filling, which is that of a Heisenberg
antiferromagnet. Here we are interested in the case of hole doping. Then H0

defined by (10.142) becomes relevant, which in terms of the order parameter
χij given by (10.146) is written as

H0 = −t
∑

〈ij〉
χijbib

+
j . (15.153)

The spin-spin interaction part (10.147) remains unchanged. Thus, in dis-
tinction to half filling, we have to deal additionally with holons, i.e., bosons.
Their dispersion is governed by a reduced hopping matrix element −tχij . It is
assumed that at Tc Bose condensation is taking place, which is identified with
the formation of a superconducting state. The pseudogap in the normal state
is explained by the gapped spinon excitations, which were found in (10.152)
when two order parameters χij 6= 0 and ∆ij 6= 0 were present.

Although that picture is appealing, a number of open questions remain.
In the present mean-field approach, spinons and holons are separate particles.
We know, however, that in two dimensions this cannot be the case. The spin
bag remains attached to the hole. This was discussed in detail in Sect. 10.5.
It is also born out by the wavefunction-based quantum chemical calculations
of Sect. 12.1 as well as by a Green’s function approach [?]. Therefore, fluc-
tuations neglected in the mean-field approach must bind again the spinons
to the holons. Basically the explanation of the pseudogap in mean-field ap-
proximation is that it reflects the antiferromagnetic spin excitation spectrum



454 15 Superconductivity

Fig. 15.25. Schematic plot of the Fermi surface of La2−xSrxCuO4 for moderate
hole doping as found by ARPES

(10.152) of a two-dimensional SDW obtained within that approximation. In
view of the discussion given in Sect. 10.6 concerning this spectrum, questions
may be raised.

15.5.3 Strange Metal

Next we turn towards the region near optimal doping, where for T > Tc we
deal with a strange metal. Deviations from an ordinary Fermi liquid can be
seen by the fact that angular resolved photo electron spectroscopy (ARPES)
shows, for that doping regime, a large Fermi surface (see Fig. 15.25) in ac-
cordance with Luttinger’s Theorem, while transport properties like the Drude
peak in the optical conductivity remain proportional to the hole-doping con-
centration δ. Photoelectron spectroscopy experiments show very broad quasi-
particle peaks with a large incoherent background. The renormalization con-
stant Z (see (7.20)) seems to be nearly zero. Also the behavior of the resistivity
in this doping regime is anomalous, i.e., ρ(T ) ∼ T and not ∼ T 2 as expected
for a Fermi liquid. As pointed out in Sect. 10.9 the unusual behavior can be
explained if we assume that ImΣ(ω, T ) has the property

ImΣ(ω, T ) =

{∼ T ω ≪ T

∼ ω T ≪ ω
(15.154)

instead of a usual quadratic dependence on ω and T (see Sect. 7.2). In case of
(15.154) we speak of a marginal Fermi liquid which we have discussed in some
detail in Sect. 10.9. There we have shown that a one-band Hubbard model
on a square lattice can indeed produce marginal Fermi liquid behavior, but
only for half filling and possibly near a hole-doping concentration of x = 0.12.
Therefore, it remains an open question how the resistivity can be explained
within that model, since the linear in T behavior extends to higher doping
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concentrations. It has been speculated that a state with broken time-reversal
symmetry but unbroken translational symmetry might be responsible for the
strange metal behavior [462].

Within the mean-field scenario the strange metal regime is identified with
the RVB regime, in which χij 6= 0 is the only nonvanishing order parameter
[273]. Certainly, that phase is not a Fermi liquid. The large Fermi surface
seen in ARPES experiments is interpreted here as the one of spinons, while
the Drude peak in the conductivity is associated with the small hole density δ.
Nevertheless, the relation of the spinon Fermi surface to ARPES experiments
remains controversial.

15.5.4 Optical Properties: Drude Peak

It is gratifying that finite cluster calculations for the one-band Hubbard model
or t− J model can qualitatively explain the Drude peak as well as a midgap
state which is found for moderate doping10. It is instructive to have a closer
look at these features. Since they are antiferromagnetic charge-transfer type
insulators, La2CuO4 and Nd2CuO4 have a gap of order 1 eV in the frequency-
dependent conductivity σ(ω). Nonetheless, when these materials are doped
with holes or electrons, they become metallic and therefore a Drude conduc-
tivity of the form

σ(ω) =
σ(0)

1− iωτ̄
(15.155)

should exist at low enough frequencies. Here σ(0) = ne2τ̄/m is the static
conductivity and it seems appropriate to identify n with the hole or electron
doping concentrations. The scattering rate of the charge carriers is 1/τ̄ . Ex-
periments show11 two noticeable features: the scattering rate behaves in an
unusual manner, i.e., at low temperatures 1/τ̄ ∝ ω over a wide range of fre-
quencies, and there is considerable absorption in the gap, called mid-infrared
absorption. The experimental results for σ1(ω) = Re{σ(ω)} of the electron-
doped system Nd2−xCexCuO4 are shown in Fig. 15.26 for different doping
concentrations. The results for the hole-doped system La2−xSrxCuO4 look
qualitatively similar.

Before describing the numerical results, we want to outline some of the
properties of the conductivity tensor σαβ(ω). We assume a space and time-
dependent vector potential acting on the electron system of the form

A(j, t) =
x̂

2πN

∑

q

∫

dωAx(q, ω)e
i(q·Rj−ωt) , (15.156)

where x̂ is a unit vector in x direction and N is the number of sites. Fur-
thermore, we require that qa0 ≪ 1 where a0 is the lattice constant. In the

10 see, e.g., [76]
11 for reviews see, e.g., [385,445]
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Fig. 15.26. Doping dependence of the optical conductivity σ1(ω) of
Nd2−xCexCuO4. (Redrawn from [456])

presence of a vector potential, we have to replace the electron momentum p
by (p−eA(j, t)). As usual, the velocity of light c is set c = 1. Due to A(j, t) an
electron acquires an additional phase change when it hops in the x direction
by one lattice site. This phase change is incorporated in the nearest-neighbor
hopping matrix element t resulting in

ta+jσaj+δσ → te−iea0Ax(j,t)a+jσaj+δσ

ta+j+δσajσ → teiea0Ax(j,t)a+j+δσajσ , (15.157)

where j + δ denotes the nearest neighbor of site j in the x direction. In the
following discussion, we set a0 = 1.

We expand the Hamiltonian to second order in Ax and obtain

HA = H0 −
∑

i

jpx(i)Ax(i, t)−
1

2

∑

i

Tx(i)A
2
x(i, t) , (15.158)

with H0 given by (8.22). The two new terms describe the paramagnetic and
diamagnetic current contributions to the energy. The paramagnetic current
operator is

jpx(i) = −ite
∑

σ

(

a+iσai+δσ − a+i+δσaiσ
)

, (15.159a)

while the diamagnetic contribution relates to the local kinetic en-
ergy Tx(i)/e

2

Tx(i) = −te2∑σ

(

a+iσai+δσ + a+i+δσaiσ
)

. (15.159b)

To lowest order in Ax(q, ω) the total induced current is given by the expec-
tation value with respect to the perturbed system 〈. . . 〉HA of the operator
jx(i, t) = −∂HA/∂Ax(i, t). Therefore,
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〈jx(q, ω)〉HA
= − [〈−Tx〉+Rxx(q, ω)]Ax(q, ω) , (15.160)

where the expectation value 〈. . . 〉 is with respect to the unperturbed system.
We have taken advantage of the fact that Tx(i) is independent of the site index
i. The ground state of the unperturbed system does not carry a current, and
the paramagnetic current contribution therefore follows from the well-known
Kubo relation of linear response theory.

Rxx(q, ω) = − i

N

∫ ∞

0

dteiωt
〈

[jpx(q, t), j
p
x(−q, 0)]−

〉

HA
(15.161)

with
jpx(q, t) =

∑

i

e−iq·Rijpx(i, t) , (15.162)

where the time dependence of jpx(i, t) is given according to (7.36).
The optical conductivity σxx(ω) relates the induced current to the electric

field Ex(q = 0, ω) = iωAx(q = 0, ω) and is therefore

σxx(ω) = − 1

iω − η
[〈−Tx〉+Rxx(q = 0, ω)] . (15.163)

Here η is an infinitesimal damping factor.
One notices that the real (or absorptive) part of σxx(ω) contains a δ-

function contribution and is given by

Re {σxx(ω)} = 2πDδ(ω) +Re {σreg
xx (ω)} , (15.164)

where σreg
xx (ω) is the finite frequency part of σxx(ω) and

D =
1

2
[〈−Tx〉+Rxx(q = 0, ω → 0)] . (15.165)

This expression for D proves rather impractical because the two terms inside
the bracket cancel partially. For a static vector potential the induced current
〈jx(q → 0, ω = 0)〉HA = 0 and we obtain from (15.163) the relation

〈−Tx〉+Rxx(q → 0, ω = 0) = 0 . (15.166)

Therefore, D can also be written in the form

D =
1

2
[−Rxx(q → 0, ω = 0) +Rxx(q = 0, ω → 0)] . (15.167)

This expression turns out to be very useful when D is calculated by means of
diagrams, a suitable method when the Hamiltonian H is expressed in terms
of auxiliary fields, i.e., slave particle fields.

The δ-function or Drude term in (15.164) is due to free acceleration of the
charge carriers. For noninteracting particles Re{σreg

xx (ω)} = 0, i.e., the real
part of the conductivity, has a zero-frequency part only. This is a consequence
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of [jx, H ]− = 0, i.e., the current operator and H can be diagonalized simul-
taneously, and the expectation value in (15.161) vanishes. Evaluating 〈−Tx〉
we would find from (15.165) that D = ne2/(2m) in this case. Thereby it is
assumed that each carrier has a kinetic energy of −2t, which is reasonable for
low carrier concentrations and t = (2m)−1. When there are scattering centers
in the sample the term 2πDδ(ω) is replaced by

Re{σ(ω)} =
σ(0)

1 + ω2τ̄2
, (15.168)

a consequence of (15.156). According to (15.163), the regular part of the op-
tical conductivity is

Re {σreg
xx (ω)} = − 1

ω Im {Rxx(q = 0, ω)} . (15.169a)

For zero temperature and ω > 0, this expression can be rewrit-
ten with the help of (15.161,15.162) in the form

Re {σreg
xx (ω)} = 1

Nω Im
{〈

Φ0

∣

∣

∣jpx
1

ω−LH+iη j
p
x

∣

∣

∣Φ0

〉}

, (15.169b)

where LH refers to the Hubbard Hamiltonian (8.22), |Φ0〉 denotes the ground
state of that Hamiltonian, and jpx =

∑

i j
p
x(i). If we wish, we can replace LH

by (H − E0), where E0 is the ground-state energy. The expression (15.169b)
is suitable for numerical evaluation with the help of the Lanczos algorithm;
see Appendix F, especially (F.9.). Note that we may also write

Re {σreg
xx (ω > 0)} = − π

Nω

∑

n6=0

|〈Φn |jpx|Φ0〉|2 δ (ω − En + E0) , (15.170)

where the En are the energies of the excited states |Φn〉 of the Hubbard system.
Numerical results for a 3 × 3 Hubbard cluster are shown in Fig. 15.27

for different doping concentrations. One notices an appreciable mid-infrared
absorption below the Hubbard gap ωg = 5t. The pseudogap below ω/t ≃ 2 in
the presence of 20 % doping is probably due to finite-size effects. The increase
in absorption below the Hubbard gap goes hand in hand with a decrease of
absorption in the upper Hubbard band. This agrees with the findings for the
one-particle spectral density discussed in Sect. 8.2.

