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Abstract With quantum computers being out of reach for now, quantum simulators
are alternative devices for efficient and accurate simulation of problems that are chal-
lenging to tackle using conventional computers. Quantum simulators are classified into
analog and digital, with the possibility of constructing “hybrid” simulators by combin-
ing both techniques. Here we focus on analog quantum simulators of open quantum
systems and address the limit that they can beat classical computers. In particular, as
an example, we discuss simulation of the chlorosome light-harvesting antenna from
green sulfur bacteria with over 250 phonon modes coupled to each electronic state.
Furthermore, we propose physical setups that can be used to reproduce the quantum
dynamics of a standard and multiple-mode Holstein model. The proposed scheme is
based on currently available technology of superconducting circuits consist of flux
qubits and quantum oscillators.

Keywords Quantum information · Quantum algorithms and protocols · Quantum
interference devices ·Superconducting circuits ·Quantumsimulation ·Photochemistry

B Sarah Mostame
sarah.mostame@intel.com

1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge,
MA 02138, USA

2 Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420, USA

3 Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany

4 Present Address: Intel Labs, 2111 NE 25th Avenue, Hillsboro, OR 97124, USA

5 Present Address: Mueunjae Institute for Chemistry (MIC), Department of Chemistry, Pohang
University of Science and Technology (POSTECH), Pohang 790-784, Korea

6 Present Address: Institute of Molecular Science, Okazaki, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-016-1489-3&domain=pdf


S. Mostame et al.

1 Introduction

There is a growing interest in understanding the dynamics of open quantum systems,
particularly, when particles or quasiparticles are coupled to a vibrational environment.
Such situations arise in quantum chemistry and condensed matter physics, for exam-
ple, in photosynthetic complexes or molecular aggregates. Thus, a detailed study of
the dynamics of electron–phonon interaction becomes desirable. Although many ana-
lytical and numerical methods have been employed to simulate this problem [1–13],
their applicability is often limited by the number of the phonon modes coupled to the
electronic states or to a particular investigation (e.g., low-lying excited polaron) and a
specific parameter regime. The resources required for most of the classical computa-
tional methods increase exponentially with the number of particles in the simulation,
and it is challenging to simulate the dynamics of open quantum systems on conven-
tional computers, even using modern parallel processing units [14–16].The situation
becomes even much more challenging for complex open quantum systems with struc-
tured environments. As yet, only small model systems have been studied theoretically
with crude approximations to the system-bath dynamics, see for example [17,18].
Numerically exact solution can be obtained for only small systems (<20 sites) with
restrictions on the bath modes [14,16,19–22]. State-of-the-art massively parallelized
implementations of the hierarchically coupled equation of motion (HEOM) approach
[14,16,23] have proven as one of the most efficient methods (with respect to both
system size and complexity of the spectral density) to accurately acquire the quantum
dynamics of the Holstein model. In Fig. 1, we estimate the upper limit for simulating
such complex open quantum systems with current computational resources on con-
ventional computers. Here, we use QMaster [16] as a benchmark. The horizontal axis
indicates the system size (number of the particles or sites) that can be simulated while
the vertical axis indicates number of the peaks in the spectral density that could be
considered in this simulation, see Ref. [16] for more computational details. Note that
“peaks” here refers to Drude–Lorentz peaks in the spectral density [16] which should
not be confused with the number of phonon modes in the Hamiltonian. Each of these
peaks in the spectral density may include several phonon modes. Further details are
given in “Appendices 2 and 3.”

In this work, we propose analog quantum devices [24–29] to mimic the dynamics
of complex open quantum systems and demonstrate that they can be constructed using
present-day technology of superconducting circuits and outperform current classical
computational methods. With such quantum simulators, one can perform more exten-
sive investigation including exciton transport, spectral density, absorption spectra as
well as wide range of parameters and thereby a more detailed understanding of the
problems. Furthermore, our proposed quantum simulators occupy a wide region in
the plot shown in Fig. 1. Similar ideas for simulating Holstein polarons based on
polar molecules trapped in an optical lattice [30,31], Rydberg states of cold atoms and
ions [32], trapped ions [33,34], and superconducting circuit quantum electrodynam-
ics (QED) [35,36] have been pursued earlier. However, the main focus of this paper
is emulating the dynamics of multiple-mode Holstein models at finite temperature—
with application in open quantum systems with complex environments—which has
not been addressed in any of the above mentioned references. Moreover, it is worth-
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while to study an alternative setup, since different experimental realizations carry
distinct advantages and drawbacks. For example, the proposal based on trapped ions
in Ref. [33], that simulates the standard Holstein model, does not outline how a similar
approach can be used to tailor many phonon modes to simulate the structured spectral
densities that is the main focus of this paper. Additionally, it is focused on simulating
the Holstein model in a parameter regime of strong coupling.

