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We consider three distinct methods of calculating the vibronic levels and absorption spectra of
molecular dimers coupled by dipole-dipole interactions. The first method is direct diagonalization of
the vibronic Hamiltonian in a basis of monomer eigenstates. The second method is to use creation
and annihilation operators leading in harmonic approximation to the Jaynes–Cummings
Hamiltonian. The adiabatic approximation to this problem provides insight into spectral behavior in
the weak and strong coupling limits. The third method, which serves as a check on the accuracy of
the previous methods, is a numerically exact solution of the time-dependent Schrödinger equation.
Using these methods, dimer spectra are calculated for three separate dye molecules and show good
agreement with measured spectra. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1861883g

I. INTRODUCTION

The simple molecular dimer is a classic case for the
study of the coupling between electronic and vibrational
excitation.1–6 This vibronic coupling has been analyzed ex-
tensively in an approximation in which only the electronic
ground state and a single electronic excited state are coupled
to a single mode of internal vibrational excitation, which is
considered to be harmonic in both ground and excited elec-
tronic states. In this very simplest approximation the two-
state vibronic coupling time-independent Schrödinger equa-
tion has been shown to separate into two decoupled
equations. One has an analytic solution, being a displaced
harmonic oscillator. The other equation was solved numeri-
cally by Fulton and Gouterman3 in 1964, in perhaps the first
application of a computer to this problem. This work also
made use of a natural measure for coupling strength which
had been recognized earlier by Simpson and Peterson7 in
connection with vibronic coupling in the more complicated
polymer problem. This measure is the ratio of the electronic
sdipole-dipoled coupling strengthswhich we call Jd to an
energyswhich we call Dd characteristic of the shift of the
equilibrium position on excitation and of the harmonic fre-
quencyv. Up to factors of the order of unity, depending on
precise definition,D appears as the width of the vibrational
absorption spectrum from ground to excited electronic state.
Strong coupling then is characterized byuJ/Du@1 and weak
coupling byuJ/Du!1.

It has, perhaps, not been adequately recognized that the
above problem of a two-level system interacting with a
single oscillator mode is similar to aspects of the “spin-boson
Hamiltonian” problem of solid-state physics8 and more par-
ticularly is identical to the Jaynes–CummingssJCd model9 of
quantum optics. In this latter case a two-level atom interacts

with a quantizedsharmonicd radiation field. In the following
we will analyze this similarity in more detail, particularly as
regards the use of an adiabatic approximation in understand-
ing changes in the dimer spectrum asJ/D is varied.

We find it illustrative to employ three independent strat-
egies for solution. The first methods1d treats the vibronic
problem by an expansion in basis functions which leads to
the diagonalization of an algebraic problem whose input are
Franck–CondonsFCd factors between ground and excited
states. The second methods2d uses operator techniques and
is ideally suited to the harmonic case of the JC model and
readily allows an adiabatic approximation to be made. The
third methods3d is completely different in using the time-
dependent rather than time-independent Schrödinger equa-
tion. Exploiting modern developments in the numerical time
propagation of quantum states, the absorption spectrum can
be constructed from the long-time limit. This method has the
advantage that arbitrary Born–OppenheimersBOd potential
functions involve no increase in computer time.

Although exact solutions obtained with all three methods
of course yield the same results, hitherto they have been used
largely in different fields. Methods1d is the one most used
for the calculation of eigenenergies, methods3d mostly for
time-dependent molecular problems. Methods2d has found
wide use in quantum optics and solid state physics. Differ-
ences between the methods appear when approximations are
made and each gives insight into different aspects of exact
solutions. For example, in methods1d one can include only a
limited number of vibrational levels in upper and lower
states, then gradually increase this number to see how the
spectrum develops. Methods2d lends itself to the adiabatic
approximation, which gives direct insight into coupling of
electronic levels through the nuclear motion. Methods3d
only gives fully resolved eigenenergies when time propaga-
tion is many times greater than vibrational periods. StoppingadElectronic mail: briggs@physik.uni-freiburg.de
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the time propagation at intermediate times is equivalent to
spectroscopy under low resolution, or can be used to mimic
line-broadening effects. However, unlike methods1d, method
s3d implicitly includes all vibrational levels, including the
continuum, in both ground and excited electronic states.
Hence we will compare and contrast all three methods below.

The plan of the paper is as follows. In Sec. II we treat
the problem in first quantization. In Sec. III, using an opera-
tor representation, the harmonic case is considered in some
detail. Particular emphasis is given to the adiabatic approxi-
mation. In Sec. IV the time-dependent approach is applied.
In Sec. V we compare our results to measured dimer spectra
and find good agreement. We conclude with a short summary
and a discussion of our findings.

II. THE DIMER PROBLEM IN FIRST QUANTIZATION

Our model problem is that of two identical monomers at
fixed orientation and separation, interacting via transition
dipole-dipole force. Only a single excited electronic state is
taken into account. The electronic motion is coupled to in-
tramolecular vibrationssnot necessarily harmonicd in both
ground and excited states. The approximation will be made
that the electronic dipole-dipole coupling matrix element is
independent of vibrational coordinates.