We obtain similar results when, instead of the Hubbard Hamiltonian, the
t−J Hamiltonian (10.101) is used. The upper Hubbard band is missing here,
yet the mid-infrared absorption is similar in character as numerical diagonal-
izations of small clusters show [76]. When we calculate σxx(ω) with the help
of Green’s functions by using slave bosons, slave fermions, or other means
of treating the strong correlations, we find that the mid-infrared absorption
results predominantly from the incoherent part Ginc(k, ω) of G(k, ω). It can
be interpreted as a dipole transition from a s-like to a p-like spin bag or,
alternatively, from the lowest quasiparticle band to an excited one [471, 492].
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Fig. 15.27. Optical conductivity σ1(ω) calculated for a 3 × 3 sites cluster within
the Hubbard model. Curves 0, 1, 2 refer to half filling and to 10 % and 20 % hole
doping, respectively, while t denotes the nearest-neighbor hopping matrix element.
(From [424])

The absorption in the mid-infrared regime results from the coupling of the
perturbing field (vector potential) to the small charge fluctuations associated
with the spin-like excitations of the bag. This is a distinct mark of the strong
antiferromagnetic correlations evidently present in the system even in the
absence of long-range antiferromagnetic order.

We can also calculate the Drude weight D as function of the band-filling
factor nb, by using the sum rule for the conductivity. It relates the integrated
optical conductivity Re{σxx(ω)} = σ1(ω) to the kinetic energy 2N〈Tx(i)〉/e2
of the two dimensional system [306]. We do not prove this sum rule here but
merely state the result

∞
∫

0

dωσ1(ω) =
π

2
〈−Tx〉 . (15.171)

One finds that D vanishes for nb = 0 as well as for half filling (nb = 1) and
that it reaches a maximum for nb = 0.5. A vanishing Drude weight at nb = 1
indicates that the system is an insulator at half filling. More precisely, we find
that D ∝ n/m∗, where n = 1 − nb and m∗ is the effective mass of the holes
near half filling.

15.5.5 Pairing Interactions

Next we consider the superconducting part of the phase diagram. The micro-
scopic origin of the strong binding of electrons to Cooper pairs is an especially
important point of consideration which will be discussed. Although phonons
will certainly contribute to the pair formation, it is highly unlikely that they
can cause the high Tc values which are observed. The nearness of antiferromag-
netism and superconductivity together with the fact that electron correlations
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are strong in the high-Tc materials suggests an important contribution of spin
fluctuations to the formation of Cooper pairs.

When studying the effects of spin fluctuations on the superconducting
transition temperature, we have to distinguish between the overdoped and
the underdoped regimes. In the overdoped regime the normal state shows
Fermi-liquid behavior. The strong correlations are partially reduced here be-
cause of large hole concentrations. Then the probability becomes small that
electrons scatter off each other by the Hubbard repulsion U . Therefore, an
RPA approach, which is formulated in momentum- or k space is justified
here. One should remember that the RPA has its strengths in treating long
wavelength fluctuations, while it is inaccurate for short wavelengths. In under-
doped samples short-range correlations are particularly important. They are
the origin of the observed pseudogap. Therefore, we must think of methods
which properly treat their effect on pairing. The t−J model is a good starting
point here. We also want to draw attention to the fact that in the calculation
described before the coupling constant U has always been assumed to remain
unchanged with varying hole concentration. That may be justified if at the
end we adjust its value to fit experiments.

We begin with the overdoped regime. In order to determine the effect of
antiferromagnetic spin fluctuations on pairing we have to solve Eliashberg’s
equations (15.129). For that we have to know the form of the correspond-
ing boson propagator. There are two different approaches possible: one is to
determine the propagator within a model, the other is to deduce it from ex-
periments.

In the first case one starts from G0(p, iωn) = (iωn − ǫp)
−1 where ǫp is

obtained from LDA or quantum chemical calculations. The energy dispersion
is of the form (12.5). The unrenormalized values for t, t′, t′′ which have to be
used in G0 were obtained earlier by quantum chemical methods. They are
listed in Sect. 12.1.1. The coupling of the conduction electrons to the spin
fluctuations is given by

Hint = g
∑

q

s(q)S(−q) (15.172)

where S(q) is the operator in terms of which spin fluctuations are expressed.
For example, the retarded spin-susceptibility tensor is written as

χαβ(q, t) = −iθ(t)
〈

[Sα(q, t), Sβ(−q, 0)]−

〉

. (15.173)

Since the spin fluctuations are set up by the same electrons which interact
through them, the coupling constant g is in the Hubbard model given by the
energy U . With the energy dispersion ǫp Lindhard’s function, i.e., the bare
susceptibility (11.109) is calculated. The temperature-dependent susceptibil-
ity χ(q, iων) is determined by making use of the FLEX approximation (see
Sect. 11.3.2). Next, the self-energy Σ(p, iωn) is determined from the first of
Eqs. (15.129). We write it here in the form
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Σ(p, iωn) = g2T
∑

m

∑

p′

χ (p− p′, i (ωn − ωm))G (p′, iωm) . (15.174)

The role of the boson propagator D(k−k′, iων) is taken here by the magnetic
susceptibility, i.e.,

D(k, ωm) = χ(k, ωm) . (15.175)

This seems a simplification in view of the detailed discussion in Sect. 11.3.2
and of the self-energy diagrams shown in Fig. 11.14. However, we do not ex-
pect charge fluctuations to contribute much to Cooper pairing and, therefore,
(15.174) seems justified. Note that the prefactor g2 is here 3U2/2 where the
factor 3/2 results from the three diagonal components of the susceptibility
tensor. The computed Σ(p, iωn) is used to determine the full Green’s func-
tion G(p′, iωn) (see (7.16)). With its help, the modified electron-hole bubble
and RPA susceptibility are redetermined. When set into (15.174) we obtain an
improved self-energyΣ(p, iωn). The process is continued until self-consistency
is attained. The final quantities are set into the second of Eliashberg’s equa-
tions (15.129), from which the superconducting transition temperature due to
spin fluctuations is obtained.

This way of estimating Tc has been further substantiated by dynamical
cluster Monte Carlo calculations based on the Hubbard Hamiltonian. They
were performed for a 2× 2 cluster embedded self-consistently, with 15 % hole
concentration [303]. In agreement with the above it is found that the pairing
interaction is well approximated by the form

Veff(q, ω) =
3

2
U2
effχ(q, ω) (15.176)

where Ueff is an effective Hubbard interaction which is adjusted to fit the
numerical findings. The above discussion also provides for an explanation as
to why the superconducting order parameter cannot be of the conventional s-
wave type. For that purpose we consider the weak coupling or BCS limit for an
interaction of the form of (15.176), which implies that the static susceptibility
must be used. The self-consistency condition (15.53) here takes the form

∆k = −3

4
U2
eff

∑

k′

χ(k− k′)

E(k′)
∆k′ . (15.177)

In distinction to the attractive electron-phonon or BCS interaction (15.6)
we are dealing here with a repulsive interaction which is strongly momentum
dependent. In fact, χ(q) is strongly peaked near q = Q, i.e., the antiferromag-
netic reciprocal lattice vector. As seen from Fig. 15.28 the vector Q = (π, π)
connects nearly parallel parts of the Fermi surface. Therefore, in order to find
a solution of (15.177) ∆k and ∆k+Q must have different signs in order to
overcome the minus sign on the right-hand side of (15.177). This excludes
s-wave pairing as mentioned above, but favors d-wave pairing.
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Fig. 15.28. Schematic plot of the large Fermi surface in overdoped La2CuO4 (com-
pare with Fig. 15.25). For q = QAF the spin susceptibility is strongly enhanced.
It scatters the order parameter ∆k into ∆k+q. This is accompanied with a change
of sign in case of d-wave pairing and, therefore, can lead to a solution for (15.177).
Dashed lines indicate a vanishing gap ∆k = 0. (From [108])

The second route, i.e., to deduce χ(q, ω) from available experiments and
to calculate with it Tc, was pursued for YBa2Cu3O6.6 which we consider in
the following [79]. The reason that this substance was chosen is that detailed
magnetic neutron scattering data as well as data from ARPES are available.
In other materials, only one at most, of these data sets is known. However,
both sets are required in order to derive accurate values for the parametrized
function χ(q, ω) and also for Ueff . The latter is found to be Ueff = 1.6 eV. With
the required input deduced from experiments, the solution of the linearized
Eliashberg equation (15.129) yields a value of Tc = 174 K. This exceeds the
measured value of 150 K. The calculations show that AF spin fluctuations can
explain the high transition temperatures. At the same time, the ARPES data
can also be quantitatively described by the theory [79, 308].

Next we consider the underdoped regime. Here we look for an alternative
to the FLEX approximation. The limitation of the latter is apparent in view of
the violation of Luttinger’s theorem in the underdoped regime. That theorem,
which was proven by applying perturbation theory states that the volume in
momentum space enclosed by the Fermi surface of a noninteracting system of
electrons remains unchanged when electron interactions are switched on. This
implies that a Mott insulator cannot be obtained from perturbation theory
because it does not have a Fermi surface like the corresponding noninteracting
system does.

On the other hand, the t−J model seems an appropriate tool to treat the
underdoped regime. The model itself was discussed at length in Sect. 10.5, and
the motion of holes in an AF environment was also considered there. Here we
want to extend the theory to the interaction of two holes. Intuitively it seems
plausible that two holes should attract each other. The reasoning is as follows.
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(a) (b)
Fig. 15.29. Two holes on an AF square lattice (a) at neighboring sites and (b)
farther apart

A single hole breaks four bonds JSiSj on an AF square lattice. When two
holes are next to each other, only seven instead of eight bonds are broken (see
Fig. 15.29a). This effect will be the more important, the larger the ratio J/t
is. Moreover, when a single hole is moving through the system its bandwidth
is of order J(= 4t2/U), as previously discussed. However, two holes in close
neighborhood can move with an effective hopping of order t, since a second
hole can heal spin defects caused by the motion of the first one.

Therefore, the holes form a bound state with a binding energy which de-
creases as J/t decreases. This decrease is due to the loss of kinetic energy
which is counterbalancing the gain in exchange energy. When two holes oc-
cupy neighboring sites, each of them can hop to only three sites instead of four
sites. This limits the formation of a bound state to ratios J/t which exceed
a critical value (J/t)crit. Because J = 4t2/U we are in the limit J ≪ t when
underdoped cuprates are considered. Numerical calculations for clusters up to
26 sites based on the Lanczos’ method (see Appendix F) find a bound state
for ratios J/t & 0.15 [373]. However, the problem can be also studied by an
analytic approach, which provides better insight into binding. For example, it
is found that the pair wavefunction of two holes with total pairing momentum
zero must be of a p- or d-wave type. This is an important result. The analytic
method is a generalization of the projection method discussed in Sect. 10.5,
where it was applied to the motion of one hole, [104, 490]. We sketch it here
in form of a wavefunction approach.