2 Standard Holstein model

Wefirst focus on simulating an electron–phononmodelwhich describes the interaction
of a single electron on a 1D finite lattice with one vibrational mode per lattice site,
namely the Holstein model:

HHol = Hel + Hph + Hel−ph . (1)

The first term of the Hamiltonian is given by

Hel =
N∑

n=1

εn a
†
nan +

N−1∑

n=1

Vn
(
a†nan+1 + a†n+1an

)
(2)

with εn being the electronic transition energies of site n, Vn being the strength
of the nearest-neighbor couplings, a†n (an) being the creation (annihilation) oper-
ators of the electron and N being the number of sites. The phonon Hamiltonian
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Fig. 1 The gray area shows the estimated treatable system sizes for the simulation of Frenkel exciton
Hamiltonians using current classical supercomputing resources. There is a trade off between the complexity
of the spectral density and the system size that denotes the classically feasible area. Three photosynthetic
systems are shown:TheFenna–MathewsOlson (FMO) complex of green sulfur bacteria, the light-harvesting
I and II complexes of purple bacteria, and photosystem II of higher plants. The simulation has beenperformed
using the hierarchical equations of motion (HEOM) approach on 64 AMDOpteron cores employing a total
of 250 GB of RAM
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is Hph = ∑N
n=1 h̄ωnb

†
nbn , with ωn being the frequency of the phonon mode cou-

pled to the n-th lattice site and b†n (bn) being the creation (annihilation) operators
of the phonon. The last term in Eq. (1) describes the electron–phonon coupling

Hel−ph = ∑N
n=1 κn a

†
nan

(
b†n + bn

)
with κn being the coupling strength between the

electron and phonon at lattice site n. Using the Jordan–Wigner transformation, the
Hamiltonian HHol can be rewritten in terms of the Pauli σ operators,

HHol = 1

2

N−1∑

n=1

Vn
(
σ n
x σ n+1

x + σ n
y σ n+1

y

)

+
N∑

n=1

[εn

2
σ n
z + κn σ n

z

(
b†n + bn

)
+ h̄ωnb

†
nbn

]
. (3)

In order to reproduce the quantum dynamics of the open system given by the above
Hamiltonian, let us consider a chain of N gradiometric flux qubits [27,37] with tunable
σzσz-couplings [38,39] and a single LC oscillator coupled to each qubit, as shown in
Fig. 2. The Hamiltonian of a single flux qubit in the bare basis, the quantum states
with magnetic flux pointing up |↑〉 and down |↓〉, is given by Hi

q = (Ei σ i
z +�i σ

i
x )/2

[40,41], where Ei is the energy bias between |↑〉 and |↓〉 ,�i is the tunnel splitting
between the two states and i labels the position of the qubit in the chain. Note that
Ei can be tuned to zero to neglect the term Eiσ i

z and therefore be at the optimal
operating point [42] of the flux qubit, which is the most common case in current
experiments. The coupling between two nearest-neighbor qubits in the bare basis is
given by Hi

coup = gi (�c
ii+1) σ i

z σ i+1
z , where �c

ii+1 is the (tunable) tunnel splitting
of the coupler qubit (smaller qubits in Fig. 2, see Ref. [27] for more details). The
coupling of a quantum LC oscillator to the smaller loop of a flux qubit, as shown in