A. The monomer

Denoting the electronic and nuclear coordinates of
monomern sn=1,2d with rn andrn, respectively, the mono-
mer Hamiltonian is given by

Hn = Hn
elsrn,rnd + Tn

nucsrnd + Vn
nucsrnd, s1d

where Hn
el is the electronic part of the Hamiltonian which

depends parametrically on the nuclear coordinatesrn, and
Tn

nuc andVn
nuc are the monomer kinetic and potential energy,

respectively. The time independent Schrödinger equation for
the electronic part is

Hn
elsrn,rndfn

Msrn,rnd = Wn
Msrndfn

Msrn,rnd s2d

and has eigenfunctionsfn
Msrn,rnd and eigenenergiesWn

Msrnd
that depend also parametrically onrn. Here the indexM
refers to a particular electronic state. We are only considering
one electronic excited state, so we will useM =g for the
electronic ground state andM =e for the electronic excited
state. In BO approximation we write the eigenfunctions of
the monomer Hamiltonians1d as

fn
Msrn,rndjnM

a srnd, s3d

wherejnM
a srnd=krnujnM

a l is a solution of

sWn
M + Tn

nuc+ Vn
nucdujnM

a l = eM
a ujnM

a l, s4d

with eigenenergyeM
a and where the indexa refers to a vi-

brational level in the electronic stateM.
The intensity of a dipole transition from the vibronic

stateufn
gjng

a l to the vibronic stateufn
ejne

b l is proportional to
the squared magnitude of the transition dipole moment,

kjng
a ukfn

gumW nufn
elujne

b l, s5d

where mW n is the electronic dipole operator of monomern,
which we will assume to be independent of nuclear coordi-
nates, so that Eq.s5d can be written as

kjng
a ukfn

gumW nufn
elujne

b l = kmW nlfa
b, s6d

with the abbreviationkmW nl=kfn
gumW nufn

el and where

fa
b = kjng

a ujne
b l s7d

denotes the FC factor for a transition from the vibrational
statea of the ground electronic state to the vibrational state
b of the electronic excited state. With this notation the cross
section for absorption out of the vibronic ground state
ufn

gjng
0 l is given by

sMsEd ~ o
b

uf0
bu2d„E − see

b − eg
0d…, s8d

where constant factors are omitted andE="v is the energy
of the photon.

B. The dimer: Basic formulas

The Hamilton operator of the dimer is

H = H1sr1,r1d + H2sr2,r2d + Jsr1,r2d, s9d

whereH1, H2 are the monomer Hamiltonians defined in Eq.
s1d andJsr1,r2d is the electronic dipole-dipole coupling ma-
trix element. Since the two monomers are identical, the
dimer Hamilton operators9d remains unchanged under an
exchange of the monomer indices. As we will see, this sym-
metry allows a considerable simplification of the dimer prob-
lem.

The vibronic ground state of the dimer is

ucg
00l = uf1

gj1g
0 luf2

gj2g
0 l s10d

with energyEg
00=eg

0+eg
0.

Remembering the exchange symmetry of the Hamil-
tonian s9d and denoting byP12 the operator that exchanges
the monomer indices we define vibronic dimer states

uc±
abl =

1
Î2

suf1
ej1e

a luf2
gj2g

b l ± uf1
gj1g

b luf2
ej2e

a ld s11d

;
1
Î2

sup1
abl ± P12up1

abld s12d

and expand an arbitrary excited dimer stateuc ll with quan-
tum numberl as

uc ll = o
ab

sbl+
abuc+

abl + bl−
abuc−

abld. s13d

Then projecting the eigenvalue equation

Huc ll = Eluc ll s14d

with H given by Eq.s9d onto stateskc±
abu leads to a system of

two uncoupledequations for the expansion coefficientsb±
ab:

see
a + eg

bdbl+
ab + J o

a8b8

fa8
a fb

b8bl+
a8b8 = El+bl+

ab, s15d
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see
a + eg

bdbl−
ab − J o

a8b8

fa8
a fb

b8bl−
a8b8 = El−bl−

ab. s16d

Hence, the eigenstates can be classified by6 symmetry, i.e.,

uc ±
l l = o

ab

bl±
abuc±

abl. s17d

Then, in principle, once the vibrational eigenenergies and
states are known for an arbitrary form of the BO potentials,
the systemss15d and s16d can be solved numerically. Solu-
tions to the Eqs.s15d or s16d will be calleds1d or s2d states,
respectively. It is easy to see that solutions of thes1d Eq.
s15d for a givenJ are solutions of thes2d equation for −J. If
we are looking at energy levels and absorption into these
levels as functions ofJ, then it is enough to do the calcula-
tions for thes1d symmetry. This6 symmetry is valid only
for identical monomers.

With knowledge of the dimer eigenenergies and eigen-
functions we are also able to calculate the absorption cross
section for an incoming plane wave, whose electric part is

given by«W = «̂« cosskW ·rW −vtd s« denotes the amplitude,Ê the
polarization vector,kW the wave vector, andv the frequencyd.
In first-order perturbation theory, the cross section for ab-
sorption out of the vibronic ground stateucg

00l with energy
Eg

00 is given in dipole approximation by

ssvd ~ o
n=±

o
l

uÊ · kc n
l umW 1 + mW 2ucg

00lu2dsEn
l − Eg

00 − "vd.

s18d

If we use the expansion equations17d we find

uÊ · kc ±
l umW 1 + mW 2ucg

00lu2 =
1

2
uÊ · skmW 1l ± kmW 2ldu2 · Uo

a

bl±
a0f0

aU2
.