The t− J Hamiltonian Ht−J is divided into

Ht−J = H0 +H1 (15.178)

where H0 = Ht + HIsing contains the hopping and the Ising part (see
(10.101,10.102)) while H1 is given by (10.103). When a hole is created at
site m, it remains confined to that site as long as only H0 is acting on it. It
merely generates a spin bag. This was explained in Sect. 10.6. Trugman paths
are excluded here. For the eigenstate of Ht−J we make the ansatz
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Fig. 15.30. Example of a state which is reducible. Starting from the state (a) the
state (b) is obtained after two hops. Another hop leads to (c). This state, however,
can be obtained by one hop only if one is starting from (d). Thus, (b) is an irreducible
state with starting points m, n but (c) is not. (From [104])

| φm〉 =
∑

ν

αν
∑

P

| m, ν, P 〉 . (15.179)

Here ν denotes the number of hops of the hole which is starting from the
state cm↑|ΦNéel〉 where |ΦNéel〉 is the Néel state. Furthermore, P labels the
path taken by the hole. The αν are determined by minimizing 〈φm|H0|φm〉.
The state |φm〉 can be thought of as a quasiparticle, i.e., a hole with its spin
bag. As discussed in Sect. 10.6 it delocalizes due to the action of H1. Note that
when the quasiparticle is delocalized it remains on the sublattice on which it
was created.

We are interested here in the two-hole wavefunction for which we make in
analogy to (15.179) the ansatz

| φmn〉 =
∑

µν

αµν
∑

PP ′

| mn, µν, PP ′〉 . (15.180)

Here, the starting point is the state cm↑cn↓|ΦNéel〉. It is important to restrict
the states to irreducible ones. A state with starting points m and n is called
irreducible if it is not possible to generate that state with fewer hops by
starting from a different pair of sites. An example of a reducible state, i.e.,
one which does not satisfy that criteria is shown in Fig. 15.30. Again, the αµν
are determined by minimization of 〈φmn|H0|φmn〉/〈φmn|φmn〉.

The Fourier transform of |φmn〉 is

| Φ(p,k)〉 = 2

N

∑

m,n

e−i(k−
p

2 )Rnei(k+
p

2 )Rm | φmn〉 . (15.181)

It corresponds to a pair of holes with total momentum p and relative mo-
mentum k. Two holes connected by a string or irreducible path are called a
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spin bipolaron. It constitutes a compromise between a gain in kinetic energy
and a reduced disturbance of the antiferromagnetic background. With the
help of the |Φ(p,k)〉 we construct the eigenstate of the two holes with total
momentum p of the full Hamiltonian Ht−J . We make the ansatz

| ψ(p)〉 =
∑

k

γ(k) | Φ(p,k)〉 (15.182)

where the sum is over all k states of the AF Brillouin zone. Minimizing the
energy with respect to Ht−J results in an equation for the γ(k) which has to
be solved numerically [104]. From the forms of (15.181, 15.182) one can gain
interesting insights. For that purpose we consider first the Fourier transform
of |φm〉, i.e.,

| φ(k)〉 =
√

2

N

∑

m

eikRm | φm〉 . (15.183)

The indexm runs over the sites of only one sublattice. This is the reason for the
prefactor (2/N)1/2 rather than (1/N)1/2. One notices that when k is changed
to k+Q1,2 whereQ1 = (π, π) andQ2 = (π,−π) then |φ(k+Q1,2)〉 = ±|φ(k)〉.
The plus sign applies only when m belongs to the same sublattice as site
(0,0) does. From that result, it follows that the two-hole wavefunction has the
property

| Φ (p,k+Q1,2)〉 = − | Φ(p,k)〉 . (15.184)

Now consider |Φ(0,k)〉, i.e., a pair function with zero pairing momentum. A
symmetry transformation T with Tk = k + Q1,2 leaves the pair function
invariant and that requires

γ (k+Q1,2) = −γ(k) . (15.185)

Such a symmetry transformation may apply to k points on the surface of the
AF Brillouin zone and in this case (15.185) is a boundary condition on the
form of the two-hole wavefunction. Two examples of |Φ(0,k)〉 which satisfy
(15.185) are shown in Fig. 15.31.

The two situations correspond to p and d wave pairing. This shows in a
transparent way why numerical calculations on clusters for the pair suscepti-
bility within the t− J model find peaks at low frequencies only in the p- and
d-channels [40, 78]. The above theory together with further refinements [489]
yields, for the binding energy, reasonable agreement with the results of exact
diagonalizations of small clusters. Binding is obtained for J/t & 1/6. The
theory which here was presented in k-space can also be reformulated in r-
space [491].

The above considerations provide an explanation for a pairing interaction
in the underdoped regime. However, they are not able to describe supercon-
ductivity, i.e., pair condensation which takes place at low temperatures. What
is gratifying is that they yield a pair function which is either of d or p type.
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Fig. 15.31. Two examples of sign of γ(k) on the boundary of the AF Brillouin
zone which fulfill (15.185). Dashed lines separate regions with different signs of
the |Φ(0,k)〉. The two-particle wavefunctions correspond to p- and d-wave pairing.
(From [104])

Let us now come back to the molecular-field description of the t−J model
and to the phase diagram, shown in Fig. 15.27. Recalling that an electron is
decomposed as â+iσ = f+

iσbi, the superconducting order parameter 〈â+iσâ+j−σ〉
can be written in molecular-field approximation as

〈

â+iσâ
+
j−σ
〉

=
〈

f+
iσbif

+
j−σbj

〉

= 〈b〉2
〈

f+
iσf

+
j−σ
〉

. (15.186)

This implies that in the superconducting phase ∆ij (defined by (10.146)) as
well as 〈b〉 have to be nonzero [249]. In addition χij 6= 0 (see (15.153)) since
holons must be able to move freely through the system. A finite 〈b〉 6= 0 can
be interpreted as boson condensation. Looking at different self-consistent so-
lutions of the mean-field Hamiltonian for a square lattice, one finds that the
one where ∆ij has a d-wave symmetry has lowest energy. It is also found that
a superconducting solution does exist only below a critical doping concentra-
tion xcrit. Despite various reservations one might have against the molecular
field approximation one should take notice that the simple model can describe
a number of essential features of doped superconducting Mott-Hubbard insu-
lators.

15.5.6 Stripe Formation

In the hole-doped part of the phase diagram shown in Fig. 15.23 one notices a
dip in Tc around x = 0.12. It is related to the formation of stripes in some of
the cuprates, notably in La2−xBaxCuO4 and La2−x−yNdySrxCuO4. Stripes
are a general expression for one-dimensional density or spin-density waves
which break the translational and rotational symmetry of the CuO2 planes.
We speak of density stripes when

〈n(R)〉 = nav +Re
[

eiQRφn(R)
]

(15.187)
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Fig. 15.32. Examples of bond (a) and site (b) centered SDWs as well as CDWs
(c) and (d). The sizes of empty circles and of spins are in proportion to the hole
density and magnetization vectors. The strength of a line between sites quantifies
bond modulations. Note that the periods are eight and four for the SDW and CDW,
respectively. (From [470])

and of spin-density stripes when

〈mα(R)〉 = mav +Re
[

eiQRφmα(R)
]

, α = 1, 2, 3 (15.188)

Here nav and mav are the average density and magnetization, respectively.
They are the order parameters when stripes form. The prefactor exp(iQR)
characterizes the wave length and direction of the charge-density wave (CDW)
or spin-density wave (SDW). The functions φn(R), φmα(R) are generally com-
plex because the CDW or SDW can slide. They can be shifted continuously
without any loss of energy, provided the Q vector is incommensurate with the
reciprocal lattice vector. When Q is a reciprocal lattice vector the functions
φn, φmα are real. In case of CDW we may identify R as the center coordinate
of an electron and a hole, i.e.,

〈

a+iσajσ
〉

= fav(r) + fn(r)Re
[

eiQRφn(R)
]

, (15.189)

where r = Ri −Rj and R = 1
2 (Ri +Rj). The functions depending on r are

short ranged. A CDW is classified according to the point symmetry of the
order parameter, i.e., of fn(r). In the simplest case the Fourier transform of
fn(r) is k independent; then, we speak of an s-CDW and the density changes
within a unit cell remain symmetric. Similarly, we can define CDW of higher
angular momenta. Special attention has been paid to d-CDWs [470].

Generally one can distinguish between charge modulations on lattice sites
and on lattice bonds, which connect lattice sites. This can be visualized in
Fig. 15.32 for charge- as well as spin-density waves. On a square lattice a
unidirectional s- as well as d-CDW with vector Q = (0, 1) or (1, 0) in (15.187)
reduces the point symmetry from C4 to C2. Generally both types of CDW are
superimposed.
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As mentioned earlier, CDWs and SDWs have been observed in some of the
hole-doped cuprates. Experimental verification of CDWs comes most directly
from resonant soft X-ray scattering. In this way, stripes were unambiguously
identified in La2−xBaxCuO4 for x = 1/8 [1]. For that system sublattice peaks
were observed in the CuO2 planes at Q = 2π(0.25 ± 0.02, 0). The lattice
constant has been set equal to unity here. Similar observations were made
for La1.8−xEu0.2SrxCuO4, again at x = 1/8 [117]. In Sect. 10.9.1 we have
seen that in the Hubbard model on a square lattice at a hole doping of x ≃
0.12 the Fermi energy coincides with the (broadened) van Hove singularity in
the density of states. Therefore we expect that at this doping concentration
the system is very sensitive to instabilities. This may serve as one possible
explanation why strings are forming at that hole concentration.

When holes cluster in the form of a CDW there must be an effective
attractive interaction between them. However, in the one-band (8.22) and
three-band (12.7) Hubbard model only repulsive interactions do occur. So,
how can we construct attractive interactions from the latter? The answer is
that it is the kinetic energy in combination with the repulsive interactions
which may result in an attraction. The simplest example is the t − J model
discussed in Sect. 10.6. A large Hubbard interaction U together with hopping
matrix element −t between nearest-neighbor sites transforms in the strong
correlation limit into a Heisenberg spin-spin interaction with coupling con-
stant J = 4t2/U . Electrons at neighboring sites with antiparallel spin experi-
ence, therefore, an attractive interaction, although the Hubbard Hamiltonian
only contains repulsive interactions. In the following we want to show that
attractions of that type can lead to phase separations. Thereby we use the
three-band Hubbard model as well as the t− J model.

We begin with the three-band Hubbard model defined by the Hamiltonian
(12.7). We neglect interactions between different oxygen sites, i.e., we set
Upp = 0. The binding energy of two holes is given by Eb = (E2h − E0) −
2(E1h−E0), where E0 is the ground-state energy of the undoped system, while
E1h, E2h are the ones for a system with one and with two holes, respectively.
In order to understand the origin of binding, we consider the limit Ud → ∞.
In that case, double occupancies of sites are excluded. If Upd ≫ (ǫp − ǫd)
the system tries to prevent configurations with a hole on a Cu and on a
neighboring oxygen site. The resulting formation of hole droplets is easily
seen from Fig. 15.33. By moving holes from Cu sites to O sites, occupations
of nearest neighbor sites can be avoided even when additional holes are doped
into the system. Detailed numerical studies find hole binding for a certain
parameter range in Ud and Up. What seems to be important is that Upd is
sufficiently large compared with (ǫp − ǫd) and with t [425].

