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Abstract

Counter-diabatic (CD) driving is a shortcut for adiabatic quantum control. By adding a
gauge potential to the time-dependent Hamiltonian, we compensate non-adiabatic tran-
sitions.

This thesis investigates CD driving for three-level systems, which exhibit richer physics
than two-level systems. Their dynamics are generally unsolvable analytically, so we use
a variational method to find gauge potentials.

Floquet theory is related closely to CD driving – the Hamiltonian of a periodic system is a
CD-driven Floquet Hamiltonian. Using this, we derive variational Floquet Hamiltonians
for specific two- and three-level systems.

Using the SU(3) group properties, we provide the most general parameterization of a
gauge potential in three-level systems, corresponding to pure micromotion drives in Flo-
quet theory. Representing su(3) algebra elements as vectors with dot, vector, and “star”
products, we obtain an exact Kato gauge potential formula and a simplified version for
degenerate systems.

Finally, we propose a fully geometric two-qubit quantum gate, evolving solely via the
Kato potential.
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Абстракт

Контрадиабатичното задвижване е пряк път за адиабатичен квантов контрол. До-
бавянето на калибровъчен потенциал към времезависим хамилтониан компенсира
изцяло неадиабатичните преходи.

Дипломната работа разширява контрадиабатичното задвижване за системи от три
нива, притежаващи по-богата физиката от системите с две нива. Например, могат
да съдържат изродени нива, при което в адиабатичната им еволюция се наблюда-
ва квантова холономия. Тъй като динамиката им в общия случай не е аналитично
решима, ние разглеждаме вариационен метод за намиране на калибровъчни потен-
циали.

Теорията на Флоке за периодично задвижените се оказва тясно свързана с контра-
диабатичното задвижване – хамилтонианът на такива системи е контрадиабатично
задвижен хамилтониан на Флоке. Използвайки този факт, ние намираме вариаци-
онно хамилтониани на Флоке за конкретни примерни системи с две и три нива.

Използвайки свойствата на групата SU(3), даваме най-общата параметризация за
калибровъчен потенциал в система от три нива. Във Флоке теорията това са задвиж-
вания без Флоке еволюция. Също така, използваме представяне на елементите на
алгебрата su(3) като вектори, в които може да се въведе “скаларно” и “векторно
произведение”, за да получим точна формула за калибровъчния потенциал на Като,
както и по-проста точна формула в случаите на дегенерирана система.

Накрая, предлагаме схема за построяването на двукюбитен квантов гейт, който е
изцяло геометричен – еволюцията му се дължи само на потенциал на Като.
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Chapter 1

Introduction

Modern quantum technology demands rapid and precise control over quantum states. A
quantum system can be driven to a target state using adiabatic control [1]. This means
that if the Hamiltonian guiding the system evolves slowly, the system approximately
follows its eigenstate. In practice, quantum systems cannot be completely isolated from
the environment. Their natural decoherence gives us a finite time for state preparations,
leaving adiabatic control impractical.

Counter-diabatic (CD) driving offers a shortcut to adiabaticity. By adding a gauge po-
tential to a rapidly evolving Hamiltonian, we achieve the same (except faster) evolution
as if the variations of the Hamiltonian were adiabatic.

We focus on Floquet systems because of the recent discoveries [2] connecting them to CD
driving. As we explain in detail in Sec. 3.2, it turns out that the periodic Hamiltonian
governing the Floquet system can be viewed as the sum of the Floquet Hamiltonian and
a counter-diabatic term. This allows us to recycle the variational methods for searching
for gauge potentials in Floquet theory, where we are concerned with obtaining a Floquet
Hamiltonian for a given system.

While CD driving has been extensively studied in two-level systems, its application to
multi-level and periodically driven systems remains an open frontier. In this thesis, we
expand our knowledge of CD driving by tackling three-level systems (3LS). Three level
systems offer richer dynamics. They show a lot of the strange properties occurring in
multi-level systems. We are particularly interested in investigating systems with degen-
erate energy levels. Such systems, subject to adiabatic evolution, can move freely within
the degenerate subspace. This gives rise to a holonomic evolution that we aim to inves-
tigate.

The remainder of this thesis is structured as follows: Chapter 2 introduces the theoretical
foundation of CD driving, detailing the role of gauge potentials in achieving transition-
less evolution. Chapter 3 provides an overview of Floquet theory and its relevance to
driven quantum systems. Chapter 4 presents some necessary instruments to compute
gauge potentials, including variational approaches. Chapter 5 applies these instruments
to simpler, two-level systems. preparing us for the challenges of 3LS. We make numerical
simulations for concrete two-level systems. Then, in Chapter 6, we delve into the theory
behind 3LS. To do this effectively, we discuss the SU(3) group and respective algebra.
Then, we give a parametrization of the most general form of the Adiabatic Gauge Po-
tential (AGP) and a simplified parametrization specifically useful for Floquet systems.
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Then, we give formulae for computing Kato gauge potentials in the degenerate and non-
degenerate three level systems, concluding the theoretical results of the thesis. Next,
we move on to numerical experiments in Chapter 7. Finally, Chapter 8 summarizes our
findings and outlines potential future directions of research.
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Chapter 2

Counter-Diabatic Driving

This chapter lays the theoretical foundation for CD driving. We begin by stating the
adiabatic theorem. We show how a quantum system remains in an instantaneous eigen-
state if the Hamiltonian’s parameters change slowly. We then introduce the concept of
Berry phase for adiabatic evolution and generalize it to a holonomy matrix in degener-
ate systems. If the evolution of the Hamiltonian is faster, we show that we can prevent
transitions between states using a gauge potential. We discuss properties of gauge poten-
tial and focus on the parallel-transport Kato gauge potential. This chapter establishes
why these gauge potentials are important: they are the key to implementing shortcuts
to adiabaticity, enabling fast quantum operations without loss of fidelity. The concepts
introduced in this chapter are fundamental for the rest of the thesis, where we will find
or use gauge potentials in particular systems.

2.1 Adiabatic Theorem

If we evolve a quantum system from its eigenstate with a slowly changing Hamiltonian,
it will remain in the instantaneous eigenstate. This result is known as the adiabatic
theorem.

To state the theorem formally, consider a Hamiltonian with a time-dependent parameter
λ(t)

H = H(λ(t)). (2.1)

The instantaneous eigenstates are the eigenstates |ψn(λ)⟩ for a fixed value of the
parameter λ(t):

H(λ) |ψn(λ)⟩ = En(λ) |ψn(λ)⟩ . (2.2)

In general, they differ from the time-evolved states

|ψn(λ(t))⟩ ≠ T e−i
∫ t
0 dt′H(λ(t′)) |ψn(λ(0))⟩ . (2.3)

Note that the instantaneous eigenstates are orthonormal for a fixed time t, but ⟨ψm(λ1)|ψn(λ2)⟩ ≠
0 for λ1 ̸= λ2.

The theorem states that the evolved state is close to the instantaneous eigenstate if λ
changes slower than the gap ∆ between the instantaneous eigenstates. More precisely,
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the condition is ∣∣∣∣∣ λ̇

∆(λ)

∣∣∣∣∣ |⟨ψm(λ)|∂λH|ψn(λ)⟩| ≪ 1, ∀λ,∀m,n, (2.4)

where ∆(λ) = Em(λ) − En(λ) is the energy gap between the instantaneous eigenstates
|ψm⟩ and |ψn⟩. As we can see, this condition implies that we have small enough λ̇ (slow
changes of the parameter) and large enough ∆ (band gap).

Proof

To prove the theorem, we use time-dependent perturbation theory.

If the Hamiltonian did not depend on time, the solution to Schrödinger’s equation

i∂t |Ψ(t)⟩ = H |Ψ(t)⟩ (2.5)

would be
|Φ(t)⟩ =

∑
n

cne
−itEn |ϕn⟩ , (2.6)

where |ϕn⟩ are the eigenstates of the time-independent Hamiltonian, and En are the
corresponding energies,

H |ϕn⟩ = En |ϕn⟩ . (2.7)

Similarly, for the time-dependent Hamiltonian, we expand the solutions in the basis of
the instantaneous eigenstates |ψn⟩, with time-dependent coefficients cn(t):

|Ψ(t)⟩ =
∑
n

cn(t)e
iθn(t)|ψn(λ(t))⟩, (2.8)

where θn(t) = −
∫ t

0
dt′En(t

′) is called the dynamical phase of the wave function. Note
that we can always transfer phases to and from cn. As we will see, cn(t) contains an
additional Berry phase. The dynamical phase θ is defined in such a way as to match the
time-independent phase Ent.

We now substitute the expansion (2.8) to (2.5) and get

i
∑
n

(ċn|ψn⟩+ cn|ψ̇n⟩+ cn|ψn⟩iθ̇n)eiθn =
∑
n

cn(t)En(t)e
iθn(t)|ψn⟩

i
∑
n

(ċn|ψn⟩+ cnλ̇|∂λψn⟩ − cn|ψn⟩iEn(t))e
iθn(t) =

∑
n

cn(t)En(t)e
iθn(t)|ψn⟩

i
∑
n

(ċn|ψn⟩+ cnλ̇|∂λψn⟩)eiθn(t) = 0.

(2.9)

We multiply by ⟨ψm| to get

iċm(t)e
iθn(t) + i

∑
n

cm(t)λ̇⟨ψm|∂λ|ψn⟩eiθn(t) = 0. (2.10)

In the generic case, the off-diagonal elements ⟨ψm|∂λ|ψn⟩, n ̸= m are responsible for
transitions |ψn⟩ → |ψm⟩. In the case of small λ̇, n ̸= m terms are negligible. To see this
more precisely, we differentiate the equation

⟨ψm(λ)|H(λ)|ψn(λ)⟩ = 0. (2.11)

4



0 = ⟨∂λψm|H|ψn⟩+ ⟨ψm|∂λH|ψn⟩+ ⟨ψm|H|∂λψn⟩
0 = En⟨∂λψm|ψn⟩+ ⟨ψm|∂λH|ψn⟩+ Em⟨ψm|∂λψn⟩
0 = (Em − En)⟨ψm|∂λψn⟩+ ⟨ψm|∂λH|ψn⟩,

(2.12)

⟨ψm|∂λ|ψn⟩ =
⟨ψm|∂λH|ψn⟩
En − Em

. (2.13)

Comparing the expression with (2.4), we see that the n ̸= m terms are indeed negligible.
This turns Eq. (2.10) in the transitionless differential equation

ċm ≈ icmλ̇⟨ψm|i∂λ|ψm⟩, (2.14)

whose solution is
cm(t) ≈ cm(0)e

iγm(t), (2.15)

where

γm(t) =

∫ t

0

dt′λ̇⟨ψm(λ)|i∂λ|ψm(λ)⟩ =
∫ λ(t)

0

dλ⟨ψm(λ)|i∂λ|ψm(λ)⟩

is called Berry phase, and the integrand

Am(λ) = ⟨ψm|i∂λ|ψm⟩ (2.16)

is called Berry connection.

Finally, if we evolve the Hamiltonian from an initial state |ψm(0)⟩, meaning that cm(0) =
1; cn(0) = 0 ∀n ̸= m, we would end up at

|Ψ(t)⟩ ≈ cm(0)e
iθm(t)eiγm(t) |ψm⟩ , (2.17)

accumulating a dynamical phase θm and a Berry phase γm.

2.2 Berry Phase and Holonomy

We revise the adiabatic theorem proved in 2.1 for the case when the Hamiltonian has
degenerate energy levels. Up to Eq. (2.10), there is no need for the energy levels to be
different. For each degeneracy θn = θ, we can only neglect the different-energy terms
Ek ̸= En in the differential equation. This leaves us with

ċm = i
∑
n

⟨ψm|i∂t|ψn⟩ cn (2.18)

This equation can be formally solved as

c⃗(t) = T ei
∫ t
0 dt′A(t′)c⃗(0) = Wc⃗(0), (2.19)

where A is a matrix of Berry connections,

Amn = ⟨ψm|i∂t|ψn⟩ , (2.20)

and W is called holonomy matrix. Its dimension is equal to the degree of the degener-
acy. In case of degenerate energy levels, the adiabatic theorem does not hold – the state
can evolve among the degenerate levels.

5



2.3 Gauge Potential

When changing the coordinate system, the Hamiltonian transforms similarly to a general
hermitian operator. However, it also obtains a gauge potential, similarly to the fictitious
forces emerging from non-inertial transformations in classical physics.