s19d

This expression consists of an “absorption strength”
uoabl±

a0f0
au2 that is not explicitly dependent on the orientations

of the monomer transition dipoles. However, it is dependent
on the coupling strengthJ and therefore implicitly depends
on the dimer geometry. To examine the remaining factor in
Eq. s19d, which does depend explicitly on the orientation of
the transition dipole moments, we will use a coordinate sys-
tem with thex-y-plane spanned by the two dipole transition
momentsmW 1 and mW 2 at an angleg as shown in Fig. 1. For
light polarized in thex̂ direction we obtain for the geometry-
dependent part of Eq.s19d

ux̂ · skmW 1l ± kmW 2ldu2 = H2m2s1 + cosgd
0

J s20d

and for light polarized in theŷ direction

uŷ · skmW 1l ± kmW 2ldu2 = H0

2m2s1 − cosgd.
J s21d

This means that for light polarized in thex̂ direction, only
s1d levels and for light polarized in theŷ direction, onlys2d
levels absorb. For unpolarized light the relative weight of
absorption into thes1d levels compared to absorption into
the s2d levels is dependent on the angleg and is given by

s1 + cosgd
s1 − cosgd

. s22d

In the case of parallel transition dipole momentssg=0°d
only s1d levels and in the case of antiparallel alignmentsg
=180°d only s2d levels absorb.

C. The vibrationless case

It is illustrative to present upper state eigenenergies as a
function of the coupling strengthJ. The way in which this
eigenspectrum changes with increasing complexity of the vi-
brational monomer spectrum will now be illustrated.

The simplest case is that of no vibrations at all, i.e., a
single vertical transition energy. Takingeg

0=0, the solutions
of the Eqs.s15d and s16d are

E± = ee
0 ± J. s23d

Hence in the vibrationless case the two dimer levels are split
linearly asJ increases.

D. The case of n vibrational levels in the upper state

Initially we restrict the ground electronic state to its
zero-point vibration and allow forn vibrational levels in the
upper state. The dimer spectra are shown in Figs. 2sad–2scd,
where only thes1d series of levels is plotted. AsJ increases
each vibrational level splits linearly proportional to the
square of its FC factor. The outermost levels split linearly
with J in the strong-coupling limit whilst all other levels
converge to intermediate values independent ofJ. In Fig.
2scd, where we have eight vibrational levels with Poisson
distributed FC factors, one recognizes that the outermost
negative energy level is continued “diabatically” through a
sequence of ever-narrower avoided crossings to connect with
the outermost positive-energy level. This means that asJ
becomes large the whole vibrational band on each monomer
acts essentially as a single level whereas at smallJ each
vibrational level interacts only with its degenerate partner on
the other monomer.

The above behavior is confirmed by an examination of
the absorption strength. For many vibrational levels in the
upper electronic state the correlation between the distribution
of oscillator strength and the avoided crossings in energy
levels becomes evident. The case for three upper vibrational
levels is shown in the right part of Fig. 2sad. For increasing
negativeJ, oscillator strength disappears out of the upper
two levels and is transferred toE0+, exactly as in the two

FIG. 1. Sketch of the orientation of the transition dipoles in the coordinate
system used.
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vibrational level case. For positiveJ, the strength inE0+

decreases monotonically and that inE2+ increases monotoni-
cally to 100%. However, the levelE1+ first experiences an
increase in absorption strength and then a decrease, asJ in-
creases. The maximum occurs near to the position of the
avoided crossing withE2+, indicating a transfer of oscillator
strength to the next higher level at this point. This pattern is
repeated in Fig. 2sbd and 2scd for four and eight upper vibra-
tional levels, respectively. At each avoided crossing more
and more of the oscillator strength is transferred “upwards”
to appear ultimately 100% inEn+. By contrast, for negative
J, E0+ monotonically acquires all the oscillator strength and
all other levels have diminishing strength asuJu increases.
Again one sees that foruJu much greater than the vibrational
bandwidth, the strong coupling limit oscillator strength ap-
pears in a single “diabatic” level corresponding to the vibra-
tionless upper electronic dimer level. This behavior is remi-
niscent of a cooperative interaction between the levels of the
vibrational band, leading to transfer of all the oscillator
strength into a single level, which splits away from the rest
of the band as the coupling strength increases.

E. The general case

Until now we have restricted ourselves to only one vi-
brational level in the electronic ground state. In the following
we will increase the number of levels in the electronic
ground state and examine how the energy spectrum changes.
To establish a connection with the harmonic case which will
be considered in much detail in the following section, we
make the assumption that the potential energy surfaces for
vibrational motion in the monomer electronic ground and in
the excited electronic state are harmonic and the potential
wells are identical but their minima separated by an amount
Dr. Again we will take the zero of energy to be the zero-
point vibration in the upper electronic state, an amountDE

above the corresponding level in the ground electronic state.
If "v denotes the energy difference between successive en-
ergy eigenstates of these potentials then the energies in the
electronic excited states are given byee

n=n"v and those of
the electronic ground state areeg

n=n"v−DE. The FC factors
can be evaluated analytically and the monomer cross section
for absorption out of the vibrational ground state of the elec-
tronic ground state is proportional to a Poisson distribution,10

sMsEd ~ o
n

an

n!
e−adsE − n"vd, s24d

with a=vDr2/ s2"d. To compare with calculations of the fol-
lowing section we choosea=1. In the following we consider
eight vibrational levels in the excited statesthis is sufficient
for convergence of the resultsd, and vary the number of lev-
els in the electronic ground state.

