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Abstract

Counter-diabatic (CD) driving is a shortcut for adiabatic quantum control. By adding a
gauge potential to the time-dependent Hamiltonian, we compensate non-adiabatic tran-
sitions.

This thesis investigates CD driving for three-level systems, which exhibit richer physics
than two-level systems. Their dynamics are generally unsolvable analytically, so we use
a variational method to find gauge potentials.

Floquet theory is related closely to CD driving — the Hamiltonian of a periodic system is a
CD-driven Floquet Hamiltonian. Using this, we derive variational Floquet Hamiltonians
for specific two- and three-level systems.

Using the SU(3) group properties, we provide the most general parameterization of a
gauge potential in three-level systems, corresponding to pure micromotion drives in Flo-
quet theory. Representing su(3) algebra elements as vectors with dot, vector, and “star”
products, we obtain an exact Kato gauge potential formula and a simplified version for
degenerate systems.

Finally, we propose a fully geometric two-qubit quantum gate, evolving solely via the
Kato potential.
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AOcTpaKT

KonrpagmabarnaHoTo 3aBUKBaHe € MPAK II'bT 3a aanadbaTndeH KBaHTOB KOHTpoJI. [lo-
OaBsiHETO Ha KaJMOPOBBYEH IOTEHIMa] KbM BPEME3aBHCUM XaMUJITOHUAH KOMIIEHCUDA,
M3IISLI0 HeaInabaTUIHUTE TPEXO/IN.

JlutytomMmuaTa paboTa pas3mupsaBa KOHTPAIUA0ATHIHOTO 38/ IBUKBAHE 38 CUCTEMU OT TPU
HUBa, IPUTEXKaBAIU 1Mo-60oraTa pu3nKara OT CHCTeMUTE ¢ jiBe HuBa. Harpumep, morat
Jla ChIbPKAT U3POJICHN HUBA, IIPU KOETO B aJiabaTuIHaTa UM €BOJIIOIU ce HaDJII0Ia-
Ba KBAHTOBaA XOJOHOMHA. T'bil KaTo AMHAMHMKATA UM B OOIIUs CAydail HEe € aHAJIUTUIHO
pelnMa, Hie pasryexkIaMe BapHallMOHEeH MeTOoJ 3a HaMupaHe Ha KaJuOPOBBIHHU ITOTEH-
TTUAJIA.

Teopusita Ha DJjoKe 3a MEPUOTUTHO 38/ IBUKEHATE C€ OKa3Ba TSICHO CBbP3aHa ¢ KOHTPA-
,ZLI/Ia6aTI/I“IHOTO 3a/BU2KBaHC — XaMUWJITOHUAHDBT Ha TaKWBa CUCTEMU € KOHTpa,ZLI/Ia6aTI/ILIHO
sajBukeH xamuiaTonnan Ha Pioxe. V3moa3saiiku To3u haxT, He HaMHPaMe Bapualli-
OHHO XaMuITOHMaHN Ha PJIOKe 38 KOHKPETHH IIPUMEPHU CUCTEMU C JIBE U TPU HUBA.

Usmnos3Baiiku cpoiicrBara Ha rpymara SU(3), maBame Haii-o0Imara napaMeTpu3alus 3a
KaJIMOPOBbYUEH MOTEHITNAJ B cucTeMa oT Tpu HuBa. Bbe Djioke TeopusTa TOBa ca 3a/IBUXK-
Banus 0e3 Pjoke eBostorusi. ChIO Taka, W3MOI3BAME MPEJICTABIHE HA €JIEMEHTUTE Ha
asrebpara su(3) KaTo BEKTOPH, B KOUTO MOXKE Jla Ce BbBeJe ‘CKaIapHO’ ¥ “BEKTOPHO
[Ipou3BeJieHNe”, 3a Jia TOJIyYrUM TOYHA (popMyJia 3a KaJTUOpOBBIHUA MTOTeHIra I Ha Karo,
KaKTO U IO-IIPOCTa TOYHA (POPMYJIa B CJIydauTe Ha JiereHepupaHa CHCTEMA.

Hakpas, npejaimarame cxema 3a MOCTPOSIBAHETO Ha JIBYKIOOUTEH KBAHTOB T'efiT, KOHTO e
U3IAI0 TeOMEeTPUYEH — €BOJIIONUATa MYy Ce JTbJIKIA caMO Ha MmoTeHnna  na Karo.
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Chapter 1

Introduction

Modern quantum technology demands rapid and precise control over quantum states. A
quantum system can be driven to a target state using adiabatic control [1]. This means
that if the Hamiltonian guiding the system evolves slowly, the system approximately
follows its eigenstate. In practice, quantum systems cannot be completely isolated from
the environment. Their natural decoherence gives us a finite time for state preparations,
leaving adiabatic control impractical.

Counter-diabatic (CD) driving offers a shortcut to adiabaticity. By adding a gauge po-
tential to a rapidly evolving Hamiltonian, we achieve the same (except faster) evolution
as if the variations of the Hamiltonian were adiabatic.

We focus on Floquet systems because of the recent discoveries [2| connecting them to CD
driving. As we explain in detail in Sec. 3.2, it turns out that the periodic Hamiltonian
governing the Floquet system can be viewed as the sum of the Floquet Hamiltonian and
a counter-diabatic term. This allows us to recycle the variational methods for searching
for gauge potentials in Floquet theory, where we are concerned with obtaining a Floquet
Hamiltonian for a given system.

While CD driving has been extensively studied in two-level systems, its application to
multi-level and periodically driven systems remains an open frontier. In this thesis, we
expand our knowledge of CD driving by tackling three-level systems (3LS). Three level
systems offer richer dynamics. They show a lot of the strange properties occurring in
multi-level systems. We are particularly interested in investigating systems with degen-
erate energy levels. Such systems, subject to adiabatic evolution, can move freely within
the degenerate subspace. This gives rise to a holonomic evolution that we aim to inves-
tigate.

The remainder of this thesis is structured as follows: Chapter 2 introduces the theoretical
foundation of CD driving, detailing the role of gauge potentials in achieving transition-
less evolution. Chapter 3 provides an overview of Floquet theory and its relevance to
driven quantum systems. Chapter 4 presents some necessary instruments to compute
gauge potentials, including variational approaches. Chapter 5 applies these instruments
to simpler, two-level systems. preparing us for the challenges of 3LS. We make numerical
simulations for concrete two-level systems. Then, in Chapter 6, we delve into the theory
behind 3LS. To do this effectively, we discuss the SU(3) group and respective algebra.
Then, we give a parametrization of the most general form of the Adiabatic Gauge Po-
tential (AGP) and a simplified parametrization specifically useful for Floquet systems.



Then, we give formulae for computing Kato gauge potentials in the degenerate and non-
degenerate three level systems, concluding the theoretical results of the thesis. Next,
we move on to numerical experiments in Chapter 7. Finally, Chapter 8 summarizes our
findings and outlines potential future directions of research.



Chapter 2

Counter-Diabatic Driving

This chapter lays the theoretical foundation for CD driving. We begin by stating the
adiabatic theorem. We show how a quantum system remains in an instantaneous eigen-
state if the Hamiltonian’s parameters change slowly. We then introduce the concept of
Berry phase for adiabatic evolution and generalize it to a holonomy matrix in degener-
ate systems. If the evolution of the Hamiltonian is faster, we show that we can prevent
transitions between states using a gauge potential. We discuss properties of gauge poten-
tial and focus on the parallel-transport Kato gauge potential. This chapter establishes
why these gauge potentials are important: they are the key to implementing shortcuts
to adiabaticity, enabling fast quantum operations without loss of fidelity. The concepts
introduced in this chapter are fundamental for the rest of the thesis, where we will find
or use gauge potentials in particular systems.

2.1 Adiabatic Theorem

If we evolve a quantum system from its eigenstate with a slowly changing Hamiltonian,
it will remain in the instantaneous eigenstate. This result is known as the adiabatic
theorem.

To state the theorem formally, consider a Hamiltonian with a time-dependent parameter
A(t)
H = H(A()). (2.1)

The instantaneous eigenstates are the eigenstates [i,())) for a fixed value of the
parameter A(t):

H(A) [#n(A)) = En(A) [n (X)) - (2.2)
In general, they differ from the time-evolved states
[n(A(1))) # Te o MO g, (A(0)) (2:3)

Note that the instantaneous eigenstates are orthonormal for a fixed time ¢, but (¢, (A1) |[tn(A2)) #
0 for Ay # Ao

The theorem states that the evolved state is close to the instantaneous eigenstate if A
changes slower than the gap A between the instantaneous eigenstates. More precisely,



the condition is

Y

(M)

where A(X) = E,,(\) — E,()) is the energy gap between the instantaneous eigenstates
|m) and |1,). As we can see, this condition implies that we have small enough A (slow
changes of the parameter) and large enough A (band gap).

Proof

‘<wm()‘)|a>\H|wn()‘)>‘ < 17 V)‘7 Vm, n, (2'4)

To prove the theorem, we use time-dependent perturbation theory.
If the Hamiltonian did not depend on time, the solution to Schrodinger’s equation

i) 10()) = H [W(1)) (2.5)
would be

= Z CneiitEn ’¢n> ) (26)

where |¢,) are the eigenstates of the time-independent Hamiltonian, and FE, are the
corresponding energies,

Similarly, for the time-dependent Hamiltonian, we expand the solutions in the basis of
the instantaneous eigenstates |¢,,), with time-dependent coefficients ¢, (t):

= X a0 O M) 2.5)

where 0, (t) = — fo dt'E,(t') is called the dynamical phase of the wave function. Note
that we can always transfer phases to and from ¢,. As we will see, ¢,(f) contains an
additional Berry phase. The dynamical phase 6 is defined in such a way as to match the
time-independent phase F,t.

We now substitute the expansion (2.8) to (2.5) and get

{ Z Cnltn) + anfn) + Cn|¢n>w Zen = Z cn(t) En( an)
z'z<c'n|wn> + caMOrGn) = Calthn)iEn(t ch En(t)e™Oln) (2.9

n

P> (Enlton) + caM|Orgpn))e™ M = 0.

We multiply by (¢,,| to get

i ()" 40y () AW |O| ) e = 0. (2.10)

n

In the generic case, the off-diagonal elements (1,,|0x|1,), n # m are responsible for
transitions [¢,) — |¢,). In the case of small A\, n # m terms are negligible. To see this
more precisely, we differentiate the equation

(Wm(MH N |[n(A)) = 0. (2.11)

4



0 = (Oxtom|H|¢n) + (Ym|ONH [¢on) + (Y| H|Ox¢n)

_ <wm|a>\H|¢n>

Comparing the expression with (2.4), we see that the n # m terms are indeed negligible.
This turns Eq. (2.10) in the transitionless differential equation

Cm R 1AW |10\ U ) (2.14)

whose solution is '
Em(t) & e (0)erm D) (2.15)

where

t A(t)
n(t) = / 0 A (W (N) 03] (N)) = / AN (V)03 (V)

is called Berry phase, and the integrand

An(A) = (¥m|i0x|m) (2.16)

is called Berry connection.

Finally, if we evolve the Hamiltonian from an initial state |,,(0)), meaning that ¢,,(0) =
1;¢,(0) =0 ¥n # m, we would end up at

U (1)) & cm(0)e™ e O Japy,) (2.17)

accumulating a dynamical phase 6,, and a Berry phase 7,,.

