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Abstract. Open quantum system approaches are widely used in the description

of physical, chemical and biological systems. A famous example is electronic

excitation transfer in the initial stage of photosynthesis, where harvested energy

is transferred with remarkably high efficiency to a reaction center. This transport

is affected by the motion of a structured vibrational environment, which makes

simulations on a classical computer very demanding. Here we propose an

analog quantum simulator of complex open system dynamics with a precisely

engineered quantum environment. Our setup is based on superconducting

circuits, a well established technology. As an example, we demonstrate that

it is feasible to simulate exciton transport in the Fenna–Matthews–Olson

photosynthetic complex. Our approach allows for a controllable single-molecule

simulation and the investigation of energy transfer pathways as well as

non-Markovian noise-correlation effects.

5 Author to whom any correspondence should be addressed.
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1. Introduction

Understanding strongly interacting quantum systems with many degrees of freedom is one of

the big challenges in physics and chemistry [1]. Classical computational methods are restricted

by the exponentially increasing amount of resources required for the simulations. Quantum

computers are conjectured to be a possible solution as the resources to simulate arbitrary

quantum systems grow polynomially with the size of the system under study [2, 3]. However,

universal quantum computers of sufficient size and performance are not available yet, one of the

big problems being the loss of quantum mechanical coherence, i.e. decoherence [4]. Designing

a special quantum system in the laboratory, which mimics the quantum dynamics of a particular

model of interest, see for example, [5–10], can be a more viable alternative to an all-purpose

quantum computer.

Here we propose a quantum simulator architecture using superconducting quantum bits

(qubits) that is capable of simulating complex open quantum systems using currently available

technology in realizable parameter ranges. We will focus on the Fenna–Matthews–Olson (FMO)

pigment–protein complex on a single-molecule level. The recent observations [11, 12] of

quantum beatings and long-lived quantum coherence in several photosynthetic light-harvesting

complexes, such as the FMO complex in the green sulfur bacterium Chlorobium tepidum

or the reaction center of the purple bacterium Rhodobacter sphaeroides, suggest possible

evidence that quantum effects give rise to the high energy transport efficiency found for

these complexes. There is a remarkable amount of recent theoretical research related to

the question of the molecular structure, vibrational environment, origin and role of long-

lived quantum coherences [13–23]. The electronic degrees of freedom are coupled to a

finite temperature vibrational environment and the dynamics of the relevant electronic system

New Journal of Physics 14 (2012) 105013 (http://www.njp.org/)
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can be studied by means of open quantum system approaches. In quantum computing,

the focus of much of the research has been on reducing the magnitude and influence of

environmental decoherence and dissipation. However, controlled coupling to a dissipative

environment can also be exploited [24–26]. In this work, we focus on engineering the

decoherence to simulate open quantum systems that are challenging to study using classical

computers.

We propose two approaches for simulating the vibrational environment. The first approach

is based on engineering a classical noise source such that it represents the atomistic fluctuations

of the protein environment. A prototypical experiment of environment-assisted quantum

transport (ENAQT) can be performed [16]. The second approach allows for the precise

engineering of the complex non-Markovian environment, i.e. an environment that has long-

term memory. This is achieved by the explicit coupling of quantum inductor–resistor–capacitor

(LRC) oscillators to the qubits which allows for energy and coherence exchange between the

resonators and the qubits. Both approaches are based on present-day superconducting qubit

implementations. We focus here on flux qubits, where two-qubit coupling was shown to be

sign- and magnitude-tunable [27, 28] and methods of scaling to a moderate number of qubits

have been discussed in [29]. We show that realistic simulation of photosynthetic energy transfer

is feasible with current superconducting circuit devices.

