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Abstract

We consider two clouds of ground-state alkali atoms in two distinct hyperfine ground states.
Each level is far off-resonantly coupled to a Rydberg state, which leads to dressed ground
states with a weak admixture of the Rydberg state properties. Due to this admixture, for a
proper choice of the Rydberg states, the atoms experience resonant dipole—dipole interactions
that induce mechanical forces acting on all atoms within both clouds. This behaviour is in
contrast to the dynamics predicted for bare dipole—dipole interactions between Rydberg
superatoms, where only a single atom per cloud is subject to dipole—dipole induced motion

(Mobius et al 2013 Phys. Rev. A 88 012716).

Keywords: interactions between Rydberg atoms, Rydberg dressing, resonant dipole—dipole

interactions, van-der-Waals blockade

(Some figures may appear in colour only in the online journal)

1. Introduction

The excitation of alkali atoms to Rydberg states is routinely
achieved in present day experiments [I-11]. The standard
technique is a resonant two-photon transition from a ground
state |g) to the desired Rydberg state |r) via an intermediate
state. The remarkable properties of Rydberg atoms open
a wide area of applications, e.g., as a medium for the
implementation of quantum computation protocols [12-14],
a source for single or correlated photons [15-17], or as
quantum simulators for condensed matter systems [18]. At
the same time, the sensitivity of Rydberg atoms to ionization
and spontaneous decay may present a problem. Furthermore,
compared to ground-state atoms, Rydberg atoms generally
require more elaborate trapping techniques [19]. To overcome
these unfavourable features, one may apply a continuous off-
resonant laser coupling between a ground state and a Rydberg
state. This is referred to as ‘Rydberg dressing’ [20-28]. The
lifetime of the admixed Rydberg excitation is significantly
larger and trapping techniques for ground-state atoms may
be applicable to a large extent. On the other hand, Rydberg-
dressed ground-state atoms will still inherit some of the
Rydberg state properties. Among these properties, we focus on
long-range interactions, in particular resonant dipole—dipole
interactions [29-31] and van-der-Waals interactions. While

0953-4075/14/095003+08%$33.00

both stem fundamentally from dipole—dipole interactions, van-
der-Waals interactions arise through off-resonant coupling
to nearby quantum states. This approximately results in an
interaction term Viaw ~ 1/7%|v, I; v/, I') (v, I; V', I'| for a pair
of atoms in Rydberg states with given principal quantum
number v, V' and angular quantum numbers [/, I’ separated
by a distance r. Importantly, this term is diagonal in the
electronic state. Resonant dipole—dipole interactions, Vig ~
/73, ;v YV, I',v,1| for |l — I'| = 1, on the other hand,
give rise to electronic state transfer [32-34]. Both of these
interactions can induce atomic motion, but only resonant
dipole—dipole interactions link it intimately with quantum state
transport [32, 33]. Then the character of motion depends on
the overall system eigenstate, called exciton, which depends
non-trivially on all atom positions.

In the present work, we study the effect of a partial
blockade due to van-der-Waals interaction [35-37] on dressed
resonant dipole—dipole interactions [38]. Specifically, we
consider two-atom clouds with radius smaller than the van-
der-Waals blockade radius, hence each cloud is in a full
blockade regime. The distance between the clouds is larger
than the blockade radius, and therefore simultaneous Rydberg
excitation of one atom from each cloud is possible. The
Rydberg states are chosen such that the excited atoms are
subject to resonant dipole—dipole interactions, which dominate

© 2014 0P Publishing Ltd  Printed in the UK
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at these larger distances. In an earlier article [39], we
have considered the same scenario without dressing. As
demonstrated therein, the dipole—dipole interactions set a
single-atom pair in motion (one atom from each cloud), so
that the initially delocalized Rydberg excitation is in the end
localized on the ejected atom. The ground-state atoms do not
move and remain behind.

We show that the dynamics is quite different if the
blockaded clouds are weakly Rydberg-dressed rather than
excited into a blockade state. Instead of ejecting a single
atom, the clouds may move as a whole. Whether this occurs
and whether motion is attractive or repulsive depends on the
exciton state of the system, as in the case of bare dipole—dipole
interactions.

In section 2, we review the Rydberg-dressing scheme
and the dipole—dipole interactions between dressed states on
a single-atom level [38], by considering a Rydberg dimer
with large interatomic separation. In section 3, we extend the
dressing model to atom clouds and discuss the role of van-
der-Waals interactions. The results of the simulation for the
emerging atomic motion are given in section 4. We summarize
our findings and conclude in section 5.