Phase separation is also obtained in the t − J model described by the
Hamiltonian (10.101). For small hole doping and large ratios J/t this is seen
as follows. When one hole is injected into a Heisenberg AF, four bonds JSiSj
are broken. When two holes are introduced and they are next to each other,
only seven bonds are broken instead of eight (see Fig. 15.29). However, in
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Fig. 15.33. Formation of hole droplets in the presence of hole doping when the
interactions are strong, i.e., Ud, Up → ∞, Upd ≫ (ǫp − ǫd). In the vicinity of doped
holes, occupation of nearest neighbor sites is avoided by holes moving from Cu to O
sites. Shown are (1) six unit cells with seven holes and (2) eight unit cells with ten
holes. (From [425])

the cuprates J/t < 1. Therefore, it is important to find out down to which
ratios J/t the formation of stripes can be expected. The problem resembles
the one considered earlier when the formation of a bound state of two holes
was discussed. Different numerical techniques have been applied to answer
that question. Although different methods differ in their results, mainly due
to small cluster sizes which can only be treated, there is evidence that for
J/t ≃ 0.5 and hole doping x ≃ 0.1 the ground state of the t − J model is
striped. A critical evaluation of the different works is found in Ref. [482].

An interesting topic is whether or not an inhomogeneous ground state with
stripes favors or disfavors Cooper-pair formation. From the phase diagram in
Fig. 15.23 it seems that the latter is the case. The transition temperature of
La2−xBaxCuO4 shows a distinct drop at x = 1/8. This hole concentration
gives rise to stripes in the form of an SDW and CDW as shown in Fig. 15.32.

This completes the discussion of the different regions of the phase diagram
in Fig. 15.27.
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A

Some Relations for Cumulants

In the following we derive some relations for cumulants which are helpful for
becoming better acquainted with them.

We start out showing how a cumulant 〈Φ1 |A|Φ2〉c changes when the state
Φ2 is transformed into a state Φ3. For that purpose we consider an infinitesimal
transformation of Φ2 into Φ′

3, i.e.,

Φ′
3 = eδS Φ2 = (1 + δS) Φ2 ; δS = ǫS with ǫ≪ 1 . (A.1)

By using the form (5.19) we find that

〈Φ1 | A | Φ′
3〉c = 〈Φ1 | A(1 + δS) | Φ2〉c . (A.2)

Assume that we go from Φ2 to Φ3 through a sequence of N infinitesimal
transformations δSi. In the limit N → ∞ we find

〈Φ1 | A | Φ3〉c = 〈Φ1 | A
N
∏

i=1

(1 + δSi) | Φ2〉c

= 〈Φ1 | AΩ2→3 | Φ2〉c . (A.3)

Here

Ω2→3 = lim
N→∞

N
∏

i=1

(1 + δSi) (A.4)

is called a cumulant wave operator because it appears in a cumulant and re-
sembles the wave operator in quantum mechanics which transforms the ground
state of H0 into the one of H . Note that Ω2→3 always begins with the number
1. It is not uniquely defined though, because many different paths in Hilbert
space may connect Φ2 with Φ3. However, that has no consequences because
different representations of Ω2→3 lead to the same cumulant, i.e., the dif-
ference vanishes. Although these considerations seem a bit formal, they are
extremely useful.
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As pointed out before, the cumulant wave operator |Ω) characterizes the
exact ground state. In that respect it resembles the wave operator Ω̃ (5.34)
which transforms the unperturbed ground state |Φ0〉 into the exact one |ψ0〉.
A formal relationship between the two can be established by using that

∇Φ0
〈Φ0 | 1 | ψ0〉c = ∇Φ0

ln〈Φ0 | ψ0〉

=
|ψ0〉

〈Φ0 | ψ0〉
. (A.5)

Reexpressing the left hand side in terms of Ω and the right hand side in
terms of Ω̃ we obtain

∇leftΦ0
〈Φ0 | Ω | Φ0〉c =

|ψ0〉
〈Φ0 | ψ0〉

=
Ω̃ | Φ0〉

〈Φ0 | Ω̃ | Φ0〉
. (A.6)

This provides for the link between |Ω) and Ω̃.



B

Scattering Matrix in Single-Centre and
Two-Centre Approximation

Here we want to present some more details as regard the decomposition of
the scattering matrix in terms of increments. We start from

| S) =| Ω − 1) = lim
z→0

∞
∑

n=1

∣

∣

∣

∣

(

1

z −HSCF
Hres

)n)

(B.1)

and assume that SCF ground state has been expressed in terms of Wannier
orbitals, see (5.59).

In order to include Hres by means of quantum-chemical program pack-
ages, we must slightly reformulate it. The creation and annihilation operators
in Hres should refer to Wannier orbitals (occupied space) and to orbitals in
unoccupied or virtual space. Therefore we express Hres not in terms of the
a+iσ, aiσ operators, but instead in c+νσ(I), cνσ(I) and ã

+
iσ(I), ãiσ(I) operators.

The ã+iσ(I), ãiσ(I) refer to modified basis functions f̃i(r). They are obtained
by orthogonalizing the fi(r) to the occupied space, i.e., to the Wannier or-
bitals. The index I labels the site or bond they are centered on. This enables
us to decompose the residual interactions in the form

Hres =
∑

I

HI +
∑

〈IJ〉
HIJ +

∑

〈IJK〉
HIJK +

∑

〈IJKL〉
HIJKL . (B.2)

The different parts indicate to which centres the creation and annihilation
operators c+νσ(I), cνσ(I), ã

+
iσ(I), ãiσ(I) are attached. The brackets 〈. . . 〉 refer

to pairs, triples and quadruples. There are at most products of four creation
and annihilation operators appearing in HSCF and therefore the decomposi-
tion terminates with HIJKL.

Keeping in mind that we want to reduce the correlation problem of N
electrons to that of a few electrons, we introduce operators Aα of the form

Aα = lim
z→0

1

z −HSCF
Hα , (B.3)

with α = I, 〈IJ〉, 〈IJK〉 and 〈IJKL〉. This enables us to rewrite
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| S) =
∑

n

∣

∣

∣

∣

∣

(

∑

α

Aα

)n)

. (B.4)

This form is particularly amenable to appropriate approximations. The method
of increments is based on a decomposition of the right-hand side into terms
with one Greek index only plus the remaining ones, i.e.,

| S) =
∑

α

∣

∣

∣

∣

∣

( ∞
∑

n=1

Anα

))

+
∑

α6=β
|Tαβ)

=
∑

α

|Sα) +
∑

α6=β
|Tαβ) . (B.5)

The operators Tαβ begin from the left with products of Aα until Aβ fol-
lows as the first operator with an index β 6= α. Examples are AαAαAβAγ or
AαAαAαAβAα . . . . One notices that Sα is the scattering operator of a Hamil-
tonian HSCF+Hα. The matrix Tαβ can be written by factorizing out the part
which depends on products of the two operators Aα and Aβ only, i.e.,

Tαβ = (AαAβ +AαAβAα + . . . )



1 +
∑

γ 6=α,β
Sγ +

∑

γ 6=α,β,δ
Tγδ



 . (B.6)

Adding Tαβ + Tβα one notices that the terms containing Aα and Aβ only,

constitute the scattering matrix S̃αβ of a Hamiltonian HSCF + Hα + Hβ ,
except that the contributions Sα + Sβ are missing because they depend on
one index only. Therefore we may write

Tαβ + Tβα =
(

S̃αβ − Sα − Sβ

)



1 +
∑

γ 6=α,β
Sγ +

∑

γ 6=α,β,δ
Tγδ



 . (B.7)

The procedure may be continued by factorizing Tγδ as done before for Tαβ
[138].

The largest contribution to |S) comes certainly from the part HI in (B.2).
When only |SI) is kept, this is called the single-centre approximation. In that
case all electrons in |ΦSCF〉 are kept frozen, except those in orbitals centred
at I, i.e., only

∏

νσ c
+
νσ(I)|0〉 has to be correlated. The operator Sα=I is the

scattering matrix of a Hamiltonian HSCF+HI . It describes the excitations of
electrons from orthogonal localized occupied orbitals ν at centre I into virtual
orbitals at the same centre. The N electron problem has hence been reduced to
a problem involving few electrons only with a strongly reduced virtual space.
Within the single-centre approximation we can write the cumulant scattering
operator as

| S) =
∑

I

| SI) (B.8)
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and

Ecorr =
∑

I

(HI |SI)

=
∑

I

ǫI (B.9)

because all other cumulants vanish.
An improved level of approximation consists in freezing all electrons in

|ΦSCF〉 except those at centres I and J and furthermore neglecting HIJK and
HIJKL. Thus we include in the calculations additionally Sα with α = I, J and
Tαβ with α and β being I, J and IJ . We call this a two-centre approximation.
It implies replacing the second bracket in (B.7) by 1. The scattering operator
is

| S) =
∑

I

| SI) +
∑

〈IJ〉
| SIJ − SI − SJ ) . (B.10)

Here |SIJ ) is the scattering operator of a Hamiltonian Heff(I, J) = HSCF +
HI +HJ +HIJ , i.e.

| SIJ) =
∞
∑

n=1

| (AI +AJ +AIJ )
n
) . (B.11)

Note the difference to the operator |S̃IJ 〉. Within the two-centre approxima-
tion the correlation energy is

Ecorr =
∑

I

(H |SI) +
∑

〈IJ〉
(H |δSIJ)

=
∑

I

ǫI +
∑

〈IJ〉
ǫIJ , (B.12)

where δSIJ = SIJ − SI − SJ . The expansion can be continued to include
three-centre and higher contributions. Specific examples presented later show
that the series is rapidly convergent as the number of centres increases and
also with increasing distances between different centres.





C

Intra-atomic Correlations in a C Atom

For an estimate of the intra-atomic correlation energy of diamond one needs
to know the correlation energy for different numbers ν of valence electrons on
a carbon atom. A list of that energy as function of ν is given in Table C.1.
Note that as discussed in Sect. 6.1.2 contributions of the s2 → p2 excitation
have been excluded because they are contained in the interatomic correlation
contribution.

As far as negative ions are concerned, calculations for a free atom prove
less useful given that ionic radii become much larger than the available space
in a solid. Since we are also lacking experimental information on this point, we
had to obtain the listed data by extrapolation of the data for a corresponding
state in heavier elements. An estimation of the error introduced by such a
procedure is hardly possible.
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Table C.1. List of the different ǫatν (i) for the C atom [eV]. They do not contain the
s2 → p2 excitation, which is listed in the last column. Values for the negative ions
are by extrapolation (From [85,284,466]).

ν Configuration i ǫatν (i) −ǫcorr(s2 → p2)

8 s2p6 11.24

7 s2p5 8.65

s1p6 12.22

6 s2p4 6.99 0.05

s1p5 8.57

s0p6 6.18

5 s2p3 5.31 0.24

s1p4 6.64

s0p5 8.98

4 s2p2 3.89 0.54

s1p3 4.63

s0p4 6.18

3 s2p1 2.67 1.12

s1p2 3.07

s0p3 3.97

2 s2p0 1.47 1.99

s1p1 1.99

s0p2 2.31

1 s1p0 1.36

s0p1 1.41

0 s0p0 1.22



D

Landau Parameter: Quasiparticle Mass

In Sect. 7.2 we have given examples how experimental quantities relate to
the quasiparticle interaction parameters Fλℓ . Here we want to demonstrate
this relation explicitely for the effective mass m∗ of the quasiparticles (see
(7.97)). This relation follows from Galilean invariance and therefore applies
to homogeneous systems only.