Let U be a unitary transformation from |ψ⟩ (“lab frame”) to |ψ̃⟩ (“moving frame”), such
that

|ψ̃⟩ = U † |ψ⟩ . (2.21)

In the lab frame,
i∂t |ψ⟩ = Ĥ |ψ⟩ . (2.22)

Substituting |ψ⟩ = U |ψ̃⟩, we get

i∂t

(
U |ψ̃⟩

)
= ĤU |ψ̃⟩

i(∂tU)|ψ̃⟩+ iU∂t|ψ̃⟩ = ĤU |ψ̃⟩
i∂t|ψ̃⟩ = U †HU |ψ̃⟩ − iU †(∂tU)|ψ̃⟩
i∂t|ψ̃⟩ = H̃moving|ψ̃⟩.

(2.23)

The dynamics in the new frame are governed by a moving frame Hamiltonian H̃moving,
which can be represented as

H̃moving = H̃ − Ã, (2.24)

where
H̃ = U †HU (2.25)

is the rotated Hamiltonian from the static frame and

Ã = iU †∂tU (2.26)

is the additional gauge potential. If we rotate the gauge potential back to the lab
frame, we get

At = UÃtU
† = i∂tUU

†. (2.27)

The dynamical Adiabatic Gauge Potential (AGP) with respect to a parameter-dependent
transformation U(λ) is defined as

AU
λ = i∂λUU

†. (2.28)

To get a better intuition about this gauge potential, we draw an analogy with Newtonian
dynamics. In classical mechanics, Newton’s laws are valid in inertial reference frames. If
we switch to a non-inertial reference frame, we need to “fix” Newton’s second law F⃗ = ma⃗
by adding centrifugal and Coriolis force.

Similarly, in quantum mechanics, if we change the reference frame, to fix Schrodinger’s
equation, we add a gauge potential to the Hamiltonian. Our quantum particles in a
rotating reference frame experience the fields from the lab Hamiltonian H and “fictitious
energy” from the gauge potential.

6



2.3.1 Properties of the Gauge Potential

The gauge potential is the generator of the unitary transformation:

U(λ) = P exp

(
−i
∫ λ

0

AU(λ′)dλ′
)
. (2.29)

We can see that by taking

U(λ+ dλ) = e−iAU
λ dλU(λ) ≈

(
1− iAU

λ dλ
)
U(λ)

dU = −iAU
λ dλU

dUU † = −iAU
λ dλ

i∂λUU
† = AU

λ .

(2.30)

The gauge potential is Hermitian.

UU † = 1

∂λ(UU
†) = 0

∂λUU
† + U∂λU

† = 0

i∂λUU
† = −iU∂λU †

AU
λ = AU

λ

†
.

(2.31)

The gauge potential acts as a derivative operator on states which are static in the rotated
frame.

Let the transformation U send the states |ψn(t)⟩ to |en⟩ = const.

i∂λ |ψn⟩ = i∂λ(U |en⟩) = i∂λU |en⟩ = i∂λUU
† |ψn⟩ = AU

λ |ψ⟩n. (2.32)

This gives us another interesting property. Suppose we find a transformation that di-
agonalizes a time-dependent Hamiltonian. The corresponding gauge potential acts as a
derivative operator on the instantaneous eigenstates. Therefore, the diagonal elements of
the gauge potential are the Berry connections :

An = i⟨ψn(λ)|∂λ|ψn(λ)⟩. (2.33)

2.3.2 Counter-Diabatic Driving

Consider a quantum system with a non-adiabatic HamiltonianH(λ(t)). It will not remain
in its eigenstate on its own. To cancel the non-adiabatic transitions, we can add a driving
term λ̇AU

λ = iU̇U †, where U diagonalizesH. The counter-diabatically driven Hamiltonian
takes the form

HCD = H + λ̇AU
λ . (2.34)

To see that the system remains in its eigenstate, we transform the Hamiltonian to the
moving frame:

H̃moving = U †(H + iU̇U †)U − iU †U̇ = U †HU, (2.35)

where U †HU is now a diagonal Hamiltonian. This means the system will indeed follow
the instantaneous eigenstates of H.
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As the U †HU is diagonal, the evolved states accumulate only dynamic phases. In contrast,
the evolution with an adiabatic Hamiltonian generates dynamic and Berry phases, as in
Eq. (2.17).

Counter-diabatic driving is a shortcut to adiabaticity [3]

Adiabatic protocols are actively used in quantum computers [4]. For example, the quan-
tum adiabatic algorithm is a way to find the ground state of a Hamiltonian Htarget. The
system is prepared the system in the ground state of a simple Hamiltonian H(0). Then,
the Hamiltonian evolves as H(λ) to a new Hamiltonian H(λfinal) = Htarget. If λ changes
adiabatically, the evolved state follows the instantaneous ground eigenstate, finally reach-
ing the ground state of Htarget. The problem is that adiabatic evolution takes a lot of
time, which leads to decoherence. The shortcut is that we can use a faster CD driven
Hamiltonian HCD = H(λ)+ λ̇Aλ, where the CD term will keep the system at the instan-
taneous eigenstates of H(λ) despite the quicker evolution. This means that the system
will be prepared in the desired state faster, e.g. within coherence time.

2.4 Kato Gauge Potential

The AGP that permits CD driving is in fact defined up to a gauge freedom. So far,
we have discussed the dynamical-gauge AGP AU . Suppose we use an arbitrary gauge
AU +UDU †, where D is diagonal. The moving Hamiltonian H̃moving = U †HU +D would
still be diagonal. The “simplest” potential we can use would have no diagonal part. It is
called the Kato AGP.

By taking advantage of Eq. (2.13), we can define the Kato AGP as

AK
λ = i

∑
m ̸=n

⟨ψm|∂λH|ψn⟩
En − Em

|ψm⟩ ⟨ψn| . (2.36)

There is also an alternative definition that does not rely explicitly on the energies and
the basis:

AK
λ =

1

2

∑
α

[i∂λΠα,Πα] (2.37)

Proof that both definitions are equivalent

First, recall that the projector has the form

Πα = |ψα⟩ ⟨ψα| (2.38)

and the eigenstates are constant in the moving basis, therefore

U †ΠαU = |eα⟩ ⟨eα| = const. (2.39)

By differentiating this identity, we get

U †∂λΠαU = −∂λU †ΠαU − U †Πα∂λU. (2.40)

Multiplying Eq. (2.40) on the right and on the left by U †ΠαU , we get respectively

U †∂λΠαΠαU = −∂λU †Π2
αU − U †Πα∂λUU

†ΠαU,

U †Πα∂λΠαU = −U †ΠαU∂λU
†ΠαU − U †Π2

α∂λU
(2.41)
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Subtracting the above equations, we get

U †[i∂λΠα,Πα]U = −i∂λU †ΠαU + iU †Πα∂λU − 2U †ΠαAU
λΠαU, (2.42)

where AU
λ = −iU∂λU † = i∂λUU

† is the adiabatic gauge potential, and Π2
α = Πα for the

projector. If we rotate this equation by multiplying U on the left and U † on the right,
we get

[i∂λΠα,Πα] = AU
λΠα +ΠαAU

λ − 2ΠαAU
λΠα. (2.43)

Notice
ΠαAU

λΠα = ⟨ψα|AU
λ |ψα⟩ |ψα⟩ ⟨ψα| (2.44)

are the diagonal elements of the adiabatic gauge potential, and
∑

α Πα = 1, which leads
to

1

2

∑
α

[i∂λΠα,Πα] = AU
λ − diag(AU

λ ) = AK
λ . (2.45)

Kato gauge potential for degenerate Hamiltonian

Suppose we have a degenerate energy level Eα. For all energy levels, Eq. (2.13) does
not yield any diagonal matrix elements. For the degenerate energy levels, all “blocks” of
matrix elements ⟨ψαi

|AK
λ |ψαj

⟩ are also zero.

Looking at the projectors, we can observe the same behaviour. A degenerate projector
has the form

Πα12 = |ψα1⟩ ⟨ψα1|+ |ψα2⟩ ⟨ψα2| = UIαU
†, (2.46)

where Iα = const. All the steps leading to the identity (2.43) still hold. Then,

⟨ψα1 |[i∂λΠα,Πα]|ψα2⟩ =
〈
ψα1|AU

λ +AU
λ − 2AU

λ |ψα2

〉
= 0, (2.47)

where Πα |ψα2⟩ = |ψα2⟩ and ⟨ψα1|Πα = ⟨ψα1|. The other commutator terms also give
zero in the degeneracy block:〈

ψα1|AU
λΠβ +ΠβAU

λ − 2ΠβAU
λΠβ|ψα2

〉
= 0, (2.48)

because Πβ |ψα2⟩ = 0 and ⟨ψα1|Πβ = 0.

Counter-diabatic Kato driving

A Hamiltonian that is driven counter-diabatically using the Kato gauge potential takes
the form

HCD = H + λ̇AK
λ . (2.49)

Suppose the Hamiltonian diagonalizes to U †HU = D, while the Berry connections are
An = ⟨ψn|AU

λ |ψn⟩. For now, we assume there are no degeneracies. In the moving frame,
this Hamiltonian takes the form

H̃moving = U †(H + λ̇AK
λ )U − U †λ̇AU

λU = D +
∑
n

λ̇An|ψn⟩⟨ψn|. (2.50)

When looking at the evolution of the eigenstates in the rotating reference frame, we see
two diagonal Hamiltonians contributing to the evolution. Both of them do not lead to
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transitions between the eigenstates. Evolution under D accumulates dynamical phases,
while evolution with the Berry connections accumulates Berry phases.

If we evolve the system only using the Kato AGP, we would only accumulate Berry
phases:

ÃK
λ m =

∑
n

λ̇An|ψn⟩⟨ψn|. (2.51)

In case of degenerate energy levels, the Berry phases in the degenerate subspace must
be replaced by a holonomy matrix. The evolution achived by adding a Kato AGP will
contain holonomic transitions between eigenstates.
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Chapter 3

Floquet Theory

This chapter introduces Floquet theory, which describes quantum systems under periodic
driving. We state the Floquet theorem. Then, we discuss the Floquet gauge potential [5],
as well an alternative decomposition with a Kato gauge potential [6]. Тhis chapter shows
that the tools of CD driving can be carried over to periodically driven systems, which is
crucial since periodic drives are widely used in quantum simulators and qubit control.

A Floquet system is a system with time-dependent periodic Hamiltonian

H(t) = H(t+ T ). (3.1)

For a generic time-dependent Hamiltonian, it is difficult to solve the Schrödinger equation

i∂t |ψ(t)⟩ = H(t) |ψ(t)⟩ . (3.2)

Formally the solution to the evolution operator is a time-ordered exponent,

U(t, t0) = T exp

(
−i
∫ t

t0

dt′H(t′)

)
:= lim

N→∞
e−i∆tH(N∆t)e−i∆tH((N−1)∆t) · · · e−i∆tH(∆t)

= lim
N→∞

N∏
n=1

e−i∆tH(n∆t),

(3.3)

where ∆t = (t− t0)/N .

3.1 Floquet Theorem

The Floquet theorem states that the evolution of a periodic Hamiltonian H(t) = H(t+T )
can be decomposed as

U(t, 0) = P (t)e−itHF , (3.4)

where the function P (t + T ) = P (t) is a periodic operator called micromotion oper-
ator, and HF is a constant Hamiltonian called Floquet Hamiltonian. The Floquet
Hamiltonian governs the stroboscopic, long-term behavior of the driven system. Note
that P (0) = 1 as U(0, 0) = 1.
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The physical meaning of the theorem is that there exists a rotating frame with a constant
HamiltonianHF . The matrix P (t) transforms the rotating frame to the lab frame. Indeed,
we can add P †(0) = 1 to the right of(3.4) to get

T exp

(
−i
∫ t

0

H(t′)dt′
)

= P (t)e−itHFP †(0), (3.5)

meaning that
H(t) = P (t)HFP

†(t) + i∂tP (t)P
†(t). (3.6)

We can define a Floquet unitary matrix as

U(T, 0) = e−iTHF = UF . (3.7)

We can formally obtain the Floquet unitary as a time-ordered exponent (3.3). Then, the
Floquet Hamiltonian is a matrix logarithm of the Floquet unitary.

The matrix logarithm is not unique. Therefore, the Floquet Hamiltonian is defined up
to a gauge freedom, giving us different quasi-energies.

This phenomenon has an analogue in solid state physics. If we substitute time with space,
Floquet’s theorem corresponds to the Bloch theorem – spatially periodic Hamiltonians
produce spatially periodic wave functions. There, the particle’s momentum is defined up
to addition with a reciprocal lattice vector, giving us different Brillouin zones.

We define the Floquet zone as the zone where the Floquet Hamiltonian has eigenenergies
in the range

E ∈
[
−ω
2
,
ω

2

)
, (3.8)

where
ω =

2π

T
(3.9)

is the driving frequency of the system. Then, a Floquet Hamiltonian with quasi-energy
E is equivalent to all other Floquet Hamoltonians with corresponding quasi-energy E +
kω, k ∈ Z.