2.2 Berry Phase and Holonomy

We revise the adiabatic theorem proved in 2.1 for the case when the Hamiltonian has
degenerate energy levels. Up to Eq. (2.10), there is no need for the energy levels to be
different. For each degeneracy 6, = 0, we can only neglect the different-energy terms
E) # FE, in the differential equation. This leaves us with

b =1 ) (|04 n) cn (2.18)

n

This equation can be formally solved as
&(t) = Te b A &0y = We(0), (2.19)
where A is a matrix of Berry connections,

and W is called holonomy matrix. Its dimension is equal to the degree of the degener-
acy. In case of degenerate energy levels, the adiabatic theorem does not hold — the state
can evolve among the degenerate levels.



2.3 Gauge Potential

When changing the coordinate system, the Hamiltonian transforms similarly to a general
hermitian operator. However, it also obtains a gauge potential, similarly to the fictitious
forces emerging from non-inertial transformations in classical physics.

Let U be a unitary transformation from |) (“lab frame”) to [¢) (“moving frame”), such
that

[0) = U y). (2.21)

In the lab frame,

i, [0) = H 1) . (2.22)

Substituting |¢)) = U|¢)), we get

i, (Ul)) = 2U1Y)
Q) |0) + iU ) = HU ) (2.23)
i0,0) = UTHU|) — iUt (9,U)| )
Z&t|'&> == f{moving"&>'

The dynamics in the new frame are governed by a moving frame Hamiltonian H, moving s
which can be represented as B B B
Hmoving =H — A7 (224)

where

H=U'HU (2.25)

is the rotated Hamiltonian from the static frame and
A=iUo,U (2.26)

is the additional gauge potential. If we rotate the gauge potential back to the lab
frame, we get

A =UAUT =io,UUt. (2.27)

The dynamical Adiabatic Gauge Potential (AGP) with respect to a parameter-dependent
transformation U(\) is defined as

AV =0, UUT. (2.28)

To get a better intuition about this gauge potential, we draw an analogy with Newtonian
dynamics. In classical mechanics, Newton’s laws are valid in inertial reference frames. If
we switch to a non-inertial reference frame, we need to “fix” Newton’s second law ' = mda
by adding centrifugal and Coriolis force.

Similarly, in quantum mechanics, if we change the reference frame, to fix Schrodinger’s
equation, we add a gauge potential to the Hamiltonian. Our quantum particles in a
rotating reference frame experience the fields from the lab Hamiltonian H and “fictitious
energy” from the gauge potential.



2.3.1 Properties of the Gauge Potential

The gauge potential is the generator of the unitary transformation:
A
U(N\) = Pexp (—z/ AU(X)dX> . (2.29)
0

We can see that by taking

U+ dN) = e AU\ = (1 —iAVdN) U(N)

dU = —iAVd\U
4 (2.30)
dUU" = —iAVd\
io\UU = AY.
The gauge potential 1s Hermitian.

Ut =1

onNUUN) =0
NUUT+UWUT =0 (2.31)

i\UUT = —iUo\U?
AV = AVT,

The gauge potential acts as a derivative operator on states which are static in the rotated
frame.

Let the transformation U send the states |¢,,(t)) to |e,) = const.
105 [1n) = i0A(U |en)) = iOAU |en) = iXUT" [0} = AJ[0),,. (2.32)

This gives us another interesting property. Suppose we find a transformation that di-
agonalizes a time-dependent Hamiltonian. The corresponding gauge potential acts as a
derivative operator on the instantaneous eigenstates. Therefore, the diagonal elements of
the gauge potential are the Berry connections:

A = i (A)|Ox[n(N))- (2.33)

2.3.2 Counter-Diabatic Driving

Consider a quantum system with a non-adiabatic Hamiltonian H (A(t)). It will not remain
in its eigenstate on its own. To cancel the non-adiabatic transitions, we can add a driving
term \AY = iUUT, where U diagonalizes H. The counter-diabatically driven Hamiltonian
takes the form .

Hep = H + MAY. (2.34)

To see that the system remains in its eigenstate, we transform the Hamiltonian to the
moving frame:

Huouig = UT(H +iUUNU — U0 = UTHU, (2.35)

where UTHU is now a diagonal Hamiltonian. This means the system will indeed follow
the instantaneous eigenstates of H.



As the UTHU is diagonal, the evolved states accumulate only dynamic phases. In contrast,
the evolution with an adiabatic Hamiltonian generates dynamic and Berry phases, as in

Eq. (2.17).
Counter-diabatic driving is a shortcut to adiabaticity [/

Adiabatic protocols are actively used in quantum computers |1]. For example, the quan-
tum adiabatic algorithm is a way to find the ground state of a Hamiltonian Hiayget. The
system is prepared the system in the ground state of a simple Hamiltonian H(0). Then,
the Hamiltonian evolves as H(\) to a new Hamiltonian H (Agna) = Hiarget- 1f A changes
adiabatically, the evolved state follows the instantaneous ground eigenstate, finally reach-
ing the ground state of Hiaeer. The problem is that adiabatic evolution takes a lot of
time, which leads to decoherence. The shortcut is that we can use a faster CD driven
Hamiltonian Hop = H(A) + AA), where the CD term will keep the system at the instan-
taneous eigenstates of H(\) despite the quicker evolution. This means that the system
will be prepared in the desired state faster, e.g. within coherence time.

2.4 Kato Gauge Potential

The AGP that permits CD driving is in fact defined up to a gauge freedom. So far,
we have discussed the dynamical-gauge AGP AY. Suppose we use an arbitrary gauge
AV + UDUT, where D is diagonal. The moving Hamiltonian Hnoving = U THU + D would
still be diagonal. The “simplest” potential we can use would have no diagonal part. It is
called the Kato AGP.

By taking advantage of Eq. (2.13), we can define the Kato AGP as

m| O\ H [t
A =y 30 O ), 2:36)

m#n

There is also an alternative definition that does not rely explicitly on the energies and

the basis: )
K __ .
A = 5 D li03L,, 1] (2.37)

«

Proof that both definitions are equivalent

First, recall that the projector has the form

I, = |¢a> <¢a| (2'38)
and the eigenstates are constant in the moving basis, therefore
UTLU = |eq) (eq| = const. (2.39)

By differentiating this identity, we get

UTo\I,U = —0\U'TIU — U'TL,05U. (2.40)

Multiplying Eq. (2.40) on the right and on the left by UTII, U, we get respectively
UTO\I LU = —0,\UTIAU — UL 0\UU I, U,

) (2.41)
UMl 0\[I,U = —UTI L UWUTIU — UTI20,U

8



Subtracting the above equations, we get
U'lio\y, T )U = —io\UTILL U + iU, 05U — 2U T, AVTI, U, (2.42)

where AY = —iUO\UT = i0\UU" is the adiabatic gauge potential, and I12 = II,, for the
projector. If we rotate this equation by multiplying U on the left and UT on the right,
we get

[i0\ 1, 11,) = AYVTL,, + 11,47 — 211, AVTIL,,. (2.43)

Notice
HaA)I{Ha = <¢a|Ag|¢a> |¢a> <¢a| (244)

are the diagonal elements of the adiabatic gauge potential, and > II, = 1, which leads
to

% > li0AI,, I,) = AY — diag(AY) = AY. (2.45)

Kato gauge potential for degenerate Hamiltonian

Suppose we have a degenerate energy level E,. For all energy levels, Eq. (2.13) does
not yield any diagonal matrix elements. For the degenerate energy levels, all “blocks” of
matrix elements (1o, [ A5 [Yq,) are also zero.

Looking at the projectors, we can observe the same behaviour. A degenerate projector
has the form

Ha,, = |7vz)a1> <77Z)a1| + |¢a2> <¢O¢2| = UIaUTv (246)
where I, = const. All the steps leading to the identity (2.43) still hold. Then,

<'¢al|[ia)\ﬂa, Ha]|¢a2> = <¢a1 |Ag + Ag - 2Ag|waz> =0, (247)

where I, [)a,) = |[ta,) and (¥, |, = (s, |. The other commutator terms also give
zero in the degeneracy block:

(Vo [ AT + T AY — 2115 A T g]¢00, ) = 0, (2.48)

because I3 [1a,) = 0 and (¢,, |11z = 0.

Counter-diabatic Kato driving

A Hamiltonian that is driven counter-diabatically using the Kato gauge potential takes
the form _
Hep = H + MAY. (2.49)

Suppose the Hamiltonian diagonalizes to UTHU = D, while the Berry connections are
An = (Yo | AY|9,). For now, we assume there are no degeneracies. In the moving frame,
this Hamiltonian takes the form

Hyoning = UT(H + AU = UIAATU = D+~ A ,) (1 (2.50)

When looking at the evolution of the eigenstates in the rotating reference frame, we see
two diagonal Hamiltonians contributing to the evolution. Both of them do not lead to



transitions between the eigenstates. Evolution under D accumulates dynamical phases,
while evolution with the Berry connections accumulates Berry phases.

If we evolve the system only using the Kato AGP, we would only accumulate Berry
phases:

AR =7 A ) (- (2.51)

In case of degenerate energy levels, the Berry phases in the degenerate subspace must
be replaced by a holonomy matrix. The evolution achived by adding a Kato AGP will
contain holonomic transitions between eigenstates.
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Chapter 3

Floquet Theory

This chapter introduces Floquet theory, which describes quantum systems under periodic
driving. We state the Floquet theorem. Then, we discuss the Floquet gauge potential |7],
as well an alternative decomposition with a Kato gauge potential [6]. This chapter shows
that the tools of CD driving can be carried over to periodically driven systems, which is
crucial since periodic drives are widely used in quantum simulators and qubit control.

A Floquet system is a system with time-dependent periodic Hamiltonian
Hit)y=H({t+T). (3.1)
For a generic time-dependent Hamiltonian, it is difficult to solve the Schrodinger equation

10, (1)) = H(t) [(1)) - (3.2)

Formally the solution to the evolution operator is a time-ordered exponent,

Ult,to) =T exp (_i /t: " H(t,))

-— lim e—iAtH(NAt)e—iAtH((N—l)At) . e—iAtH(At)

N
— lim efiAtH(nAt)
N—oo
n=1

Y

where At = (t —to)/N.

3.1 Floquet Theorem

The Floquet theorem states that the evolution of a periodic Hamiltonian H(t) = H(t+7)

can be decomposed as ‘
U(t,0) = P(t)e Hr, (3.4)

where the function P(t + T') = P(t) is a periodic operator called micromotion oper-
ator, and Hy is a constant Hamiltonian called Floquet Hamiltonian. The Floquet
Hamiltonian governs the stroboscopic, long-term behavior of the driven system. Note

that P(0) =1 as U(0,0) = 1.

11



The physical meaning of the theorem is that there exists a rotating frame with a constant
Hamiltonian Hr. The matrix P(t) transforms the rotating frame to the lab frame. Indeed,
we can add PT(0) = 1 to the right of(3.4) to get

T exp (—i /0 tH(t’)dt’) = P(t)e "Hr pPT(0), (3.5)

meaning that

H(t) = P(t)HpP'(t) +i0,P(t)P(t). (3.6)
We can define a Floquet unitary matrix as
U(T,0) = e THr = . (3.7)

We can formally obtain the Floquet unitary as a time-ordered exponent (3.3). Then, the
Floquet Hamiltonian is a matrix logarithm of the Floquet unitary.