2. Binary dipole—dipole interactions and dressing
scheme

Let us first briefly recall bare dipole—dipole interactions
between two atoms, both prepared in Rydberg states with
principal quantum numbers v, v’ and angular quantum
numbers /, I’ satisfying the dipole selection rule |/ — I'| = 1.
We assume in the following that the principal quantum number
for both atoms is the same, v = v/, ! and choose [ = 0, = 1.

We abbreviate this two-particle state |v, 0; v, 1) = |sp),
and the state with interchanged angular quantum numbers
by |ps). We further assume that throughout this section the
principal quantum number and the interatomic distance r are
chosen such that van-der-Waals interactions can be neglected.
In this case, the two states couple through a non-vanishing
matrix element, giving rise to the dipole—dipole Hamiltonian

Haa = Vaa(r) (Isp){ps| + |ps)(spD), ey

where Vyq(r) = W/ Ir]> and V, is the interaction strength
that depends on the transition dipole moment. In general, the
interaction is also dependent on the dipole moment orientation.
However, throughout the paper we assume Rydberg states with
zero azimuthal quantum number (m; = 0) and constrain the
atoms in a plane orthogonal to the quantization axis, which
allows us to skip angular dependence. One can immediately
write down the adiabatic eigenstates of the dipole—dipole
Hamiltonian,

1 1
¢~ = —=(lsp) £ ps)), @)

V2
with the corresponding eigenvalues (adiabatic surfaces)
U*(r) = =4Vu(r). The two eigenmodes correspond to
attractive and repulsive motion of the atoms. This is rather
obvious in the adiabatic approximation and can be rigorously

' For |v — v/| > 0, dipole—dipole interaction strengths diminish rapidly.
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Figure 1. Schematic of the setup. Lower panel: level-scheme for the
dressed dipole—dipole interactions between two single atoms. Upper
panel: the Rydberg-dressed atoms within one cloud interact with all
atoms from the other cloud for which the Rydberg states satisfy the

dipole selection rule.

demonstrated by solving the time-dependent Schrodinger
equation for the state |W(r, 1)) = ¢ (x,t)|sp) + ¢da(x, t)|ps)
with the Hamiltonian

h*v?
H=- Z + Hyq, 3

k 2M
i=1,2

where M is the atomic mass.

Next, we review the essential features of the dressing
scheme. For further details we refer to [38]. Consider again two
alkali atoms, with four essential states |g), |h), |s), and |p). As
before, |s) and | p) denote Rydberg states with angular quantum
number 0 and 1 and identical principal quantum number
v, while |g) and |h) are two hyperfine ground states in the
alkali atom. The Rydberg dressing is achieved by selectively
coupling the states |g) and |s) and, respectively, the states |/)
and |p) to each other via far detuned laser fields, as sketched
in figure 1. We denote the effective Rabi frequency of the |g)
— |s) transition by €2; and the detuning by Ag, and in the same
manner we define 2, A, for the |h) — |p) transition. We will
from here on assume the frequencies and detunings to be the
same for both transitions, and for simplicity real:

Q=Q,=Q, A;=A,=A. 4
With that assumption, the two-atom Hamiltonian encapsu-

lating the laser coupling and the dipole—dipole interaction
reads

Hyressea = Hy + He, (5)

where

Hy=—hA Y (ol +0b) +Va() Y. (o

n=1,2 n,l=1,2

alay)  (6)
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and

hQ
H =— (
2

n=1,2

+ o, +0hp+a[’}h). @)

Here, we have introduced the operators o}}, = |k,) (k; |, where
n labels the atom and k, k' € {g, h, s, p}. As shown in [38], the
Hamiltonian (5) can be reduced to an effective one by means
of van-Vleck perturbation theory, which ultimately allows to
introduce dressed dipole—dipole interactions between dressed
ground states |g), |iz),

13 =N(g) +als), |h) =N(h) +alp), ®

where o« = Q/(2A) < 11is adimensionless scaling parameter
and NV = 1/+/1 + o a normalization factor. We define two-
particle states | gﬁ) and |iz§), corresponding to the first atom
being in the state |g) and the second atom in |]~’l>, and vice
versa. In this basis, the effective Hamiltonian takes the form