Consider the ground state of a system of (N − 1) electrons with energy
E0 to which we add a quasiparticle with momentum p. In the rest frame of

the system the energy is H = E0 + ǫ
(0)
pσ . By going over to a moving frame,

each electron obtains an additional momentum q. The energy in that frame
is therefore

Hq =

N
∑

i

1

2m
(ki + q)

2
+ V

= H + q

N
∑

i

ki
m

+
Nq2

2m
, (D.1)

where V denotes the electron interaction energy. In the moving frame the
Fermi sphere shifts by +q, permitting the presence of a number of quasipar-
ticles. They are indicated in Fig. D.1 by the shaded area and represent the

deviations of the distribution function n
(0)
kσ from (7.84) when n

(0)
kσ refers to the

moving frame. According to (7.90), the energy of the system is

Hq =
(N − 1)

2m
q2 + E0 + ǫ

(0)
p+qσ + 2

∑

p′

f s (p+ q,p′) δnp′ , (D.2)

where we have used that δnp′σ′ = δnk′σ = δnp′1. The first two terms give
the energy of the interacting (N − 1)-electron system in the moving frame.
The last term describes the interaction of the original quasiparticle with the

quasiparticles created by going into the moving frame. Furthermore, ǫ
(0)
p+qσ =
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Fig. D.1. Momentum distribution of the electrons within the ground state in the
rest frame and in a frame moving with velocity v = q/m. The quasiparticles in the
moving frame are indicated by the shaded area.

ǫ
(0)
pσ + p · q/m∗ + q2/2m∗. By comparing (D.1) with (D.2) and using (7.90)
one obtains in the limit q → 0

q · p
m

=
q · p
m∗ + 2

∑

p′

f s (p,p′) δnp′ . (D.3)

This equation can be written as

q · p
m

=
q · p
m∗ + 2

∑

p′

f s (p,p′)q · v′
p

∂n
(0)
p′

∂ǫp′

, (D.4)

where we have used the relation ∂ǫp′/∂p′ = v′
p. Expanding f

s(θ) according
to (7.96), we notice that only the term with l = 1 contributes when the sum

over p′ is taken. Note that ∂n
(0)
p′ /∂ǫp′ = −δ(ǫp′ − µ). This leads immediately

to (7.97).



E

Kondo Lattices: Quasiparticle Interactions

We want to show how the quasiparticle interactions in Kondo lattice systems
affect their low temperature thermodynamic properties in particular the spe-
cific heat and the spin susceptibility. For that purpose we start from (13.3)
and assume that the quasiparticle interactions are hard-core or δ-function like,
which would mean that ητ (ǫ) depends only on δn−τ (ǫ), i.e., φττ = 0. The f
orbital occupancy nf is independent of small changes in the Fermi energy.
Therefore the phase shift ητ (ǫF ) ≃ π/2 must follow the Fermi energy when
the latter shifts by an amount ∆ǫ. When this shift takes place, a number
δn−τ = [N(0)+ δN(0)]∆ǫ ≃ N(0)∆ǫ of quasiparticles is generated. Note that
δN(0)/N(0) is on the order of the inverse electron number N−1 because we
are considering the case of one impurity. In order for the phase shift to remain
unchanged, the following relation must hold:

1

kBT0
+N(0)φτ,−τ = 0 (E.1)

or

φτ,−τ = −πδN(0)

N(0)
. (E.2)

Therefore (13.3) simplifies to

ητ (ǫ) = η(µ) +
1

kBT0
(ǫ − µ)− 1

N(0)kBT0

∑

ǫ′

δn−τ (ǫ
′) . (E.3)

Using a grand canonical ensemble, we have replaced the Fermi energy by
the chemical potential µ. The last equation contains in a condensed form
the influence of a magnetic impurity on the electronic system in the regime
T ≪ T0 where the magnetic moment is quenched1. It can be used to derive
an expression for the excess specific heat δC and nagnetic susceptibility δχm.
The former follows directly from the excess density of states δN(0), i.e.,

1 see [345]
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δC

C
=
δN(0)

N(0)
, (E.4)

with δN(0) given by (13.4). Notice that the quasiparticle interactions char-
acterized by φτ,−τ do not enter δC. Therefore the specific heat remains unaf-
fected by them.

If we calculate δχm, we find this point to be different. In the presence of
an applied magnetic field h.

ητ (µ)− η−τ (µ) = 2µeffhπδN(0)−mφτ,−τ

= πδm (E.5)

Here we have µeff as the effective magnetic moment, for example that of
the Ce3+ ground-state doublet in the presence of a crystalline electric field.
Furthermore, m is the difference in the spin-up and spin-down population of
the electronic system and δm corresponds to the increment due to the presence
of the impurity. We have m = m0 + δm and m0 = 2µBhN(0). Usually the
difference between µeff and the Bohr magneton µB is neglected; we will follow
suit here. From (??) we then obtain

m = 2µBhN(0)
1 + δN(0)/N(0)

1 + φτ,−τ/π

≃ 2µBhN(0) [1 + δN(0)/N(0)] [1 + φτ,−τ/π] . (E.6)

We have made use of the fact that φτ,−τ , like δN(0)/N(0), is small. The
susceptibility is defined by

χm =
µBm

h
. (E.7)

Let δχm denote the increment in the susceptibility due to the presence of the
impurity. It is noticed from (E.6) that quasiparticle interactions may have a
sizable effect on that increment. By means of (E.2-E.7), we obtain for the
ratio

δχm/χm
δC/C

= 1− φτ,−τ
πδC/C

= 2 . (E.8)

That this ratio differs from unity is solely due to the quasiparticle interactions
represented by φτ,−τ . Equation (E.8) was first obtained by renormalization-
group techniques [488].
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Lanczos Method

The Lanczos algorithm is an efficient method for numerically calculating phys-
ical quantities of finite systems, such as the ground-state energy or correla-
tion functions. The method was originally used by mathematicians for the
diagonalization of large, sparse matrices1, but has found wide applications in
solid-state theory2.

One way of solving for a finite system is by diagonalization of the full
Hamiltonian matrix. But often the system are too large for such a diagonal-
ization to be done. With the help of the Lanczos method we can find iterative
solutions of the Hamiltonian even in that case. We consider the resolvent op-
erator (z −H)−1 which contains information about the energy spectrum of a
system. In order to determine its matrix elements we begin with a normalized
trial state |Φ0〉 of the system that has a finite component on the subspace we
want to limit ourselves and construct the following series of states:

| Φ1〉 = H | Φ0〉− | Φ0〉〈Φ0 | H | Φ0〉
| Φ2〉 = H | Φ1〉− | Φ0〉〈Φ0 | H | Φ1〉− | Φ1〉〈Φ1 | H | Φ1〉〈Φ1 | Φ1〉−1

... (F.1)

We notice that the |Φi〉 are mutually orthogonal. The only nonvanishing ma-
trix elements of H in the basis of the |Φi〉 are

ai = 〈Φi | H | Φi〉〈Φi | Φi〉−1 ,

bi = 〈Φi | H | Φi+1〉〈Φi | Φi〉−1 (F.2)

implying that the Hermitian matrix Hij is tridiagonal in this representation.
We are interested in the diagonal matrix element 〈Φ0|(z −H)−1|Φ0〉, the

poles of which yield the excitation energies. From the identity

1 see [263,487]
2 see, e.g., [365]
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∑

β

(z −H)αβ(z −H)−1
βγ = δαγ (F.3)

it follows that the vector xβ = (z −H)−1
β1 satisfies an equation of the form

∑

β

(z −H)αβxβ = eα (F.4)

with eα = δα1. By definition, 〈Φ0 | (z −H)−1 | Φ0〉 = x1.
The inhomogeneous system of linear equations (F.4) is solved by apply-

ing Cramer’s rule. In order to compute x1 a determinant A is defined with
elements

Aαβ = (z −H)αβ(1− δβ1) + eαδβ1 , (F.5)

i.e., the first column of the matrix (z−H) has been replaced by the vector e.
From Cramer’s rule we obtain

x1 =
detA

det(z −H)
. (F.6)

By expanding the two determinants, making use of the tridiagonal form of
their elements, we find

x1 =
1

z − a0+ | b1 |2 detD2

detD1

(F.7)

where the matrix Dν is obtained from (z−H)αβ by discarding the first ν rows
and columns. By continuing the expansion we obtain

x1 =
1

z − a0 +
| b0 |2

z − a1 +
| b1 |2

z − a2 + . . .

(F.8)

The form of a continued fraction suggests a relation between the Lanczos
algorithm and the projection method presented in Sect. 5.4. Indeed, we could
have derived (F.8) as well by using the projection method.

In application of the method the values for the lowest eigenvalues of the
denominator of (F.8) are usually rapidly convergent with increasing dimension
of the matrix (z−H), i.e., with an increasing number of states |Φi〉 used in the
calculation. Therefore the algorithm is suitable for determining, for example,
the ground-state energy of a finite electron system or the spectrum of its
low-energy excitations. We can compute correlation functions of the form

CAA(z) =

〈

ψ0

∣

∣

∣

∣

A+ 1

z −H
A

∣

∣

∣

∣

ψ0

〉

, (F.9)
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where |ψ0〉 is the ground state of the system, by starting from the product

| Φ̃0〉 = A | Φ0〉 . (F.10)

The ground state |ψ0〉 is determined numerically by finding the eigenstate
of the lowest eigenvalue of the matrix 〈Φ̃i|H |Φ̃j〉. Again, good convergence
is found in most applications, i.e., |ψ0〉 does not change by any appreciable
amount any more when the dimension of the matrix exceeds a certain size.





G

Density Matrix Renormalization Group

The Density Matrix Renormalization Group (DMRG) technique has devel-
oped into a powerful tool for studying one-dimensional quantum lattice prob-
lems. It is a numerical method with the help of which one can approximately
diagonalize chain systems which are too large for exact diagonalization. The
numerical accuracies which are thereby achieved are remarkable. For exam-
ple, the ground-state energy of a chain of several hundreds of sites with one
orbital per site can be calculated with a relative error of 10−10. DMRG is
ideally suited for investigating spin systems, e.g., Heisenberg chains as well as
one-dimensional systems described by the Hubbard Hamiltonian.

The idea of using renormalization groups for a numerical treatment of
many-body problems goes back to Wilson. But when, after its successful ap-
plication to the Kondo impurity problem, the method was applied to one-
dimensional lattice systems it failed badly. The understanding of the origin of
this failure was the starting point of the development of DMRG byWhite [481].
This is achieved best by considering a simple model, i.e., a particle on an chain.
Consider a chain of sites i with a Hamiltonian in matrix form

Hij =







2 , i = j
−1 , | i− j |= 1 .
0 , otherwise

(G.1)

In the continuum limit this Hamiltonian goes over onto H = −∂2/∂x2. This
is seen by writing the equivalent of the second derivative for a discrete system
in terms of the displacement δri as (δri+1 − δri) − (δri − δri−1) = δri+1 −
2δri + δri−1.

The standard renormalization group approach consists in forming a block
of a number of adjacent sites, to diagonalize the Hamiltonian for that block
and to determine its eigenstates. The sequence of these states is truncated by
keeping only those, say m, states with the lowest eigenvalues. They are used
to construct an effective Hamiltonian for a new, i.e., larger block obtained
by adding one site to the original block (see Fig. G.1). For a noninteracting
system the dimension of the Hilbert space for a chain consisting of L sites is
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Fig. G.1. Block of L sites with a effective Hamiltonian H̃L to which an additional
site is added resulting in HL+1. (From [344])

simply L, instead of an exponential of L as for an interacting system. In that
case we may choose for the larger block the addition of two blocks of the same
size, rather than adding a single site only. For example, when the Hamiltonian
(G.1) is used, the first step consists in breaking up the Hamiltonian matrix
into blocks containing L sites.

H =











HL TL 0 0 · · ·
T+
L HL TL 0 · · ·

0 T+
L HL TL · · ·

...
. . .