The matrix logarithm is not unique. Therefore, the Floquet Hamiltonian is defined up
to a gauge freedom, giving us different quasi-energies.

This phenomenon has an analogue in solid state physics. If we substitute time with space,
Floquet’s theorem corresponds to the Bloch theorem — spatially periodic Hamiltonians
produce spatially periodic wave functions. There, the particle’s momentum is defined up
to addition with a reciprocal lattice vector, giving us different Brillouin zones.

We define the Floquet zone as the zone where the Floquet Hamiltonian has eigenenergies
in the range

W w
Ee [—5, 5) , (3.8)
where 9
T

is the driving frequency of the system. Then, a Floquet Hamiltonian with quasi-energy
E' is equivalent to all other Floquet Hamoltonians with corresponding quasi-energy £ +
kw,k € Z.

3.2 Floquet Gauge Potential

Let us decompose the evolution similarly to (3.4), starting at ¢ = to instead of ¢ = 0:
Ult,ty) = P(t, to)e (-t Hrlto], (3.10)

We can obtain a valid micromotion operator by setting P(t,ty) = P(t)P'(ty), with a
Floquet Hamiltonian

Hrplto] = P(to)HpP'(ty). (3.11)
Indeed, if we plug this ansatz in (3.6), we get
H(t) = P(t, to)Hp[to| PT(t, to) + 10, P(t, o) PT(t, to). (3.12)

Note that Hpl[to] is just a rotated version of Hp. This means Hpl[ty] has the same
eigenenergies for any initial time ;. Also, the micromotion operators starting at different
times are generated by the same operator,

10, P(t, o) P (t, to) = i0, P(t)PI(t) = Ap(t), (3.13)

12



which we call Floquet gauge potential.

During our analysis of gauge potentials in Floquet systems, we will restrict ourselves
to gauge potentials with respect to time. This means that from the AGP defined in
Eq. (2.28), we will default to A = t and omit the index ¢. Similarly, we also set A = ¢
from the Kato AGP defined in (2.36) or Eq. (2.37) and we will write it as Ag.

By substituting (3.11), (3.13) in (3.6), we get
H(t) = Hp[t] + Ap(t). (3.14)

The Floquet gauge potential performs a Counter-diabatic driving from the Floquet Hamil-
tonian Hp[t] to the lab frame Hamiltonian H(t) [6]. Here, Hp[t] is viewed as a time-
dependent operator, while, Hg[to] is a constant Hamiltonian for a fixed initial time t,.

By knowing the gauge potential, we can reconstruct the micromotion operator,
¢
P(t) =T exp (—z/ dt’AF(t’)> , (3.15)
0
where we used the fact that P(0) = 1.

The time-dependent operator Hp(t], due to having constant eigenenergies, always lies in
a subspace of all possible Hamiltonians. This subspace is called orbit and is discussed
with more details in Sec. 6.1.1

Kato Hamiltonian and Kato Gauge potential

Unlike the Floquet decomposition, there is a unique decomposition of the evolution, using
the Kato gauge potential [0]:

H(t) = Hg(t) + Ak (t). (3.16)
Again, H(t) obtained by a CD driving. As A is the fixed Kato gauge potential, Hy is
a uniquely defined Hamiltonian, which we call “ Kato Hamiltonian”.

This decomposition has some differencies in comparison to the standard Floquet decom-
position. The Kato Hamiltonian Hp need not have constant eigenenergies, unlike Hp[t].

Also, the Floquet AGP A is the generator of the periodic micromotion P(t) (cf. Eq. (3.15)).
However, the time-ordered exponent of A,

U(t) = Texp (—z’ /0 t dt’AK(t’)) | (3.17)

is no longer a necessarily periodic operator such as the micromotion operator. Physically,
this time-ordered exponent is the evolution of a system driven only by the Kato AGP.
This is classified in the next subsection as a pure geometric drive.

3.2.1 Pure Micromotion and Pure Geometric Drive
In the decomposition (3.14), we notice two special families of drivings. In the case Ar = 0,
H = Hp, meaning that the system is already static. The more interesting case is Hr = 0.

In this case, H(t) = Ap(t), which is a pure micromotion drive.

13



This drive will generate only a micromotion evolution. To derive the general form of a
pure micromotion drive, we can compute

Ap(t) = iPPt, (3.18)

where P is a unitary operator which obeys the periodic constraint P(T +t) = P(t) and
P(0) = 1. We parametrize such unitary matrices and corresponding gauge potentials for
two and three level systems in Sec. 5.2 and Sec. 6.2.

From the Kato decomposition (3.16), we can obtain another interesting family of drives
— pure geometric drive. This decomposition will be important for constructing geometric
quantum gates, like the CZ gate in Sec. 7.3. This time, we set Hx = 0. The Hamiltonian
now takes the form

H(t) = Ag(t) +0 = Ap(t) + Hplt]. (3.19)

According to Floquet theorem, the evolution over one period takes the form

U(T,0) =T exp (—i /0 ' AK(t’)dt’) = ¢ THF, (3.20)

On the other hand, evolution from an eigenstate by a Kato driving produces only Berry
phases:

(1) = /O ds(ups][i0:]up]s]), (3.21)

where |up[t]) are the eigenstates of the Floquet Hamiltonian. Over one period, v = epT.
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Chapter 4

Methods for Finding Gauge Potentials

This chapter gives us tools to derive or approximate the gauge potentials introduced
earlier. First, in Sec. 4.1, we introduce vector and star products within the su(n) Lie al-
gebra, a convenient formalism to manipulate commutators and solve for gauge potentials,
specifically when finding closed form of the Kato gauge potential in Sec. 5.1 and Sec. 6.4.

Then, Sec. 4.2 presents approximate methods for finding A,. We highlight the least
action principle approach by Sels and Polkovnikov |7], which variationally finds an
approximation to the adiabatic gauge potential by minimizing an action functional. In
Sec. 4.2.2 we present the modification that adapts the least action principle to Floquet
systems [2].

In Sec. 4.2.3, we delve into the specifics of computing the gradients in the least action
principle for a Fourier-type ansatz, equipping the reader with the ability to perform the
variational principle on their own. Eventually, in Sec. 4.2.3, we share some computational
tricks that can speed up the gradient descent process.

The key take-away is that even when an exact CD term is complicated, approximations
guided by the variational principles can provide workable shortcuts to adiabaticity.

4.1 Vector and Star Products

We introduce a vector notation [%| which can simplify the matrix calculations.

Each element X of an algebra g C gl(n) can be expanded in its basis Aj,..., Ay as
X =21\ + -+ 2yAy and represented as a vector T = (xq,...,2y5)7T.

Although this section is valid in the general case, in the rest of the thesis, we will be
particularly concerned with the su(2) algebra whose basis will be the Pauli matrices
01, 09,03 and the su(3) algebra where the basis the Gell-Mann matrices from Eq. (6.1).

The algebra can be characterized by its structure constants f and d which are defined
respectively by the commutation and anticommutation relations

[)\aa )\b] = 2ifabc)\cy

4 (4.1)
{)\aa )\b} = N(sab]- + Qdabc)\o
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To calculate the structure constants explicitly, we can use that Tr(\?) = 2 to get

f(zbc - —%TTQ/\M >\b])\c>7
(4.2)

1
dape = ZTr({)\aa )\b})\c)

By defining a dot, star and cross products between vectors as

—

x€- g: TeYe,
(f* ?j)a - dabcxbycy (43)
(‘f X g)a - fabcxbyca

we can now perform all matrix operations as vector operations:

(2, Y] = Tap[Aas M) = 20(T % 7) - X,
4

{m.0} = zamn{ha, M} = ST G 1+ 2T 7) - A

(4.4)

where \ = (A1, A2, ...A\,). The addition of matrices corresponds to vector addition, and
the matrix multiplication can be represented as XY = 1/2({X,Y} + [X,Y]).

In the SU(2) case, the anticommutator structure constants are zero, which simplifies the
algebra:
{O'G, O'b} = 25(11) = dabc =0= {X, Y} =27 - gl (45)

The vector notation will be particularly useful in Sections 5.1 and 6.4, where we use it to
find expressions for the Kato gauge potentials.

4.2 Approximate Gauge Potentials

In most quantum mechanical problems, finding the spectrum of the Hamiltonian is an-
alytically impossible, and even computationally difficult. Approximate methods allow
us to find the gauge potential without knowing the explicit unitary transformation that
would diagonalize the Hamiltonian.

4.2.1 Least Action Principle

We can use the idea from Eq. (2.13) to derive an expression for the commutator [A, H].
This time, after differentiating Eq. (2.11), we substitute the derivatives of v, 1, with
Eq. (2.32).

The derivative of (¢,,|H (t)|n) gives
O\ (| H|tn) = (Oxtom| H|1) + (| H|Oxton) + (n| H [0)
= (W [iANH |0) + (Y] — iHAN|0) + (Y| H ) (4.6)
On the other hand,
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We can combine all components of (4.6) to a matrix equation:
My =i[Ay, H] + 0,H, (4.8)

where

M/\ = Z 8>\En !%) <wn| : (4'9)

The diagonal elements are generalized forces corresponding to different eigenstates.

Solving the equation
G(X) = 0\H +i[X,H] = —M, (4.10)

for X would give us X = A,. However, we can also use this equation to find A, varia-
tionally [9]. To do so, we minimize the Frobenius norm ||G(X)+ M||*> = Tr(G(X)+ M, )2

Tr[(G + My)?] = Tr(G?) + Tr(M3) + 2Tr(M,G), (4.11)
Tr(M\G) = Tr(MyOH) + iTe(My\[X, H]) = —Tr(M3), (4.12)
Tr[(G + My)?] = Tr[G?] — Tx[M]). (4.13)

Therefore we only need to minimize the “action”
S = Tr[G?]. (4.14)

We can indeed call this function action, because its minimization leads to the the equa-
tions of motion:

g—i —0 = [H,0H+i[Ay, H] = 0. (4.15)

X=A)

4.2.2 Least Action Principle for Floquet Systems

Suppose we have a Floquet system. We know the Hamiltonian of the system H and we
want to find the Floquet Hamiltonian Hy and the micromotion operator P. We remind
that during our analysis of Floquet systems, we always look at gauge potentials with
respect to time, so the parameter A from Sec. 4.2.1 is now \ = t.

This time, P is generated by the Floquet gauge potential Agr. We cannot use (4.10) to
find it variationally, because Ap is the gauge potential to the unknown Hp:

Here, M = 0, because Hp has constant eigenenergies. To rule out the unknown Hp from
the above equation, we substitute H(t) = Hg[t] + Ap:

G(Ap) = :H — 0, Ap + i[Ap, H — Ap]

4.1
= —i[H, Ap] + OH — 0, Ap, (4.17)

This is a known result, for example see |[2].
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4.2.3 Variational Principle for Floquet Systems

We can use a variational ansatz X'(a) to calculate S(G(X)). The optimal o* will satisfy
the equation

oS

= =o. 4.1
5a 0 (4.18)

*

To find a periodic gauge potential, we can use a periodic variational ansatz. The most
general periodic operator with angular frequency w can be decomposed with Fourier

series, taking the form
oo

N
X = ZO > wime™ O, (4.19)

m=1[l=—o0

ilwt

where x;,, are coefficients, while ¢"“* and O,, are the bases of the decomposition. The
ilwt

Fourier basis’s [-th component ¢*“* is the [-th harmonic. The operator basis O,, depends
on the dimensionality of the system. For a two level system, it consists of 1 and the Pauli
matrices (0,,0,,0,). For a three-level system, it is (1, );), where \; are the Gell-Mann
matrices.