3.2 Floquet Gauge Potential

Let us decompose the evolution similarly to (3.4), starting at t = t0 instead of t = 0:

U(t, t0) = P (t, t0)e
−i(t−t0)HF [t0]. (3.10)

We can obtain a valid micromotion operator by setting P (t, t0) = P (t)P †(t0), with a
Floquet Hamiltonian

HF [t0] = P (t0)HFP
†(t0). (3.11)

Indeed, if we plug this ansatz in (3.6), we get

H(t) = P (t, t0)HF [t0]P
†(t, t0) + i∂tP (t, t0)P

†(t, t0). (3.12)

Note that HF [t0] is just a rotated version of HF . This means HF [t0] has the same
eigenenergies for any initial time t0. Also, the micromotion operators starting at different
times are generated by the same operator,

i∂tP (t, t0)P
†(t, t0) = i∂tP (t)P

†(t) = AF (t), (3.13)

12



which we call Floquet gauge potential.

During our analysis of gauge potentials in Floquet systems, we will restrict ourselves
to gauge potentials with respect to time. This means that from the AGP defined in
Eq. (2.28), we will default to λ = t and omit the index t. Similarly, we also set λ = t
from the Kato AGP defined in (2.36) or Eq. (2.37) and we will write it as AK .

By substituting (3.11), (3.13) in (3.6), we get

H(t) = HF [t] +AF (t). (3.14)

The Floquet gauge potential performs a Counter-diabatic driving from the Floquet Hamil-
tonian HF [t] to the lab frame Hamiltonian H(t) [6]. Here, HF [t] is viewed as a time-
dependent operator, while, HF [t0] is a constant Hamiltonian for a fixed initial time t0.

By knowing the gauge potential, we can reconstruct the micromotion operator,

P (t) = T exp

(
−i
∫ t

0

dt′AF (t
′)

)
, (3.15)

where we used the fact that P (0) = 1.

The time-dependent operator HF [t], due to having constant eigenenergies, always lies in
a subspace of all possible Hamiltonians. This subspace is called orbit and is discussed
with more details in Sec. 6.1.1

Kato Hamiltonian and Kato Gauge potential

Unlike the Floquet decomposition, there is a unique decomposition of the evolution, using
the Kato gauge potential [6]:

H(t) = HK(t) +AK(t). (3.16)

Again, H(t) obtained by a CD driving. As AK is the fixed Kato gauge potential, HK is
a uniquely defined Hamiltonian, which we call “Kato Hamiltonian”.

This decomposition has some differencies in comparison to the standard Floquet decom-
position. The Kato Hamiltonian HF need not have constant eigenenergies, unlike HF [t].

Also, the Floquet AGPAF is the generator of the periodic micromotion P (t) (cf. Eq. (3.15)).
However, the time-ordered exponent of AK ,

U(t) = T exp
(
−i
∫ t

0

dt′AK(t
′)

)
, (3.17)

is no longer a necessarily periodic operator such as the micromotion operator. Physically,
this time-ordered exponent is the evolution of a system driven only by the Kato AGP.
This is classified in the next subsection as a pure geometric drive.

3.2.1 Pure Micromotion and Pure Geometric Drive

In the decomposition (3.14), we notice two special families of drivings. In the caseAF = 0,
H = HF , meaning that the system is already static. The more interesting case is HF = 0.
In this case, H(t) = AF (t), which is a pure micromotion drive.
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This drive will generate only a micromotion evolution. To derive the general form of a
pure micromotion drive, we can compute

AF (t) = iṖP †, (3.18)

where P is a unitary operator which obeys the periodic constraint P (T + t) = P (t) and
P (0) = 1. We parametrize such unitary matrices and corresponding gauge potentials for
two and three level systems in Sec. 5.2 and Sec. 6.2.

From the Kato decomposition (3.16), we can obtain another interesting family of drives
– pure geometric drive. This decomposition will be important for constructing geometric
quantum gates, like the CZ gate in Sec. 7.3. This time, we set HK = 0. The Hamiltonian
now takes the form

H(t) = AK(t) + 0 = AF (t) +HF [t]. (3.19)

According to Floquet theorem, the evolution over one period takes the form

U(T, 0) = T exp

(
−i
∫ T

0

AK(t
′)dt′

)
= e−iTHF . (3.20)

On the other hand, evolution from an eigenstate by a Kato driving produces only Berry
phases:

γ(t) =

∫ t

0

ds⟨uF [s]|i∂s|uF [s]⟩, (3.21)

where |uF [t]⟩ are the eigenstates of the Floquet Hamiltonian. Over one period, γ = εFT .
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Chapter 4

Methods for Finding Gauge Potentials

This chapter gives us tools to derive or approximate the gauge potentials introduced
earlier. First, in Sec. 4.1, we introduce vector and star products within the su(n) Lie al-
gebra, a convenient formalism to manipulate commutators and solve for gauge potentials,
specifically when finding closed form of the Kato gauge potential in Sec. 5.1 and Sec. 6.4.

Then, Sec. 4.2 presents approximate methods for finding Aλ. We highlight the least
action principle approach by Sels and Polkovnikov [7], which variationally finds an
approximation to the adiabatic gauge potential by minimizing an action functional. In
Sec. 4.2.2 we present the modification that adapts the least action principle to Floquet
systems [2].

In Sec. 4.2.3, we delve into the specifics of computing the gradients in the least action
principle for a Fourier-type ansatz, equipping the reader with the ability to perform the
variational principle on their own. Eventually, in Sec. 4.2.3, we share some computational
tricks that can speed up the gradient descent process.

The key take-away is that even when an exact CD term is complicated, approximations
guided by the variational principles can provide workable shortcuts to adiabaticity.

4.1 Vector and Star Products

We introduce a vector notation [8] which can simplify the matrix calculations.

Each element X of an algebra g ⊂ gl(n) can be expanded in its basis λ1, . . . , λN as
X = x1λ1 + · · ·+ xNλN and represented as a vector x⃗ = (x1, . . . , xN)

T .

Although this section is valid in the general case, in the rest of the thesis, we will be
particularly concerned with the su(2) algebra whose basis will be the Pauli matrices
σ1, σ2, σ3 and the su(3) algebra where the basis the Gell-Mann matrices from Eq. (6.1).

The algebra can be characterized by its structure constants f and d which are defined
respectively by the commutation and anticommutation relations

[λa, λb] = 2ifabcλc,

{λa, λb} =
4

N
δab1+ 2dabcλc.

(4.1)
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To calculate the structure constants explicitly, we can use that Tr(λ2c) = 2 to get

fabc = −
i

4
Tr([λa, λb]λc),

dabc =
1

4
Tr({λa, λb}λc).

(4.2)

By defining a dot, star and cross products between vectors as

x⃗ · y⃗ = xcyc,

(x⃗ ⋆ y⃗)a = dabcxbyc,

(x⃗× y⃗)a = fabcxbyc,

(4.3)

we can now perform all matrix operations as vector operations:

[x, y] = xayb[λa, λb] = 2i(x⃗× y⃗) · λ⃗,

{x, y} = xayb{λa, λb} =
4

N
x⃗ · y⃗ 1+ 2(x⃗ ⋆ y⃗) · λ⃗,

(4.4)

where λ⃗ = (λ1, λ2, ...λn). The addition of matrices corresponds to vector addition, and
the matrix multiplication can be represented as XY = 1/2({X, Y }+ [X, Y ]).

In the SU(2) case, the anticommutator structure constants are zero, which simplifies the
algebra:

{σa, σb} = 2δab ⇒ dabc = 0⇒ {X, Y } = 2x⃗ · y⃗1. (4.5)

The vector notation will be particularly useful in Sections 5.1 and 6.4, where we use it to
find expressions for the Kato gauge potentials.

4.2 Approximate Gauge Potentials

In most quantum mechanical problems, finding the spectrum of the Hamiltonian is an-
alytically impossible, and even computationally difficult. Approximate methods allow
us to find the gauge potential without knowing the explicit unitary transformation that
would diagonalize the Hamiltonian.

4.2.1 Least Action Principle

We can use the idea from Eq. (2.13) to derive an expression for the commutator [A, H].
This time, after differentiating Eq. (2.11), we substitute the derivatives of ψn, ψm with
Eq. (2.32).

The derivative of ⟨ψm|H(t)|n⟩ gives

∂λ⟨ψm|H|ψn⟩ = ⟨∂λψm|H|n⟩+ ⟨ψm|H|∂λψn⟩+ ⟨ψm|Ḣ|n⟩
= ⟨ψm|iAλH|n⟩+ ⟨ψm| − iHAλ|n⟩+ ⟨ψm|Ḣ|n⟩
= ⟨ψm|i[Aλ, H] + Ḣ|ψn⟩

(4.6)

On the other hand,

⟨ψm|H|ψn⟩ = δmnEn ⇒ ∂λ⟨ψm|H|ψn⟩ = δmn∂λEn. (4.7)
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We can combine all components of (4.6) to a matrix equation:

Mλ = i[Aλ, H] + ∂λH, (4.8)

where
Mλ =

∑
n

∂λEn |ψn⟩ ⟨ψn| . (4.9)

The diagonal elements are generalized forces corresponding to different eigenstates.

Solving the equation
G(X ) = ∂λH + i[X , H] = −Mλ (4.10)

for X would give us X = Aλ. However, we can also use this equation to find Aλ varia-
tionally [9]. To do so, we minimize the Frobenius norm ||G(X )+M ||2 = Tr(G(X )+Mλ)

2.

Tr[(G+Mλ)
2] = Tr(G2) + Tr(M2

λ) + 2Tr(MλG), (4.11)

Tr(MλG) = Tr(Mλ∂H) + iTr(Mλ[X , H]) = −Tr(M2
λ), (4.12)

Tr[(G+Mλ)
2] = Tr[G2]− Tr[M2

λ ]. (4.13)

Therefore we only need to minimize the “action”

S = Tr[G2]. (4.14)

We can indeed call this function action, because its minimization leads to the the equa-
tions of motion:

δS

δX

∣∣∣∣∣
X=Aλ

= 0 ⇒ [H, ∂λH + i [Aλ, H]] = 0. (4.15)

4.2.2 Least Action Principle for Floquet Systems

Suppose we have a Floquet system. We know the Hamiltonian of the system H and we
want to find the Floquet Hamiltonian HF and the micromotion operator P . We remind
that during our analysis of Floquet systems, we always look at gauge potentials with
respect to time, so the parameter λ from Sec. 4.2.1 is now λ = t.

This time, P is generated by the Floquet gauge potential AF . We cannot use (4.10) to
find it variationally, because AF is the gauge potential to the unknown HF :

G(AF ) = ∂tHF + i[X , HF ] = −M = 0. (4.16)

Here, M = 0, because HF has constant eigenenergies. To rule out the unknown HF from
the above equation, we substitute H(t) = HF [t] +AF :

G(AF ) = ∂tH − ∂tAF + i[AF , H −AF ]

= −i[H,AF ] + ∂tH − ∂tAF ,
(4.17)

This is a known result, for example see [2].
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4.2.3 Variational Principle for Floquet Systems

We can use a variational ansatz X (α) to calculate S(G(X )). The optimal α∗ will satisfy
the equation

∂S

∂α

∣∣∣∣∣
α∗

= 0. (4.18)

To find a periodic gauge potential, we can use a periodic variational ansatz. The most
general periodic operator with angular frequency ω can be decomposed with Fourier
series, taking the form

X =

N0∑
m=1

∞∑
l=−∞

xlme
ilωtOm, (4.19)

where xlm are coefficients, while eilωt and On are the bases of the decomposition. The
Fourier basis’s l-th component eilωt is the l-th harmonic. The operator basis Om depends
on the dimensionality of the system. For a two level system, it consists of 1 and the Pauli
matrices (σx, σy, σz). For a three-level system, it is (1, λi), where λi are the Gell-Mann
matrices.

Computing G requires computing derivatives and commutators in the operator-Fourier
basis.

Derivatives can be calculated as

(∂tX)lm = iωlxlm. (4.20)

The commutator of matrices A and B with coefficients alm and blm is given by

[A,B]lm =
∑
j

∑
k

2ifjkm
∑
n

anjbl−n,k, (4.21)

where f are the structure constants for the operator basis.