. (G.2)

Each matrix HL is of the trigonal L× L form

HL =









2 − 1 0 0 . . .
−1 2 − 1 0 . . .
0 − 1 2 − 1 . . .

. . .









. (G.3)

while the matrix T connects only sites at the ends of the block. After HL

has been diagonalized and the lowest m eigenvalues and eigenvectors ψ
(ν)
L are

kept the new m×m effective Hamiltonian matrix H̃L is constructed as

(

H̃L

)

νν′
=

L
∑

ij

ψ
(ν)
L (i) (HL)ij ψ

(ν′)
L (j) . (G.4)

In matrix notation this equation and a similar one for T̃ are

H̃L = O+HLO

T̃L = O+TO (G.5)

where the m× L matrix Oνµ has the m eigenvectors ψ
(ν)
L as columns.

In a next step two blocks of size L are merged to form a block of size 2L.
We form the matrix

H2L =

(

H̃L T̃L
T̃+
L H̃L

)

(G.6)
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Fig. G.2. Lowest eigenstate of a 16 site block (open squares) and of two disconnected
8 site blocks (solid dots) with fixed boundary conditions. (From [344])

and diagonalize H2L. This procedure is repeated, but the results remain poor.
The failure of such an iterative procedure for the construction of the ground

state of the system is seen as follows. The eigenstates of a block are just the
ones of a particle in a box. Those eigenfunctions vanish at the ends of the
block (fixed boundary condition). Therefore, when in the next iteration step
two neighboring blocks are joined, a state constructed only from low-energy
states of the previous iteration must have a dent in the middle. In particular
it is not possible to construct the lowest energy state of the joined blocks,
which has its maximum at the link of the two (see Fig. G.2). In order to
construct the ground-state wavefunction of the enlarged system in terms of
the eigenfunctions of the two smaller systems we must include not only low-
energy eigenstates of the latter but also high-energy states. The DMRG solves
this problem of the boundaries by not selecting the states with the lowest
energies but rather choosing the eigenstates of the density matrix with the
largest weight. This is explained in the following.

We start with the introduction of a superblock. It contains the original
block under consideration plus an environment (see Fig. G.3). The superblock
is diagonalized and the eigenfunctions are expressed in terms of the (in general
many-body) states |i〉 of the block and the states |α〉 of the environment.

Let us denote with |i〉 the many-body states of the block and with |α〉
those of the environment. The ground state |ψ〉 of the superblock can then be
expanded in the form

|ψ〉 =
∑

iα

ψiα|i〉|α〉 . (G.7)

The reduced density matrix for the block is then defined by

ρii′ =
∑

α

ψ∗
iαψi′α . (G.8)
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Fig. G.3. A block with states |i〉 and the environment with states j forming a
superblock. (From [344])

The sum is taken over the states of the environment. It contains all required
information on |ψ〉 when we calculate expectation values of operators acting
on the block. The expectation value of any operator O acting on the block
with respect to the ground state of the superblock can be expressed in terms
of the reduced density matrix as

〈O〉 = Trρ O . (G.9)

We assume that we can diagonalize the reduced density matrix and we denote
its eigenvectors and eigenvalues by |dn〉 and ωn. Since Trρ = 1 we find that
∑

n
ωn = 1. Equation (G.9) is then rewritten as

〈O〉 =
∑

n

ωn 〈dn |O| dn〉 . (G.10)

The main point of DMRG is the realization that we may discard the states
|dn〉 with the smallest eigenvalues ωn without noticeable effect on expectation
values. The ωn decrease nearly exponentially with n. Thus not the eigenvalues
of the Hamiltonian tell us which states may be discarded but instead the
eigenvalues of the reduced density matrix do this.

We want to discuss this point in some more detail. At this stage the sin-

gular value decomposition becomes very useful. We digress briefly in order to
explain it. According to that decomposition it is always possible to rewrite
any rectangular matrix M of dimension NA ×NB in the form

M = UDV + . (G.11)

Here U is a matrix of dimensionNA×NA with the property that U+U = 1.
The matrix D has dimension NA × NB and is diagonal with non-negative
matrix elements dn, referred to as the singular values. The number of non-
zero singular values defines the rank of the matrix M . Finally, the matrix V +

has dimension NB ×NB and it holds that V +V = 1.
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Equation (G.11) can be used as follows. Assume that we want to approx-
imate |ψ〉 given by (G.7) by m product states (Schmidt decomposition)

|ψ′〉 =
m
∑

I=1

aI |uI〉|vI〉 (G.12)

where the |uI〉 are functions of the block and |vI〉 of the symmetric environ-
ment. We want to choose the aI and |uI〉|vI〉 so that

S = (|ψ〉 − |ψ′〉)2 = minimum

=
∑

iα

(

ψiα −
m
∑

I=1

aIu
I
i v
I
α

)2

. (G.13)

The uIi v
I
α are obtained by decomposing

|uI〉 =
∑

i

U Ii |i〉 , |vI〉 =
∑

α

V Iα |α〉 . (G.14)

If we choose for the aI the largest eigenvalues of D and for |uI〉 and |vI〉 the
corresponding eigenvectors then S is minimized. Note that the |uI〉 are also
eigenvectors of the reduced density matrix ρii′ of the block. Indeed, by setting
(G.12) and (G.14) into (G.8) we obtain after summation over the states of
the environment

ρ = UD2UT . (G.15)

This shows that the |uI〉 diagonalize also the reduced density matrix ρ of the
superblock. The conclusion is that the most significant eigenstates of ρ are
sufficient for a good approximate representation of a wavefunction |ψ〉 of the
whole system.

When the reduced density matrix is known and only the eigenstates |dn〉
with the largest eigenvalues ωn are used we have solved the problem of trunca-
tion for that superblock. The truncation gives raise to an effective Hamiltonian
H̃L for the new block as well as for the symmetric environment. In a next step
the block consisting, e.g., of L sites is enlarged by adding one site and both
are mirrored for the environment, i.e., for constructing the superblock. That
is shown in Fig. G.4.

The algorithm of the DMRG is then the following. A superblock is formed
consisting of a block and the environment. The latter is often chosen symmet-
rical to the block. The system is diagonalized and the reduced density matrix
is calculated according to (G.8) by using for |ψ〉 the ground state. A state
which is used for the construction of the reduced density matrix is called a
target state.

One way of starting is from a four site chain, i.e., from a block consisting
of two sites and the symmetric environment. The Hamiltonian of that system
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Fig. G.4. Superblock configuration for the algorithm in case of an infinite chain.

is diagonalized, e.g., by making use of the Lanczos method and the density
matrix for the block is calculated. By using the eigenstates of the density
matrix with the largest eigenvalues as target states, the effective Hamiltonian
for the block is determined.

Next two sites are added to the system as indicated in Fig. G.4. The Hamil-
tonian of the six-sites system consists of the effective one for the original 2-site
block and environment, the transfer to the added sites determined according
to (G.5) and the one for the added sites. The new system is again diagonalized
and the procedure described above is repeated step by step.

This iteration process continues until a required length of the chain is
obtained. The procedure just described is called Infinite-System DMRG. The
accuracy which is obtained this way is limited, though. One of the reasons
is the small size of the starting block. The states chosen from it are different
from the ones we would choose if the block is embedded in a final system of
given length L. As a consequence the system may end up in a state with a
relative but not absolute minimum in energy.

The situation is much improved when an Infinite-System DMRG is fol-
lowed by a finite-system DMRG. It corrects the selection of the reduced num-
ber of states made for a superblock smaller than the final one. The finite-
system DMRG proceeds like the infinite-system DMRG. However, starting
point is here the last step of the infinite-system DMRG with two blocks A
and B of length L/2. Yet now, in distinction to the infinite DMRG the size of
block A is increased at the expense of the length of block B when a superblock
is formed. Thus block B shrinks in each consecutive step by one site until only
one site remains. Now the direction is reversed and block B is growing again
at the expense of block A. These shifts between the two blocks are continued
until complete convergence has been attained. The accuracy, which can be
obtained, is extremely high and of the order mentioned before. This can be
understood by returning to (G.10) and investigating how fast the eigenvalues
ωn of the reduced density may fall off as function of n. Analyses which have
been performed show that the ωn decay exponentially when the excitations
of the system are gapped. In these cases the accuracy of the results increases
very fast with increasing number of n.

Recently it has been realized that the DMRG is closely related to the
problem of entanglement and more over to so called area law. By connecting
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two parts of a chain, the entanglement of the two parts is limited to a small
local regime in the vicinity of the interface. This limitation is called Area Law
because the entanglement increases in proportion to the size of the interface
rather than the volume. The same reasoning holds also for higher dimension.
The DMRG is based on this law. It enables us to construct the ground state
of a long chain by starting from a small chain. For more details we refer to
the review [401].





H

Monte Carlo Methods

Originally a way of numerically evaluating multidimensional integrals which
otherwise cannot be computed, the Monte Carlo technique has become a fruit-
ful tool not only in statistical mechanics, but also in many-body theory1.

In physics one is often faced with integrals of the form

〈f〉p =
∫

dxf(x)p(x) , (H.1)

where x is a multidimensional vector and p(x) is a probability distribution
function. Consider, for example, a system of N classical, free particles. Then

〈A〉 = 1

Z

∫

dx e−βE(x)A(x) (H.2)

describes the thermal average of a quantity A which depends on the momenta
pn of the particles. The vector x in this case is x = (p1,p2, . . . ,pN ). The
energy of the system is E(x), Z is the partition function, and β = (kBT )

−1.
Equation (H.2) is a 3N -dimensional integral. The function

p(x) =
1

Z
e−βE(x) (H.3)

is a probability distribution function in the 3N -dimensional phase space. It
describes the statistical weight of a state x of the system in thermal equi-
librium. When the particles are free, integrals of the form of (H.2) can often
be evaluated analytically. However, when interactions among the particles are
included, we can compute integrals of the form (H.2), or more generally of
the form (H.1), only by Monte Carlo techniques.

How can the Monte Carlo technique be made applicable to ground-state en-
ergy calculations of a many-electron system, for example? In order to demon-
strate this, consider the ground state of a system of N electrons. We assume

1 see, e.g., [37,57,342,441]
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for its wavefunction a trial function ψη(R), where η stands for the variational
parameters contained in it and R = (r1, r2, . . . , rN ). The corresponding en-
ergy E(η) is

E(η) =

∫

dR
〈ψη(R)|H |ψη(R)〉
〈ψη(R)|ψη(R)〉 . (H.4)

This expression can be written in the form

E(η) =

∫

dRpη(R)
(Hψη(R))

ψη(R)
(H.5)

with

pη(R) =
|ψη(R)|2

∫

dR′ |ψη(R′)|2
. (H.6)

We see here that (H.5) resembles (H.1) and is therefore amenable to Monte
Carlo calculations (variational Monte Carlo method). Our task is then to
calculate integrals like (H.1) in the most economical way.