2. The model Hamiltonian

We are interested in the dynamics of a finite dimensional system which is linearly coupled

to a bath of harmonic oscillators. In the following we refer to the system as an ‘electronic

system’ and to the quantum environment as a ‘phonon bath’ or ‘vibrational environment’. The

corresponding total Hamiltonian is written as

Htot = Hel + Hph + Hel−ph. (1)

2.1. The system

We are often (e.g. in the FMO complex) interested in the transfer of a single electronic

excitation. Thus basis states | j〉 are defined by the electronic excitation residing on molecule

(site) j and all other sites being in their electronic ground state. The electronic Hamiltonian

in this site basis is given by [30] Hel =
∑N

j=1 ε̃ j | j〉 〈 j | +
∑N

i< j Vi j (|i〉 〈 j | + | j〉 〈i |).6 The

diagonal energies ε̃ j are identified with the electronic transition energies of site j and

the off-diagonal elements Vi j are the intermolecular (transition-dipole–dipole) couplings

between sites i and j . Different local electrostatic fields of the protein at different

sites shift the electronic transition energies [15], resulting in a complicated energy

landscape.

6 Here, Vi j =
〈

g j ei

∣
∣ V

∣
∣gi e j

〉

with V being the electrostatic coupling between sites and |gi 〉, |ei 〉 denoting the

electronic ground state and first excited state of site i , respectively. Note that |i〉 is defined throughout the

paper by the electronic excitation residing on site i and all other sites being in their electronic ground state:

|i〉 = |g1 g2 g3 · · · gi−1 ei gi+1 · · · gN 〉.
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Figure 1. (a) Model of exciton-phonon dynamics in a system with two electronic

states |g〉 and |e〉 and two dissipative vibrational modes q1 and q2. After a

vertical Franck–Condon electronic excitation the phonon degrees of freedom

are in a non-equilibrium position (I) from which the system relaxes to the

displaced equilibrium configuration in the excited state (II). The displacements

are given by d1 and d2 and the energy scale associated with this relaxation

is the reorganization energy λ. This vibrational reorganization is not captured

in most Markovian models. (b) Energy levels of the electronic Hamiltonian

for the FMO complex denoted by M(i, j), where (i, j) indicate the two most

significant BChl pigments participating in the delocalized excitonic states M .

The red arrows indicate the dominant pathways for the energy transport based

on Redfield theory [17], see appendix C for more details.

2.2. Coupling to the quantum environment

The vibrational environment is represented by a set of displaced harmonic oscil-

lators. The Hamiltonian of the phonon bath is written as Hph =
∑N

j=1 H
j

ph, where

H
j

ph =
∑

ℓ h̄ω
j

ℓ(a
j

ℓ

†
a

j

ℓ + 1/2) with a
j†

ℓ (a
j

ℓ ) being the creation (annihilation) operator of exci-

tations in the ℓth bath mode of site j . In the present work we restrict to the situation where each

site has its own phonon environment which is uncorrelated with the phonon modes at the other

sites. This is motivated by recent results obtained for the FMO complex [31, 32]. The diagonal

part of the electronic Hamiltonian couples linearly to the phonon modes. The electron–phonon

coupling term can be written as

Hel−ph =
N
∑

j=1

H
j

el−ph =
N
∑

j=1

| j〉 〈 j |
[

∑

ℓ

χ jℓ (a
j

ℓ

†
+ a

j

ℓ )

]

. (2)

Here χ jℓ = h̄ω
j

ℓ d jℓ is the coupling between the j th site and the ℓth phonon mode with ω
j

ℓ being

the frequency of the ℓth phonon mode coupled to the j th site and d jℓ is the dimensionless

displacement between the minima of the ground and excited state potentials of the ℓth

phonon mode at site j . Notice that the so-called reorganization energy λ j ≡
∑

ℓ h̄ω
j

ℓ d2
jℓ/2

was implicitly included in the above electronic transition energy ε̃ j = ε j + λ j with ε j being the

energy difference between the minima of the potential energy surfaces for site j , see figure 1(a)

and appendix B for more details.
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It is known that complete information about the effect of the environment on a quantum

system is determined by the spectral density (SD) function [34], which is defined by