Computing G requires computing derivatives and commutators in the operator-Fourier
basis.

Derivatives can be calculated as

(8tX)lm = z'wla:lm. (420)

The commutator of matrices A and B with coefficients a;,, and by, is given by
[A7 B]lm = Zz2ifjkmzanjbl—n,k; (421)
J k n

where f are the structure constants for the operator basis.
The anticommutator for m # 0 has the form

{A, B}lm - Z Z 2djkm Z anjbl—n,k +2 Z(anmbl—n,o + an()bl—n,m) (422)

J k n n

and for m =0,

{A, B}IO = % ; ; anjbl,mj + 2 ; anobl,n’o. (423)

Periodic kick operator

The Floquet theorem requires the micromotion operator, generated by Ag, to be peri-
odic, P(t + T) = P(t). We will use Fourier-type ansatz for the “kick operator” K(t),
corresponding to the matrix log of the periodic micromotion operator:

P(t) = 50, (4.24)
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This guarantees periodic micromotion. We should note that taking the matrix log can
cause discontinuity of K, e.g.

2kmt , <
P(t) = exp (2 IZT - A) (4.25)

is periodic for any k € Z, |7i] = 1. When searching for K using finite harmonics, we
cannot find discontinuous or non-periodic kick operators which would exponentiate to P.
However, such whole number turns can be transferred from the micromotion operator to
the Floquet Hamiltonian:

U = P(t)e ™r = P'(t)e *Hr (4.26)

Calculating the gradients

We begin with the ansatz

Nog N
K=Y kue™'Op. (4.27)

m=11=N

The associated gauge potential can be computed as

Ap =iPPt = iieiK(t)e_iK(t)

o | (4.28)
=1 <iK(t) — 5[K, K] — 5[K, (K, K| + ) :
To simplify such nested commutator expressions, we use the notation
adxY = [X,Y], ad%Y = [X,ad% Y], (4.29)
giving .
A=— 7; mad’}(f(. (4.30)
Next, G has the form
G(Ar) =i[H, Ap] — 0:H + OpAp =0 (4.31)
and we try to minimize the cost function
S = TrG>. (4.32)

To find the minimum of the cost function with respect to the variational parameters k,,;
using gradient descent, we need to compute its derivative.

O, S = 0, TtG* = 2TrGo,,,G

4.
= 2TvG (Z[H, 6knl.»4] + &W@A) . ( 33)

To compute 0, , A, we first need to figure out the derivative of a nested commutator:
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OadyY = [0hX,ad% Y] + [X, Oyad’y Y]

iy L (4.34)
=) adR[0aX,ad Y] + adkd)Y.

m=0

With this rule for differentiating nested commutators, the derivative of A becomes

e ) n n—1
2 ¢ E m n—1l—-m 1 n :
aknlA = — —~ m ( —~ adK[akan, adK 1 K] + adKak-an> . (435)

Differentiating the kick operator itself yields
(9kan = €nl, 8ka = —iwlenl, (436)

where e, is a matrix whose only non-zero element is (€,;),y = lis zero everywhere except
the n, [-th element, which is 1. The final expression for the derivatives of A,

00 ‘n n—1
§ ¢ § n—1—k 1, . n

can be plugged in (4.33) to compute the derivative of S. Then, finding the minimum of
S can be done with gradient descent.

Modified Gradient Descent

To finalize the algorithm we use to find the gauge potentials of various systems (Sec. 5.3,
5.4, 7.1), we had to enhance the gradient descent algorithm. The problem is that calcu-
lating a single gradient using (4.33) is a computationally costly task. We had to minimize
the number of calculations of the gradient, instead adding auxiliary simpler checks. The
end result is a gradient descent Algorithm 1.

First, we adapt the step size n by estimating the second derivative in the direction of the
descent. Then, even if the second derivative is negative, we take a step. We do not calcu-
late any gradients until we descended away from the area with negative second derivative.
Finally, after calculating a gradient, we use momentum-based gradient descent. This helps
the algorithm to converge faster, because it will not get stuck oscillating along a convex
direction.
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Algorithm 1 Pseudocode for the modified gradient descent

@

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

initialize K < H
initial step size n = 3-107*
initial gradient g = Vg S
for each episode do
So = S(K), S1 = S(K —ng), So=S5(K —2ng) » find the cost after moving along the
gradient
n' =n(1+ (S2— So)/ (451 — 252 — Sy)) > estimate the best step size with Newton’s
method
if 51 > S5 then > taking one step does not lower the cost
n<n/2 > lower the step size
else if 7/ < 0 then > negative second derivative
K+ K-ng
n<2n
else if ' < n/2 then > the step size is too large
n < n/2
else if 1/ > 27 then > the step size is too small
n < n/2
else
K+ K—(m+n)g/2
g+ 099+ VgS > gradient descent with momentum
n<1
end if
end for
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Chapter 5

Counter-Diabatic Driving for
Periodically Driven Two Level Systems

In this chapter, we apply the CD driving framework to the simplest non-trivial case:
two-level systems. Despite their relatively simple dynamics, these systems are interesting
on their own — such systems are qubits and the spin-1/2 particles. We derive the closed-
form expression for the Kato gauge potential starting from the variational principle, and
a parametric form of the AGP for a generic traceless two-level Hamiltonian.

In this chapter, we also perform numerical experiments. We use the variational method
to find gauge potentials for particular periodically driven 2LS. The systems are a spin-1/2
particle in magneetic field, interacting with either a circularly, or a linearly polarized field.
The circular field problem is analytically solvable. We present the analytical solution and
compare it with the variational gauge potential. For the linear drive, we confirm the
accuracy of the variational gauge potential with another numerical method. This paves
the way to Chapter 6 and 7, where we tackle the richer three-level case.

5.1 Kato Gauge Potential

We find the closed form expression of the Kato gauge potential of a two-level system
with traceless Hamiltonian by taking advantage of the variational principle discussed in
Sec. 4.2.3. The Hamiltonian can take the form

H=h-3. (5.1)
We are looking for a gauge potential of the form

A=d-o. (5.2)
The Kato potential minimizes S = TrG? (see eq. (4.14)), where

G = O\H +i[A, H). (5.3)

22



Using vector notation,

[A, H] = 2i(@ x h) - G, (5.4)
Gy = ((8 h—2(d % ﬁ)) G)*
= (Ohh —2(@ x h))"1 (5.5)
S = Tr(GQ) 2(Onh — 2(5 x h))?, (5.6)
VS = 4(0zh — 2(@ x h)) - (=2Vz(@ x h))
= —8(Ozh — 2(@ x h)) x h = 0. (5.7)

In order for the vector product to be zero, either h= 0, or O\h — 2@ % h is parallel to h.
Let
Ozh — 2@ x h = kh. (5.8)

-

We can find £ by dot multiplying the equation by h and using (@ x h) - h=0:

(Osh) - h = kh?, (5.9)
@xh= Ohh* _2](?5 : E)ﬁ, (5.10)
axh= %, (5.11)

= %. (5.12)

The last step technically gives @ up to addition with const- h. However, the Kato potential
must also satisfy the condition that its diagonal elements are zero in eigenbasis of H. That
restricts @ to Eq. (5.12).

5.2 Adiabatic Gauge Potential Parametrization

The general traceless two-level system Hamiltonian has the form

—

H(t) = h(t) - & = h(t)ni(t)a, (5.13)
where the normal unitary vector 7 can be decomposed in spherical coordinates,

sin 0(t) cos ¢(t)
n(t) = | siné(t)sinp(t) | . (5.14)
cos o(t)

We can diagonalize the Hamiltonian by rotating with angle ¢ along the z-axis,

RI(71 - #)R, = cos o, + sin f(cos® ¢o, — cos ¢sin ¢o, + sin ¢ cos o, + sin® go.)

= cosfo, + sinfo,,

(5.15)

then rotating with angle 6 along the y-axis:
Rle(ﬁ -0)R,R, = cos? o, — cosfsin o, + sinf cos fo, + sin’ fo, = o,. (5.16)
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We calculate the gauge potential corresponding to the transformation U = R, R,:

A, =iUNU = iU 0pU0 + iU 0,Ud = 0.4 + ¢ Ay, (5.17)
Ay =iRIRIOR. R, (5.18)

, i
= iR R} (—5) R.o.

1 1
= éR;SO'ZRy = é(cos 0o, —sinfo,),

Ay =UALUT (5.19)
1
= R.R, (gRLJZRy) R'R!
1 o
N T2z
) 2RZUZRz 5
Ay =iRIRIR.0yR, = iRy R, = 0, /2, (5.20)
1 1 1
Ay = ERzRyayR;RL = QRzale = 5 (cos go, —sin goy). (5.21)

We have used equations (A.3) and (A.5) about the rotation matrices from App. A.

Note that the although the operator U = R, R, is unitary, it adds a global phase to the
wave function:

R.(¢)R,(0) = e~'27:¢ 2%

S (31 (3) ) (o (3) -0 (2) )

_ (cos(¢/2) —isin(¢/2) 0 ) (005(9/2) —sin(9/2)>
0 cos(¢/2) +isin(¢/2) ) \sin(6/2)  cos(6/2)

g2 [ cos(8/2)  —sin(0/2)
—¢ e sin(0/2) e cos(6/2) )"
(5.22)
We note that the eigenstates of the general Hamiltonian (5.13) are defined up to a global

phase:
0

; COS 5
|winstantaneous(t)> = eza (ei¢sin2§ ) (523)

In the current convention U = R, RR,, the eigenstates accumulate a global phase

alt) = e %, (5.24)

To remove the global phase, we can use the transformation matrix

s cos(6/2)  —sin(6/2)
v (6“j sin(6/2) € 005(9/2))' (5.25)
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Using U’ instead of U affects the ¢-component of the gauge potential — we denote the

!/

new AGP A} and the new AGP in the rotating frame is respectively f~l¢:
Al = iUTe 20, (e?U)

= A+ iUTeid’/z%eM/QU

1 1
= §(COS 0o, —sinfo,) — 3 (5.26)
, o0, 1
— 22 _ 2
A¢ 2 2 (5 7)

5.3 Example: Circular Drive

Now, we turn to turn to some particular two-level systems, where we test the variational
approach from Sec. 4.2.3. We begin with a theoretically solvable quantum mechanical
problem.

Problem Setup

Consider the two level system

A
H(t) = -0z + g (coswto, + sinwtoy) , (5.28)

which has energy gap A and is interacting with a circularly polarized field of strength g.
This is one of the few systems that can be solved exactly analytically.