H.1 Sampling techniques

A simple, if impractical, way of sampling would consist of introducing a grid
with equal spacing in the 3N -dimensional space (hypercube). If n0 is the num-
ber of points in a given direction of the cube, then n3N

0 is the total number
of points in the cube, a number usually much too large for practical com-
putations. Systematic errors may arise when important contributions to the
integrals come from regions between points on the grid. In addition, for large
N , practically all points appear on the surface of the hypercube, not in its
interior, a somewhat surprising aspect which can be easily demonstrated. Of
the n0 points in one direction, two (i.e., the end points) are on the surface,
while n0 − 2 are in the interior. The ratio of points in the interior of the
hypercube to the total number of points is

(

no − 2

n0

)3N

= exp

[

3N log

(

1− 2

n0

)]

≃ e−6N/n0 −−−−→
N→∞

0 . (H.7)

A better sampling method, called simple sampling, is to produce M random
values xn by a random number generator. The integral 〈f〉p is then approxi-
mated by

〈f〉p =
M
∑

n=1

f(xn)p(xn) with

M
∑

n=1

p(xn) = 1 . (H.8)

The partition function which appears in p(x) is similarly evaluated. This
method has the advantage that systematic errors can be avoided even if n0

is small. As before, most points are on the surface of the hypercube. When
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we generate several different sets of M random values xn, the right-hand side
of (H.8) yields slightly different values for each set. We can show that these
values form a normal distribution around 〈f〉p and write it as

〈f〉p =
M
∑

n=1

f(xn)p(xn)±
1√
M

(

〈f2〉p − 〈f〉2p
)1/2

, (H.9)

noticing that the statistical error decreases as M−1/2.
The convergence can be improved if the xn are not chosen at random

but rather such that those configurations x which make particularly large
contributions to 〈f〉p appear most often in the sampling. We call this form of
sampling importance sampling. Assume that the xn are chosen according to
a probability distribution P (xn); then we replace (H.8) with

〈f〉p =
1

M

M
∑

n=1

f(xn)
p(xn)

P (xn)
. (H.10)

If we choose for P (xn) the function p(xn), then

〈f〉p =
1

M

M
∑

n=1

(p)f(xn) . (H.11)

The subscript (p) is a reminder that the xn are sampled according to p(xn).
A popular way of achieving importance sampling in practice is theMetropo-

lis method, named after its inventors,Metropolis et al. [320]. The xn are chosen
in the form of a Markov chain, i.e., the xn are not independent of each other
but rather xn+1 depends on xn. The former is constructed from the latter
via a properly chosen transition probability P (xn → xn+1), which ought to
be such that in the limit of large M the distribution of xn values converges
towards the equilibrium distribution p(xn). We achieve this by requiring that
a microreversibility condition be satisfied, i.e.,

p(xn)P (xn → xn+1) = p(xn+1)P (xn+1 → xn) . (H.12)

The proof that this is indeed a sufficient condition can be found in books on
Monte Carlo techniques, e.g., in [36]. When p(x) takes the form of (H.3), we
can write (H.12) as

P (xn → xn+1)

P (xn+1 → xn)
= e−β[E(xn+1)−E(xn)] . (H.13)

We often use the following form of P (xn → xn+1):

P (xn → xn+1) =

{

e−β[E(xn+1)−E(xn)] , if E (xn+1) > E (xn)
1 , otherwise .

(H.14)
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We see here that this form satisfies ( H.13). Thus, when xn+1 has a lower
energy than xn, i.e., when ∆E(n → n + 1) = E(xn+1) − E(xn) is negative,
the new value is always accepted. However, when ∆E(n → n + 1) > 0, this
new value is accepted only with a probability p(xn+1)/p(xn). In practice,
when we move from xn to xn+1 we change only one or a few components of
x. Otherwise, with 3N ≫ 1, we would expect an abrupt decrease of the ratio
p(xn+1)/p(xn) when ∆E(n → n+1) > 0, because each of the 3N dimensions
is expected to contribute an amount of order, say, kBT to the energy change,
depending on the chosen interval size. The transition region to lower energies
becomes then very narrow. Such a decrease would imply that most of the
attempted sampling moves are not executed and that the system gets stuck
in its original configuration.

H.2 Ground-state energy

We can apply the variational Monte Carlo method to calculate the ground-
state energy of a solid. A simple ansatz for the trial function ψη(r1. . . . , rN )
in (H.5) is the Jastrow wavefunction

ψη(R) = exp





∑

i

d(ri) +
∑

ij

f(ri − rj)



Φ (r1, . . . , rN ) , (H.15)

where Φ(r1, . . . , rN ) is a Slater determinant. For example, when studying a
semiconductor like diamond or silicon, Φ(R) can be constructed in form of
a Slater determinant from the solutions of the Kohn-Sham equation within
the local density approximation to density functional theory [114]. The pair
function f(r) introduces electron correlations into the ground-state wavefunc-
tion ψη(R) and contains adjustable parameters η. The function f(r) can be
chosen so that the correlation cusp in the pair distribution function g(r, r′)
is properly accounted for (compare with Sect. 5.1). The function d(ri) aims
at ensuring that the electron charge distributions ρ(r) is properly adjusted.
A Slater determinant constructed from solutions of the Kohn-Sham equation
yields a slightly different density distribution than a SCF calculation does.
Correlations modify the optimal ρ(r) slightly. We refer the reader here to the
discussion in Sect. 5.4.4.

We want to obtain the ground-state energy by solving the N -particle
Schrödinger equation with Monte Carlo techniques. Replacing t by −iτ in
the time-dependent Schrödinger equation

i
∂ψ(R, τ)

∂t
= Hψ(R, t) , (H.16)

we end up with a diffusion equation, i.e.,

− ∂

∂τ
ψ(R, τ) = Hψ(R, τ) . (H.17)
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Explicitly, it is of the form

− ∂

∂τ
ψ(R, τ) = −

N
∑

i=1

∇2
i

2m
ψ(R, τ) + [V (R)− E0]ψ(R, τ) . (H.18)

The potential V (R) contains the external potential as well as the electron-
electron Coulomb repulsions. Here we have subtracted an energy E0 for con-
venience. Finally E0 is adjusted so that it agrees with the ground-state energy.
Provided that the real function ψ(R, τ) does not change sign, (H.17) can be in-
terpreted as a classical diffusion equation, which would make |ψ(R, τ)| a prob-
ability density. In the discussion that follows, we assume that ψ(R, τ) ≥ 0.
The necessary generalization to fermions, i.e., electrons, will be brought in
later.

It is easy to see that ψ(R, τ) relaxes exponentially fast towards the ground
state, the decay time being given by the excitation energies of the system. Thus
we replace (H.17) with the modified form

− ∂

∂τ
ψ = (H − E0)ψ (H.19)

and imagine that ψ is decomposed in terms of eigenfunctions of H . The
above statement about relaxation then follows immediately, provided E0 is
the ground-state energy; otherwise ψ(R, τ) goes exponentially to zero or grows
exponentially.

We treat (H.18) numerically as follows. We start with an ensemble of M

different configurations R
(0)
1 , . . . ,R

(0)
M , assuming their distribution to be such

that the density of selected configurations is ψ0(R), a convenient starting
function, e.g., a wavefunction of the Jastrow type. The number M is typically
of order 100 - 1000. In the next step each configuration is modified slightly
by displacing the particles in a random fashion with a mean-square displace-
ment given by ∆τ/2m. The quantity ∆τ denotes the time interval into which
the diffusion process is discretized. The new configurations are denoted by

R̃
(0)
1 , . . . , R̃

(0)
M . They are replicated or deleted according to [W (R̃

(0)
n )]. The

function W (R) is given by

W (R) = e−∆τ [V (R)−Eτ ] + z , (H.20)

where the unknown energy E0 has been replaced by a trial energy Eτ and z
is a random number taken from the interval [0, 1]. It describes the exponen-

tial relaxation due to diffusion. The square brackets around W (R̃
(0)
n ) imply

taking the largest integer which is less than W (R̃
(0)
n ). If V (R) < ET , the

function exp{−∆τ [V (R)−ET ]} can become larger than 1, and if z is added,

e.g., between 2 and 3. In this case [W (R̃n)] = 2 and the configuration R̃
(0)
i is

doubled. According to the above procedure, we have gone over from the en-

semble R
(0)
1 , R

(0)
2 , . . . ,R

(0)
M to a new ensemble R

(1)
1 , R

(1)
2 , . . . ,R

(1)
M . In order
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Fig. H.1. Calculation of the ground-state wavefunction ψ0(x) of an electron in

an external double-well potential V (x). The ensemble R
(0)
1 , . . .R

(0)
M consists of nine

coordinates x
(0)
1 , . . . x

(0)
9 . For the purpose of better illustration a poor starting dis-

tribution has been chosen, corresponding to a wavefunction ψ(x, 0). As the system
evolves, branchings occur in regions where V (x) is small, and depletions in regions

where V (x) is large. After L steps the ensemble x
(L)
1 , . . . , x

(L)
10 is obtained, which

corresponds to a wavefunction ψ(x, L) that is close to ψ0(x).

to ensure that the total population remains unchanged, i.e., that M ′ ≃ M ,
the energy ET has to be properly adjusted after taking a number of time
steps. Eventually ET will coincide with E0. The new ensemble corresponds to
an improved wavefunction ψ1(R). If we repeat these steps a number of times,
the ground-state wavefunction ψ(R) will evolve. We show this schematically
in Fig. H.1.

The described numerical calculation of the ground-state wavefunction and
energy can be considerably improved by introducing a function

f(R, τ) = Φt(R)ψ(R, τ) , (H.21)

where Φt(R) is a trial wavefunction which is kept fixed and comes as close as
possible to the exact wavefunction. If ψ(R, τ) satisfies (H.18), then f(R, τ)
satisfies

−∂f
∂τ

= −
N
∑

i=1

1

2m
∇i

[

∇if − f∇i

(

lnΦ2
t

)]

+ [(H − E0)Φt]
f

Φt
. (H.22)
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In contrast to the imaginary-time Schrödinger equation (H.18) this equation
contains an additional drift term −∇if∇i(lnΦ

2
t )/2m superimposed on the

diffusion. Furthermore, the source-sink term is modified and has the form
[(H − E0)Φt](f/Φt). We notice that in the limit where Φt coincides with the
exact ground state, the source-sink term vanishes. Therefore, if the function
Φt(R, τ) is well chosen, replication and deletion of configurations take place
to a much lesser extent as the system evolves in τ than they do, when we
treat (H.18). The presence of the drift term implies that, when considering
the evolution of the system during a time interval ∆τ , we have to add a drift
displacement ∆τ∇i(lnΦt)/m to each particle i in a configuration R.

A slightly more sophisticated method of solving the imaginary-time Schrö-
dinger equation (H.18) is the Green’s function Monte Carlo technique [228],
in which the differential equation is converted into an integral equation. In
order to explain it, we introduce an energy scale with a fixed value given by
the ground-state energy E0. Instead of the electron coordinates ri, we use
renormalized coordinates xi = (−2mE0)

1/2ri. The Schrödinger equation for
the ground state is then of the simple form

(

−∇2
x + 1

)

ψ(X) = λW (X)ψ(X) , (H.23)

where X = (x1,x2, . . . ,xN ) and ∇2
x =

∑N
i=1 ∇2

i . Furthermore, we have writ-
ten V (R) as

V (R) = λE0W (X) , (H.24)

where the renormalization factor λ depends on E0. It determines the strength
of the interaction potential required to produce a binding energy −E0 for the
ground state. The Green’s function G0(X0,X) is defined as the solution of
the equation

(−V 2
x + 1)G0(X0,X) = δ(X−X0) . (H.25)

Because this is an equation for noninteracting particles, one can solve it for
given boundary conditions. The solution ψ(X) of (H.23) can be expressed in
terms of G0(X

′,X) in the form of an integral equation

ψ(X) = λ

∫

dX′G0(X
′,X)W (X′)ψ(X′) . (H.26)

This equation can be solved by iteration, i.e., by computing

ψn+1(X) = λ

∫

dX′G0(X
′,X)W (X′)ψn(X

′) (H.27)

starting from a properly chosen ψ0(X). A self-consistent solution exists only
for the right value of λ. A population of points X′ is chosen in correspondence
to ψn(X

′). For each point X′ the function λW (X′) is calculated and p(X′) =
[λW (X′)] new pointsX are generated according to the probability distribution
G0(X

′,X). The meaning of the brackets [. . . ] is the same as in connection
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with (H.20). When we take an average over the distributions X′ and p(X′)
the distribution of points X is according to ψn+1(X). Only when λ has the
proper value does the population remain constant. Otherwise it decays or
grows exponentially. For more details the reader should consult the original
literature [58, 228].