Since we have chosen the BO potentials in the ground
and excited electronic states to be the same, for vanishing
interactionJ there occurs a degeneracy of the energy levels.
This degeneracy, which is split for finiteuJu, can be under-
stood by examining Eq.s15d for J=0. All eigenenergies are
given by

ee
a + eg

b = sa + bd"v − DE. s25d

Herea can take the valuesa=0, . . . ,ne−1 andb=0, . . . ,ng

−1, wherene andng are the number of vibrational levels in
the electronic excited state and the electronic ground state,
respectively.

In Fig. 3sad the case of two vibrational levels in the
electronic ground state is shown. ForJ=0 all states but the
lowest and highest are twofold degenerate. If we compare the
behaviour of the lowest energy level in Fig. 3sad with the
corresponding level in Fig. 2scd, we see that for strong nega-
tive coupling both have positive gradient but for strong posi-
tive coupling in the case with just one vibrational level in the
electronic ground state the gradient is zero, whereas in the
case of two levels it has a negative gradient. For both posi-
tive and negative coupling there are diabatic levels that are
continued through sequences of avoided crossings. In Fig.
2scd all levels but the lowest have zero gradient in the case of
strong negative coupling. However in Fig. 3sad also the sec-
ond lowest level pair, which are degenerate forJ=0, has a
negative gradient. These levels are also continued diabati-
cally into the positiveJ region, so that for large positiveJ
three levels split off linearly from the band of remaining
constant-energy levels. In the region between weak and
strong coupling there appear again avoided crossings. To
sum up, in the case of two vibrational levels in the ground
electronic state we find three diabatic levels with positive
gradient and one with negative gradient.

When three levels in the ground electronic state are con-
sideredfFig. 3sbdg there results a similar change in the en-
ergy spectrum as in going from one to two states. Now there
are levels that are threefold degenerate forJ=0. Then we
find six, si.e., 1+2+3d diabatic levels with positive gradient
and threes1+2d diabatic levels with negative gradient.

The last case we consider is that of six levels in the
electronic ground state. Now the energy spectrumfFig. 3scdg

FIG. 2. Dimer eigenenergiessleft figuresd and absorption strengthsright
figuresd for n vibration levels in the monomer upper electronic state.sad
Three levels,sbd four levels, andscd eight levels.
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looks very complicated, with a lot of avoided crossings. In
the case of strong coupling there are still levels with zero
gradient asymptotically. In the next section, using method
s2d, we will explain this spectrum in the case of an infinite
number of levels in both the ground and excited electronic
states in more detail and we will expose the origin of the
crossings between energy eigenvalues as a function of cou-
pling strengthJ.

III. THE JAYNES–CUMMINGS HAMILTONIAN

A. Derivation

In Sec. II we have traced the development of the dimer
spectrum as the number of vibrational levels in the excited
and ground electronic states increases. In this section an ap-
proximation is used that allowsall vibrational levels of both
excited and ground electronic states to be considered. How-
ever, to make the problem tractable the vibrational motion is
assumed harmonic in both ground and excited electronic
states. Then, as we will see below, the vibronic coupling is
not mediated directly by the FC factors as in Sec. II but by a
term linear in the normal coordinate, arising from the shift in
equilibrium nuclear coordinate between ground and excited
states. As the vibrations are harmonic such an approximation
lends itself naturally to an expression in operator form. This
also emphasizes the similarity of phonons and photons since
the resulting problem is identical to the celebrated Jaynes–
Cummings model of quantum optics,9 in which a two-level
atom interacts with the quantized photon field.

Considering that the monomer vibrational progression is
due to the harmonic vibration of normal coordinatesr1 and
r2 of monomers 1 and 2, respectively, and that the frequency
v is the same in ground and excited electronic states, we
have for the BO potentials for monomern in ground and
excited states

Vn
g = 1

2v2rn
2, s26d

Vn
e = 1

2v2rn
2 − v2rnDrn + Ẽn, s27d

where Drn is the shift in the potential minimum between
ground and excited states and

Ẽn = 1
2v2sDrnd2 + DEn, s28d

with DEn being the shift in energy between the two potential
minima. Thus the shifted upper state potential is equivalent
to an unshifted potential with a linear term added. We define
the vibronic coupling

gn =
v3/2Drn

Î2"
. s29d

For identical monomersg1=g2=g andẼ1=Ẽ2=Ẽ. Recogniz-
ing that the two-level molecular system is isomorphic to the
spin-12 system we introduce the Pauli spin operators:

sx = up1lkp2u + up2lkp1u, s30d

sz = up1lkp1u − up2lkp2u. s31d

Here up1l= uf1
eluf2

gl and up2l= uf1
gluf2

el. If c1 andc2 are bo-
son operators for harmonic vibrations on monomers 1 and 2,
respectively, we introduce the symmetrized boson operators,

cr =
1
Î2

sc1 − c2d, s32d

cs =
1
Î2

sc1 + c2d, s33d

then the excited state Hamiltonian of the dimerHe can be
written in the form

He = FJsx −
"g
Î2

scr
† + crdsz + "vcr

†crG + FẼ − "vcs
†cs

− S"g
Î2

Dscs
† + csdG ; HJC+ HOS. s34d

Several remarks are in order here. One notes that the depen-
dence oncr andcs has separated. In first quantization these
symmetry-adapted operators correspond torr =r1−r2, the
relative coordinate of internal vibration of two monomers
and rs=r1+r2, the center-of-mass coordinate. Such a sepa-
ration was already made in Refs. 1 and 2. The second term
HOS in the Hamiltonian, involving in-phase oscillation of the
two monomers, is simple to diagonalize as a displaced har-
monic oscillator. The first partHJC is nontrivial involving the
excitation transfer. The identity ofHJC with the JC model of
quantum optics occurs since the coupling of the electromag-
netic sEMd field to the atom in dipole approximation is also