The anticommutator for m ̸= 0 has the form

{A,B}lm =
∑
j

∑
k

2djkm
∑
n

anjbl−n,k + 2
∑
n

(anmbl−n,0 + an0bl−n,m) (4.22)

and for m = 0,

{A,B}l0 =
4

N

∑
j

∑
n

anjbl−n,j + 2
∑
n

an0bl−n,0. (4.23)

Periodic kick operator

The Floquet theorem requires the micromotion operator, generated by AF , to be peri-
odic, P (t + T ) = P (t). We will use Fourier-type ansatz for the “kick operator” K(t),
corresponding to the matrix log of the periodic micromotion operator:

P (t) = eiK(t). (4.24)
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This guarantees periodic micromotion. We should note that taking the matrix log can
cause discontinuity of K, e.g.

P (t) = exp

(
i
2kπt

T
n⃗ · λ⃗

)
(4.25)

is periodic for any k ∈ Z, |n⃗| = 1. When searching for K using finite harmonics, we
cannot find discontinuous or non-periodic kick operators which would exponentiate to P .
However, such whole number turns can be transferred from the micromotion operator to
the Floquet Hamiltonian:

U = P (t)e−itHF = P ′(t)e−itH′
F . (4.26)

Calculating the gradients

We begin with the ansatz

K =

N0∑
m=1

N∑
l=N

kmle
ilωtOm. (4.27)

The associated gauge potential can be computed as

AF = iṖP † = i
d

dt
eiK(t)e−iK(t)

= i

(
iK̇(t)− 1

2!
[K, K̇]− i

3!
[K, [K, K̇]] + ...

)
.

(4.28)

To simplify such nested commutator expressions, we use the notation

adXY = [X, Y ], adn
XY = [X, adn−1

X Y ], (4.29)

giving

A = −
∞∑
n=0

in

(n+ 1)!
adn

KK̇. (4.30)

Next, G has the form

G(AF ) = i[H,AF ]− ∂tH + ∂tAF = 0 (4.31)

and we try to minimize the cost function

S = TrG2. (4.32)

To find the minimum of the cost function with respect to the variational parameters knl
using gradient descent, we need to compute its derivative.

∂knl
S = ∂knl

TrG2 = 2TrG∂knl
G

= 2TrG (i[H, ∂knl
A] + ∂knl

∂tA) .
(4.33)

To compute ∂knl
A, we first need to figure out the derivative of a nested commutator:
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∂λad
n
XY = [∂λX, ad

n−1
X Y ] + [X, ∂λad

n−1
X Y ]

=
n−1∑
m=0

adm
X [∂λX, ad

n−1−m
X Y ] + adn

X∂λY.
(4.34)

With this rule for differentiating nested commutators, the derivative of A becomes

∂knl
A = −

∞∑
n=0

in

(n+ 1)!

(
n−1∑
m=0

adm
K [∂knl

K, adn−1−m
K K̇] + adn

K∂knl
K̇

)
. (4.35)

Differentiating the kick operator itself yields

∂knl
K = enl, ∂knl

K̇ = −iωlenl, (4.36)

where enl is a matrix whose only non-zero element is (enl)nl = 1is zero everywhere except
the n, l-th element, which is 1. The final expression for the derivatives of A,

∂kml
A = −

∞∑
n=0

in

(n+ 1)!

(
n−1∑
k=0

adk
K [eml, ad

n−1−k
K K̇]− iωladn

Kenl

)
, (4.37)

can be plugged in (4.33) to compute the derivative of S. Then, finding the minimum of
S can be done with gradient descent.

Modified Gradient Descent

To finalize the algorithm we use to find the gauge potentials of various systems (Sec. 5.3,
5.4, 7.1), we had to enhance the gradient descent algorithm. The problem is that calcu-
lating a single gradient using (4.33) is a computationally costly task. We had to minimize
the number of calculations of the gradient, instead adding auxiliary simpler checks. The
end result is a gradient descent Algorithm 1.

First, we adapt the step size η by estimating the second derivative in the direction of the
descent. Then, even if the second derivative is negative, we take a step. We do not calcu-
late any gradients until we descended away from the area with negative second derivative.
Finally, after calculating a gradient, we use momentum-based gradient descent. This helps
the algorithm to converge faster, because it will not get stuck oscillating along a convex
direction.
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Algorithm 1 Pseudocode for the modified gradient descent
1: initialize K ← H
2: initial step size η = 3 · 10−4

3: initial gradient g = ∇KS
4: for each episode do
5: S0 = S(K), S1 = S(K − ηg), S2 = S(K − 2ηg) ▷ find the cost after moving along the

gradient
6: η′ = η(1 + (S2 − S0)/(4S1 − 2S2 − S0)) ▷ estimate the best step size with Newton’s

method
7: if S1 > S2 then ▷ taking one step does not lower the cost
8: η ← η/2 ▷ lower the step size
9: else if η′ < 0 then ▷ negative second derivative

10: K ← K − ηg
11: η ← 2η
12: else if η′ < η/2 then ▷ the step size is too large
13: η ← η/2
14: else if η′ > 2η then ▷ the step size is too small
15: η ← η/2
16: else
17: K ← K − (η + η′)g/2
18: g ← 0.9g +∇KS ▷ gradient descent with momentum
19: η ← η′

20: end if
21: end for
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Chapter 5

Counter-Diabatic Driving for
Periodically Driven Two Level Systems

In this chapter, we apply the CD driving framework to the simplest non-trivial case:
two-level systems. Despite their relatively simple dynamics, these systems are interesting
on their own – such systems are qubits and the spin-1/2 particles. We derive the closed-
form expression for the Kato gauge potential starting from the variational principle, and
a parametric form of the AGP for a generic traceless two-level Hamiltonian.

In this chapter, we also perform numerical experiments. We use the variational method
to find gauge potentials for particular periodically driven 2LS. The systems are a spin-1/2
particle in magneetic field, interacting with either a circularly, or a linearly polarized field.
The circular field problem is analytically solvable. We present the analytical solution and
compare it with the variational gauge potential. For the linear drive, we confirm the
accuracy of the variational gauge potential with another numerical method. This paves
the way to Chapter 6 and 7, where we tackle the richer three-level case.

5.1 Kato Gauge Potential

We find the closed form expression of the Kato gauge potential of a two-level system
with traceless Hamiltonian by taking advantage of the variational principle discussed in
Sec. 4.2.3. The Hamiltonian can take the form

H = h⃗ · σ⃗. (5.1)

We are looking for a gauge potential of the form

A = a⃗ · σ⃗. (5.2)

The Kato potential minimizes S = TrG2 (see eq. (4.14)), where

G = ∂λH + i[A, H]. (5.3)

22



Using vector notation,

[A, H] = 2i(⃗a× h⃗) · σ⃗, (5.4)

G2
λ = ((∂λh⃗− 2(⃗a× h⃗)) · σ⃗)2

= (∂λh⃗− 2(⃗a× h⃗))21, (5.5)

S = Tr(G2
λ) = 2(∂λh⃗− 2(⃗a× h⃗))2, (5.6)

∇a⃗S = 4(∂λh⃗− 2(⃗a× h⃗)) · (−2∇a⃗(⃗a× h⃗))
= −8(∂λh⃗− 2(⃗a× h⃗))× h⃗ = 0. (5.7)

In order for the vector product to be zero, either h⃗ = 0, or ∂λh⃗− 2a⃗× h⃗ is parallel to h⃗.
Let

∂λh⃗− 2a⃗× h⃗ = kh⃗. (5.8)

We can find k by dot multiplying the equation by h⃗ and using (⃗a× h⃗) · h⃗ = 0:

(∂λh⃗) · h⃗ = kh2, (5.9)

a⃗× h⃗ =
∂λh⃗h

2 − (∂λh⃗ · h⃗)⃗h
2h2

, (5.10)

a⃗× h⃗ =
(⃗h× ∂λh⃗)× h⃗

2h2
, (5.11)

a⃗ =
h⃗× ∂λh⃗
2h2

. (5.12)

The last step technically gives a⃗ up to addition with const·h⃗. However, the Kato potential
must also satisfy the condition that its diagonal elements are zero in eigenbasis ofH. That
restricts a⃗ to Eq. (5.12).

5.2 Adiabatic Gauge Potential Parametrization

The general traceless two-level system Hamiltonian has the form

H(t) = h⃗(t) · σ⃗ = h(t)n⃗(t)σ⃗, (5.13)

where the normal unitary vector n⃗ can be decomposed in spherical coordinates,

n⃗(t) =

sin θ(t) cosϕ(t)
sin θ(t) sinϕ(t)

cosϕ(t)

 . (5.14)

We can diagonalize the Hamiltonian by rotating with angle ϕ along the z-axis,

R†
z(n⃗ · σ⃗)Rz = cos θσz + sin θ(cos2 ϕσx − cosϕ sinϕσy + sinϕ cosϕσy + sin2 ϕσx)

= cos θσz + sin θσx,
(5.15)

then rotating with angle θ along the y-axis:

R†
yR

†
z(n⃗ · σ⃗)RzRy = cos2 θσz − cos θ sin θσx + sin θ cos θσx + sin2 θσz = σz. (5.16)
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We calculate the gauge potential corresponding to the transformation U = RzRy:

Ãt = iU †U̇ = iU †∂θUθ̇ + iU †∂ϕUϕ̇ = θ̇Ãθ + ϕ̇Ãϕ, (5.17)

Ãϕ = iR†
yR

†
z∂ϕRzRy (5.18)

= iR†
yR

†
z

(
− i
2

)
Rzσz

=
1

2
R†

yσzRy =
1

2
(cos θσz − sin θσx),

Aϕ = UÃϕU
† (5.19)

= RzRy

(
1

2
R†

yσzRy

)
R†

yR
†
z

=
1

2
RzσzR

†
z =

σz
2
,

Ãθ = iR†
yR

†
zRz∂θRy = iR†

y∂θRy = σy/2, (5.20)

Aθ =
1

2
RzRyσyR

†
yR

†
z =

1

2
RzσyR

†
z =

1

2
(cosϕσy − sinϕσx). (5.21)

We have used equations (A.3) and (A.5) about the rotation matrices from App. A.

Note that the although the operator U = RzRy is unitary, it adds a global phase to the
wave function:

Rz(ϕ)Ry(θ) = e−iϕ
2
σze−i θ

2
σy

=

(
cos

(
ϕ

2

)
1− i sin

(
ϕ

2

)
σz

)(
cos

(
θ

2

)
1− i sin

(
θ

2

)
σy

)
=

(
cos(ϕ/2)− i sin(ϕ/2) 0

0 cos(ϕ/2) + i sin(ϕ/2)

)(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
= e−iϕ/2

(
cos(θ/2) − sin(θ/2)
eiϕ sin(θ/2) eiϕ cos(θ/2)

)
.

(5.22)

We note that the eigenstates of the general Hamiltonian (5.13) are defined up to a global
phase:

|ψinstantaneous(t)⟩ = eiα
(

cos θ
2

eiϕ sin θ
2 .

)
(5.23)

In the current convention U = RzRy, the eigenstates accumulate a global phase

α(t) = e−iϕ
2 . (5.24)

To remove the global phase, we can use the transformation matrix

U ′ =

(
cos(θ/2) − sin(θ/2)
eiϕ sin(θ/2) eiϕ cos(θ/2)

)
. (5.25)
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Using U ′ instead of U affects the ϕ-component of the gauge potential – we denote the
new AGP A′

ϕ and the new AGP in the rotating frame is respectively Ã′
ϕ:

Ã′
ϕ = iU †e−iϕ/2∂ϕ(e

iϕ/2U)

= Ãϕ + iU †e−iϕ/2 i

2
eiϕ/2U

=
1

2
(cos θσz − sin θσx)−

1

2
(5.26)

A′
ϕ =

σz
2
− 1

2
. (5.27)

5.3 Example: Circular Drive

Now, we turn to turn to some particular two-level systems, where we test the variational
approach from Sec. 4.2.3. We begin with a theoretically solvable quantum mechanical
problem.

Problem Setup

Consider the two level system

H(t) =
∆

2
σz +

g

2
(cosωtσx + sinωtσy) , (5.28)

which has energy gap ∆ and is interacting with a circularly polarized field of strength g.
This is one of the few systems that can be solved exactly analytically.