Theoretical Solution

The Hamiltonian rotates with angular frequency w around the o,-axis. To make it static,
we rotate (A.1) the reference frame along the z axis:

R.(w(t — o)) = e~ /2t (5.29)
turning the Hamiltonian to

H,o[to) = RTHR, — iRIOR,

= %02 + g (cos(wtp)o, + sin(wty)oy,) — gaz (5.30)
= %ﬁ(mo, B)-a,
where
=1/ (A —w)’+ g2 (5.31)
n(6, ¢) = (sin 6 cos ¢, sin f sin ¢, cos ) (5.32)
and

smﬁ:g. (5.33)
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This Hamiltonian explodes at w — oo. To make a suitable Floquet Hamiltonian, we can
represent the evolution as

Ultito) = R.(w(t — to))e” o)l pT ()

. 5.34
=R, (w(t — to))(t, to)e—iw/?(t—tg)ﬁ(wt;ﬁ)‘Ee—i(t—t())(l—%)HTDt[to]7 ( )
giving us a micromotion operator
Ppyy = e—iw/Q(t—to)aze—iw/2(t—t0)ﬁ(wt;3)-6‘ (5.35)
and a Floquet Hamiltonian
w
Hpplto] = (1 — E)Hrot[tO] =
. ) (5.36)
= Sle—wlwt §) 3,
which corresponds to the Floquet-Magnus expansion at w — oo.
Pras(t;to) = Proy(t, to)e™™/2t- 0wt (5.37)
We can calculate the associated Floquet gauge potential:
AGpi(t5t0) = (10, Prar(t5t0)) Py (£ to)
(5.38)

= gaz + %ﬁ(wt; B)-é.

Variational approach

We can find the Floquet Hamiltonan using the variational principle from Sec. 4.2.3.

We are looking for a kick operator K, such that P = €% is the micromotion operator.
K is parametrized as

No N
K=Y kue"“on, (5.39)
m=1[=N

where k,,; are the variational coefficients. We make some initial guess for the kick operator
K. Then, we minimize the action (4.14) using gradient descent, as discussed in Sec. 4.2.
After finding the optimal kick operator, we use Eq. (4.28) to find its associated Floquet
gauge potential. Then, the Floquet Hamiltonian is simply

Helt] = H(t) — Ap(t). (5.40)

The variationally-obtained Floquet Hamiltonan is plotted with a dashed line on Fig. 5.1
a). It matches with the theoretical solution (5.36), plotted with a solid line. As we can
see, the variational method provides a very high-fidelity AGP.

5.4 Example: Linear Drive

We have tested the variational Floquet AGP in a system with unknown theoretical solu-
tion.
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Figure 5.1: Components of the Floquet Hamiltonian in the Pauli basis for: a) circularly driven
system in Sec. 5.3. Found with variational method (solid line) vs theoretical solution (dashed
line), g/A = 0.5, w/A = /2; b) linearly driven system in Sec. 5.4. Found with variational
method (solid line) vs numerical integration (dashed line), w/A = 1, g/A = 0.5. Number of
harmonics used: 3. In both cases, the variational method obtains a high-fidelity counter-diabatic
drive.

Consider the linearly driven two level system

A
H(t) = 250 + g (14 2coswt) oy, (5.41)

where A is the energy gap and g is the strength of interaction with the linearly polarized
field.

We obtain the Floquet Hamiltonian using the variation principle by exactly the same
method as in Sec. 5.3, plotted as a dashed line in Fig. 5.1 b).

Apart of the fact that the variational algorithm converged (S ~ 107%), we can verify the
obtained Floquet Hamiltonian by finding it numerically in a more direct way.

First, we numerically integrate Schrodinger’s equation

10, |4) = H[¥) (5.42)

for one period T' = 27 /w, starting at |0) and |1). This gives us the components of the
Floquet unitary Up. Then, the Floquet Hamiltonian satisfies

e THF = Up, (5.43)
To find Hp, we take the matrix logarithm of Up numerically.

However, the matrix logarithm is not uniquely defined. The Floquet Hamiltonian, re-
spectively, has undefined energy levels. Taking the principal logarithm returns a Floquet
Hamiltonain Hpg with energy levels inside the Floquet zone. Then, any Hamiltonian in
the form

Hp = Hpo + wRdiag(ky, ...k, R', (5.44)

where R is a unitary matrix diagonalizing Hpo, ki, ...k, € Z, n = dimH, >  k; =0 is a
valid Floquet Hamiltonian:

s o s . T o
UF —e iTHpo _ e ZTHFOe 12w Rdiag(k1,...kn)R —e iTHp (545)
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In our case, n = 2, it turns out that the variational solution matches the Hamiltonian,
obtained by adding k; = 1 and k3 = —1 to the principal matrix logarithm. The resulting
Floquet Hamiltonian is shown with a solid line in Fig. 5.1 b).
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Chapter 6

Three Level Systems

In this chapter, we explore part of the theory behind three level systems. Such systems
arise naturally in many fields of quantum physics. One of the most common examples of
such system is the lambda system that we address in Sec. 7.1.

To describe the state of a three level system, we need three dimensional kets. The
evolution of such systems is given by a 3 x 3 unitary matrix, and as the global phase of
the quantum state is irrelevant, the only physically meaningful evolution operators are
from the SU(3) group — unitary, and with determinant 1.

The Hamiltonians governing the evolution of a general three level system are 3 x 3 Her-
mitian matrices. In terms of the Hamiltonian, the non-physical global phase is acquired
by evolving with a constant Hamiltonian — adding a constant energy to the whole system.
If we discard it, we are left with traceless Hamiltonians. They are elements of the su(3)
algebra and generate the SU(3) group of evolution operators.

To study the gauge potentials in three level systems, we need to understrand the structure
of SU(3).

6.1 Structure of the SU(3) Group

The most commonly used basis of the su(3) algebra is the Gell-Mann matrices

010 0 — 0 1 0 0
AM=1100 =1t 0 0] =[]0 -1 0
000 0 0 0 0 0 0
0 01 00 —2
AM=10 0 0 =10 0 0
100 ¢t 0 0
000 00 O (6.1)
=10 01 A=(0 0 —2
010 0 ¢ 0
10 0
d=—=[0 1 0
v 00 -2
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Subgroup Generators Elements of the subgroup
U 0
SU(Q) AL, A2, Ag 0 |,ue SU(Q)
0 01
~Jo
SU(2) Ay, A5, Hp 01 0 , U € SU(2)
o fu
110 0
SU(2) X6, A7, Ho 0w ,u € SU(2)
0
U 0
U(Q) AL, Ao, A3, Ag 0 ) , U € U(Q)
0 0| (detu)~!
SO(3) A2, A5, A7 X()Y(B)Z(y) !
e 0 0
U(1) Hy 0 1 0
0 0 e
e 0 0
U(l)xU(1) | Hy, Hy ( 0 e 0 )
0 0 e—i91—i92

Table 6.1: A non-exhaustive list of SU(3) subgroups and their generators and parameterizations.
Generators include the Gell-Mann matrices (6.1) and Hy, Hy from (6.2).

One can recognize that A, Ao, A\3 generate a SU(2) subgroup of SU(3) — their upper
2 x 2 blocks are exactly the Pauli matrices o1, 09, 03. We can find infinitely many SU(2)
subgroups by rotating this set with arbitrary SU(3) transformations. In particular, using
the linear combinations

10 0
1
le\/TgAng?Ag: 00 0],
00 —1
00 o (6.2)
|
H2:\/7§)\8_§/\3: 01 O 5
00 —1

we get alternative SU(2) subgroups listed in Table 6.1. The SO(3) subgroup can be
generated by Ao, A5 and A;.

The U(2) and U(1) x U(1) subgroups and its respective coset spaces SU(3)/U(2) and
SU(3)/U(1) x U(1) are of special interest to us. In Sec. 6.1.1, we will see that the orbits
of a Hamiltonian (6.22) span one of the coset spaces.

The U(1) x U(1) group is generated by H; and Hs. We can see that

et 0 0
eielHl e’iGQHQ — O €i92 0

0 0 67101 —162

cosaa sina 0 cosf 0 sing 1 0 0
!The SO(3) rotations are X = [ —sina cosa 0],V = 0 1 0 |,Z=(0 cosy siny]|.

0 0 1 —sinf 0 cospf 0 —siny cosy

: (6.3)
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which gives us a parametrization of U(1) x U(1). Note that H; and Hj are linear com-
binations of A3 and Ag. This means that A3 and Ag also serve as generators of the same
subgroup.

To construct the U(2) subgroup, we use the fact that the 2 x 2 matrices u € U(2) are
generated by o1, 09,03, 1. Suppose

u = €i9016i910'1 6i920’2 e’i930'3 ) (64)
Since det(e?i?') = 1, the determinant of u is
detu = e*%. (6.5)

In SU(3), A1, A2, A3 contain oy, 09, 03 respectively in their upper 2 x 2 block. If we add
Ag, whose upper 2 x 2 block is proportional to the identity matrix, we get

U 0 u 0
100V/BAs i1 M i Xa iz s _ 0 - 0 ) (6.6)
0 0 e 2 0 0 (detu)™!

By construction, these matrices are in SU(3). Also, there is a direct correspondence
between matrices of this form and matrices u € U(2), satisfying the same group relations.
Therefore, these matrices, generated by Ai, A2, A3, Ag, are indeed a valid representation of

U2) C SU(3).

Cartan decomposition

To navigate in the SU(3) group, we would benefit from a complete parametrization
of its elements. This can be done by a Cartan decomposition [10]. The subalgebra
t = {1, \2, A3, A\s} and its orthogonal complement p = {4, A5, Ag, A7} constitute a Cartan
pair:
k1, kol €8 Yk, ks € &,
[p1,p2] €€ Vp1,p2 €9, (6.7)
[k,pl €p Vketpenp.

This allows the decomposition

SU(3) = KAK, (6.8)

where K is the U(2) subgroup exp(t) and A = exp(a), where a is the maximal Abelian
subalgebra of p. The algebra a is one dimensional and we can chose a to have a basis —
one element of p we want, for example \s5:

A={e™":0¢c]0,2m)}. (6.9)
The subgroup K can itself be decomposed as
K = {02 Peids1eihsd . o 3~ ¢ € [0,27)}, (6.10)

which is the Euler angle decomposition of SU(2) plus a rotation with respect to Ag, which
commutates with the whole SU(2) subgroup. As the SU(3) group is 8-dimensional, one
of the Ag-rotations is redundant. This leaves us with the following parametrization of
SU(3):

U(Oé, ﬂ’ 7, 07 a, b, ¢, ¢) _ 6i>\3a€i>\2BGiAS’YGMSH6i>\3a€i>\2b6i>\306i>\8¢. (611)
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Coset spaces
Starting with (6.11), we can parametrize coset spaces by removing the respective sub-
groups.

In particular, to get the coset space .# = SU(3)/U(1) x U(1), we need to remove a
U(1) x U(1) subgroup (6.3). If we parametrize the subgroup as e3¢ the remaining
coset space takes the form

Uy — el)\ga61A2ﬁ€1A37€ZA59eZAgae’LAQb. (6 12)

We are also interested in the coset space Z = SU(3)/U(2). Removing as U(2) sub-
group (6.10) leaves us with o
Uz = e23%e2Peitsgitad (6.13)

Casimir invariants
An important characteristic of the su(3) algebra is its Casimir invariants, which provide
us with conserved quantities.