Fig. 2, is given by Hi
q−osc = ηi σ

i
x

(
c†i + ci

)
with c†i (ci ) being the creation (annihi-

lation) operator of the oscillator coupled to the i-th qubit and ηi being the coupling
strength. Finally, the Hamiltonian of a single oscillator is Hi

osc = h̄ω′
i c

†
i ci with ω′

i
being the transition frequency of the oscillator. Rewriting the above Hamiltonians
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Fig. 2 Superconducting quantum circuit diagram of the proposed quantum simulator for the Holstein
model. The qubit states are encoded in the quantized circulating current of the qubit loop. The red crosses
denote Josephson junctions. The gradiometric flux qubits are coupled with a tunable σzσz -coupling. Each
of the qubits is independently coupled to a quantum LC oscillator to simulate the vibrational environment
(Color figure online)
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in the energy eigenbasis of the qubit |±〉 = (|↓〉 ± |↑〉) /
√
2 converts the operators

σ i
x → σ i

z and σ i
z σ i+1

z → σ i
x σ i+1

x ≈
(
σ i
xσ

i+1
x + σ i

yσ
i+1
y

)
/2 in the rotating wave

approximation (neglecting strongly off-resonant couplings). Then the total Hamilto-
nian of the superconducting circuit proposed to emulate the dynamics of the Holstein

model Hsim = ∑N
i=1

{
Hi
q + Hi

coup + Hi
q−osc + Hi

osc

}
in the new basis is given by

Hsim ≈ 1

2

N−1∑

i=1

gi (�
c
ii+1)

[
σ i
x σ i+1

x + σ i
y σ i+1

y

]

+
N∑

i=1

{
�i

2
σ i
z + ηi σ

i
z

(
c†i + ci

)
+ h̄ω′

i c
†
i ci

}
. (4)

Comparison of the Hamiltonians (3) and (4), demonstrates that a chain of coupled
flux qubits with a single quantum LC oscillator coupled to each qubit can simulate the
same dynamics of the Holstein model with �i , gi (�c

ii+1), ηi , ω′
i corresponding to

εn, Vn, κn, ωn , respectively. Interestingly, for superconducting flux qubits, the cou-
plings gi (�c

ii+1) and ηi are tunable. The implementable range of gi (�c
ii+1) is in the

range of approximately zero to 1 GHz [38]. ηi can be in the<10 GHz range depending
on the frequency of the resonator and�i can be chosen between zero and 13GHz [37].
The tunability and wide implementable range of these parameters makes it possible to
study different parameter regimes of interest (strong coupling ηi 	 gi , weak coupling
ηi 
 gi and intermediate ηi ∼ gi regimes) using the proposed quantum simulator.

Preparation of the qubits in their ground state is straightforward: One needs to allow
them to relax as close as possible to their ground state by cooling them down to the
dilution refrigerator ambient temperature. Subsequently, the qubits can be initialized
by flux control in the appropriate initial states for the simulation. The excitation of a
qubit is undemanding to achieve with the application of a resonant microwave excita-
tion (π -pulse) carried by a microwave line which is connected to the respective qubit.
This technique has been used extensively, e.g., for the observation of Rabi oscillations
in a flux qubit [40,43]. After some evolution time the populations of the qubit states
are measured.

3 Temperature

Note that the standard Holstein model discussed above is at zero Kelvin; however,
the superconducting circuit (as a real physical system) is at finite temperature Tsim.
Currently, a superconducting circuit can be refrigerated down to a very low tempera-
ture, around 10 mK≈ 0.2 GHz, and the flux qubits can be even cooled down far below
10 mK using active microwave cooling [44]. Although the quantum simulator being
at finite temperature seems to be a disadvantage, we will see in the following that the
easy tunability over Tsim allows one to investigate the physically relevant case of a
finite temperature Holstein model over a wide range of temperatures. To this end, we
will generalize the Standard Holstein Hamiltonian.
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4 Generalized Holstein model

The Hamiltonian of multi-mode Holstein model is given by

Hgen = 1

2

N∑

n=1
n �=m

N∑

m=1

Vnm
(
σ n
x σm

x + σ n
y σm

y

)

+
N∑

n=1

{
εn

2
σ n
z +

∑

k

[
κnk σ n

z

(
b†nk + bnk

)
+ h̄ωnk b

†
nkbnk

]
+ Cn

}
, (5)

where k labels the vibrational modes coupled to the site n with frequency ωnk, κnk =
h̄ωnk