J j(ω)=
∑

ℓ

|χ jℓ|2δ(ω−ω j

ℓ), (3)

for site j . Due to the high number of modes of the environment, J j(ω) can be considered as

a continuous function of ω. To account for finite temperature, we transform the SD [35, 36]

C j(ω, T )= {1 + coth [h̄ω/(2kBT )]} J A
j (ω), where the subscript ‘A’ denotes the antisymmetric

SD J A
j (ω)= J j(ω) if ω > 0 ; and J A

j (ω)= −J j(−ω) if ω < 0 . The function C j(ω, T ) fulfills

the detailed balance condition [35] and we name it ‘temperature-dependent spectral density’.

It turns out that the relevant spectral densities of our problem can be approximated by

a finite number of broadened peaks. These broadened peaks can often be associated with the

vibrational modes of the molecules. Upon electronic excitation of a molecule, the vibrational

wavepacket of the ground state is projected into a displaced wavepacket in the excited state,

see figure 1(a). The wavepacket for the nuclei then moves on the excited state potential energy

surface and dissipates energy (reorganizes) to the minimum energy point.

Finally, to facilitate the comparison with flux qubits we rewrite the total Hamiltonian (1)

using Pauli matrices

Htot =
1

2

N
∑

j=1

ε̃ j σ
j

z +
1

2

N
∑

i< j

Vi j(σ
i
xσ

j
x + σ i

yσ
j

y )+

N
∑

j=1

∑

ℓ

h̄ω
j

ℓ

(

a
j

ℓ

†
a

j

ℓ +
1

2

)

+

N
∑

j=1

∑

ℓ

χ jℓ σ
j

z (a
j

ℓ

†
+ a

j

ℓ ). (4)

Expressing the above Hamiltonian in the system energy eigenbasis, defined by Hel |M〉 =
EM |M〉, we have Htot =

∑

M EM |M〉 〈M | +
∑

M,N ,ℓ |M〉 〈N |
∑

j K jℓ

M N (a
j

ℓ

†
+ a

j

ℓ )+ Hph with

K jℓ

M N = 〈M | j〉〈J |N 〉χ jℓ. This shows that the system–bath coupling is off-diagonal in the

eigenbasis.

2.3. The classical noise approximation

Although the main goal of the present paper is to simulate Hamiltonian (4) in a fully quantum

mechanical fashion, it is also useful to consider the much simpler (but important) case where

the quantum environment is replaced by time-dependent fluctuations of the transition energies.

This is the basis of the often employed Haken–Strobl–Reineker (HSR) model for excitation

transfer [37]. Furthermore, atomistic molecular dynamics using quantum mechanics embedded

in molecular mechanics (MD/QM/MM) simulations [31–33] can readily provide noise time-

series. In the classical noise approach, the system dynamics is obtained by averaging over many

trajectories with the time-dependent Hamiltonian

H̃tot =
1

2

N
∑

j=1

[

ε̃ j + δε̃ j(t)
]

σ j
z +

1

2

N
∑

i< j

Vi j(σ
i
xσ

j
x + σ i

yσ
j

y ), (5)

where the influence of the environment is solely contained in the time-dependent site energy

fluctuations δε̃ j(t). Often, as in the HSR model, it is assumed that the fluctuations are

uncorrelated Gaussian white noise.
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Table 1. Comparison of parameters for the FMO complex and the quantum

simulator. The time scales shown below are for the dressed states of flux qubits

coupled to the quantum harmonic oscillators. For more details see figure A.2 and

tables A.1–A.3. Notice that the decay time in a single qubit (T1) does not need to

be mapped directly from the FMO dynamics. With nowadays achievable decay

times in superconducting qubits, which are three orders of magnitude larger

than the excitation transfer time between the qubits, the dynamics of the FMO

complex can be simulated.