Theoretical Solution

The Hamiltonian rotates with angular frequency ω around the σz-axis. To make it static,
we rotate (A.1) the reference frame along the z axis:

Rz(ω(t− t0)) = e−iω/2(t−t0)σz , (5.29)

turning the Hamiltonian to

Hrot[t0] = R†
zHRz − iR†

z∂tRz

=
∆

2
σz +

g

2
(cos(ωt0)σx + sin(ωt0)σy)−

ω

2
σz

=
ε

2
n̂(ωt0, β) · σ⃗,

(5.30)

where
ε =

√
(∆− ω)2 + g2, (5.31)

n̂(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ) (5.32)

and
sin β =

g

ε
. (5.33)
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This Hamiltonian explodes at ω →∞. To make a suitable Floquet Hamiltonian, we can
represent the evolution as

U(t; t0) = Rz(ω(t− t0))e−(t−t0)Hrot[t0]R†
z(0)

= Rz(ω(t− t0))(t, t0)e−iω/2(t−t0)n̂(ωt;β̂)·σ⃗e−i(t−t0)(1−ω
ε
)Hrot[t0],

(5.34)

giving us a micromotion operator

PFM = e−iω/2(t−t0)σze−iω/2(t−t0)n̂(ωt;β̂)·σ⃗ (5.35)

and a Floquet Hamiltonian

HFM [t0] = (1− ω

ε
)Hrot[t0] =

=
1

2
(ε− ω)n̂(ωt0; β̂) · σ⃗,

(5.36)

which corresponds to the Floquet-Magnus expansion at ω →∞.

PFM(t; t0) = Prot(t, t0)e
−iω/2(t−t0)n̂(ωt;β̂)·s⃗ (5.37)

We can calculate the associated Floquet gauge potential:

AU
FM(t; t0) = (i∂tPFM(t; t0))P

†
FM(t; t0)

=
ω

2
σz +

ω

2
n̂(ωt; β̂) · σ⃗. (5.38)

Variational approach

We can find the Floquet Hamiltonan using the variational principle from Sec. 4.2.3.

We are looking for a kick operator K, such that P = eiK is the micromotion operator.
K is parametrized as

K =

N0∑
m=1

N∑
l=N

kmle
ilωtσm, (5.39)

where kml are the variational coefficients. We make some initial guess for the kick operator
K. Then, we minimize the action (4.14) using gradient descent, as discussed in Sec. 4.2.
After finding the optimal kick operator, we use Eq. (4.28) to find its associated Floquet
gauge potential. Then, the Floquet Hamiltonian is simply

HF [t] = H(t)−AF (t). (5.40)

The variationally-obtained Floquet Hamiltonan is plotted with a dashed line on Fig. 5.1
a). It matches with the theoretical solution (5.36), plotted with a solid line. As we can
see, the variational method provides a very high-fidelity AGP.

5.4 Example: Linear Drive

We have tested the variational Floquet AGP in a system with unknown theoretical solu-
tion.

26



0.0 0.2 0.4 0.6 0.8 1.0
t/T

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3
a)

0.0 0.2 0.4 0.6 0.8 1.0
t/T

−0.50

−0.25

0.00

0.25

0.50

b)
1
2Tr(HF · σx)
1
2Tr(HF · σy)
1
2Tr(HF · σz)

Figure 5.1: Components of the Floquet Hamiltonian in the Pauli basis for: a) circularly driven
system in Sec. 5.3. Found with variational method (solid line) vs theoretical solution (dashed
line), g/∆ = 0.5, ω/∆ =

√
2; b) linearly driven system in Sec. 5.4. Found with variational

method (solid line) vs numerical integration (dashed line), ω/∆ = 1, g/∆ = 0.5. Number of
harmonics used: 3. In both cases, the variational method obtains a high-fidelity counter-diabatic
drive.

Consider the linearly driven two level system

H(t) =
∆

2
σz +

g

2
(1 + 2 cosωt)σx, (5.41)

where ∆ is the energy gap and g is the strength of interaction with the linearly polarized
field.

We obtain the Floquet Hamiltonian using the variation principle by exactly the same
method as in Sec. 5.3, plotted as a dashed line in Fig. 5.1 b).

Apart of the fact that the variational algorithm converged (S ∼ 10−8), we can verify the
obtained Floquet Hamiltonian by finding it numerically in a more direct way.

First, we numerically integrate Schrodinger’s equation

i∂t |ψ⟩ = H |ψ⟩ (5.42)

for one period T = 2π/ω, starting at |0⟩ and |1⟩. This gives us the components of the
Floquet unitary UF . Then, the Floquet Hamiltonian satisfies

e−iTHF = UF . (5.43)

To find HF , we take the matrix logarithm of UF numerically.

However, the matrix logarithm is not uniquely defined. The Floquet Hamiltonian, re-
spectively, has undefined energy levels. Taking the principal logarithm returns a Floquet
Hamiltonain HF0 with energy levels inside the Floquet zone. Then, any Hamiltonian in
the form

HF = HF0 + ωRdiag(k1, ...kn)R
†, (5.44)

where R is a unitary matrix diagonalizing HF0, k1, ...kn ∈ Z, n = dimH,
∑
ki = 0 is a

valid Floquet Hamiltonian:

UF = e−iTHF0 = e−iTHF0e−i2πRdiag(k1,...kn)R†
= e−iTHF (5.45)
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In our case, n = 2, it turns out that the variational solution matches the Hamiltonian,
obtained by adding k1 = 1 and k2 = −1 to the principal matrix logarithm. The resulting
Floquet Hamiltonian is shown with a solid line in Fig. 5.1 b).
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Chapter 6

Three Level Systems

In this chapter, we explore part of the theory behind three level systems. Such systems
arise naturally in many fields of quantum physics. One of the most common examples of
such system is the lambda system that we address in Sec. 7.1.

To describe the state of a three level system, we need three dimensional kets. The
evolution of such systems is given by a 3× 3 unitary matrix, and as the global phase of
the quantum state is irrelevant, the only physically meaningful evolution operators are
from the SU(3) group – unitary, and with determinant 1.

The Hamiltonians governing the evolution of a general three level system are 3× 3 Her-
mitian matrices. In terms of the Hamiltonian, the non-physical global phase is acquired
by evolving with a constant Hamiltonian – adding a constant energy to the whole system.
If we discard it, we are left with traceless Hamiltonians. They are elements of the su(3)
algebra and generate the SU(3) group of evolution operators.

To study the gauge potentials in three level systems, we need to understrand the structure
of SU(3).

6.1 Structure of the SU(3) Group

The most commonly used basis of the su(3) algebra is the Gell-Mann matrices

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0


λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0


λ6 =

0 0 0
0 0 1
0 1 0

 λ7 =

0 0 0
0 0 −i
0 i 0


λ8 =

1√
3

1 0 0
0 1 0
0 0 −2



(6.1)
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Subgroup Generators Elements of the subgroup

SU(2) λ1, λ2, λ3

 u 0
0

0 0 1

, u ∈ SU(2)

SU(2) λ4, λ5, H1

 0
0 1 0

0 u

, u ∈ SU(2)

SU(2) λ6, λ7, H2

 1 0 0

0 u
0

, u ∈ SU(2)

U(2) λ1, λ2, λ3, λ8

 u 0
0

0 0 (detu)−1

, u ∈ U(2)

SO(3) λ2, λ5, λ7 X(α)Y (β)Z(γ) 1

U(1) H1

eiθ1 0 0
0 1 0
0 0 e−iθ1


U(1)× U(1) H1, H2

eiθ1 0 0
0 eiθ2 0
0 0 e−iθ1−iθ2


Table 6.1: A non-exhaustive list of SU(3) subgroups and their generators and parameterizations.
Generators include the Gell-Mann matrices (6.1) and H1, H2 from (6.2).

One can recognize that λ1, λ2, λ3 generate a SU(2) subgroup of SU(3) – their upper
2× 2 blocks are exactly the Pauli matrices σ1, σ2, σ3. We can find infinitely many SU(2)
subgroups by rotating this set with arbitrary SU(3) transformations. In particular, using
the linear combinations

H1 =

√
3

2
λ8 +

1

2
λ3 =

1 0 0
0 0 0
0 0 −1

 ,

H2 =

√
3

2
λ8 −

1

2
λ3 =

0 0 0
0 1 0
0 0 −1

 ,

(6.2)

we get alternative SU(2) subgroups listed in Table 6.1. The SO(3) subgroup can be
generated by λ2, λ5 and λ7.

The U(2) and U(1) × U(1) subgroups and its respective coset spaces SU(3)/U(2) and
SU(3)/U(1)×U(1) are of special interest to us. In Sec. 6.1.1, we will see that the orbits
of a Hamiltonian (6.22) span one of the coset spaces.

The U(1)× U(1) group is generated by H1 and H2. We can see that

eiθ1H1eiθ2H2 =

eiθ1 0 0
0 eiθ2 0
0 0 e−iθ1−iθ2

 , (6.3)

1The SO(3) rotations are X =

 cosα sinα 0
− sinα cosα 0

0 0 1

, Y =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

, Z =

1 0 0
0 cos γ sin γ
0 − sin γ cos γ

.
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which gives us a parametrization of U(1) × U(1). Note that H1 and H2 are linear com-
binations of λ3 and λ8. This means that λ3 and λ8 also serve as generators of the same
subgroup.

To construct the U(2) subgroup, we use the fact that the 2 × 2 matrices u ∈ U(2) are
generated by σ1, σ2, σ3,1. Suppose

u = eiθ01eiθ1σ1eiθ2σ2eiθ3σ3 . (6.4)

Since det(eiθiσi) = 1, the determinant of u is

detu = e2iθ0 . (6.5)

In SU(3), λ1, λ2, λ3 contain σ1, σ2, σ3 respectively in their upper 2 × 2 block. If we add
λ8, whose upper 2× 2 block is proportional to the identity matrix, we get

eiθ0
√
3λ8eiθ1λ1eiθ2λ2eiθ3λ3 =

u 0
0

0 0 e−2iθ0

 =

u 0
0

0 0 (detu)−1

 . (6.6)

By construction, these matrices are in SU(3). Also, there is a direct correspondence
between matrices of this form and matrices u ∈ U(2), satisfying the same group relations.
Therefore, these matrices, generated by λ1, λ2, λ3, λ8, are indeed a valid representation of
U(2) ⊂ SU(3).

Cartan decomposition

To navigate in the SU(3) group, we would benefit from a complete parametrization
of its elements. This can be done by a Cartan decomposition [10]. The subalgebra
k = {λ1, λ2, λ3, λ8} and its orthogonal complement p = {λ4, λ5, λ6, λ7} constitute a Cartan
pair:

[k1, k2] ∈ k ∀k1, k2 ∈ k,

[p1, p2] ∈ k ∀p1, p2 ∈ p,

[k, p] ∈ p ∀k ∈ k, p ∈ p.

(6.7)

This allows the decomposition
SU(3) = KAK, (6.8)

where K is the U(2) subgroup exp(k) and A = exp(a), where a is the maximal Abelian
subalgebra of p. The algebra a is one dimensional and we can chose a to have a basis –
one element of p we want, for example λ5:

A = {eiλ5θ : θ ∈ [0, 2π)}. (6.9)

The subgroup K can itself be decomposed as

K = {eiλ3αeiλ2βeiλ3γeiλ8ϕ : α, β, γ, ϕ ∈ [0, 2π)}, (6.10)

which is the Euler angle decomposition of SU(2) plus a rotation with respect to λ8, which
commutates with the whole SU(2) subgroup. As the SU(3) group is 8-dimensional, one
of the λ8-rotations is redundant. This leaves us with the following parametrization of
SU(3):

U(α, β, γ, θ, a, b, c, ϕ) = eiλ3αeiλ2βeiλ3γeiλ5θeiλ3aeiλ2beiλ3ceiλ8ϕ. (6.11)
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Coset spaces

Starting with (6.11), we can parametrize coset spaces by removing the respective sub-
groups.

In particular, to get the coset space I = SU(3)/U(1) × U(1), we need to remove a
U(1)× U(1) subgroup (6.3). If we parametrize the subgroup as eiλ3ceiλ8ϕ, the remaining
coset space takes the form

UI = eiλ3αeiλ2βeiλ3γeiλ5θeiλ3aeiλ2b. (6.12)

We are also interested in the coset space R = SU(3)/U(2). Removing as U(2) sub-
group (6.10) leaves us with

UR = eiλ3αeiλ2βeiλ3γeiλ5θ. (6.13)

Casimir invariants

An important characteristic of the su(3) algebra is its Casimir invariants, which provide
us with conserved quantities.

All semisimple Lie algebras [11] – including all subalgebras of sl(n) have a quadratic
Casimir. In the case of su(3), the quantity

C2 =
8∑

i=1

λ2i (6.14)

indeed commutes with all elements of su(3). This makes the bilinear form

B(X, Y ) =
8∑

i=1

xiyi, (6.15)

invariant, where xi and yj are the components of X and Y in the Gell-Mann basis.

B(X, Y ) =
1

2
Tr(X, Y ) = x⃗ · y⃗, (6.16)

where we have used the notations from Sec. 4.1. The “dot” product indeed plays the
role of a scalar product. It stays invariant under any rotation U ∈ SU(3). If X and Y
transform to

X̃ = UXU−1, Ỹ = UY U−1, (6.17)

the bilinear form will have the same value:

B(X̃, Ỹ ) = B(XY ). (6.18)

In particular, any Hamiltonian H undergoing a unitary transformation has an invariant
“norm” h =

√
h⃗2.