√
Rnk is the coupling of the electronic excitation of the site n to the vibra-

tional mode k with Rnk being the dimensionless Huang-Rhys factor (electron–phonon
coupling constant) [45], and constant Cn = ∑

k h̄ωnk Rnk + Dn with Dn being the
gas-to-crystal shift of the transition energy due to nonresonant forces [45,46]. Since
a constant energy offset does not alter the dynamics, we ignore Cn in our approach.
Now each site couples to a set of oscillators with frequencies ωnk and corresponding
couplings κnk . We have also generalized interactions Vnm between arbitrary sites. The
dynamics of a multiple-mode Holstein model can be reproduced by a similar super-
conducting circuit shown in Fig. 2 with additional quantum LC oscillators coupled to
each flux qubit; see Fig. 3a.
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Fig. 3 Representation of a single flux qubit coupled to quantum LC oscillators. a Many single resonators
are directly coupled to the qubit. bUsing a linear-algebraic bath transformation [48], the set of independent
resonators (directly coupled to the qubit) are transformed into a set of weakly coupled multiple parallel
chain of resonators

123



Emulation of complex open quantum systems using…

The experimental implementation of such a quantum simulator can face challenges
due to the current constraints in the realizable superconducting circuits. The number of
quantum LC oscillators, that are directly coupled to a qubit is limited by the physical
size of the superconducting qubits. Moreover, the coupling strength of the qubit to
the quantum oscillator ηi j is limited and should not exceed a certain percentage of
the frequency of the oscillator [47]. This coupling strength is given by ηi j/h̄ω′

i j ≈√
Li j
r (βi j I

i j
p )2/2h̄ ω′

i j and can be numerically simplified to

ηi j

h̄ ω′
i j

= √
Ri j = 5.48βi j I

i j
p

50 nA

(
Zi j
r

100


)1/2 (
ω′
i j

2π GHz

)−1

. (6)

Here βi j is dimensionless inductive coupling strength, corresponding to the inductive
division ratio (flux of the j-th oscillator coupled to the i-th qubit isβi j times of the qubit
flux). This parameter needs to be far below 1 to avoid hybridizing the qubit with the
resonator. Li j

r is the inductance of the resonator, Zi j
r is the oscillator impedance and has

to be well below the impedance of free space (not much higher than 100
), in order to
maintain high-quality factors for the resonators. I i jp is the effective persistent current
of the DC superconducting quantum interference device (SQUID) loop, which is the
linear slope of the qubit energy splitting with respect to DC SQUID flux. In principle,
I i jp can be made large, though this would also increase the linear sensitivity of the
qubit energy to the flux noise correspondingly.

These challenges can be addressed and resolved by a linear-algebraic bath transfor-
mation [48] that we have proposed recently—more details are provided in “Appendix
1”. Based on a simple linear-algebraic approach, the set of independent LC oscil-
lators directly coupled to a qubit, Fig. 3a, can be transformed into a set of weakly
coupled multiple parallel chain of oscillators; see Fig. 3b. This transformation can
dramatically reduce the number of the oscillators that are directly coupled to the qubit
as well as the coupling strength of the quantum oscillators to the qubit. To specify
the number of the required resonators and their parameters and to feature outrunning
classical algorithms with our proposed approach, as an example, here we study the
feasibility and provide an outlook for the emulation of the dynamics of the chlorosome
light-harvesting antenna from green sulfur bacteria.

5 Chlorosome light-harvesting antennae

The green sulfur bacteria live in a deep sea where only a few hundred photons per
second arrive at a bacterium [49]. Amazingly, they are able to transfer the photon
energy efficiently, rapidly, and robustly to the reaction center to generate the electro-
chemical potential energy gradient and exploit it in the photosyntheticmetabolic cycle.
Compared with other light-harvesting species, the chlorosome, which is the antenna
complex of green sulfur bacteria, has a unique feature. It is composed of 200–250 thou-
sands bacteriochlorophyllmolecules organized into supramolecular assembly [50,52].
How the quantum dynamics helps the excitation energy transfer within this giant
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Fig. 4 Spectral density of the electron–phonon coupling of bacteriochlorophyll molecules in the chloro-
some antenna of green sulfur bacteria with 253 phonon modes. The spectral density of the phonon bath
was obtained from a quantum mechanics/molecular mechanics (QM/MM) simulation with time-dependent
density functional theory in Ref. [17]. An experimentally resolved [52] structure of the chlorosome is shown
in the inset