Parameter FMO model Quantum simulator

Decay time (T1) ≈ ns ≈ 10µs

Average exciton transfer time ≈ 5 ps ≈ 25 ns

Decay time between the exciton states ≈ ps ≈ 5 ns

Dephasing in exciton manifold ≈ 100 fs ≈ 500 ps

Time scale of quantum beatings (τosc) ≈ 200 fs ≈ 1 ns

Coupling between sites ≈ 10–122 cm−1 ≈ 60–730 MHz

Relative static site energy shifts ≈ 10–500 cm−1 ≈ 60 MHz–3 GHz

Temperature 300 K 60 mK

3. The Fenna–Matthews–Olson (FMO) complex

The model Hamiltonian (1) can be used to describe a single excitation in the FMO complex.

The FMO complex acts as a highly efficient excitation wire, transferring the energy harvested

by the photosynthetic antennae to a reaction center. The FMO complex has a trimeric structure

exhibiting C3-symmetry and each of the monomers consists of a network of eight [23]

bacteriochlorophyll a (BChl a) pigment molecules. Since the coupling between monomers is

very small and can be neglected on the time scales of interest, we focus on a single monomer

in the following. The BChl pigments in the monomer are surrounded by a protein environment.

Conformational motions of this protein environment (static disorder) are slow compared to the

time scale of interest and affect energy levels of the pigments by electrostatic interaction [15].

The ranges of site energy differences |ε̃i − ε̃ j | and couplings Vi j are given in table 1. These

parameters lead to the energy spectrum of the FMO monomer given in figure 1(b).

In the present work, we consider two spectral densities relevant to the FMO complex.

Firstly, a model super-Ohmic SD [14], J (ω)= λ (ω/ωc)
2 exp(−ω/ωc) with reorganization

energy λ= 35 cm−1 and cutoff frequency ωc = 150 cm−1. We have dropped the subscript j

under the assumption that all eight sites have same SD and reorganization energy. Secondly,

the experimental SD [14, 38] discussed later in section 4.3. Notice that it is very challenging

to simulate the experimental SD with current computational methods because of the apparent

peaks and the mixing of vibrational dynamics caused by the electronic interaction between

the sites. This structured SD with strong peaks is expected to lead to strong non-Markovian

behavior.

In the biological situation, the FMO complex most likely obtains the excitation at sites 1, 6

or 8, since these BChls are close to the chlorosomal antennas, where photons are absorbed. It is

often assumed that this excitation is initially local to these sites. Low energy site 3 is the target

site for the excitation and is close to the reaction center where further biochemical processes

New Journal of Physics 14 (2012) 105013 (http://www.njp.org/)
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take place. In the ultrafast experiments, broad laser pulses excite a superposition of several

delocalized exciton states.

4. The simulator

It is challenging to simulate the open quantum system described in the previous section on

conventional computers [20, 36, 39], even using modern parallel processing units [40–42].

Here we propose using flux qubits coupled with tunable flux–flux couplings for this task. The

environment is modeled by classical noise or quantum oscillators coupled to the flux qubits.

4.1. The system Hamiltonian

Consider first a single flux qubit. The relevant quantum states are the ones with magnetic flux

pointing up |↑〉 and down |↓〉 or, equivalently, opposite directions of persistent current in the

loop. In this bare basis, the Hamiltonian of a flux qubit is given by H = (E σz +1σx)/2, where

E is the energy bias between |↑〉 and |↓〉 and 1 is the tunnel splitting between the two states.

Here E = 2Ip(8x −80/2) [43] with Ip being the persistent current of the qubit and 80 = h/2e

being the flux quantum. We set E = 0, since this is the case in most experiments (this is known

as the optimal working point [43] since it reduces the qubits sensitivity to flux noise [44]).