Hgag = V(|h) (hg| + |hg)(gh|) + hW (|gh) (gh| + |hg) (hg|)

)
with
4
V = Va(r) (10)
1 — Vdd(r))z
2RA
and
- ) 4 1
W=20A+20'A\| —— —2 (11)

2
()

We consider interatomic distances |r| > r. = (Vo/2RA)'/3,
and hence we can neglect the position dependence of W, i.e.,
in the diagonal terms of Hgq. The remaining diagonal terms
(light shift) depend solely on the dressing laser parameters
and have no further effect on exciton transport or interatomic
forces. Hence, considering only the first (off-diagonal) term
in equation (9), we see that the effective Hamiltonian for
the dressed two-atom system has exactly the same structure as
the one in equation (1), with a dressing-dependent scaling of
the interaction strength.

Illustratively, one can think of equation (10) as arising
from a three-step-process: in the first step, the ground states
|g), |h) are excited to the Rydberg states |s), | p) by the dressing
laser. In the second step, the dipole—dipole interactions flip
the Rydberg states |s) and |p). In the final step, the Rydberg
states are de-excited back to the respective ground states by the
dressing field (see figure 1). This involves four photoinduced
transitions in total, hence the interaction strength scales as o*.
We can thus conclude that the dipole—dipole induced motional
dynamics for a single pair of Rydberg-dressed atoms at large
distances is indeed analogous to the dynamics for genuine
Rydberg atoms, the dressing merely leads to a rescaling of
the Hamiltonian matrix elements and hence to different time
scales of motion.

3. Dressed atom clouds

Having discussed dressed dipole—dipole interactions for a
single-atom pair, we now consider a more complicated
situation where the two atoms are replaced by Rydberg-dressed
atom clouds. The spatial extension y of these clouds is taken to
be smaller than the van-der-Waals blockade radius, while the
distance L between the two clouds is larger (see figure 1(a)).
As will be elaborated below, in this way we suppress dressed
dipole—dipole interactions within each cloud, but allow these
interactions for any two atoms from different clouds.

For simplicity, we take the total number of atoms N to
be even, with N/2 atoms in each cloud. The two clouds are
labelled by A and B, and we define index sets A, B for atoms
residing in cloud A or B, respectively. The Hamiltonian is a
straight-forward extension of the one of section 2, equation (5).
In this scenario, van-der-Waals interactions can no longer be
neglected since the interatomic distances within each cloud
are small. Hence, the full electronic many-body Hamiltonian
includes the laser dressing as well as both the dipole—dipole
interactions and van-der-Waals interactions. Explicitly, it reads

Hel = Iilas +I-Iint’ (12)
where
N
(13)
and
N ab
Vo ce ,
M= Y| o oo X ool
nl=1 a,b= vp
n#l
(14)

In the last equation, Cg” denotes the state-dependent van-
der-Waals interaction strength. Here, Hy,s contains all terms
arising from the external fields, while H;, accounts for
atomic interactions. In the Hamiltonian for just two atoms,
equation (5), we chose a slightly different grouping of terms in
order to facilitate the perturbative treatment, but we emphasize
once more that the two Hamiltonians only differ in so far as
the many-body Hamiltonian (12) also includes van-der-Waals
interactions, which were neglected in equation (5) due to the
assumption of large distances.

Let us first consider the effect of the van-der-Waals
interactions. It is well known that at small interatomic
distances, these interactions lead to an energy offset of all
many-particle states with more than one Rydberg excitation
with respect to the energy of the states with just a single
excitation. Therefore, an external laser field tuned resonantly
to the atomic transition from a ground state to a Rydberg
state can create at most one Rydberg excitation within a
radius at which the van-der-Waals energy offset is larger than
the laser linewidth. The linewidth is determined by the Rabi
frequency of the transition, which provides an estimate for
the blockade radius ry & (Cs/hS2)'/°. This effect gives rise
to so called superatomic states [10, 40, 41] where several
atoms confined in a volume ~4xry /3 coherently share a
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single Rydberg excitation. In an earlier paper, we have
studied motional dynamics induced by resonant dipole—dipole
interactions between such superatoms [39] without dressing.
Interestingly, the delocalized coherently shared excitation does
not prevail—the dipole—dipole forces eject a single atom from
each superatom, localizing the entire Rydberg excitation on
this atom. For Rydberg-dressed atoms, the concept of van-der-
Waals blockade needs to be slightly modified, as the dressing
blockade radius is now defined as the interatomic distance at
which the dressing field is rendered ineffective by the van-
der-Waals interaction. Since the dressing lasers are already
far detuned (2 < A), the dressing blockade radius can be
estimated as 7, & (Cg/2h|A])'/0 [22].