Until now it has been assumed that ψ(R, τ) ≥ 0, which excludes the discus-
sion of fermions. For these systems, the Pauli principle requires the ground-
state wavefunction to be antisymmetric with respect to particle exchange.
Since we are interested in electrons, it is important to know how the previous
considerations can be extended to Fermi systems. Consider the wavefunction
(H.15). Antisymmetry is built into the wavefunction by means of the Slater
determinant Φ(R); the single-particle orbitals which it contains determine
the node structure. The Jastrow prefactor is always positive. We can extend
the method to fermions if we apply the fixed-node approximation. The trial
wavefunction is considered in different regions of configuration space which
are bounded by nodal surfaces. Within each of the regions, the sign of the
wavefunction is fixed, i.e., either plus or minus. We evaluate (H.22) under the
supplementary condition that whenever a nodal surface of Φt(R, τ) is crossed
in a walk Rν → R̃ν , i.e., whenever Φt(R, τ)Φt(R̃, τ +∆τ) < 0, the trial step
is eliminated. There exist improvements of the fixed node approximation, but
they go beyond the scope of the present study.



I

Computing the Memory Function by
Increments

In the following we want to show in more detail how the memory function
(9.21)

Mij(z) =

(

Ai

∣

∣

∣

∣

1

z −QLQ
Aj

)

+

(I.1)

can be calculated by applying the method of increments. The notation is
the same as in Sect. 9.2. We decompose L into a coherent part L̃(z) and an
interaction part LI , i.e.,

L = L̃(z) + LI(z) (I.2)

where L̃(z) corresponds to H̃(z) (see (9.23)) while LI corresponds to

HI(z) =
∑

i

(

Uδni↑δni↓ − Σ̃σ(z)niσ

)

=
∑

i

H
(i)
I . (I.3)

With this notation and using (I.2) we can introduce a scattering operator T
by writing

1

z −QLQ
= g0 + g0Tg0 (I.4)

where g0 is defined according to (9.34). The T operator is

T = QLIQ
1

1− g0QLIQ

= QLIQ+ (QLIQ)g0(QLIQ) + . . . . (I.5)

It can be compared with (9.11).
Like in Appendix B the scattering operator can be expanded in terms of

cluster scattering operators
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T =
∑

i

Ti +
∑

〈ij〉
δTij + . . . (I.6)

where
δTij = Tij − Ti − Tj etc. (I.7)

For higher order terms see [224]. The operators Ti, Tij , . . . are scattering
operators for a cluster consisting of a single site i, of two sites i, j etc. We
denote these sets of sites by an index c = i, ij, . . .

Consider a cluster c with the cluster memory function M
(c)
ij (z) defined by

(9.30) together with (9.31) and (9.32). This is the case treated in DMFT and
the only matrix elements required are

M
(i)
ii (z) = (Aiσ |g0 + g0Tig0|Aiσ)+ . (I.8)

It is equivalent to an impurity problem with the interaction given by H
(i)
I (see

I.3). When we include also two-site clusters this matrix element changes into

M
(il)
ii (z) =M

(i)
ii (z) + (Aiσ |g0 (Ti + δTil) g0 Aiσ)+ (I.9)

so that
δM

(il)
ii (z) = (Aiσ |g0 (Ti + δTil) g0 Aiσ)+ . (I.10)

Similarly we find for the off-diagonal matrix elements

M
(ij)
ij (z) = (Aiσ |(g0 + g0 (Ti + Tj) g0 )Ajσ)+ (I.11)

and (see (9.32))

δM
(ijl)
ij (z) =M

(ijl)
ij (z)−M

(ij)
ij (z) . (I.12)

We want to draw attention that only matrix elements M
(c)
ij (z) contribute

where sites i and j are parts of the cluster. Further details are found in [225].



J

Kagome Lattice at 1/3 Filling

We want to show that the narrow peak in the hole spectral density shown in
Fig. 14.23 appears because

∣

∣ψN−1
k=0

〉

= ck=0 |ψ0〉

=
1√
3N

∑

i

ci |ψ0〉 (J.1)

is an eigenstate of H defined by (14.30) in the limit t/V → 0. An equivalent
statement holds for the particle spectral density. Because we consider a 1/3
filling of the kagome lattice when Fig. 14.23 is determined, the operator ck=0

refers in the noninteracting case to the lowest band in Fig. 14.11. The ground
state |ψ0〉 of H refers to 1/3 filling. We divide H into a kinetic energy part
H0 and an interacting part Hint and compute [H, ck=0]−. It is

[H0, ck=0]− = −4t ck=0 (J.2)

because each site has four nearest neighbors. We find also that

[Hint, ck=0]− =
V√
3N

∑

〈ij〉
(cjni + cinj)

=
V√
3N

∑

i

4t

V
ci|ψ0〉

= 4t . (J.3)

Here we have used that the four nearest neighbors of a site are occupied with
probability t/V due to quantum fluctuations contained in |ψ0〉. This holds true
in the strong correlation limit t/V ≪ 1. Charge order does not destroy that
result provided we average over the degenerate ground states. When summed
up we obtain

[H, ck=0]− = 0 (J.4)



508 J Kagome Lattice at 1/3 Filling

and hence a δ-function peak in the hole spectral density at ω = 0. Remember
that the commutator gives us the excitation energy of an eigenstate.

A similar calculation for c+k=0|ψ0〉 gives us
[

H, c+k=0

]

− = 2(V − t)c+k=0 (J.5)

and therefore a peak in the particle spectral density near 2(V − t) (see Fig.
14.23).
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J., Büchner, B., Scalapino, D.J., Hanke, W., Keimer, B.: Nature Phys. 5, 217
(2009)

80. de Gennes, P.G.: Phys. Kondens. Materie 3, 79 (1964)
81. de Gennes, P.G.: Superconductivity of Metals and Alloys. W. A. Benjamin Inc.,

New York (1966)
82. de Gennes, P.G., Tinkham, M.: Phys. Kondens. Materie 1, 107 (1964)
83. de Graaf, C.: private communication (2008)
84. de Lara-Castells, M., Mitrushenkov, A.: J. Phys. Chem. C 115, 17540 (2011)
85. Declaux, P.G., Moser, C.M., Verhaegen, G.: J. Phys. B 4, 296 (1971)
86. Demler, E.A., Arnold, G.B., Beasley, M.R.: Phys. Rev. B 55, 15174 (1997)
87. Denlinger, J.D., Gweon, G.H., Allen, J.W., Olson, C.G., Daliachaouch, Y., Lee,

B.W., Maple, M.B., Fisk, Z., Canfield, P.C., Armstrong, P.E.: Physica B 281
& 282, 716 (2000)

88. Denlinger, J.D., Gweon, G.H., Allen, J.W., Olson, C.G., Maple, M.B., Sarrao,
J.L., Armstrong, P.E., Fisk, Z., Yamagami, H.: J. Electron Spectrosc. Relat.
Phenom. 117 & 118, 347 (2001)

89. Dieterich, W.: Adv. Phys. 25, 615 (1976)
90. Dolg, M.: In: P. Schwerdtfeger (ed.) Relativistic Electronic Structure Theory –

Fundamentals, Theoret. and Comput. Chemistry, vol. 11. Elsevier, Amsterdam
(2003)



512 References

91. Dolg, M., Fulde, P., Kuechle, W., Neumann, C.S., Stoll, H.: J. Chem. Phys.
94, 1360 (1991)

92. Doll, K., Dolg, M., Fulde, P., Stoll, H.: Phys. Rev. B 52, 4842 (1995). Ibid:
Phys. Rev. B 55, 10282 (1997)

93. Doll, K., Dolg, M., Stoll, H.: Phys. Rev. B 54, 13529 (1996)
94. Doniach, S., Sondheimer, E.H.: Green’s Functions for Solid State Physicists.

Benjamin/Cummings, London (1974)
95. Dopf, G., Wagner, J., Dietrich, P., Muramatsu, A., Hanke, W.: Phys. Rev.

Lett. 68, 2082 (1992)
96. Doucot, B., Duplantier, B., Pasquier, V., Rivasseau, V., eds.: The Quantum

Hall Effect. Birkhäuser, Basel (2005)
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212. Jaclič, J., Prelovšek, P.: Phys. Rev. B 49, 5065 (1994)
213. Jarrell, M.: Phys. Rev. Lett. 69, 168 (1992)
214. Jarrell, M., Krishnamurthy, H.R.: Phys. Rev. B 63, 125102 (2001)
215. Jastrow, R.: Phys. Rev. 98, 1479 (1955)
216. Jayprakash, C., Krishnamurthy, H.R., Sarker, S.: Phys. Rev. B 40, 2610 (1989)
217. Jayprakash, C., Krishnamurthy, H.R., Wilkins, J.W.: Phys. Rev. Lett. 47, 737

(1981)
218. Jerome, D.: Organic Conductors. Dekker, New York (1994)
219. Johnston, D.C.: Adv. Phys. 59, 803 (2010)
220. Jonker, G.H., van Santen, J.H.: Physica 16, 377 (1950)
221. Kajzar, F., Friedel, J.: J. de Phys. 39, 379 (1978)
222. Kakehashi, Y.: J. Magn. Magn. Mater. 104-107, 677 (1992)
223. Kakehashi, Y.: Phys. Rev. B 65, 184420 (2002)
224. Kakehashi, Y.: Adv. Phys. 53, 497 (2004)
225. Kakehashi, Y., Fulde, P.: Phys. Rev. B 70, 195102 (2004)
226. Kakehashi, Y., Miyagi, K.: private communication (2012)
227. Kakehashi, Y., Nakamura, T., Fulde, P.: J. Phys. Soc. Jpn. 78, 124710 (2009)
228. Kalos, M.H.: Phys. Rev. 128, 1791 (1962)
229. Kampf, A.P.: Phys. Reports 249, 219 (1994)
230. Kanamori, J.: Progr. Theor. Phys. 30, 275 (1963)
231. Kawabate, A.: J. Phys. F 4, 1477 (1974)
232. Kawakami, N., Okiji, A.: In: H. Fukuyama, S. Maekawa, A.P. Malozemoff (eds.)

Strong Correlation and Superconductivity, in Springer Ser. Solid-State Sci.,
vol. 84. Springer, Berlin, Heidelberg (1989)



516 References

233. Keimer, B., Casa, D., Ivanov, A., Lynn, J.W., v. Zimmermann, M., Hill, J.P.,
Gibbs, D., Taguchi, Y., Tokura, Y.: Phys. Rev. Lett. 85, 3946 (2000)

234. Keldysh, L.V.: Zh. Eksp. Teor. Fiz. 47, 1515 (1964). Engl. transl.: Sov. Phys.
JETP 20, 1018 (1965)
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