All semisimple Lie algebras [11] — including all subalgebras of sl(n) have a quadratic
Casimir. In the case of su(3), the quantity

8

Cy=) X (6.14)

i=1

indeed commutes with all elements of su(3). This makes the bilinear form

8
B(X.Y) = inyia (6.15)
i=1
invariant, where z; and y; are the components of X and Y in the Gell-Mann basis.
1
B(X,Y) = §Tr(X, Y)=2- 7, (6.16)

where we have used the notations from Sec. 4.1. The “dot” product indeed plays the
role of a scalar product. It stays invariant under any rotation U € SU(3). If X and Y
transform to

X=UXULY=UYU", (6.17)

the bilinear form will have the same value:
B(X,Y)=B(XY). (6.18)

In particular, any Hamiltonian H undergoing a unitary transformation has an invariant

“norm” h = V h2.
One can also recognize the form as proportional to the invariant Killing form [12]

B(X,Y)="Tr(ad(X)oad(Y)) = 6Tr(XY). (6.19)
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3D rotation

/
N S

Figure 6.1: In 3D space, general rotations depend on three parameters, but a vector undergoing
such rotation is restricted to a two dimensional surface.

The su(3) algebra is also equipped with a cubic Casimir invariant

Cs = dabedaMs)e, (6.20)

i7j7k
corresponding to a trilinear invariant form

8
T(X,Y,2) = Y dapeapze =T+ (§* 7). (6.21)

a,b,c=1

— —

In particular, the “cubic norm” h-hxh of any Hamiltonian stays invariant under any
unitary transformation.

Those two restrictions point to the fact that a Hamiltonian undergoing a unitary trans-
formation cannot span the full eight-dimensional space. Instead, it stays on a surface,
called orbit, which is at most six dimensional.

6.1.1 Orbits

The SU(3) group is 8-dimensional. However, the Hamiltonian under arbitrary SU(3)
transformations does not explore the full 8D space. Instead, it stays within a lower-
dimensional subspace called orbit. [13] This is similar to the fact that, by rotating a
particular 3D vector, it can only orbit 2D space, as illustrated in Fig. 6.1.

The orbit of a Hamiltonian in vector form (as an 8-dimensional vector l_i) is defined as
the set L o
{W|W-X=U'h-\U,U € SU(3)} (6.22)

of the Hamiltonians acquired after transforming h - X with any possible SU(3) transfor-
mation U. Although U in general is eight dimensional, the orbits are a subspace of the
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su(3) algebra, which can be either six-dimensional or four-dimensional, as we will see
later.

The concept of orbits is useful as it can simplify the computational analysis. Consider
a Hamiltonian with time-independent eigenenergies. For example, this is the case for a
Floquet Hamiltonian, whose quasienergies do not depend on time. Suppose the Floquet
Hamiltonian always lies in a six-dimensional space. To transform it to a time-independent
matrix, we need a transformation depending on only six parameters. The AGP corre-
sponding to such transformation depends on only six parameters as well. Therefore,
when looking for an AGP associated with our Hamiltonian, we can restrict our search to
a subspace of all possible gauge potentials requiring fewer than eight parameters. Such
parametrization is found in Sec. 6.3.

To find the structure of the orbits more precisely, we can represent each orbit with its
diagonal element. Indeed, for each Hamiltonian, there exists a matrix U that diagonalizes
it. Therefore, there is a diagonal Hamiltonian in each orbit. Let it be h = hii, where
|7]| = 1. The diagonal matrix 77 - A has only A3 and A\g components, so we can write 7 - A
as [13]
- X = cosfOA3 + sin Oy
sin 0 sinf 2 (6.23)
= diag (Cosé’ 4+ ——,—cosf+ —,———sin 9)

V3 VERRVE]
The special cases § = 7/2 and 6 = 7/6 respectively correspond to orbits of degenerate
Hamiltonians

= 1 1 2 - 2 1 1

Let us first look at the generic case 0 € (7/6,7/2). We start by parametrizing UT € SU(3)
with the Cartan decomposition (6.11). The subgroup U(1) x U(1) = {ePs¢*s?} is the
centralizer of the diagonal Hamiltonian, because it commutes with A3 and Ag:

pihsc iAs® [T —iNsd o—idsc _ [T (6.25)

After removing these rotations as redundant, we are left with exactly (6.12), which stays
inside the six dimensional coset space .# = SU(3)/U(1) x U(1). Finally, the orbit of
H is isomorphic to U € SU(3)/U(1) x U(1) (each element of the orbit corresponds to a
matrix in the form (6.12)).

We now turn our attention to the degenerate orbits. If § = 7/2, 7 - X = Ag, which
commutes with the whole U(2) group generated by Aj, As, A3, As. If we parametrize U
in the same way as before, we can remove the whole rotation

ez)\g,aez)\gbez)\g,cez/\gd)He—z)\gbe—z)\gae—z)\gqﬁe—z)\gc — H, (626)

leaving us with exactly (6.13), which are the elements of the four dimensional coset space

% = SU(3)/U(2).

The other degenerate orbit § = 7/6 has the same algebraic structure as § = 7 /2 — the orbit
is isomorphic to SU(3)/U(2). To get a parametrization of U without any redundancies,
we will change our initial parametrization with

U= ezHgaewqﬂezHgve—z)\QGezHgaez)\7bezH2cez(—)\g/2—>\3\/§/2)¢’ (627)
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where we have made permutations (1,2,3) — (3,1,2) to the rows and columns of all
matrices in (6.11).

In this decomposition, A7, Hy and A\g/2 + /\3\/3/ 2 commute with 72 - X, and dropping the
corresponding exponentials gives us the four-parameter rotation

Uy = ei20ei1B git2y o =irab, (6.28)

6.2 Adiabatic Gauge Potential Parametrization

In the quest of finding gauge potentials for particular systems, it is useful to know the
most general form such gauge potential can take. For example, if we try to find the gauge
potential variationally, we can restrict our ansatz only to the set of theoretically possible
gauge potentials. When seeking such variational AGP, we need it to be parametrized
correctly, so that we can variationally search for the values of the paraemters.

To get a parametrization of the gauge potential, we take advantage of the Cartan decom-
position from Eq. (6.11). Its corresponding AGP is

A=iUU" = & A, + BAs + HA, + 045 + A, + bAy + A + 9 A (6.29)

We list the expressions for each component of the gauge potential. To make the expres-
sions more compact, we define a function

pij(z) = cosx\; +sinzA;, (6.30)
Ay =— s, (6.31)
A = — p21(20), (6.32)
A, =sin25p1a(—2a) — cos 253, (6.33)
Ay = — cos Bpsa(a + ) + sin Bpre(—a +7), (6.34)

A, :%((1 4 cos?0) A,
+ sin 260 cos Bp4s(—a — )
— 8in 20 sin Bpgr (a0 — )
+V/3sin? O)),
Ay = — cosfsin(2(a + v))(cos 28p1a(—2a) + sin 25A3) (6.35)
— cosf cos(2(a + 7)) pa1(2c)
— sin @sin Bps4(—2a + o — )

— sin @ cos Bpr(—2a — a — ),
m

A, =cos 2bA, + sin 2bA, (a —a-— Z> (6.36)
Ay =V3A, — V3A, — X (6.37)

We also provide the full matrix form of the gauge potential components in App. B.
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The expression we obtained also represents the most general form of a pure micromotion
drive. This is a class of drives in Floquet theory discussed in Sec. 3.2.1. A Floquet
system driven only by the gauge potential A has Floquet Hamiltonian Hr = 0. Such
systems do not absorb energy from the drive, preventing heating and maintaining minimal
nonequilibrium properties [0].

6.3 Adiabatic Gauge Parametrization along Orbits

We can take advantage of the orbits discussed in Sec. 6.1.1 to simplify our AGP parametriza-
tion. If a Hamiltonian has constant eigenenergies (e.g., the Floquet Hamiltonian), it lives
in a four or six dimensional subspace of the 8-dimensional su(3) . To find the appropri-
ate couterdiabatic drive, we can restrict our search to a subspace of all possible gauge
potentials as well.

First, consider the case where the Hamiltonian is non-degenerate. It lives in the . =
SU(3)/U(1) x U(1) orbit. This means, as discussed in Sec. 6.1.1, it can be diagonalized
by the six-parameter rotation matrix

Uy — 62)\3&61/\266”\3762)\5062)\31162)\217. (638)

Its corresponding AGP lacks the complicated A, and A4 components of the general
case AGP from Eq. (6.29), taking the form

Ay =iUU" = aA, + BAs + A A, + 0Ap + aA, + DA, (6.39)
where each component satisfies Eq. (6.31) — (6.35).

Now let us consider a Hamiltonian in the degenerate orbit #Z = SU(3)/U(2). In the case
0 = m/2 from Sec. 6.1.1, the rotation matrix reduces to

U% — ei)\gaei/\zﬁei)\g’yei)\59’ (640)
meaning that the AGP simplifies to
Az =iUU" = aA, + BAs +3A, + 0.Aq. (6.41)

Again A,, Ag, A,, Ay are the same potentials as (6.31) — (6.34). As we see, we now need
only four parameters to parametrize the AGP.

For the other degenerate orbit # = 7/6, everything is analogous up to a permutation of
rows and columns of all the matrices:

U% — einaeiA7BeiH2’ye—i)\29’ (642)
leading to . ' .

Az = iUU" = @A oagn + BAsar + YA 22 + 0 Apzo, (6.43)

where (6.31) — (6.34) undergo permutations of their rows and columns, leading to
Ao = — Ho, (6.44)
Ag = — pr6(20), (6.45)
A, =sin 26pgr(—2a) — cos 25 Ho, (6.46)
Ay =cos Bpa1(—a — ) — sin Bpsa(a — 7). (6.47)
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6.4 Kato Gauge Potential

In this section, we use the vector notation from Sec. 4.1 to find a direct expression for
the Kato gauge potential.

The formula we obtain can be useful even if we want to obtain an arbitrary AGP, as
it is a completely different type of expression from the parametrization in Sec. 6.2. An
arbitrary gauge AGP can be obtained by adding an operator that commutates with the
Hamiltonian.

However, the Kato potential itself is important, as it offers geometric driving. It generates
Berry phases, and in the case of degenerate system — holonomies, which are present in
the adiabatic evolution.

We assume a three-level system with traceless Hamiltonian. For the formula to work, we
need to know the eigenvalues (energies) of the Hamiltonian E) 23 in advance.

Our formula relies on the projector-based definition of the Kato AGP (2.37), so we start
by turning the projectors to a vector form. The projectors can be expressed [3] as

1 O,
m,=——((E*—- = )13+ E,H+ H? 4
g () emmer). e
where
N
C,=Tr(H") =) E (6.49)
a=1

is the n-th Casimir invariant.

Next, we turn H = h- X, and express H? as a star product:
2 1 2_’ T g e b 2 - - —
H :§{H,H}:gh-h—i—(h*h)-)\:502—1—(h*h)-/\. (6.50)

The projector now takes the form [3]

1 1- =
I, =-1 —bo + A, 6.51
3 3+ 5 ( )
where 9
o & (Eoh + hxh). (6.52)

3E2 — &

In vector notation, Cy = 2h - h.