We recall that in our setup the spatial extension
of each cloud is smaller than the blockade radius by
construction. Consequently, each cloud can only sustain a
single Rydberg excitation. This implies that (dressed) dipole—
dipole interactions between an atom pair nm with n, m € A (or
n, m € B respectively) are suppressed as this would require
two excitations within the blockade radius, while for an atom
pair with n € A,m € B (or vice versa) the dipole—dipole
interactions remain possible.

The model (14) is oversimplified at very small atomic
distances, where the interaction potentials between adjacent
Rydberg levels approach each other very closely in energy,
displaying multiple avoided crossings (see e.g. figure 1 in
[42]). Nonetheless it captures the only essential physics, which
is that the blockade also holds for very small interatomic
separations, as confirmed by experiment. Here, due to the
steepness of the molecular potentials excitation to any Rydberg
pair state (ss, sp, pp) is strongly suppressed [43].

This is taken into account by a reduction of the many-
body Hilbert space, removing all states that contain more than
one Rydberg atom in the same cloud. For the Hamiltonian
(12) with Cé“’b) = 0, we then apply van-Vleck perturbation
theory [38, 44, 45] to derive an effective Hamiltonian in
the ground-state manifold, the many-body space spanned by
), |iz) for each atom. We construct this many-body basis
perturbatively in the dressing parameter o, which is also
the small parameter of van-Vleck perturbation theory. Hence
we write for example |§iz) ~ |gh) + o|gp) + o|sh), without
the presence of the possibly blockade forbidden contribution
o?|sp). With methods as used in [38] we then obtain the dressed
electronic Hamiltonian

2 (7 n __m m __n
Hel - Z Vnm (rnm)[ag,;laljlg + Ggi,o}}gx]’ (15)
neA,meBB
where r,, denotes the interatomic distance |r, — r,,| and

\N/nm(r,,m) is the dressed two-body dipole—dipole interaction
from equation (10). Since the distance of the clouds obeys
L > r., we may even approximate

V()Ol4

Vnm (rnm ) ~ 3
nm

From the Hilbert space in which the Hamiltonian of
equation (15) operates, all doubly excited states within one
cloud have been removed. Consequently, our approach will
only be self-consistent if «”?N < 1, since the dressing-induced
excited state occupation per cloud is roughly given by a>N.

(16)

4. Atomic motion

Having defined the state space and the Hamiltonian for the
electronic degrees of freedom, we are ready to tackle the full
dynamics of the system, including atomic motion. To this end,
we consider the many-body version of the Hamiltonian given
in equation (3) for dressed interactions, i.e.,

N

- ®v: o
H==) —t+Ha

a7
i=1

with H, from equation (15). As an illustration, let us consider
a simple case of four atoms in total (two in each cloud), and
restrict the position space to one dimension for each atom.
We consider larger atom numbers in the appendix. We assume
that initially two of the atoms are in the dressed state |g),
and the other two atoms in |7z). This choice is made for
a better illustration, in particular since the dressed dipole—
dipole interactions conserve the total number of atoms in
either of these states. Proposals regarding the possibility to
dynamically create an initial state with a given distribution of
atoms on the states |g) and |h) are given in [46]. With our
choice, the electronic Hilbert space is spanned by the states
{188 : hh), 1gh = gh), 1gh : hg),|hg : gh), |hg : hg), |hh : 88)}.
In this notation, the colon separates the one-particle states
within cloud A and B, respectively. As explained above,
tensor-products are defined only up to order «. For a better
visualization, we also give the matrix elements of H, in this
basis,

0 Vs Vo Viz Vi 0
Vos O 0 0 0 Vy
Ve 0 0 0 0 Vs
Vs 0 0 0 0 Vy
Ve 0 0 0 0 Vy
0 Vig Viz Vag Va3 0

Already at this point, we note that the structure and sparsity of
this Hamiltonian differ from the case of a genuine coherently
shared Rydberg excitation, cf equation (6) and table 1 in [39],
and hence we may indeed expect a different kind of motional
dynamics for dressed ground-state atoms.