One can also recognize the form as proportional to the invariant Killing form [12]

B(X, Y ) = Tr(ad(X) ◦ ad(Y )) = 6Tr(XY ). (6.19)
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2D orbit

3D rotation

~h Û

Figure 6.1: In 3D space, general rotations depend on three parameters, but a vector undergoing
such rotation is restricted to a two dimensional surface.

The su(3) algebra is also equipped with a cubic Casimir invariant

C3 =
∑
i,j,k

dabcλaλbλc, (6.20)

corresponding to a trilinear invariant form

T (X, Y, Z) =
8∑

a,b,c=1

dabcxaybzc = x⃗ · (y⃗ ⋆ z⃗). (6.21)

In particular, the “cubic norm” h⃗ · h⃗ ⋆ h⃗ of any Hamiltonian stays invariant under any
unitary transformation.

Those two restrictions point to the fact that a Hamiltonian undergoing a unitary trans-
formation cannot span the full eight-dimensional space. Instead, it stays on a surface,
called orbit, which is at most six dimensional.

6.1.1 Orbits

The SU(3) group is 8-dimensional. However, the Hamiltonian under arbitrary SU(3)
transformations does not explore the full 8D space. Instead, it stays within a lower-
dimensional subspace called orbit. [13] This is similar to the fact that, by rotating a
particular 3D vector, it can only orbit 2D space, as illustrated in Fig. 6.1.

The orbit of a Hamiltonian in vector form (as an 8-dimensional vector h⃗) is defined as
the set

{h⃗′|⃗h′ · λ⃗ = U †h⃗ · λ⃗U, U ∈ SU(3)} (6.22)

of the Hamiltonians acquired after transforming h⃗ · λ⃗ with any possible SU(3) transfor-
mation U . Although U in general is eight dimensional, the orbits are a subspace of the
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su(3) algebra, which can be either six-dimensional or four-dimensional, as we will see
later.

The concept of orbits is useful as it can simplify the computational analysis. Consider
a Hamiltonian with time-independent eigenenergies. For example, this is the case for a
Floquet Hamiltonian, whose quasienergies do not depend on time. Suppose the Floquet
Hamiltonian always lies in a six-dimensional space. To transform it to a time-independent
matrix, we need a transformation depending on only six parameters. The AGP corre-
sponding to such transformation depends on only six parameters as well. Therefore,
when looking for an AGP associated with our Hamiltonian, we can restrict our search to
a subspace of all possible gauge potentials requiring fewer than eight parameters. Such
parametrization is found in Sec. 6.3.

To find the structure of the orbits more precisely, we can represent each orbit with its
diagonal element. Indeed, for each Hamiltonian, there exists a matrix U that diagonalizes
it. Therefore, there is a diagonal Hamiltonian in each orbit. Let it be h⃗ = hn⃗, where
|n⃗| = 1. The diagonal matrix n⃗ · λ⃗ has only λ3 and λ8 components, so we can write n⃗ · λ⃗
as [13]

n⃗ · λ⃗ = cos θλ3 + sin θλ8

= diag

(
cos θ +

sin θ√
3
,− cos θ +

sin θ√
3
,− 2√

3
sin θ

) (6.23)

The special cases θ = π/2 and θ = π/6 respectively correspond to orbits of degenerate
Hamiltonians

n⃗ · λ⃗ = diag

(
1√
3
,
1√
3
,− 2√

3

)
and n⃗ · λ⃗ = diag

(
2√
3
,− 1√

3
,− 1√

3

)
. (6.24)

Let us first look at the generic case θ ∈ (π/6, π/2). We start by parametrizing U † ∈ SU(3)
with the Cartan decomposition (6.11). The subgroup U(1) × U(1) = {eiλ3ceiλ8ϕ} is the
centralizer of the diagonal Hamiltonian, because it commutes with λ3 and λ8:

eiλ3ceiλ8ϕHe−iλ8ϕe−iλ3c = H. (6.25)

After removing these rotations as redundant, we are left with exactly (6.12), which stays
inside the six dimensional coset space I = SU(3)/U(1) × U(1). Finally, the orbit of
H is isomorphic to U ∈ SU(3)/U(1)× U(1) (each element of the orbit corresponds to a
matrix in the form (6.12)).

We now turn our attention to the degenerate orbits. If θ = π/2, n⃗ · λ⃗ = λ8, which
commutes with the whole U(2) group generated by λ1, λ2, λ3, λ8. If we parametrize U
in the same way as before, we can remove the whole rotation

eiλ3aeiλ2beiλ3ceiλ8ϕHe−iλ2be−iλ3ae−iλ8ϕe−iλ3c = H, (6.26)

leaving us with exactly (6.13), which are the elements of the four dimensional coset space
R = SU(3)/U(2).

The other degenerate orbit θ = π/6 has the same algebraic structure as θ = π/2 – the orbit
is isomorphic to SU(3)/U(2). To get a parametrization of U without any redundancies,
we will change our initial parametrization with

U = eiH2αeiλ7βeiH2γe−iλ2θeiH2aeiλ7beiH2cei(−λ8/2−λ3

√
3/2)ϕ, (6.27)

34



where we have made permutations (1, 2, 3) → (3, 1, 2) to the rows and columns of all
matrices in (6.11).

In this decomposition, λ7, H2 and λ8/2 + λ3
√
3/2 commute with n⃗ · λ⃗, and dropping the

corresponding exponentials gives us the four-parameter rotation

UR = eiH2αeiλ7βeiH2γe−iλ2θ. (6.28)

6.2 Adiabatic Gauge Potential Parametrization

In the quest of finding gauge potentials for particular systems, it is useful to know the
most general form such gauge potential can take. For example, if we try to find the gauge
potential variationally, we can restrict our ansatz only to the set of theoretically possible
gauge potentials. When seeking such variational AGP, we need it to be parametrized
correctly, so that we can variationally search for the values of the paraemters.

To get a parametrization of the gauge potential, we take advantage of the Cartan decom-
position from Eq. (6.11). Its corresponding AGP is

A = iU̇U † = α̇Aα + β̇Aβ + γ̇Aγ + θ̇Aθ + ȧAa + ḃAb + ċAc + ϕ̇Aϕ. (6.29)

We list the expressions for each component of the gauge potential. To make the expres-
sions more compact, we define a function

ρij(x) = cos xλi + sinxλj, (6.30)

Aα =− λ3, (6.31)
Aβ =− ρ21(2α), (6.32)
Aγ =sin 2βρ12(−2α)− cos 2βλ3, (6.33)
Aθ =− cos βρ54(α + γ) + sin βρ76(−α + γ), (6.34)

Aa =
1

2
((1 + cos2 θ)Aγ

+ sin 2θ cos βρ45(−α− γ)
− sin 2θ sin βρ67(α− γ)
+
√
3 sin2 θλ8),

Ab =− cos θ sin(2(a+ γ))(cos 2βρ12(−2α) + sin 2βλ3) (6.35)
− cos θ cos(2(a+ γ))ρ21(2α)

− sin θ sin βρ54(−2a+ α− γ)
− sin θ cos βρ76(−2a− α− γ),

Ac =cos 2bAa + sin 2bAb

(
a← a− π

4

)
(6.36)

Aϕ =
√
3Aa −

√
3Aγ − λ8. (6.37)

We also provide the full matrix form of the gauge potential components in App. B.
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The expression we obtained also represents the most general form of a pure micromotion
drive. This is a class of drives in Floquet theory discussed in Sec. 3.2.1. A Floquet
system driven only by the gauge potential A has Floquet Hamiltonian HF = 0. Such
systems do not absorb energy from the drive, preventing heating and maintaining minimal
nonequilibrium properties [6].

6.3 Adiabatic Gauge Parametrization along Orbits

We can take advantage of the orbits discussed in Sec. 6.1.1 to simplify our AGP parametriza-
tion. If a Hamiltonian has constant eigenenergies (e.g., the Floquet Hamiltonian), it lives
in a four or six dimensional subspace of the 8-dimensional su(3) . To find the appropri-
ate couterdiabatic drive, we can restrict our search to a subspace of all possible gauge
potentials as well.

First, consider the case where the Hamiltonian is non-degenerate. It lives in the I =
SU(3)/U(1)× U(1) orbit. This means, as discussed in Sec. 6.1.1, it can be diagonalized
by the six-parameter rotation matrix

UI = eiλ3αeiλ2βeiλ3γeiλ5θeiλ3aeiλ2b. (6.38)

Its corresponding AGP lacks the complicated Ac and Aϕ components of the general
case AGP from Eq. (6.29), taking the form

AI = iU̇U † = α̇Aα + β̇Aβ + γ̇Aγ + θ̇Aθ + ȧAa + ḃAb, (6.39)

where each component satisfies Eq. (6.31) – (6.35).

Now let us consider a Hamiltonian in the degenerate orbit R = SU(3)/U(2). In the case
θ = π/2 from Sec. 6.1.1, the rotation matrix reduces to

UR = eiλ3αeiλ2βeiλ3γeiλ5θ, (6.40)

meaning that the AGP simplifies to

AR = iU̇U † = α̇Aα + β̇Aβ + γ̇Aγ + θ̇Aθ. (6.41)

Again Aα, Aβ, Aγ, Aθ are the same potentials as (6.31) – (6.34). As we see, we now need
only four parameters to parametrize the AGP.

For the other degenerate orbit θ = π/6, everything is analogous up to a permutation of
rows and columns of all the matrices:

UR = eiH2αeiλ7βeiH2γe−iλ2θ, (6.42)

leading to
AR = iU̇U † = α̇AαR2 + β̇AβR2 + γ̇AγR2 + θ̇AθR2, (6.43)

where (6.31) – (6.34) undergo permutations of their rows and columns, leading to

Aα =−H2, (6.44)
Aβ =− ρ76(2α), (6.45)
Aγ =sin 2βρ67(−2α)− cos 2βH2, (6.46)
Aθ =cos βρ21(−α− γ)− sin βρ54(α− γ). (6.47)
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6.4 Kato Gauge Potential

In this section, we use the vector notation from Sec. 4.1 to find a direct expression for
the Kato gauge potential.

The formula we obtain can be useful even if we want to obtain an arbitrary AGP, as
it is a completely different type of expression from the parametrization in Sec. 6.2. An
arbitrary gauge AGP can be obtained by adding an operator that commutates with the
Hamiltonian.

However, the Kato potential itself is important, as it offers geometric driving. It generates
Berry phases, and in the case of degenerate system – holonomies, which are present in
the adiabatic evolution.

We assume a three-level system with traceless Hamiltonian. For the formula to work, we
need to know the eigenvalues (energies) of the Hamiltonian E1,2,3 in advance.

Our formula relies on the projector-based definition of the Kato AGP (2.37), so we start
by turning the projectors to a vector form. The projectors can be expressed [8] as

Πα =
1

3E2
α − C2

2

((
E2

α −
C2

2

)
13 + EαH +H2

)
, (6.48)

where

Cn ≡ Tr(Hn) =
N∑

α=1

En
α (6.49)

is the n-th Casimir invariant.

Next, we turn H = h⃗ · λ⃗, and express H2 as a star product:

H2 =
1

2
{H,H} = 2

3
h⃗ · h⃗+ (⃗h ⋆ h⃗) · λ⃗ =

2

3
C2 + (⃗h ⋆ h⃗) · λ⃗. (6.50)

The projector now takes the form [8]

Πα =
1

3
13 +

1

2
b⃗α · λ⃗, (6.51)

where
b⃗α =

2

3E2
α − C2

2

(Eαh⃗+ h⃗ ⋆ h⃗). (6.52)

In vector notation, C2 = 2h⃗ · h⃗.

We can first express AK in terms of b⃗ and ˙⃗
b:

AK =
1

2

∑
α

[iΠ̇α,Πα]

=
i

2

∑
α

[
1

2
˙⃗
bα · λ⃗,

1

3
13 +

1

2
b⃗α · λ⃗

]

= −
∑
α

˙⃗
bα
2
× b⃗α

2
.

(6.53)
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Next, we compute ˙⃗
b:

˙⃗
bα =

2(
3E2

α − C2

2

)2
((

6EαĖα −
Ċ2

2

)(
Eαh⃗+ h⃗⋆

)
+

(
3E2

α −
C2

2

)(
Ėαh⃗+ Eα

˙⃗
h+

˙⃗
h⋆

))
,

(6.54)
where h⃗ ⋆ h⃗ is denoted h⃗⋆ to get more compact expressions.