We can first express A% in terms of b and b:

1 .
AR = §Z[iHa,Ha]
7 1 -1 1- -
=3 [Eba Mgl t gl (6.53)



Next, we compute b:

b, = ﬁ (<6EaEa - %) (Eoﬁ + H*> ¥ <3E§ . %) (Eaﬁ B+ E)) ,

2

(6.54)
where h % h is denoted ﬁ* to get more compact expressions.
When multiplying Za X l;a, note that
(Eqh 4 hy) X (Eah + hy) =0, (6.55)
which finally gives
K (Eqh + hy) X (Eoh + hy) + Eoh X by =
Ao 85— 57 > o
If the eigenenergies of the system are constant, (6.56) simplifies to
Ea}._i 'ﬁ* Eaﬁ ﬁ* by
At =y Bl ) > WBh g by (6.57)
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6.5 Kato Gauge Potential with Degeneracy

In degenerate three-level systems, Eq. (6.56) diverges and no longer produces a valid

Kato AGP.

Let E; and E5 be the degenerate energy levels, so that £y = Fy, = E, B3 = —2F,
Cy = 6E?. The denominator at & = 1 is now

2
<3E12 - %) = 0. (6.58)

The problem arises from the fact that we derive the Kato AGP from the projectors, but
in the case of a degeneracy, the projectors are not defined for individual states. Instead,
the projector on the degenerate eigenspace is

Lo = [h1) (U] + [2) (2] (6.59)

The projectors can be expressed by the Hamiltonian as

2+ H
| 6.60
n=2E1 (6:60)
and B_H

My = ———r. 6.61
=T (6.61)

Eq. (6.51) still holds for IT3. Our new equation looks simpler — it is linear in H. In fact,
it is the same projector as (6.51). If we use IT3 = IT3 and square the new expression, we
would get exactly(6.51). Again, we write the projectors in vector notation:
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- —= (6.63)

Now, we assume that our system remains degenerate along the drive trajectory in pa-
rameter space. This will be true for Floquet systems, whose quasienergies do not change.
However, our assumption is weaker in the sense that it allows changes of the energy F.
We calculate the derivatives of the projectors:

. 1 5 - E - -
. 1 5 - E_, .
My = —he At oghe A (6.65)

and plug them in the expression of the Kato AGP:

AX = %Z[ma, 1]

o

1> FE - h 1> - B - h -
——<(3—Eh—@h)ng*(—s—Eh'“g—Qh)x<—3—E))*

1= h 1 = h .
__<(3_Eh)x3_E+(_3_Eh>x<_3_E) A

Why are the degenerate gauge potentials different?

By definition, gauge potentials do not know about the energy of the system — they are
only based on the eigenstates. If, however, two of the energy levels overlap, the eigen-
states of the degenerate energy level are not uniquely defined. A general (not necessarily
Kato) AGP can be obtained via multiple possible unitary transformations. In other
words, the degenerate energy level gives us an additional gauge freedom for constructing
gauge potentials.

Specifically, the Kato AGP fixes all the gauge freedoms. In the non-degenerate case, its
diagonal elements in the Hamiltonian’s eigenbasis are set to zero. In the degenerate case,
however, all of its elements in the degenerate subspace are set to zero. Evolution with the
Kato AGP now includes holonomic transitions between the degenerate eigenstates. In
contrast, evolution with a Kato AGP obtained from a non-degenerate Hamiltonian will
not allow such transitions.
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Chapter 7

Counter-Diabatic Driving for
Periodically Driven Three Level
Systems

This chapter brings together the theoretical concepts in numerical simulations to address
our central goal: designing counter-diabatic drives for periodically driven three-level sys-
tems. First, we find the counter-diabatic drive of a A-type system driven by an oscillatory
periodic field. We show that the variational method from Chapter 4.2.3 produces a high-
fidelity counter-diabatic drive at various frequencies. Next, we tackle the scenario of
a system with degenerate states, deriving the Kato gauge potential with our compact
formula from Sec. (6.5). We compare the evolution of the degenerate system, showing
that the evolution with the Kato AGP produces holonomic transition, and the adiabatic
evolution adds dynamical phases to the evolution. Finally, we outline how to construct
geometric gates, e.g. controlled-Z gate (a two-qubit entangling gate) using a three-level
system as an intermediary.

7.1 Example: Lambda System

In this section, we use the variational method to find the Floquet Hamiltonian of a
periodically driven A- system.

A A three-level configuration contains two low-energy states |0), |1) and one excited state
le). This is one of the most common configurations in atomic physics and quantum
optics. It has also been used in quantum control experiments [11]. In our analysis, we
add an interaction term (coupling) to split the degeneracy between |0) and |1), as shown
in Fig. 7.1. This is also common in experiments [15]. For a general multi-level atom
or molecule, interacting with an electromagnetic field, such splitting is known as AC
Stark effect. The effective eigenstates of such photon-atom system are known as “dressed
states” [16]. The full understanding of dressed states requires viewing the electromagnetic
field as a quantum field, which is beyond the scope of this thesis.
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Figure 7.1: Eigenenergies of a) the Hamiltonian; b) the Floquet Hamiltonian of the lambda
system at w/A =4, g/A = 1. When the driving term is zero, the Hamiltonian has a degeneracy;
the Floquet Hamiltonian has constant energies and is not degenerate.

Problem Setup

Our quantum system has ground states |0), |1) and an excited state |e) with energy gap
A interacting with a periodic field (e.g. laser field) of strength g with frequency w. The
Hamiltonian of the system reads

H(t) = —AXs + gsinwt (A + Ag) (7.1)

where \g discriminates the ground states from the excited state, A4 couples |0) to |e) and
A couples [1) to |e).

Without the interaction term, the ground states have identical energy. However, by
adding the interaction, all three eigenstates have distinct energies, cf. Fig. 7.1.

Variational Method

Similar to Sec. 5.4, we can’t give an analytical solution for the evolution of the system.
Therefore, as a baseline for evaluating the variational AGP, we first solve Schrodinger’s
equation numerically over one period to construct the Floquet unitary Ur. Then, we take
matrix log to find the Floquet Hamiltonian Hr inside the Floquet zone.

On the other hand, we search for a gauge potential variationally, as in Sec. 4.2.2. We
start with an ansatz for the kick operator K and minimize the action S = Tr(G?) using
the modified gradient descent from Sec. 4.2.3. Then, to compare the results with the
numerical integration, we calculate the Floquet Hamiltonian

Hp = H — Ap. (7.2)

We do this for different driving frequencies, showing the robustness of the variational
method to work properly in both low- and high-frequency settings.

At different frequencies, the Floquet Hamiltonian obtained lies in different Floquet zones.
To make the comparison between the numerical integration and the variationally obtained
gauge, we plotted the numerical Floquet Hamiltonian in Fig. 7.2 corresponding to the
same Floquet zone as the variationally obtained.
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Figure 7.2: Floquet Hamiltonian components in the Gell-Mann basis vs initial time. Found
using the variational method (solid line) vs numerical integration and matrix log (dashed line)
for a) w/A = 0.5, b) w/A = 2, ¢) w/A = 4. The variational algorithm in b) has not yet
converged. The Floquet Hamiltonian in c) is the principal log of the Floquet unitary, while a)
and b) converged to a higher “Floquet zone”. Some components are equivalent (see text). For
all simulations, g/A = 1. Number of harmonic used: a) 6; b) 3; ¢) 3. The variational algorithm,
when fully converged, provides a high-fidelity AGP.

In general, the variational method converges nearly perfectly, so the difference between the
Floquet Hamiltonians cannot be noticed in the figure. We have left one of the experiments
(at frequency w/A = 2) in a state before the full convergence of the algorithm, showing
differences with the “theory”.

Another feature of Fig. 7.2 is that due to the symmetry of the problem, some components
of the Floquet Hamiltonian coincide. Although all of the components
1

h.:

i =5 Te(H - ) = H:th (7.3)

are plotted, we cannot see all components on the plot, because ho = hy, hy = hg and
h5 - h7.

7.2 Example: Holonomy

In this section, we explore the adiabatic evolution of a degenerate three-level system. We
show that it leads to a non-Abelian holonomy instead of simple Berry phases. We test
our formula for the degenerate Kato gauge potential (6.66) and show that driving with
the Kato AGP only generates the holonomy matrix.

To manufacture a three-level-system Hamiltonian with degenerate energy levels, we start

with
1

As = \/gdiag(l, 1,-2) (7.4)
and rotate it with a unitary matrix P to get
H = P)\gP'. (7.5)
We make an almost arbitrary choice
P(t) = ¢ #§ Qasinwtar coswt) (7.6)
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where the “direction of rotation” \ssinwt 4+ A7 coswt is changing periodically and A4, A7
and As do not create a distinct subalgebra of SU(3), so the Hamiltonian is tracing a
generic path in SU(3).

This system is simple enough to calculate a lot of its characteristics analytically.

Since we already know the transformation P that diagonalizes the Hamiltonian, the AGP
of the system is

. 3 t in(wt
AV = iPP = w (% - 1) A+ wCOSg’” Jni— wsméw I (7.7)
In addition, we can calculate the Kato AGP using the vector formula
1 - ﬁ x h
“Tr(AK LX) = —2— :
5 r(A" - N) Tk (7.8)

where

L1 .
h = §Tr(H ) = (0, g sin(2wt), g cos(2wt), 0, —z sin(wt), %(wt), 0, g) . (79)

Applying the vector formula, we get the Kato AGP

3 3
ax = (—%, 0, \/T_w cos(wt), 0,0, —%w sin(wt), O)
(7.10)

=AK = —%)\1 + \/Tgw cos(wt)\y — ?w sin(wt) Ay

In the rotating reference frame,

AV = (1 — ﬁ) Ao (cos(wt)\g — sin(wt) A7)
2 2 (7.11)

AR = % (cos(wt)\g — sin(wt) A7) .
For a non-degenerate Hamiltonian, the Kato AGP has no diagonal elements. For a

degenerate Hamiltonian, in addition, there should be no elements in the whole 2 x 2
block of the degenerate energy levels. In this example,

0 243 cos(wt)

AV = % 2-v3 0 —isinwt) |,
cos(wt) isin(wt) 0 (7.12)
. o 0 0 cos(wt) '
AF = ) 0 0 —isin(wt) |,
cos(wt) isin(wt) 0

confirming that AX has no elements in the 2 X 2 block and on the main diagonals, while
all other elements are the same as in AY. The difference between A% and AV is

0 2—-+3 0
AU—AK:w<1—§>A1:f 2-v3 0 0] (7.13)

2 0 0 0
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Figure 7.3: Comparison between a) the evolution obtained by integrating the Kato AGP (solid
line) vs the holonomy matrix (dashed line); b) the adiabatic evolution (solid line) vs the dynamic
phases + holonomy (dashed line). Parameters in the simulation: w = 0.05. The Berry connec-
tions generate the correct adiabatic evolution. Imperfect adiabaticity leads to small deviations
from the holonomic evolution.

Because of the degeneracy, instead of Berry phases, we have a matrix of Berry connections
— the 2 x 2 block of AY — AX | corresponding to the degenerate level:

w 0 2—-+3 V3
A:§<2_\/§ . >:<1—7>01. (7.14)

It generates a 2 x 2 holonomy matrix
W = et (7.15)
In the general case, the third energy level could also accumulate a Berry phase.