In order to determine the expected motional dynamics,
we inspect the Born—Oppenheimer surfaces of the system, i.e.,
the eigenvalues of the electronic Hamiltonian (15). They are
given by

Hy = (18)

Ui(R) =0, (19a)

U>(R) =0, (19b)

Us(R) = \/(\714 —V23)2 + (Vi3 — Vag)?, (19¢)

Us(R) = —\/ (Vi = Va3)? + (Vi3 — Vag)?, (19d)
Us(R) = \/(\714 + V3)2 + (Vis + V)2, (19)

Us(R) = —\/ (Via + Va3)2 + (Vi3 + Van)2, (19
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Figure 2. Motion of dressed ground-state atoms, prepared in a repulsive configuration. (a) Total atom density as a function of time. Clouds
of Rydberg-dressed ground-state atoms are set in motion. (b) Non-adiabatic population transfer from the adiabatic surface on which the
dynamics is initiated is of the order of 10~7. The dynamics is shown for eight atoms in total. The following parameters are used:

M =12800au, Vy = 1.08 x 10%au, y = 0.5 um, L = 8 um, Q = 4 MHz, @ = 0.18. The parameters for the mass and interaction strength
correspond to v = 36 states in ’Lithium, the interaction strength is obtained from the scaling V, ~ u3v* with py ~ 0.8 au. The lifetime of
the dressed Rydberg state with @ = 0.18 is T ~ 1 ms, calculated as T & tov3 /a? with 1p &~ 3 x 107 au [47, 48]. The lifetime is therefore an
order of magnitude larger than the timescale on which the motional dynamics takes place.

where R is a vector containing all atomic positions. In a
regime where the atomic motion is adiabatic, the gradient of
the kth eigenvalue with respect to the position r; of the ith atom
determines the force and hence the motion of this atom [32]
on the kth surface,

FF = —3,Ui(R). (20)

Let us for clarity’s sake consider the special case where the
distances between all atom pairs with atoms in different clouds
are the same, i.e., 7|3 = ry4 = ry3 = ry4 = ©. Then the gradient
of the eigenvalues Us and U has the structure

5 §
Al
—&
with the force & = 3¢/ 2Voar* /o* and V; as defined below
equation (1).We see that the two atoms in cloud A experience
the same force as the two atoms in cloud B but with opposite
sign. In other words, the dynamics on these two adiabatic
surfaces corresponds to repulsion and attraction of the whole
cloud. In the general case the interatomic distances are not
exactly the same. Hence the matrix elements V; ; will slightly
differ, and so will the forces. However, the qualitative picture
remains the same as long as the spatial extension of each
cloud is much smaller than the distance between the clouds.
The treatment can also be extended to larger atom numbers,
see appendix. Here, we have numerically simulated the atomic
motion for N = 8.

While a full quantum mechanical solution of the time-
dependent Schrodinger equation with the Hamiltonian from
equation (17) is not feasible for a large number of atoms,
quantum—classical hybrid methods can often be successfully
applied to systems such as considered here. Among those,
Tully’s surface hopping algorithm is a well-established
approach [32, 33, 39, 49-52], which also allows to estimate the
relevance of non-adiabatic effects. As the method is described
in the aforementioned references, here we will only briefly
mention a few most crucial aspects. In the framework of

= —FS, Q1)

Tully’s algorithm, the electronic degrees of freedom are treated
quantum mechanically, while the motion of the atoms is treated
classically. All physical quantities are derived by averaging
over a large amount of such trajectories, each of which is
propagated on a single adiabatic surface. The presence of non-
adiabatic effects is incorporated into the dynamics by means
of stochastic switches between different adiabatic surfaces in
each timestep. The initial conditions for the propagation are
chosen such that they resemble the Wigner function of the
initial quantum state.

The results of the simulation, which constitute the main
finding of the present work, are shown in figure 2. We observe
that the dressed dipole—dipole interactions set all atoms in
motion (left panel). This is in contrast to the dynamics found
for atom clouds coherently sharing a single genuine Rydberg
excitation [39], where ultimately only a single-atom pair is
ejected. We also find that the dynamics is highly adiabatic, as
the non-adiabatic population transfer is of the order of 10~
(right panel). The reason for the entirely different behaviour
between coherently excited, blockaded clouds and weakly
Rydberg-dressed clouds can be understood by inspecting
the corresponding Hamiltonian of the electronic degrees of
freedom. A coherently shared excitation allows dipole—dipole
interactions between one single-atom pair at a time. In the
dressed case, in contrast, all (dressed) ground-state atoms
within one cloud interact with all atoms from the other cloud.