When multiplying ˙⃗
bα × b⃗α, note that

(Eαh⃗+ h⃗⋆)× (Eαh⃗+ h⃗⋆) = 0, (6.55)

which finally gives

AK
λ = −

∑
α

(Eα
˙⃗
h+

˙⃗
h⋆)× (Eαh⃗+ h⃗⋆) + Ėαh⃗× h⃗⋆

(3E2
α − C2

2
)2

· λ⃗. (6.56)

If the eigenenergies of the system are constant, (6.56) simplifies to

AK
λ = −

∑
α

(Eα
˙⃗
h+

˙⃗
h⋆)× (Eαh⃗+ h⃗⋆)

(3E2
α − C2

2
)2

· λ⃗. (6.57)

6.5 Kato Gauge Potential with Degeneracy

In degenerate three-level systems, Eq. (6.56) diverges and no longer produces a valid
Kato AGP.

Let E1 and E2 be the degenerate energy levels, so that E1 = E2 = E, E3 = −2E,
C2 = 6E2. The denominator at α = 1 is now(

3E2
1 −

C2

2

)2

= 0. (6.58)

The problem arises from the fact that we derive the Kato AGP from the projectors, but
in the case of a degeneracy, the projectors are not defined for individual states. Instead,
the projector on the degenerate eigenspace is

Π12 = |ψ1⟩ ⟨ψ1|+ |ψ2⟩ ⟨ψ2| . (6.59)

The projectors can be expressed by the Hamiltonian as

Π12 =
2E +H

3E
(6.60)

and
Π3 =

E −H
3E

. (6.61)

Eq. (6.51) still holds for Π3. Our new equation looks simpler – it is linear in H. In fact,
it is the same projector as (6.51). If we use Π2

3 = Π3 and square the new expression, we
would get exactly(6.51). Again, we write the projectors in vector notation:

Π12 =
2

3
+
h⃗ · λ⃗
3E

(6.62)
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Π3 =
1

3
− h⃗ · λ⃗

3E
(6.63)

Now, we assume that our system remains degenerate along the drive trajectory in pa-
rameter space. This will be true for Floquet systems, whose quasienergies do not change.
However, our assumption is weaker in the sense that it allows changes of the energy E.
We calculate the derivatives of the projectors:

Π̇12 =
1

3E
˙⃗
h · λ⃗− Ė

3E2
h⃗ · λ⃗, (6.64)

Π̇3 = −
1

3E
˙⃗
h · λ⃗+

Ė

3E2
h⃗ · λ⃗ (6.65)

and plug them in the expression of the Kato AGP:

AK =
1

2

∑
α

[iΠ̇α,Πα]

= −
((

1

3E
˙⃗
h− Ė

3E2
h⃗

)
× h⃗

3E
+

(
− 1

3E
˙⃗
h · λ⃗+

Ė

3E2
h⃗

)
×
(
− h⃗

3E

))
· λ⃗

= −
((

1

3E
˙⃗
h

)
× h⃗

3E
+

(
− 1

3E
˙⃗
h

)
×
(
− h⃗

3E

))
· λ⃗

= −2
˙⃗
h× h⃗
9E2

· λ⃗

(6.66)

Why are the degenerate gauge potentials different?

By definition, gauge potentials do not know about the energy of the system – they are
only based on the eigenstates. If, however, two of the energy levels overlap, the eigen-
states of the degenerate energy level are not uniquely defined. A general (not necessarily
Kato) AGP can be obtained via multiple possible unitary transformations. In other
words, the degenerate energy level gives us an additional gauge freedom for constructing
gauge potentials.

Specifically, the Kato AGP fixes all the gauge freedoms. In the non-degenerate case, its
diagonal elements in the Hamiltonian’s eigenbasis are set to zero. In the degenerate case,
however, all of its elements in the degenerate subspace are set to zero. Evolution with the
Kato AGP now includes holonomic transitions between the degenerate eigenstates. In
contrast, evolution with a Kato AGP obtained from a non-degenerate Hamiltonian will
not allow such transitions.
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Chapter 7

Counter-Diabatic Driving for
Periodically Driven Three Level
Systems

This chapter brings together the theoretical concepts in numerical simulations to address
our central goal: designing counter-diabatic drives for periodically driven three-level sys-
tems. First, we find the counter-diabatic drive of a Λ-type system driven by an oscillatory
periodic field. We show that the variational method from Chapter 4.2.3 produces a high-
fidelity counter-diabatic drive at various frequencies. Next, we tackle the scenario of
a system with degenerate states, deriving the Kato gauge potential with our compact
formula from Sec. (6.5). We compare the evolution of the degenerate system, showing
that the evolution with the Kato AGP produces holonomic transition, and the adiabatic
evolution adds dynamical phases to the evolution. Finally, we outline how to construct
geometric gates, e.g. controlled-Z gate (a two-qubit entangling gate) using a three-level
system as an intermediary.

7.1 Example: Lambda System

In this section, we use the variational method to find the Floquet Hamiltonian of a
periodically driven Λ- system.

A Λ three-level configuration contains two low-energy states |0⟩, |1⟩ and one excited state
|e⟩. This is one of the most common configurations in atomic physics and quantum
optics. It has also been used in quantum control experiments [14]. In our analysis, we
add an interaction term (coupling) to split the degeneracy between |0⟩ and |1⟩, as shown
in Fig. 7.1. This is also common in experiments [15]. For a general multi-level atom
or molecule, interacting with an electromagnetic field, such splitting is known as AC
Stark effect. The effective eigenstates of such photon-atom system are known as “dressed
states” [16]. The full understanding of dressed states requires viewing the electromagnetic
field as a quantum field, which is beyond the scope of this thesis.
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Figure 7.1: Eigenenergies of a) the Hamiltonian; b) the Floquet Hamiltonian of the lambda
system at ω/∆ = 4, g/∆ = 1. When the driving term is zero, the Hamiltonian has a degeneracy;
the Floquet Hamiltonian has constant energies and is not degenerate.

Problem Setup

Our quantum system has ground states |0⟩, |1⟩ and an excited state |e⟩ with energy gap
∆ interacting with a periodic field (e.g. laser field) of strength g with frequency ω. The
Hamiltonian of the system reads

H(t) = −∆λ8 + g sinωt (λ4 + λ6) , (7.1)

where λ8 discriminates the ground states from the excited state, λ4 couples |0⟩ to |e⟩ and
λ6 couples |1⟩ to |e⟩.
Without the interaction term, the ground states have identical energy. However, by
adding the interaction, all three eigenstates have distinct energies, cf. Fig. 7.1.

Variational Method

Similar to Sec. 5.4, we can’t give an analytical solution for the evolution of the system.
Therefore, as a baseline for evaluating the variational AGP, we first solve Schrodinger’s
equation numerically over one period to construct the Floquet unitary UF . Then, we take
matrix log to find the Floquet Hamiltonian HF inside the Floquet zone.

On the other hand, we search for a gauge potential variationally, as in Sec. 4.2.2. We
start with an ansatz for the kick operator K and minimize the action S = Tr(G2) using
the modified gradient descent from Sec. 4.2.3. Then, to compare the results with the
numerical integration, we calculate the Floquet Hamiltonian

HF = H −AF . (7.2)

We do this for different driving frequencies, showing the robustness of the variational
method to work properly in both low- and high-frequency settings.

At different frequencies, the Floquet Hamiltonian obtained lies in different Floquet zones.
To make the comparison between the numerical integration and the variationally obtained
gauge, we plotted the numerical Floquet Hamiltonian in Fig. 7.2 corresponding to the
same Floquet zone as the variationally obtained.
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Figure 7.2: Floquet Hamiltonian components in the Gell-Mann basis vs initial time. Found
using the variational method (solid line) vs numerical integration and matrix log (dashed line)
for a) ω/∆ = 0.5, b) ω/∆ = 2, c) ω/∆ = 4. The variational algorithm in b) has not yet
converged. The Floquet Hamiltonian in c) is the principal log of the Floquet unitary, while a)
and b) converged to a higher “Floquet zone”. Some components are equivalent (see text). For
all simulations, g/∆ = 1. Number of harmonic used: a) 6; b) 3; c) 3. The variational algorithm,
when fully converged, provides a high-fidelity AGP.

In general, the variational method converges nearly perfectly, so the difference between the
Floquet Hamiltonians cannot be noticed in the figure. We have left one of the experiments
(at frequency ω/∆ = 2) in a state before the full convergence of the algorithm, showing
differences with the “theory”.

Another feature of Fig. 7.2 is that due to the symmetry of the problem, some components
of the Floquet Hamiltonian coincide. Although all of the components

hi =
1

2
Tr(H · λi) ⇐⇒ H =

∑
i

hiλi (7.3)

are plotted, we cannot see all components on the plot, because h2 = h1, h4 = h6 and
h5 = h7.

7.2 Example: Holonomy

In this section, we explore the adiabatic evolution of a degenerate three-level system. We
show that it leads to a non-Abelian holonomy instead of simple Berry phases. We test
our formula for the degenerate Kato gauge potential (6.66) and show that driving with
the Kato AGP only generates the holonomy matrix.

To manufacture a three-level-system Hamiltonian with degenerate energy levels, we start
with

λ8 =
1√
3
diag(1, 1,−2) (7.4)

and rotate it with a unitary matrix P to get

H = Pλ8P
†. (7.5)

We make an almost arbitrary choice

P (t) = e−iπ
6
(λ4 sinωt+λ7 cosωt), (7.6)
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where the “direction of rotation” λ4 sinωt + λ7 cosωt is changing periodically and λ4, λ7
and λ8 do not create a distinct subalgebra of SU(3), so the Hamiltonian is tracing a
generic path in SU(3).

This system is simple enough to calculate a lot of its characteristics analytically.

Since we already know the transformation P that diagonalizes the Hamiltonian, the AGP
of the system is

AU = iṖP † = ω

(√
3

2
− 1

)
λ1 + ω

cos(ωt)

2
λ4 − ω

sin(ωt)

2
λ7. (7.7)

In addition, we can calculate the Kato AGP using the vector formula

1

2
Tr(AK · λ⃗) = −2

˙⃗
h× h⃗
9E2

, (7.8)

where

h⃗ =
1

2
Tr(H · λ⃗) =

(
0,

√
3

8
sin(2ωt),

√
3

8
cos(2ωt), 0,−3

4
sin(ωt),

3

4
(ωt), 0,

5

8

)
. (7.9)

Applying the vector formula, we get the Kato AGP

a⃗K =

(
−ω
4
, 0,

√
3

4
ω cos(ωt), 0, 0,−

√
3

4
ω sin(ωt), 0

)

⇒AK = −ω
4
λ1 +

√
3

4
ω cos(ωt)λ4 −

√
3

4
ω sin(ωt)λ7

(7.10)

In the rotating reference frame,

ÃU = ω

(
1−
√
3

2

)
λ1 +

ω

2
(cos(ωt)λ4 − sin(ωt)λ7)

ÃK =
ω

2
(cos(ωt)λ4 − sin(ωt)λ7) .

(7.11)

For a non-degenerate Hamiltonian, the Kato AGP has no diagonal elements. For a
degenerate Hamiltonian, in addition, there should be no elements in the whole 2 × 2
block of the degenerate energy levels. In this example,

ÃU =
ω

2

 0 2−
√
3 cos(ωt)

2−
√
3 0 −i sin(ωt)

cos(ωt) i sin(ωt) 0

 ,

ÃK =
ω

2

 0 0 cos(ωt)
0 0 −i sin(ωt)

cos(ωt) i sin(ωt) 0

 ,

(7.12)

confirming that ÃK has no elements in the 2× 2 block and on the main diagonals, while
all other elements are the same as in ÃU . The difference between ÃK and ÃU is

ÃU − ÃK = ω

(
1−
√
3

2

)
λ1 =

ω

2

 0 2−
√
3 0

2−
√
3 0 0

0 0 0

 . (7.13)
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Figure 7.3: Comparison between a) the evolution obtained by integrating the Kato AGP (solid
line) vs the holonomy matrix (dashed line); b) the adiabatic evolution (solid line) vs the dynamic
phases + holonomy (dashed line). Parameters in the simulation: ω = 0.05. The Berry connec-
tions generate the correct adiabatic evolution. Imperfect adiabaticity leads to small deviations
from the holonomic evolution.

Because of the degeneracy, instead of Berry phases, we have a matrix of Berry connections
– the 2× 2 block of ÃU − ÃK , corresponding to the degenerate level:

A =
ω

2

(
0 2−

√
3

2−
√
3 0

)
=

(
1−
√
3

2

)
σ1. (7.14)

It generates a 2× 2 holonomy matrix

W = eiAt. (7.15)

In the general case, the third energy level could also accumulate a Berry phase.