molecular aggregate is an interesting question and has attracted many research groups,
see the references cited in Refs. [17,18,50,51]. The structure model of the chlorosome
has been proposed from experiments [52] and studied theoretically by some of the
authors [17,18,53] with combining colored noise stochastic open quantum propaga-
tion model of the exciton dynamics and a quantum mechanics/molecular mechanics
(QM/MM) simulation with time-dependent density functional theory to take the atom-
istic details of the environmental bath fluctuation into account. Figure 4 demonstrates
the theoretically obtained spectral density [17,18] of the electron–phonon coupling
of bacteriochlorophyll molecules in the chlorosome antenna of green sulfur bacteria
with 253 phonon modes coupled to each electronic state.

The single-exciton transfer dynamics of the chlorosome can be described by the
multi-mode Holstein model given by Eq. (5). As mentioned in the introduction,
numerically exact approaches (for example, the HEOM approach) for simulating the
non-Markovian dynamics of this model can be obtained for only small systems (<20
sites) with a limited number of bath modes; see Fig. 1. However, this Hamiltonian
can be emulated by an analog quantum simulator consist of chain of superconducting
qubits and 253 quantum LC oscillators coupled to each qubit. The size of each flux
qubit is around tens to hundreds of microns and there is no enough physical space to
couple it directly to 253 resonators. We can reduce number of the resonators that are
directly coupled to the qubit by using the linear-algebraic bath transformation [48],
see “Appendix 1” for more details. This transformation mixes resonator modes with
different frequencies to distributes 253modes to, for example, a set of 6 parallel chains
of quantum resonators, Fig. 3b, with each chain having at most 43 coupled oscilla-
tors. In addition to reducing number of the resonators that are directly coupled to the
qubit, this mapping will also reduce the required coupling strength of the qubit to the
primary oscillator modes (the first oscillators in the chains that are directly coupled to
the qubit).
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Note that the parameters of the superconducting simulator are temperature depen-
dent. To account for finite temperature, we first transform the spectral density given
in Fig. 4 using C(ω, T ) = {1 + coth [h̄ω/(2kBT )]} JA(ω), where the subscript
“A” denotes the antisymmetric spectral density JA(ω) = J (ω) if ω ≥ 0 ; and
JA(ω) = −J (−ω) if ω < 0 , see [27] for more details. Since the chlorosome is
at room temperature, Tch = 300 K, and the superconducting circuit can be considered
at Tsim=10 mK, then all the parameters of the quantum simulator need to be rescaled
accordingly; Asim = (Tsim/Tch)Ach, with Asim and Ach indicating any parameter of
the quantum simulator and chlorosome, respectively. Then after rescaling, we perform
the linear-algebraic bath transformation. With this procedure, the coupling strengths
between the qubit and the oscillators that are directly coupled to the qubit, Fig. 3b,
need to be around 150–210 MHz. The coupling between the oscillators in the chains
are around 100–560 MHz, the required frequencies for the quantum oscillators are
around 1.4–1.6 GHz. The resonators here need to have high-quality factors.

6 Discussion

We have shown that it is appealing to simulate the dynamics of open quantum systems
with complex environments and structured spectral densities (such as, the chlorosome
or the examples given in Fig. 1) by using a chain of few tens of coherent qubits.
In our previous work [27], we presented a detailed study on simulating the dynam-
ics of Fenna–Matthews–Olson photosynthetic complex as an example of complex
open quantum systems. The main focus of current manuscript has been to address
the limit that analog quantum simulators based on superconducting circuits with pre-
cisely engineered quantumenvironmentmayoutperformexact classical computational
approaches, such as the HEOMapproach, allowing us to study non-Markovian effects.
Furthermore, here we have discussed the simulation of standard, as well as, general-
ized Holstein model at finite temperature which has many applications in molecular
aggregates, polymers, and superconductivity. Using the linear-algebraic bath transfor-
mation, we will be able to simulate dynamics of complex open quantum systems with
thousands of phonon modes. Such a simulation is as exact as numerical approaches
such as HEOM and definitely out of reach of any currently available computational
device.