FIG. 3. Dimer energy levels in the harmonic model with eight vibrational
levels in the electronic excited state andsad two, sbd three, andscd six
vibrational levels in the ground state. The unit of energy is"v.
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linear and the EM field is purely harmonic, as in Eqs.s26d
and s27d.

The JC Hamiltonian has been the subject of much study8

in quantum optics and in problems of solid-state physics
where a spin-12 system is coupled linearly to a bosonic field.
Its applicability to the dimer problem can be questioned
since the harmonic oscillator, with an infinite number of vi-
brational levels is not a good approximation to the monomer
vibrational degree of freedom which is better described by a
finite number of anharmonic levels. Nevertheless, if we re-
strict discussion to relatively low levels of vibrational exci-
tation, where the approximation is reasonable, this ubiqui-
tous HamiltonianHJC is useful to study in the dimer context,
since it readily lends itself to solution in an adiabatic ap-
proximation, as discussed in detail below.

With the centre-of-mass motion solved trivially we will
concentrate onHJC and drop the subscript “r,” i.e.,

HJC= "vc†c −
"g
Î2

sc† + cdsz + Jsx. s35d

First we note that if there are no vibrations, there remains the
electronic Hamiltonian

Hel = Jsx = Jsup1lkp2u + up2lkp1ud. s36d

The eigenstates are of the formfcf. Eq. s12dg

up±l =
1
Î2

sup1l ± up2ld s37d

with eigenenergies

E± = ± J. s38d

This is identical with Eq.s23d when we take the monomer
excitation energyee

0 to define the zero of energy.
The eigenstatess37d are eigenstates of the operatorsx

with eigenvalues ±1 and therefore in the vibrationless case
sx is identical to the exchange operatorP12, which ex-
changes the monomer indicesfsee Eq.s12dg. This fundamen-
tal symmetry of the symmetric dimer is preserved when vi-
brations are considered. Then however, the exchange
operator involves also the parity of vibrations, i.e.,

P12 = Psx = eipc+csx, s39d

whereP is the parity operator

Prr = Psr1 − r2d = − rr = sr2 − r1d. s40d

ThereforeP functions also as the exchange operator in the
space of vibrations, hence the forms39d. In Ref. 8 this op-
erator is given in the equivalent form expfipsc+c+sx+ 1

2
dg.

It is not difficult to show that the operatorP12 of Eq. s39d
commutes withHJC and has eigenvalues ±1. Hence the
whole spectrum separates into two branches and the eigen-
functions may be expanded as

uc±l =
1
Î2

sux±lup1l ± Pux±lup2ld. s41d

Note that here, in contrast to Eq.s11d and as is more appro-
priate in the harmonic case where the vibrational states have
definite parity, we have separated the dimer vibrational states

ux±l from the purely electronic statesupnl. The vibrational
statesux±l are eigenstates of the symmetrized Hamiltonian,

HJC
± = "vc†c −

"g
Î2

sc† + cd ± JP, s42d

i.e.,

HJC
± ux±l = E±

JCux±l. s43d

B. Solution of the JC problem

The Eq.s43d can be readily solved numerically by ex-
panding the dimer vibrational states belonging to the relative
coordinaterr in the harmonic eigenfunctionsjnsrrd of the
oscillator, i.e.,

ux±l = o
n=0

N

an
±ujnl s44d

leading to a matrix diagonalization for the eigenenergiesE±
JC

and coefficientsan
±. Physically the dimensionN for the oscil-

lator problem is infinite. Practically we have limitedN to
<100 which ensures good convergence of the lower eigen-
values. We take the coupling parameterg as positive, as in a
physical molecule, although mathematically the eigenvalues
are invariant under a change of sign ofg. The numerical
results are presented in Fig. 4 below.

However, first it is instructive to consider an adiabatic
approximation, in which the nuclear kinetic energy operator
is neglected in zeroth order. This can be best derived by
reverting to the coordinate picture for the vibration, i.e., we
put

c =
1

Î2"v
svq + ipd, s45d

c† =
1

Î2"v
svq − ipd s46d

to give the JC Hamiltonian

FIG. 4. Comparison of the adiabaticsad with the exactsbd eigenvalues of the
JC Hamiltonian as a function of the coupling strengthJ and withg=v. Only
levels with positive eigenvalue of the operatorP12 are plotted.
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HJC= 1
2sp2 + v2q2d − 1

2"v − Î"vgqsz + Jsx. s47d

With neglect of 1
2p2, for fixed q one can diagonaliseHJC to

give the two adiabatic potentials

Vu,dsqd = 1
2v2q2 − 1

2"v ± ÎsJ2 + "vg2q2d s48d

and correspondingly two sets of eigenenergies for each par-
ity, given by the solutions of

s 1
2p2 + Vu,dsqddxu,d

± sqd = E±xu,d
± sqd. s49d

For "g2/vùJ the lower potentialVdsqd shows a double-well
structure and is much broader than the upper potentialVusqd
as shown in Fig. 5.