We perform two numerical simulations showing the impact of holonomy on the evolution
of the system. First, we compute the pure geometric evolution as a time-ordered exponent
of the Kato Hamiltonian:

UK = P † (t) T exp

(
−i
∫ t

0

AKdt

)
P (0), (7.16)

and compare it with the holonomy matrix. The results are shown in Fig. 7.3 a.

Then, we evolve the system adiabatically:

U = exp

(
−i
∫ t

0

H(t′)dt′
)
. (7.17)

In the rotating reference frame, the evolution takes the form

Urot = P †(t)U(t, 0)P (0). (7.18)

In the adiabatic limit, the evolution must match the accumulation of dynamic phases and
a holonomy

Urot ≈

W 0
0

0 0 1

e−iE1t 0 0
0 e−iE2t 0
0 0 e−iE3t

 , (7.19)

where E1, E2, E3 in our system are the diagonal elements of λ8. Fig. 7.3 b compares
both approaches to compute the evolution. Since the system is evolving slowly, but
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is not exactly in the adiabatic limit, we can notice small deviations from the theoretical
evolution. To make the figures clearer, we have omitted most components of the evolution
matrices. The missing components have analogous behavior.

7.3 Example: Geometric Quantum Logic Gate

One of the important aspects in the development of quantum computers is the construc-
tion of high-fidelity gates. In particular, two qubit gates typically have lower fidelity,
while they are critical for the performance of all quantum algorithms. For example, the
CZ gates must meet the fault-tolerance threshold for quantum error correction to be able
to work at all – otherwise it would produce more errors than it tries to correct.

We suggest a scheme for executing a pure geometric CZ quantum gate within the frame-
work of 3LS.

The CZ gate has the form

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (7.20)

acting in the computational basis (|00⟩, |01⟩, |10⟩, |11⟩). In a spin qubit quantum com-
puter (|0⟩ = | ↑⟩, |1⟩ = | ↓⟩), we can directly reduce this gate to a unitary of a 3LS in the
subspace here the total spin is S = 1.

Let S be the magnitude of the total spin, and ms – the projection along the magnetic
field. The addition of the two spins gives rise to a singlet state

|S = 0,mS = 0⟩ = 1√
2
(|↓↑⟩ − |↑↓⟩) , (7.21)

which is not affected by the CZ gate, and a triplet state

|S = 1,mS = 1⟩ = |↑↑⟩

|S = 1,mS = 0⟩ = 1√
2
(|↓↑⟩+ |↑↓⟩)

|S = 1,mS = −1⟩ = |↓↓⟩ .

(7.22)

In the subspace of the triplet state, the CZ-gate takes the form

CZS=1 =

1 0 0
0 1 0
0 0 −1

 . (7.23)

We aim to construct the gate by using a periodic pure geometric drive, discussed in
Sec. 3.2.1.

We should find the Kato gauge potentials AK in the the triplet subspace, such that the
pure geometric evolution would produce a CZ gate:

CZS=1 = T exp

(
−i
∫ T

0

AK(t
′)dt′

)
= e−iHFT . (7.24)
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However, we encounter a problem: the Kato AGP has no diagonal elements in the eigen-
basis, therefore is always a traceless operator (it is always in the su(3) ⊂ u(3) algebra),
and therefore its exponent always has determinant 1 (it is in the SU(3) ⊂ U(3) group).
This means we cannot implement the CZ-gate by purely geometric drive.

One way to fix this problem is instead to make a −CZ gate instead of a CZ gate. In the
triplet manifold,

−CZS=1 =

−1 0 0
0 −1 0
0 0 1

 . (7.25)

Note that in addition to the −CZS=1 gate, which now in theory can be implemented with
a pure geometric drive, to implement a full −CZ gate, we have to change the phase of
the singlet state as well.

The general Floquet Hamiltonian generating the −CZ gate has the form

HF [0] = ω

M 0
0

0 0 k

 , (7.26)

where ω = 2π/T , k ∈ Z and e2πiM = −1 = eiπ1. The latter condition is satisfied by
matrices M = n⃗ · σ⃗ + l + 1

2
, where |n⃗| = n ∈ Z and l ∈ Z. The diagonal form of HF [t] is

D = V (t)†HF [t]V (t) = ω

l + n+ 1
2

0 0
0 l − n+ 1

2
0

0 0 k

 , (7.27)

where V (t) can reconstruct the micromotion operator

P (t) = V (t)V †(0) (7.28)

and is generated by the Floquet gauge potential as well:

AF = ṖP † = V̇ V †. (7.29)

To find a pure geometric drive,

H = AK + 0 = AF +HF [t] = iV̇ V † + V DV †, (7.30)

we can use the fact that the Kato AGP must have zeroes as diagonal elements in the
eigenbasis of the Floquet Hamiltonian:

(V †AKV )mm = 0 = (iV †V̇ )mm +Dmm. (7.31)

This leaves us with a condition on the diagonal elements of the Floquet AGP:

AFmm = −Dmm. (7.32)

By starting with an ansatz for the “kick operator” as in Eq. (4.24), we can compute AF

approximately with (4.28). The Floquet AGP in the rotating frame is in fact

iP †Ṗ = −iṖ †P = −i d
dt
e−iK(t)eiK(t). (7.33)

Comparing it with the gauge potential in the lab frame, we can use the same computation
as (4.28), but plugging −K instead of K.

Currently, our variational algorithm gets stuck before finding a solution with a pure geo-
metric driving. This leaves the question of finding a working Kato potential variationally
still open for further research.
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Chapter 8

Conclusion

We demonstrated how counter-diabatic driving can be systematically extended from two-
level to three-level systems. The group properties of SU(3) allowed us to simplify the
explicit parametrization of a general micromotion drive. The commutation and anticom-
mutation relations allowed us to derive a vector formula for the Kato gauge potential.

The variational principle allowed us to design high-fidelity gauge potentials which can
be used as fast driving protocols, representing a shortcut to adiabaticity. The main
significance of such experiments is in quantum computing and quantum simulation, where
executing CD protocols allows for both faster gate operation – preventing decoherence,
and robustness against leakage.

Recent experimental advancements have demonstrated the feasibility of counter-diabatic
(CD) driving beyond theoretical models. Notably, CD driving has been successfully
implemented in a 9-site synthetic lattice [17]. Additionally, experimental works have
shown how CD driving improves state preparation in spin chains [18] and accelerates
adiabatic processes in superconducting circuits [19], paving the way for integration into
real-world quantum technologies.

In this thesis, we have used a version of the variational principle [2] tailored for Floquet
systems, where the Floquet Hamiltonian is unknown. Starting with a periodic Hamilto-
nian, we obtained variationally a high-fidelity decomposition to a Floquet Hamiltonian
and its AGP.

Our analysis of gauge structures can be extended outside the area of quantum control, to
other topics in quantum mechanics, which was the main focus of our thesis. For example,
it is interesting to research the topological properties of gauge potentials. This can be
applied to topological Euler class insulators [20].

In this thesis, we investigated degeneracy in 3LS. We obtained explicit Floquet and Kato
gauge potentials for degenerate systems. We confirmed that the adiabatic evolution of
such systems introduces holonomies instead of simple Berry phases. Holonomies have
importance in the construction of quantum gates, with Holonomic quantum computa-
tion being an active area of research [21]. The degenerate subspace also represents a
decoherence-free subspace [22], which is useful when trying to protect our quantum gates
against decoherence.

Outlook – four-level systems and beyond: The logical next step is to tackle four-
and higher-level systems. A lot of the methods we used in the thesis can be carried
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over to 4LS. The main challenge will be the increased computational complexity. The
su(4) algebra contains 15 generators instead of 8, meaning that the evolution operators
and gauge potentials should depend on 15 parameters, making them more difficult to
derive. Again, the concept of orbits can be used to reduce these parameters. The vari-
ational principle can be easily generalized to multi-level systems. However, the gradient
descent will be more computationally intensive. Four-level systems will feature more in-
teresting structure, with multiple possible degenerate levels, allowing more complicated
non-Abelian holonomies.

We outlined an approach for designing a geometric CZ gate, which is also an area for
further research. Research for design of two-qubit gates could stay in the context of 3LS
if we consider a submanifold of the two-qubit state space, such as the triplet manifold in
spin qubit quantum computers.
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Appendix A

Algebra of Pauli Matrices

We define the rotation matrices as

Rk(θ) = exp

(
−iθ

2
σk

)
=

∞∑
n=0

(−i)nθnσn
k

2nn!
=

=
∞∑
n=0

(−1)nθ2n1
22n(2n)!

+
∞∑
n=0

−i (−1)
nθ2n+1σk

22n+1(2n+ 1)!
=

= cos

(
θ

2

)
1− i sin

(
θ

2

)
σk,

(A.1)

∂ϕRk = −
1

2
sin

(
ϕ

2

)
− i1

2
cos

(
ϕ

2

)
σk = −

i

2
Rkσk (A.2)

R†
k∂ϕRk = −

i

2
σk (A.3)

We make use of the algebra of the Pauli matrices:

σkσk = 1,

σxσy = iσz,

{σx, σy} = 0,

σxσyσx = iσzσx = −σy,
σxσzσx = −iσyσx = −σz.

(A.4)

We can then find the action of the rotation matrices on the Pauli matrices

R−1
k 1Rk = 1,

R−1
k σkRk = σx,

R−1
x σyRx = cos θσy − sin θσz,

R−1
x σzRx = sin θσy + cos θσz.

(A.5)

In all above equations we can make the cyclic substitution x→ y, y → z, z → x.
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Appendix B

Explicit Matrix Form of the
Parametrized SU(3) Adiabatic Gauge
Potential

We list the components of the AGP corresponding to the unitary transformation

U(α, β, γ, θ, a, b, c, ϕ) = eiλ3αeiλ2βeiλ3γeiλ5θeiλ3aeiλ2beiλ3ceiλ8ϕ, (B.1)

discused in Sec. 6.2 as matrices:

Aα =

−1 0 0
0 1 0
0 0 0

 ,

Aβ =

 0 iei2α 0
−ie−i2α 0 0

0 0 0

 ,

Aγ =

 − cos 2β ei2α sin 2β 0
e−i2α sin 2β cos 2β 0

0 0 0

 ,

Aθ =

 0 0 iei(α+γ) cos β
0 0 −ie−i(α−γ) sin β

−ie−i(α+γ) cos β iei(α−γ) sin β 0

 ,

Aa =

1− cos2 β(1 + cos2 θ) ei2α sin 2β 1+cos2 θ
2

ei(α+γ) cos β sin 2θ
2

e−i2α sin 2β 1+cos2 θ
2

1− sin2 β(1 + cos2 θ) −e−i(α−γ) sin β sin 2θ
2

e−i(α+γ) cos β sin 2θ
2

−ei(α−γ) sin β sin 2θ
2

− sin2 θ

 ,

(B.2)

Ab11 = −Ab22 = − sin(2(a+ γ)) sin 2β cos θ

Ab12 = A∗
b21 = ei2α(i cos(2(a+ γ))− cos 2β sin(2(a+ γ))) cos θ

Ab13 = A∗
b31 = ie−i(2a−α+γ) sin β sin θ

Ab23 = A∗
b32 = ie−i(2a+α+γ) cos β sin θ

Ab33 = 0,

(B.3)
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where ∗ denotes complex conjugation,

Ac11 = −Ac22 = −(−1 + (cos2 θ + 1) cos2 β) cos 2b

+ cos(2(a+ γ)) cos θ sin 2β sin 2b

Ac12 = A∗
c21 = ei2α(sin 2b cos θ(cos(2a+ 2γ) cos 2β + i sin(2a+ 2γ))

+
1

2
cos 2b sin 2β(cos2 θ + 1))

Ac13 = A∗
c31 = e−i(a−α)(− sin 2b sin βe−i(a+γ) + cos 2b cos β cos θei(a+γ)) sin θ

Ac23 = A∗
c32 = −e−i(a+α)(sin 2b cos βe−i(a+γ) + cos 2b sin β cos θei(a+γ)) sin θ

Ac33 = − cos 2b sin2 θ

Aϕ =

−
1√
3
(1− 3 sin2 θ cos2 β) −

√
3
2
e2iα sin 2β sin2 θ

√
3
2
cos βei(α+γ) sin 2θ

−
√
3
2
e−2iα sin 2β sin2 θ − 1√

3
(1− 3 sin2 θ sin2 β) −

√
3
2
sin βe−i(α−γ) sin 2θ

√
3
2
cos βe−i(α+γ) sin 2θ −

√
3
2
sin βei(α−γ) sin 2θ 1

2
√
3
(1 + 3 cos 2θ)

 .

(B.4)
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