A tunable transverse interaction between flux qubits equivalent to that in Hel can

be realized using additional ‘coupler’ qubits [27, 45]. A schematic of such a simulator

is given in figure 2(a). The Hamiltonian of the coupled qubit system can be written as

Hq =
∑N

j=11 j σ
j

x /2 +
∑N

i< j gi j(1
c
i j) σ

i
z σ

j
z with gi j(1

c
i j) being the coupling strength between

flux qubits i and j , which is given by gi j(1
c
i j)≈ Ji j − 2JicJ jc/δi j , where 1c

i j is the

(tunable) tunnel splitting of the coupler qubit and we have defined δi j ≡1c
i j − (1i +1 j)/2 and

Jmn ≡ Mmn I m
p I n

p with m, n ∈ i, j, c [45]. Here, Mmn is the mutual inductance between qubits

m and n. This expression is valid to leading order when δi j ≫ |1i −1 j |,Jic,J jc. Notice that

by choosing the magnitude of 1c
i j to be smaller or larger than (1i +1 j)/2 we can change

the sign of the effective coupling. Rewriting the above Hamiltonian in the energy eigenbasis

of the qubit |±〉 = (|↓〉 ± |↑〉) /
√

2 converts σ j
x → σ j

z and σ i
z σ

j
z → σ i

x σ
j

x ≈
(

σ i
xσ

j
x + σ i

yσ
j

y

)

/2

in the rotating wave approximation (neglecting strongly off-resonant couplings). This results in

Hq ≈
1

2

N
∑

j=1

1 j σ
j

z +
1

2

N
∑

i< j

gi j(1
c
i j)
(

σ i
x σ

j
x + σ i

y σ
j

y

)

, (6)

which is of exactly the same form as the system part (first line) of equation (4) with 1 j and

gi j(1
c
i j) corresponding to ε̃ j and Vi j , respectively. It is advantageous for the experimental

implementation to note that the dynamics of equations (4) and (6) does not depend on absolute

site energies ε̃ j and 1 j but only on energy differences |ε̃i − ε̃ j | and |1i −1 j |, respectively.

The system of two coupled flux qubits shown in figure 2(a) can be extended to eight flux

qubits with a special arrangement to simulate eight BChls. An experimental layout simulating

the electronic part of the FMO Hamiltonian is given in figure 3, where Q j represent flux qubits.

Static disorder can be simulated in our proposed scheme by varying the tunnel splittings 1 j in

the flux qubits with each run of the experiment. First all the qubits are in the ground state by

simply allowing the system to relax. Then they are initialized in a certain desired initial state to

start the dynamics. The excitation of a qubit is straightforward to achieve with the application
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Figure 2. Circuit diagram of the proposed quantum simulator. (a) The qubit

states are encoded in the quantized circulating current of the qubit loop. The

red crosses denote Josephson junctions. Two flux qubits are coupled with a

tunable σzσz-coupling. Each of the qubits is independently coupled to a finite

number of quantum LRC oscillators to simulate the non-Markovian vibrational

environment. The structure of the flux qubits are chosen to be gradiometric [46].

Coupling of the LRC oscillators to the smaller loop of the qubit leads to

a diagonal coupling (σz-coupling), see section 4.3. With such a gradiometric

structure, the magnetic fluxes due to the oscillators passing through the two parts

of the larger loop are in different directions and cancel each other, and therefore,

the off-diagonal coupling (σx -coupling), given by coupling of the oscillators

to the larger loop of the qubit, is nearly zero. (b) Simulating the vibrational

environment by adding a classical noise to each qubit.

of a resonant microwave excitation (π -pulse) carried by a microwave line which is connected

to the respective qubit [43, 47]. After some evolution time the populations of the |±〉 states of

the qubits are measured. The measurement is initiated by applying a flux pulse to shift the qubit

away from E = 0 so that its eigenstates become largely |↑〉 and |↓〉 which can be distinguished

via the flux induced in a nearby dc superconducting quantum interference device (SQUID) loop.

This pulse should be adiabatic with respect to the qubit’s tunnel splitting (1) but fast compared

to its couplings to other qubits. In addition, to capture the effect of reaction centers on the

dynamics, we propose to add excitation sinks into the superconducting circuit, see figure 3.

This is done with additional terminated transmission lines or shunt resistors coupled to those

sites that are supposed to leak excitations.