We also observe a spread of the initial wave packet from
the time evolution of the spatial density in figure 2. In order
to assess its origin, we first estimate the intrinsic quantum
mechanical dispersion for a single atom. The time-dependent
width y (¢) is given by y () = yo+/1 + B(£)2, where Yy is the
initial width and 8(¢) = ht/(2M yOz). Inserting the parameters
of our simulation (M = 12800au, yp = 0.5 um) and an
evolution time of 7 = 100 us, we obtain y(T) ~ 0.84 um.
This gives a visible contribution to the wave packet spreading,
however, it cannot fully explain the total final width. An
additional factor is the dipole—dipole interaction between the
wave packets. Its effect on the spreading is simply explained in
the picture of single trajectories. Let us consider two pairs of
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trajectories, one pair initially starting in the inner tail of each
wave packet (with respect to the position of the other one)
and another pair in the outer tail. Due to the 1/7* dependence
of the dipole—dipole interactions, the former two trajectories
experience a stronger force. The interaction is, in our case,
repulsive, which means that they acquire a higher velocity
and will eventually overtake the trajectories initiated in the
outer tail. This leads to a temporary asymmetric squeezing of
the wavepacket, but eventually the inhomogeneous velocity
distribution becomes an additional factor which increases the
dispersion. For the parameters considered in our simulation,
this effect and the intrinsic quantum mechanical spreading are
of similar importance.

Note that the simple mechanical repulsion of the clouds
of atoms can also be achieved via dressed van-der-Waals
interactions [22, 53], when the radius of each cloud is less
than the blockade radius 7, but their separation larger.
Dressed dipole—dipole interactions discussed here are more
complicated, but offer features that cannot be realized with
van-der-Waals dressing: we can switch between attraction,
equation (19f) and repulsion, equation (19¢), by initializing
a different electronic state. For van-der-Waals dressing this
would require addressing different Rydberg states [54], and
hence changing the dressing setup. Due to the electronic
state dependence of the motion for dressed dipole—dipole
interactions, they can be employed to study linked exciton and
motional dynamics [33, 52, 55] and even create mesoscopic
entangled states [46].

Here we have exclusively focused on unconfined
interacting atoms. Dressed dipole—dipole interactions between
atoms confined in an optical lattice also offer intriguing
opportunities, such as engineering exciton—phonon interaction
Hamiltonians [56]. In such as case, the importance of non-
adiabatic decoherence effects has to be assessed carefully
[57, 58].

5. Summary and conclusion

We have studied the effects of the Rydberg blockade on
the motion of Rydberg-dressed atom clouds, induced by
dressed dipole—dipole interactions. We predict a global motion
for all atoms, explicitly demonstrated numerically using
Tully’s quantum—classical hybrid method. The result can
be qualitatively understood by examining the corresponding
adiabatic surfaces. Such a dynamics stands in contrast
to the one of atom clouds coherently sharing a Rydberg
excitation, where only a single pair of atoms is set in
motion. The observed behaviour paves the way towards the
realization of entangled mesoscopic motional states, where
the entanglement can prevail for microseconds over distances
of several micrometres [46]. A possible implementation of
momentum and entanglement transport in one-dimensional
Rydberg chains [33, 52], but with dressed atom clouds as sites
as we considered here, would emphasize differences between
pure van-der-Waals dynamics and the one stemming from
exciton transport [34].
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Appendix. Extension to large atom numbers

In this appendix, we discuss the setup sketched in figure 1
for larger numbers of atoms than treated in the main text.
In particular, we consider the electronic basis, the adiabatic
surfaces, as well as the scaling of the force with atom number
for two dressed atom clouds.