As mentioned in the introduction, a similar idea based on superconducting circuit
QED [35] has been proposed earlier to simulate the standard Holstein model. In the
above proposal the coupling of the oscillator to the qubit is achieved in the large-
detuning, dispersive limit of a transverse interaction, and in a rotating, dressed frame
where the resonator is strongly driven. This gives a force on the oscillator in the second
order in the interaction, which can only be large for very small dressed frequencies, and
cannot be tuned all the way to zero. It has, in principle, the advantage that one can go to
arbitrarily low mode frequencies without needing to actually engineer low-frequency
modes. However, the requirement for constant, strong driving of the system is likely
to encounter many experimental problems. In this scheme, the hopping is adjusted
using flux-tunable SQUIDs in between the transmons. This means that none of these
couplings can be tuned to zero. Furthermore, as the coupling between transmons is
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reduced, the plasma frequency of the SQUIDs are as well, and this mode will start to
be spuriously excited by the strong driving field. By contrast, in our scheme, the force
on the bath modes is the result of first-order, static longitudinal interaction, which can
be made strong without the need for any driving, can be tuned all the way to zero,
and allows for structured spectral densities to be engineered, which has been the main
focus of this paper. Also, the site hopping can be tuned all the way to zero simply by
adjusting the couplers appropriately. This has been described earlier in Ref. [54].
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Appendix 1: Linear-algebraic bath transformation

Open quantum system approach to the spin-boson model often approximates the envi-
ronment as a collection of non-interacting harmonic oscillators. This is known as a
star-bath model and can be graphically illustrated in a star configuration as shown in
Fig. 5a. Linear-algebraic bath transformation [48] converts the star-bath model into a
set of weakly coupled multiple parallel chains as shown in Fig. 5b. The multiple-chain
bath model has a few primary bath oscillators that are directly coupled to the system
(spins/qubits) and the remaining oscillators (secondary bath modes) are coupled to the
primary bathmodes in a chain. Thismodel employs a simple linear-algebraic approach
to reduce the system-bath coupling strength as well as the number of the oscillators
that are directly coupled to the system.

To apply the linear-algebraic bath transformation we start by writing the Hel−ph +
Hph in a compact form [18,55] and then finding a unitary transformation UnU†

n = I
that satisfies the following conditions [48]:

...
system

B
B

B

B

B

B

B B system

a b

...
...

Fig. 5 a Star-bath model: Non-interacting quantum harmonic oscillators (shown in blue) are directly
coupled to a system site (shown in red). bMultiple-chain bath model: A system site is coupled to multiple
bath oscillator chains. In this model, the primary modes (shown in blue) are directly coupled to the system
and the secondary modes (shown in yellow) are coupled to the primary bath modes in a chain (Color figure
online)

123



Emulation of complex open quantum systems using…

Hel−ph + Hph =
∑

n

(
Ln b†n

)
�n

(
Ln

bn

)
=

∑

n

(
L†
n b̃†n

)
�̃n

(
Ln

b̃n

)
(7)

with

�n =
(
0 κ t

n
κn �n

)
, �̃n =

(
0 κ̃ t

n
κ̃n �̃n

)
=

(
1 0t

0 U†
n

)
�n

(
1 0t

0 Un

)
, (8)

where b̃n = U†
n bn with b†n (bn) being the N -dimensional creation (annihilation)

operator vector of the phonons (oscillators). Ln is anoperator that acts on the system,κn

is the system-bath coupling strength vector, and�n is a diagonal matrix, which has the
harmonic frequencies as the elements �n = diag(ωn,1, . . . , ωn,N ). The first column
of Un is κn/||κn||2 and the other columns are given by the Gram-Schmidt process
with random vectors [56]. �̃n is a dense symmetric matrix and κ̃n = (κ̃n,1, 0, . . . , 0)t

is the new system-bath coupling strength vector [48].
To complete the multiple-chain transformation, we introduce another unitary trans-

formation Ũn = PnUn that follows the following relations

�̃n = Ũ†
n�nŨn and κ̃n = Ũ†

nκn . (9)