4.2. Engineering classical noise

We will first discuss the more simple case of an environment treated within the classical noise

formalism of equation (5). The basic idea of this approach is to simulate the fluctuations of

the transition energies by coupling classical noise to the qubits via the flux 8 j
c , see figure 2(b).
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Q1

Q7

Q3
Q8

Q2

Q6

Q5

Q4

Sink

Figure 3. Experimental layout for simulating the exciton dynamics and ENAQT

in the FMO complex (the architecture is based on the interactions given in [23],

where for simplicity of the graphic the couplings below 15 cm−1 are not shown).

Qi represent single flux qubits. To simulate a biologically relevant case, one of

these qubits, Q8 shown in green, is prepared initially in the excited state while the

others are set to the ground state. The measurement is performed on the target

site, Q3 shown in red. Sinks can be used to trap the energy and quantify the

transfer efficiency.

Such a noise affects the tunnel splitting 1 j in the qubit Hamiltonian. The noise can be actively

created and sent to the qubit by a time-dependent voltage Ṽ applied to a control loop [48].

With simple classical noise a prototypical experiment of ENAQT can be performed [16],

see figure 3. Here we briefly discuss the main features of ENAQT and what is to be expected

from an experiment scanning the ratio of dephasing rate over system energy scale. For the

qubit system in our proposed quantum simulator, the couplings and the differences in the qubit

splittings give a general energy scale3. The site energy level fluctuations lead to pure dephasing

as the dominant decoherence mechanism, which is phenomenologically characterized by a pure

dephasing rate γ . Each site can be driven, for example, by white noise with an (adjustable)

amplitude
√
γ . If the dephasing rate γ is much smaller than the energy scale 3, quantum

localization is predicted to arise from the disorder in the energy levels. This leads to a small

population at the target site. Increasing the dephasing rate such that γ ≈3 is expected [16] to

lead to an increased population at the target site. Finally, it is expected that for the dephasing rate

γ ≫3 diminished population arrives at the target site, since quantum transport is suppressed

by the Zeno effect. In the FMO complex, the initial state of the simulation can be a single

site excited (either site Q1, Q6 or Q8 which are close to the antenna in the biological system).

Measurement of success of the transport is performed at site Q3, where the outcome is the

population (zero or one) of the target site in the energy eigenbasis of the qubit. Performing the

measurements at various times provides a trajectory of the site population. To simulate static

disorder, such single trajectory measurements are performed for many different tunnel splittings

1 j . The average then gives the ensemble value of the target population, which quantifies the

efficiency.

Such an experiment can show that the environment is not always adversarial, but instead

can make certain processes, like quantum transport, more efficient. This transport efficiency

should exhibit a maximum at a dephasing rate that corresponds to room temperature in the

biological system [16]. Similar ideas for simulating ENAQT based on coupled semiconductor

quantum dots and quantum-optical cavities have been pursued in [49–51].
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4.3. Non-Markovian quantum approach

In order to simulate the complex environment described by equation (4) and capture the non-

Markovian effects, we propose to couple each of the flux qubits inductively to an independent

set of a few damped quantum LRC oscillators, see figure 2(a). The coupling Hamiltonian

between the qubits and oscillators [52] in the uncoupled qubit energy eigenbasis is given by

Hq−osc =
∑NLRC

j=1

∑

k η jk σ
j

z (b
j

k

†
+ b

j

k ) with b
j†

k (b
j

k ) being the creation (annihilation) operator of

the kth oscillator in site j and NLRC denoting the number of LRC oscillators coupled to a single

qubit. The coupling strength is given by η jk ≡ M jk I
jk

0 R j , where I
jk

0 =
√

hµ
jk

0 /L jk is the root

mean square (RMS) amplitude of the current in the kth oscillator ground state with µ
jk

0 being

the transition frequency of the oscillator and Ljk being the inductance of the oscillator. The

parameter R j = d1 j/d8
j
c is the sensitivity of the qubit splitting to flux.