The eigenenergies calculated in the adiabatic picture are
shown in Fig. 4sad and for comparison the exact results are
juxtaposed in Fig. 4sbd. One notes the avoided crossings be-
tween successive levels in the exact solution. However, com-
pared to the case of a limited number of vibrational levels, as
considered in Sec. II, in the case of an infinite number of
harmonic levels the asymptotic behavior for largeJ is quite
different. In this case asymptoticallyeachvibrational level
shifts linearly with ±J. Thus, two parallel equidistant sets of
levels are formed. Indeed one can show analytically that, in
the limit of largeJ, for fixed n the energy levels are simply
given by

E±
n = n"v ± s− 1dnJ. s50d

As seen from Eq.s34d the dimer eigenenergies are a sum
of those of the JC Hamiltonian and those of the shifted os-
cillator HamiltonianHOS. Hence, on each JC eigenenergy is
built an infinite series of oscillator levels and each avoided
crossing of the JC energies generates a whole series of
avoided crossings in the full spectrum, giving the compli-
cated picture shown in Fig. 6. One should note that in Fig. 6
just a small part of theJ,E parameter space compared to Fig.
3scd is shown.

C. The absorption spectrum

As in Sec. II we will calculate the photoabsorption spec-
trum for absorption out of the ground harmonic vibrational
level of the monomer ground electronic state. As we have
seen there, for a shifted harmonic oscillator in the excited
electronic state, the FC factors follow a Poisson distribution
and therefore the monomer “stick” spectrum is a sequence of
equidistant peaks whose heights also follow a Poisson distri-
bution, i.e., the monomer absorption cross section is given by

sMsEd ~ o
n
F 1

n!
S g2

v2Dn

expS−
g2

v2DGdSE − n"v +
"g2

v
D .

s51d

Note, that due to our slightly different definition of the zero
of energy the whole spectrum is shifted by an energy"g2/v
compared to the calculations in Sec. II.

The dimer energy spectrum, as explained in the previous
sectionfsee Eq.s34dg, is a sum of the JC spectrum and the
harmonic levels of the shifted oscillator. Since the initial
state is unique, the absorption strength in each line is then
given by a product of the square of the FC factor for absorp-
tion to the JC level multiplied by the Poisson distribution for
absorption to the shifted oscillator levels. Ifuj0l denotes the
ground state of the harmonic oscillator belonging to therr

coordinate andux±
ml is a solution of Eq.s43d then the dimer

spectrum is

sD
± sEd ~ 2o

m,n
ukj0ux±

mlu2F 1

n!
S g2

2v2Dn

expS−
g2

2v2DG
3dSE − EJC

m± − n"v +
"g2

2v
D s52d

giving the absorption strength into thenth vibrational level
built on the mth JC eigenvalue. Note that the shift of the
dimer harmonic oscillator, describing the center-of-mass mo-
tion is a factorÎ2 larger than that of the monomer excited
state potential.

For intermediate coupling the spectrum is very compli-
cated corresponding to absorption into several JC levels.
However for strong coupling, one JC level splits off and the
spectrum is again PoissonianfEq. s52d with only one JC
eigenvalue contributingg. This behavior was demonstrated
long ago2,3,11and indeed, in the harmonic approximation the
energy and absorption spectra calculated in the JC formula-
tion are identical with those of the diagonalization method of
Sec. II. However, as we will now show, the adiabatic JC
approximation affords a simple explanation of the apparently
complicated spectral behavior.

From Fig. 4 one sees that the adiabatic levels provide the
connection through the avoided crossings of the exact JC
eigenvalues. Asymptotically for largeJ the avoided crossings
become extremely narrow and the spectrum consists of two
sets of levels increasing or decreasing in energy linearly with
J. Hence the adiabatic energies are exact in the largeJ limit.
From Fig. 5 one can see that the splitting between the two
adiabatic potentials increases linearly withJ, so that the lev-
els with increasing energy asJ increases are associated with
the upper potential and those with decreasing energy with the

FIG. 5. The adiabatic potentials of the JC Hamiltonian defined in Eq.s48d.
The parameterx is given byJ2v / s2"g2d+"g2/ s2vd.

FIG. 6. The full dimer eigenvalues for positive exchange eigenvalue as a
function of J with g=v.
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lower potential. The two sets of levels show real crossings
for small J, i.e., levels of the lower potential are degenerate
with those of upper potential. When nonadiabatic couplings
are taken into account, as in the exact results of Fig. 4sbd,
their crossings are avoided. In this way the adiabatic ap-
proximation yields a simple interpretation of the behavior of
the exact eigenenergies as a function ofJ.