We havq N atoms in total, each of which can be in
either |g) or |h), which leads to 2V possible many-body states.
However, a choice of a given initial state immediately reduces
the dimension substantially, since the dressed dipole—dipole
interactions conserve the total number of atoms in either of
the states. For example, if the initial state is prepared such that
N/2 atoms are in either of these two states, the dimension of
the Hilbert space reduces to D = ( N%). For convenience, we
take the number of atoms in the two clouds to be the same
and define n = N/2.? The many-body states can be classified
further in terms of the number of atoms in a given state and
cloud. We denote the number of atoms in cloud A, which are in
the state |2) by N;,. For a given Nj,, there exist ( 9 )2 states. Note

that the equality ), ( 1\'}, )2 = (IZ ) holds. Next, we consider
the matrix structure of the many-body Hamiltonian (equation
(15)), using the basis states classified according to Nj,. One

can write the Hamiltonian in terms of blocks B;;, where each
block is a matrix of dimension
2 2
dim B;; = (’:) x (’;) , (A.1)

formally coupling basis states from different N,-manifolds
with N, =iand N;, = J,

Boo By, Bo,n

- Bio Bi By,
a=1 . . : (A2)

Bn,O Bn,l Bn,n

However, the dressed dipole—dipole interactions can only flip
an atom pair from | gin to |iz§), as long as the two involved atoms
reside in different clouds, due to the blockade condition. This
means that the matrix elements of the Hamiltonian can only be
non-zero between state manifolds for which N, differs exactly
by one. Hence, the only non-vanishing blocks are adjacent to
the main diagonal, and the Hamiltonian assumes the form

0 By; --- O 0
Bigp 0 --- 0 0
Ha=| : & S P 0 ¥)
0 0 -~ 0 By,
0 0 Bu,o1 0

2 The essential features of the dynamics, such as the existence of adiabatic
surfaces leading to global attractive/repulsive motion of the atom clouds, also
prevail if the number of atoms within each cloud is not the same.
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with B;; = BJr One can further give the sparsity of non-
vamshm% blocks For a state within a given N,-manifold, there
are ( ) (n — Nj,)? non-zero matrix elements leading to a

state w1th1n the Nj, + 1-manifold and (; ) N7 non-zero matrix
elements leading to a state within the Nh - 1 manifold. Each
element has the form as given in equations (10), (16).

Having established the structure of the Hamiltonian, we
proceed with a closer examination of the adiabatic surfaces.
We consider the eigenvalue equation

HalYm) = Unl¥m),

and expand each eigenstate |1,,) in terms of the basis states
classified by Ny,

(A4)

n
IED A (A.5)
Ny=0

Here, |{¢n,}) symbolically denotes all basis states with a given
Ny and ¢y, is the coefficient vector which gives the contribution
of each smgle basis state to the mth eigenstate. For simplicity,
throughout the appendix we assume that all atoms within one
cloud are at the same position, implying that all non-zero
matrix elements of I:Iel have the same magnitude, which we
abbreviate by W = W(R) ~ Vya*/L? in the following. With
this assumption, one finds eigenstates where all entries in the
¢y, have the same magnitude (denoted by ¢y, ), which allows
us to rewrite the eigenvalue equation (A.4) as

Unch, = W(Npch _y 4+ (n = No)*chi 1) (A.6)
With the additional rescaling
~m n m
CNh = (Nh) CNh’ (A7)
the new coefficients are normalized,
> e = (A.8)
Ny
and we arrive at
Unéy. = (An,GR _1 + Bu,Gat 41 (A.9)
where
~ Un
U,=—, A.10
W (A.10)
An, = Ny(n — Ny + 1), (A.11)
By, = Ny(N, + 1). (A.12)
We can also express the rescaled adiabatic surfaces as
n—1
Un= Y _ 2ByRe{(én) e} (A.13)

Ny=0
The adopted transformations effectively reduce the dimension
of the problem from (]Z ) to n + 1 essential states, which
is now easily accessible numerically. For example, we can
estimate the scaling of the adiabatic surfaces corresponding
to an attraction/repulsion of all atoms with increasing atom
number as Uyep/an = n°W/2.

Finally, we consider the force acting on a single atom,
according to equation (20). We can rewrite the force acting on
the ith atom on the mth surface as

F" = — (0|8, Het (R) [ Y1),

where |¢,,) is the eigenstate corresponding to the mth
surface. Since by assumption the entries of H have the
same magnitude, we only have to count the number of
matrix elements which depend on r; in order to evaluate
equation (A.14). After some algebraic transformations, the
explicit expression becomes

(A.14)

n—1

—F' =0, W(R)— > 2BuRe{(e) )
Nh 0

(A.15)

By comparing the expression with equation (A.13), we arrive
at

Uy
—F' =0, W(R)Z. (A.16)
n

Since we previously found the scaling Uepjax ~ n® for
attractive/repulsive surfaces, from the above equation we infer
that the force per atom scales linearly with the number of
atoms.
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