The permutation matrix Pn is used to rearrange the non-interacting bath oscillators as

multiple groups of several interacting oscillators b̃n = Ũ
†
n bn . Note that Un is block

diagonal and does not allow the interaction between oscillators from different groups.
Now by choosing the l-th subblock U(l)

n to be g(l)
n /||g(l)

n ||2, we can define the primary
modes (the ones that are directly coupled to the system sites) as collective oscillator
modes. Here gn is the rearranged coupling strength vector

gn = P†
nκn =

⎛

⎜⎝
g(1)
n
...

g(Neff )
n

⎞

⎟⎠ , (10)

and Neff is the number of groups of oscillators. The final step is to tridiagonalize the

l-th subblock �̃
(l)
n using the Hessenberg transform [56] via the Householder procedure

�̃
(l)
n = T (l)�(l)T (l)†. The diagonal elements of the tridiagonal matrix �(l) represent

the frequencies of the transformed bath modes and its off-diagonal elements are the
coupling strengths between the oscillators in the chain model. T (l) is a Hessenberg
unitary transform matrix that keeps the primary bath mode unchanged. To adjust the
system-bath coupling strengths of primarymodes within the experimentally realizable
parameter domain, we have also developed a bath mode partitioning scheme [48]. The
scheme is called leaping partition (LP), which selects the oscillators far away from
each other to form multiple parallel chains. For example, we grouped 253 oscillators
of chlorosome into 6 groups as
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{ω1, ω1+6, ω1+12, · · · , ω1+252}, {ω2, ω2+6, ω2+12, · · · , ω2+246},
{ω3, ω3+6, ω3+12, · · · , ω3+246}, {ω4, ω4+6, ω4+12, · · · , ω4+246},
{ω5, ω5+6, ω5+12, · · · , ω5+246}, {ω6, ω6+6, ω6+12, · · · , ω6+246}, (11)

where ωl ≤ ωm if l ≤ m. See Ref. [48] for more examples on the rearrangement of
the oscillators and also the MATLAB code that we have used for the transformation.

Appendix 2: Hierarchically equations of motion approach

In order to estimate the treatable system size for the Holstein model on classical
computers we run benchmark calculationswithQMaster, which is a high-performance
implementation of the hierarchically coupled equations of motion approach (HEOM)
[19,57,58]. HEOM is based on an open quantum system approach and treats the
phonon modes as continuum bath.

The time evolution of the total system, described by the density operator R(t) is
given by the Liouville equation

d

dt
R(t) = − i

h̄
[H(t), R(t)] = − i

h̄
L(t)R(t). (12)

At initial time t0 = 0 we assume that the density operator R(t0) = ρ(t0) ⊗ ρphon(t0)
factorizes into the system degrees of freedom, described by the reduced density oper-
ator ρ(t), and vibrational degrees of freedom ρphon(t). The dynamics of the reduced
density operator is then obtained by averaging out the vibrational degrees of freedom

ρ(t) = 〈T+ exp
(

− i

h̄

∫ t

0
ds L(s)

)
〉ρ(0). (13)

We employ a high-temperature approximation h̄γm/kBT < 1 and parameterize the
spectral density as a sum over Npeaks shifted Drude–Lorentz peaks

J (ω) =
Npeaks∑

k=1

(
νkλkω

ν2k + (ω + 
k)2
+ νkλkω

ν2k + (ω − 
k)2

)
. (14)

The time non-local equation can then be cast into a hierarchy of coupled time local
equations of motion for a set of auxiliary matrices σ �n

d

dt
σ �n(t) = − i

h̄
[Hex, σ

�n(t)]

−
N ,Npeaks∑

m,k=1,s=±1

2

βh̄2
λkνk

(γ1 + is
k)
2 − ν2k

V×
m V×

m σ �n(t)
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−
N ,Npeaks∑

m,k=1,s=±1

nm,k,s(νk + s i
k)σ
�n(t)

+
N ,Npeaks∑

m,k=1,s=±1

[
i

h̄
V×
m σ

�n+
m,k,s (t) + θm,k,sσ

�n−
m,k,s (t)

]
, (15)

Here we define �n = (n1,1,+, n1,1,−, . . . , n1,M,+, n1,M,−, . . . , nN ,M,+, nN ,M,−),

V×
m σ = [a†mam, σ ], V ◦

mσ = [a†mam, σ ]+ and θm,k,s = i
2

(
2λk
kBT h̄

V×
m − iλk(νk +

s i
k)V ◦
m − 2λk

βh̄2
(νk+is
k )

2

γ 2
1 −(νk+is
k )

2 V
×
m

)
. The reduced density matrix is given as ρ(t) =

σ
�0(t). The hierarchy Eq. (15) can be truncated for a sufficiently large hierarchy

depth
∑N ,Npeaks

m,k=1,s=±1 nm,k,s ≥ Nmax, for which convergence is tested by comparing
the dynamics for different truncation levels Nmax.