Hence one can associate the adiabatic curves with an
imaginary continuous connection of the avoided crossings of
Fig. 2scd, giving a state increasing linearly withJ. In this
figure, it was also shown that this state carries successively
more of the oscillator strength asJ increases. By explicit
calculation we have shown that, as in Fig. 2scd, the oscillator
strength for absorption is also transferred successively at the
avoided crossings of Fig. 5sbd and that the lowest linearly
increasing adiabatic curve has oscillator strength which fol-
lows the locus of the maxima of curves similar to those of
Fig. 2scd. Indeed the adiabatic picture illustrates nicely the
origin of this transfer of oscillator strength. As sketched in
Fig. 7 it is plausible that the dominant absorption from the
ground state of the dimer is to the ground state of the upper
adiabatic potential wellVu since they have maximum over-
lap. The latter state can be identified with the lowest adia-
batic state whose energy increases linearly withJ. The
avoided crossings in the exact results are caused by states of
the lower adiabatic potential become degenerate, and there-
fore mixing, with this state. AsJ increases, successively
higher-lying states of the lower potential pass through the
ground state of the upper potential and acquire its oscillator
strength. In the limit of largeJ the ground state and upper
state adiabatic potential wells become identical in shapefsee
Eq. s48dg, so that the zero-zero transition of Fig. 7 does carry
almost 100% of the oscillator strength, giving in the full
spectrum a single Poisson sequence.

IV. TIME-DEPENDENT CALCULATION OF DIMER
SPECTRA

In this section the absorption spectrum will be calculated
from the long-time limit of the dimer wave functions propa-
gated numerically in time. The absorption cross sections18d
can be written as12–14

ssvd , E
−`

`

dteisEg
00+"vdt/"cstd, s53d

where the time-correlation functioncstd is given as

cstd = Ê · kcg
00mW uUestdumW cg

00l · Ê. s54d

Here mW =mW 1+mW 2 is the electronic dipole operator of the
dimer andUestd denotes the propagatorUstd=e−iHet/" con-
taining the excited state HamiltonianHe of the system. We
now calculate the correlation function starting from the
ground state nuclear wave function jg

00sr1,r2d
=j1g

0 sr1dj2g
0 sr2d. Then, introducing complete sets of elec-

tronic states, the time-correlation functions54d becomes

cstd = o
n,m=1

2

Ê · kmW nlkpnukjg
00uUestdujg

00lupmlkmW ml · Ê, s55d

which upon Fourier transformation from time to frequency
domains53d, yields the spectrum. The calculation of the cor-
relation function requires the time propagation of the initial
wave function on the coupled BO potentials of the electroni-
cally excited states. In our numerical application the wave
functions are represented on a grid, sampling the two coor-
dinatesr1,r2. The time propagation is performed with the
method of Feit and Fleck15 and the off-diagonal coupling is
treated as is described in Ref. 16.

Although our numerical method is neither limited to har-
monic potentials nor to constant couplingJ, we here employ
the same harmonic potentialsfgiven by Eqs.s26d and s27dg
and a constant coupling, as used in the preceding sections.
Figure 8 shows dimer spectra calculated using the time de-
pendent approach. The curves were obtained forv=J=0.2,
and only thes1d band is displayed. The energy is given in
units ofv and the normalization is such that the excited state
potential surface has its minimum at zero energy. The four
panels in the figure represent cases of different experimental
resolution. In calculating the spectra via Eq.s53d, the corre-
lation function cstd is multiplied by a Gaussian damping
functiongstd=expf−4 lns2dst /td2g, where the damping timet
sin atomic unitsd denotes the full width at half maximum.
With increasing width of the damping function, see Fig. 8,
the structureless absorption band exhibits a vibrational fine

FIG. 7. Schematic representation of absorption from the dimer ground state
to states of the adiabatic potentials.

FIG. 8. The dimer spectrum for various damping timest calculated from
Eq. s53d.
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structure which, in the limit of infinite times, leads tod peaks
as obtained from the time independent calculation. In fact the
spectrum of Fig. 8 fort=800 is in perfect agreement with
the results of methods1d.

Since in many experiments vibrational bands are not de-
termined with high resolutionssee Sec. Vd, the time depen-
dent approach has the advantage that such diffuse bands can
be obtained via a short-time propagation. In other words,
within the time-independent approach the stick spectrum is
calculated and afterwards broadened to make contact with
experiment. The wave packet calculation, on the other hand,
can be stopped after a relatively short propagation time to
yield a low resolution spectrum.17 This is advantageous in
going to larger systems since it is possible to replace exact
wave packet propagation techniques by approximate meth-
ods adequate for short times.

V. COMPARISON WITH EXPERIMENT

In this section we will compare the theories with ex-
periment. To this end we have chosen three examples of
measured dimer spectra from the literature. The first one

is the famous dye molecule pseudoisocyaninesDye 1d al-
ready treated successfully by Kopainsky, Hallermeier, and
Kaiser18 using the theory of Merrifield and Fulton and Gou-
terman. The second example is an old measurement of West
and Pearce19 on 3,38-diethylthiacarbocyaninep-toluene-
sulphonatesDye 2d. Finally we investigate a very recent ex-
periment by Baraldi et al.20 on 3,38-disulfopropyl-4,5,
48 ,58-dibenzo-9-ethyloxacarbocyaninesDye 3d, for recent
work on merocyanine dimers see Ref. 21. The corresponding
monomer and dimer absorption spectra are shown in Figs.
9–11. All of these spectra show considerably broadened lines
due to finite temperature and interaction with the solvent
molecules, whereas the theory of the previous sections pro-
vides only stick spectra. Therefore we “dress” the stick spec-
tra with a line shape function which we have chosen to be
Gaussian. With this broadening the monomer spectra can be
fitted quite well by a Poisson distribution. In the case of
Dye1 fFig. 9sadg the fit is almost perfect. For the other two
dyes the agreement is not so good but the assumption of a
Poisson distribution seems still reasonable and is necessary
to apply the harmonic theory of the previous sections.