We perform two numerical simulations showing the impact of holonomy on the evolution
of the system. First, we compute the pure geometric evolution as a time-ordered exponent
of the Kato Hamiltonian:

UK = PV (t) T exp (—i /O t AKdt) P(0), (7.16)

and compare it with the holonomy matrix. The results are shown in Fig. 7.3 a.

Then, we evolve the system adiabatically:

U = exp <—¢ /0 t H(t’)dt’) . (7.17)

In the rotating reference frame, the evolution takes the form
Ut = PT(t)U(t,0)P(0). (7.18)

In the adiabatic limit, the evolution must match the accumulation of dynamic phases and
a holonomy
w 0 e ikt 0 0
Ut & 0 0 et 9
0 01 0 0 e ibst

, (7.19)

where FEy, Es, F53 in our system are the diagonal elements of A\g. Fig. 7.3 b compares
both approaches to compute the evolution. Since the system is evolving slowly, but
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is not exactly in the adiabatic limit, we can notice small deviations from the theoretical
evolution. To make the figures clearer, we have omitted most components of the evolution
matrices. The missing components have analogous behavior.

7.3 Example: Geometric Quantum Logic Gate

One of the important aspects in the development of quantum computers is the construc-
tion of high-fidelity gates. In particular, two qubit gates typically have lower fidelity,
while they are critical for the performance of all quantum algorithms. For example, the
CZ gates must meet the fault-tolerance threshold for quantum error correction to be able
to work at all — otherwise it would produce more errors than it tries to correct.

We suggest a scheme for executing a pure geometric C'Z quantum gate within the frame-
work of 3LS.

The C'Z gate has the form

CZ =

OO =
_ o O
o O O

, (7.20)

oo = O

0 0 -1

acting in the computational basis (|00), |01), [10), |11)). In a spin qubit quantum com-
puter (|0) = | 1), |1) = | {)), we can directly reduce this gate to a unitary of a 3LS in the
subspace here the total spin is S = 1.

Let S be the magnitude of the total spin, and m, — the projection along the magnetic
field. The addition of the two spins gives rise to a singlet state

1
V2
which is not affected by the C'Z gate, and a triplet state

|IS=1,mgs=1)=[11)

5= 1ms = 0) = Z=(111) +I14) (7.22)

S = Lms = —1) = [1).

|5 =0,mg =0) = —= (1) —[1), (7.21)

In the subspace of the triplet state, the C'Z-gate takes the form

10 0
CZsr=101 0 |. (7.23)
00 —1

We aim to construct the gate by using a periodic pure geometric drive, discussed in
Sec. 3.2.1.

We should find the Kato gauge potentials Ag in the the triplet subspace, such that the
pure geometric evolution would produce a C'Z gate:

T
CZs—1 =T exp (—i / AK(t’)dt’> = ¢ HrT, (7.24)
0
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However, we encounter a problem: the Kato AGP has no diagonal elements in the eigen-
basis, therefore is always a traceless operator (it is always in the su(3) C u(3) algebra),
and therefore its exponent always has determinant 1 (it is in the SU(3) C U(3) group).
This means we cannot implement the C'Z-gate by purely geometric drive.

One way to fix this problem is instead to make a —C'Z gate instead of a C'Z gate. In the
triplet manifold,

~1 0 0
—CZsi=|0 -1 0]. (7.25)
0 0 1

Note that in addition to the —C'Zs_; gate, which now in theory can be implemented with
a pure geometric drive, to implement a full —C'Z gate, we have to change the phase of
the singlet state as well.

The general Floquet Hamiltonian generating the —C'Z gate has the form

M 0
Hp[0] =w 0], (7.26)
0 0 k
where w = 27/T, k € Z and > = —1 = ¢™1. The latter condition is satisfied by
matrices M =17i-G + [ + 3, where |ii| =n € Z and | € Z. The diagonal form of Hp|t] is
l+n+3 0 0
D=V Hp[t]V(t) =w 0 l-n+3% 0], (7.27)
0 0 k
where V'(t) can reconstruct the micromotion operator
P(t) = V(t)VT(0) (7.28)
and is generated by the Floquet gauge potential as well:
Ap = PPT =VVT (7.29)

To find a pure geometric drive,
H=Ax+0=Ap+ Hplt] =iVVI + VDV, (7.30)

we can use the fact that the Kato AGP must have zeroes as diagonal elements in the
eigenbasis of the Floquet Hamiltonian:

VITALY ) mm = 0= ((VIV)um + Dy (7.31)
This leaves us with a condition on the diagonal elements of the Floquet AGP:
Arrmm = —Dmm.- (7.32)

By starting with an ansatz for the “kick operator” as in Eq. (4.24), we can compute Ap
approximately with (4.28). The Floquet AGP in the rotating frame is in fact

. . d . )
iP'P=—iP'p= —zae—”“ﬂem). (7.33)

Comparing it with the gauge potential in the lab frame, we can use the same computation
as (4.28), but plugging —K instead of K.

Currently, our variational algorithm gets stuck before finding a solution with a pure geo-
metric driving. This leaves the question of finding a working Kato potential variationally
still open for further research.
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Chapter 8

Conclusion

We demonstrated how counter-diabatic driving can be systematically extended from two-
level to three-level systems. The group properties of SU(3) allowed us to simplify the
explicit parametrization of a general micromotion drive. The commutation and anticom-
mutation relations allowed us to derive a vector formula for the Kato gauge potential.

The variational principle allowed us to design high-fidelity gauge potentials which can
be used as fast driving protocols, representing a shortcut to adiabaticity. The main
significance of such experiments is in quantum computing and quantum simulation, where
executing CD protocols allows for both faster gate operation — preventing decoherence,
and robustness against leakage.

Recent experimental advancements have demonstrated the feasibility of counter-diabatic
(CD) driving beyond theoretical models. Notably, CD driving has been successfully
implemented in a 9-site synthetic lattice [17]. Additionally, experimental works have
shown how CD driving improves state preparation in spin chains 18] and accelerates
adiabatic processes in superconducting circuits [19], paving the way for integration into
real-world quantum technologies.

In this thesis, we have used a version of the variational principle [2| tailored for Floquet
systems, where the Floquet Hamiltonian is unknown. Starting with a periodic Hamilto-
nian, we obtained variationally a high-fidelity decomposition to a Floquet Hamiltonian
and its AGP.

Our analysis of gauge structures can be extended outside the area of quantum control, to
other topics in quantum mechanics, which was the main focus of our thesis. For example,
it is interesting to research the topological properties of gauge potentials. This can be
applied to topological Euler class insulators [20].

In this thesis, we investigated degeneracy in 3LS. We obtained explicit Floquet and Kato
gauge potentials for degenerate systems. We confirmed that the adiabatic evolution of
such systems introduces holonomies instead of simple Berry phases. Holonomies have
importance in the construction of quantum gates, with Holonomic quantum computa-
tion being an active area of research [21]. The degenerate subspace also represents a
decoherence-free subspace |22], which is useful when trying to protect our quantum gates
against decoherence.

Outlook — four-level systems and beyond: The logical next step is to tackle four-
and higher-level systems. A lot of the methods we used in the thesis can be carried
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over to 4LS. The main challenge will be the increased computational complexity. The
su(4) algebra contains 15 generators instead of 8, meaning that the evolution operators
and gauge potentials should depend on 15 parameters, making them more difficult to
derive. Again, the concept of orbits can be used to reduce these parameters. The vari-
ational principle can be easily generalized to multi-level systems. However, the gradient
descent will be more computationally intensive. Four-level systems will feature more in-
teresting structure, with multiple possible degenerate levels, allowing more complicated
non-Abelian holonomies.

We outlined an approach for designing a geometric CZ gate, which is also an area for
further research. Research for design of two-qubit gates could stay in the context of 3LS
if we consider a submanifold of the two-qubit state space, such as the triplet manifold in
spin qubit quantum computers.
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Appendix A

Algebra of Pauli Matrices

We define the rotation matrices as

0 = (=)o

n=0
o0 (_1)n02n1 i '(_1)n92n+10_k
= s TEEE—— —1 ==
()l | 4= 92FI(2n 1 1)!

n=0

(3) 1 (3)
=cos|=|1—1isin| = | o,
2 2

1. 1 7
Oy Ry, = 5 sin <§) - 25 cos <§) O = _iRkak

l
R;L%Rk = —§O'k

We make use of the algebra of the Pauli matrices:

OO0 = 1,

0,0y = 10,

{ow,0,} =0,
0p0y0y = 10,0, = —0y,
0,0,0, = —10,0y = —0.

We can then find the action of the rotation matrices on the Pauli matrices
RMR, =1,
RlzlakRk = Oy,
R;'o,R, = cosfo, —sinfo,

-1 .
R, 0.R, =sinfo, + costlo,.

In all above equations we can make the cyclic substitution x — y,y — 2,2 — x.
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Appendix B

Explicit Matrix Form of the
Parametrized SU(3) Adiabatic Gauge
Potential

We list the components of the AGP corresponding to the unitary transformation
U(OZ, ﬂ’ v, 07 a, b7 c, QS) — 6i>\3aGi)\QB6i>\3’y€i>\59€i>\3a€i>\2b6i>\366i>\8¢7 (Bl)

discused in Sec. 6.2 as matrices:

-1 0 0
A.=( 0 1 0],
0 00
0 e ()
Aﬂ — Z'efiZOz 0 O ’
0 0 0
—cos28  e?*sin28 0
‘A’Y — | e—i224ip 25 CcoS 25 0 , (B2)
0 0 0
0 0 ie’ @) cos
Ay = 0 0 —ie~ "M gin B
—ie~ ot cos B i€V sin B 0
1= ?052 B(1+ COS22 0) 2% sin QBW ei(ffr’y) COS Bsinz%
A, = e‘?a sin Qﬁw 1— S'jnz ﬁ(l + CQSQ (9) —e—i(a—y) Sinﬁsm229 :
efz(aJrW) cos B% _ez(affy) sin 55111229 _ Sin2 0

Api1 = — Ao = —sin(2(a + 7)) sin 25 cos 6
Apra = A5y = (i cos(2(a + 7)) — cos 2Bsin(2(a + v))) cos &

Apis = A = e 29= ) gin Bsin O (B.3)
Apas = Apgy = je 12t t) co5 Bsin 6
Apzz = 0,
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where * denotes complex conjugation,

Acr = — A = —(—1 + (cos?  + 1) cos? B) cos 2b
+ cos(2(a + 7)) cos 0 sin 2/3 sin 2b
Acia = A%y = €*(sin 2b cos 0(cos(2a + 27) cos 23 + i sin(2a + 27))

1
+ 3 cos 2bsin 23(cos? 0 + 1))

Aas = Al = e a=a) (— sin 2bsin Be @) 4 cos 2bcos B cos 96“‘””) sin 6

Aoz = Algy = —e~Hata) (sin 2b cos Be @) 4 cos 2bsin 8 cos Gei(aﬂ)) sin 6
A3 = — cos 2bsin? 0
—75(1 — 3sin® 0 cos® ) — 3% gin 23 sin? § L cos fel@+) sin 26
A= | —%esin28sin?0  —2(1—3sin’Osin® 8) — sin B~/ sin 26
\/7§ cos e~ ") sin 20 —*/7§ sin Be’ (@~ sin 26 ﬁg(l + 3 cos 20) -
B.A4
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