Appendix 3: Computational details to estimate the treatable system size

Solving the hierarchy Eq. (15) for a large system size is challenging, and requires
a considerable amount of computational resources, both in memory and number of
floating point operations per second (FLOPS). The whole set of auxiliary matrices
needs to be retained in the CPU memory during the complete propagation of the
exciton dynamics, and all entries need to be update for each propagation step. The
total number of auxiliary matrices Nσ = (2 Npeaks N + Nmax)!/(Nmax!(2 Npeaks N )!
depends on the number of sites N in the Holstein Model (see Eq. (4), main text),
the truncation level Nmax and the number of peaks in the spectral density Npeaks.
The factor 2 Npeaks takes into account the shifts of the peaks in the spectral density,
Eq. (14) in positive as well as in negative direction along the frequency axis. Thus,
for the parameters used to perform the benchmark calculations in Fig. 1 of the main
text, we need to propagate up to several millions of auxiliary matrices in log-step, see
Table 1.

We carry out the calculations with the help of a sophisticated algorithm provided by
theQMaster package [16].QMaster is based on massively parallelized vector stream-
ing. The idea behind the algorithm is to efficiently distribute the workload among the
available computational units while keeping up a high memory bandwidth. The latter
is achieved by a suitable layout of how the auxiliary matrices are stored in the CPU
memory. In general QMaster also runs on GPUs and the XeonPhi accelerator. How-
ever, todays available GPUmemory is limited to 24GB (K80) which is the reason why
we run the benchmark calculations on a 64-core AMDOpteron processor with 256GB
memory. QMaster is a single-device implementation, since distributed computation
among multiple compute nodes connected by Ethernet is rendered inefficient, due to
the large communication overhead [23]. More information about the algorithm as well
es a performance analysis are given elsewhere [16].

Table 1 summarizes the technical aspects of the underlying computations to estimate
the treatable system size (Fig. 1, main text). The propagation is performed over 10
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Table 1 Benchmarks of the treatable system size with respect to the number of sites and number of peaks
in the spectral density

N Npeaks #σ -matrices Used memory
σ -matrices (GB)

Compuation
time (min)

14 11 4,965,115 87 6.3

21 7 4,322,340 170 14.5

42 2 818,805 129 16.5

93 1 142, 880 110 30.8

100 1 176,851 158 41.0

The calculations are run with the high-performance HEOM-implementation provided by QMaster. Com-
putation time (without initialization) corresponds to the propagation of 10 time steps with truncation level
Nmax = 3. The parameter Npeaks = 1 describes a non-shiftedDrude–Lorentz spectral density (
 = 0). The
exciton propagation is based on fourth-order Runge–Kutta integrator and run on a 64-core AMD Opteron
processor with 250 GB memory

time steps for a given electronic excitation at t0. The truncation level is set to Nmax = 3
which has proven as reasonable value for several light-harvesting complexes [15,16,
23,59]. Shown are the results for the maximal treatable system sizes with respect
to the number of sites and number of peaks in the spectral density. Once one more
peak is added QMaster needs to allocate more than 250 GB of memory, and therefore
terminates with a segmentation fault. Thus memory consumption sets the hard limit
for the treatable system size. The computation time is a somewhat more soft criteria,
since the total computation time depends on the number of propagation steps which
strongly depends on the system at hand. For example, calculations for a quadrant of
the PSII-supercomplex comprising of 93 sites have been carried out for which the
exciton dynamics was propagated over 20,000 time steps with a time increment of 5
fs (100 ps total propagation time) [59]. According to Table 1, the calculations for a
non-shifted Drude–Lorentz peak takes about 43 days of total computation time, which
allows at least to run simulations to test the convergence of the hierarchy with respect
to the truncation level [59].
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