The fits provide the monomer parametersv00 sthe posi-
tion of the lowest vibrational peakd, v sthe vibrational fre-
quencyd, andg sthe vibrational coupling strengthd which we
use as input for our calculations. The parameters obtained in
this way are given in Table I together with the width of the
convoluted GaussiansM.

For the calculations of the dimer absorption spectra we
used as parameter the coupling strengthJ and, since the ge-

FIG. 9. Comparison of theory and experiment in the case of Dye1.sad
Monomer extinction coefficient.sbd Dimer extinction coefficient, measured
sdotsd, and fittedscontinuous lined. The vertical lines are the undressed stick
spectra; solid,s1d symmetry and dashed,s2d symmetry.

FIG. 10. Same as Fig. 9 but for Dye2.

FIG. 11. Same as Fig. 9 but for Dye3.

TABLE I. The parameters used to obtain the spectra of Figs. 9–11.

Dye1 Dye2 Dye3

v00 scm−1d 19130 18070 19200
v scm−1d 1390 1280 1200
g/v 0.78 0.60 0.72
sM scm−1d 520 500 450

J/"v 0.46 0.65 0.77
g 69° 55° 28°
DED /" scm−1d 140 300 0
sD scm−1d 460 460 450
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ometry of the dimers is not known, the angleg between the
two dipole transition moments. The stick spectra are shifted
by an amountDED and then convoluted with a Gaussian line
shape function of widthsD. The spectra obtained are shown
in Fig. 9–11 together with the underlying stick spectra for the
s1d ands2d symmetry. The corresponding fit parameters can
also be found in Table I. All calculated dimer spectra are in
good agreement with the measured ones. For Dye1 and Dye2
we had to introduce a quite large shiftDED, but no shift was
needed in the case of Dye3. The values of the coupling
strengthJ indicate intermediate coupling which is the most
severe test of theory.

Baraldi et al.20 made comprehensive theoretical investi-
gations on Dye3 using molecular dynamics and Monte Carlo
calculations of the dimer structure and comparative analysis
of monomer and dimer spectra. They concluded that the
planes of monomers in the dimer are parallel but the axes are
not parallel, rather they are twisted to an angle of about 30°.
This value is close to the value ofg=28° obtained from the
fit of Fig. 11. One should note that in this figure both peaks,
at ,19 000 and,21 000 cm−1, come from thes1d band.
The s2d band was just needed to fit the low energy tail
properly.

VI. CONCLUSIONS

In this paper we have considered three quite separate
methods for the calculation of dimer spectra. The first
method is derived in first quantization and involves a direct
diagonalization of the vibronic coupling problem, in which
the input consists of energies of vibrational levels in ground
and excited electronic states and the FC factors between
them. This has the advantage that it is applicable to arbitrary
BO potentials. For example, if the potentials are known from
quantum chemistry calculations, eigenenergies and FC fac-
tors are calculated easily. Alternatively, experimental mono-
mer spectra may be fitted to derive the necessary data.

The second method, more suited to the harmonic ap-
proximation, proceeds by separation of an operator equation
identical to the JC equation of quantum optics, namely, that
describing a two-level system interacting with a quantized
bosonic oscillator field. Apart from this interesting connec-
tion the method readily lends itself to an adiabatic approxi-
mation which allows a more physical interpretation to be
given to the spectral changes, both in energy levels and os-
cillator strength, accompanying the transition from the weak-
coupling to the strong-coupling regimes.

One general aspect to emerge from these studies is that
the energy spectrum as a function of coupling strengthJ
depends crucially upon the number of bound vibrational
states supported by the ground-state BO potential. If only
one state is considered, as in Fig. 2, a single quasiadiabatic
state shifts linearly withJ but all other levels have constant
energy asJ becomes large. However as the number of levels
in the electronic ground-state increases, e.g., in Fig. 3, more
and more dimer levels behave linearly, presumably due to
level repulsion. In the harmonic limit of an infinite number
of ground-state vibrational levels, all dimer energies change

linearly with J, see Eq.s50d. Since realistic molecules have a
finite number of bound levels, it is expected that the precise
details of dimer spectra will be specific to each monomer.

The third method is different to these studies and in-
volves a direct time propagation of nuclear degrees of free-
dom on coupled BO surfaces. For times long compared to
vibrational periods, spectra are obtained which are in com-
plete agreement with those of the diagonalization method
provided that in the latter method a sufficient number of
vibrational levels are used to assure convergence for a given
value of J. The time-dependent method has the advantage
that it can also be used to study transient processes, e.g., in
femtosecond chemistry.

Dimer spectra calculated using these methods show ex-
cellent agreement with experiment as to the changes in shape
of the vibrational envelope with respect to that of the mono-
mer. In these calculations the monomer spectra are used as
input in the harmonic approximation and the coupling
strengthJ is used as a fit parameter since it is not known
independently. Then the complete shape of the measured
dimer spectra are predicted correctly even in the intermediate
coupling case. In principle the values ofJ obtained from the
fits could be used to throw light on the dimer geometry, since
our fits indicate a specific orientation angle of transition di-
poles. Although detailed spectral shapes are in good agree-
ment with experiment, in two cases it is necessary to shift the
whole calculated spectrum by a constant amount to bring in
agreement with the measured spectrum. Although we did not
investigate the origin of this shift further it could also give
information on the changes in molecule-solvent interaction
accompanying dimerization.
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