To simulate the original SD given by equation (3), we have to design the frequencies and

couplings of the oscillators in such a way that the SD is reproduced up to a global scaling factor.

Note that the temperature mapping is discussed in the next section. From the implementation

point of view, we are limited to a finite number of oscillators. Thus we decompose the SD

of interest into a moderate number of spectral densities of damped oscillators. The SD of a

single oscillator coupled to a flux qubit can be derived by using a quantum Langevin equation

approach [53, 54] and following the detailed balance condition [35]

Cosc(ω, T )=D
[

eh̄ω/kBT

κ2 + 4(ω− 2πµ0)2
+

1

κ2 + 4(ω + 2πµ0)2

]

, (7)

whereD= (
√

8/π κη2)/(ehµ0/kBT + 1)with η being the coupling strength of the oscillator to the

flux qubit. Here, κ = κ0 exp(−|ω|/α) ω2/µ2
0 with κ0 being the damping rate and α being a free

parameter chosen reasonably to get the desired SD. By knowing the above SD for the damped

quantum oscillators, we first simulate the temperature-dependent super-Ohmic SD. At 300 K

this SD can be simulated with a set of six LRC oscillators coupled to each of the flux qubits,

see figure 4(a), and at 77 K it can be simulated with a set of seven oscillators, see figure A.1(a).

For the experimental SD, we need to couple, for example, 15 oscillators to each qubit, see

figure 4(b). Notice that the so-obtained SDs in figure 4 are highly accurate and we can use fewer

coupled oscillators if we are interested in less details of the spectral densities. The coupling of

the oscillators to the flux qubit results in an additional shift of the qubit tunnel splitting 1 j due

to the reorganization energy of the oscillators. This has to be taken into account in the design of

the energy landscape of the superconducting circuit.

5. Experimental feasibility

The simulation of the time evolution of the FMO complex requires a moderately coherent eight-

qubit system, which would be realizable using the flux qubits demonstrated in [46]. In the FMO

complex the site energies (chlorophyll excitation energies) are around 12 500 cm−1, with the

average site-dependent static shifts of the order of 250 cm−1. We emphasize again that only

the site energy differences, not the site energies themselves, play a role in the single exciton

dynamics. The magnitudes of the coupling strengths between the chlorophyll molecules are

smaller than 120 cm−1 [14]. For superconducting flux qubits, implementable range of the tunnel

bias 1 j is in the range of approximately zero to 13 GHz [46], while the coupling strengths gi j
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Figure 4. The parameterization of the temperature-dependent (a) super-Ohmic

SD and (b) experimental [38] SD of the FMO complex into distinct quantum

oscillators. The blue dashed lines are the spectral densities and the red solid

lines are highly accurate simulation with LRC oscillators coupled to the flux

qubits, see figure 2(a). The temperature for both spectral densities is 300 K.

The super-Ohmic SD is simulated with six damped LRC oscillators and the

experimental one is simulated with 15 damped oscillators. The blue bars show

the transition energies [14] for the FMO complex. The obtained parameters are

given in tables A.2 and A.3.

were measured up to 1 GHz [27]. In the proposed quantum simulator, the only restriction on1 j

is that to be larger than any of the |1i −1 j | and any of the gi j . Since these parameters are all

smaller than 3 GHz,1 j can be chosen to be around 5–10 GHz, which is very reasonable for flux

qubits. As has been mentioned above, the 1 j are not physically important in the single exciton

dynamics and it is the differences |1i −1 j | which play a role. Therefore, 1 j could also be

larger if the qubits are capable of it.

The parameters of the proposed quantum simulator are scaled through the time scale

of quantum beatings (τosc) to be consistent internally as well as with the implementation

restrictions, see table 1. Photosynthesis occurs at ambient temperatures, e.g. 300 K, which then

maps to 60 mK in our proposed superconducting-circuit experiments. The FMO dynamics is

usually considered for up to 5 ps, which translates to the time scale of 25 ns in the flux qubits.

The energy relaxation time (T1) of a single qubit has been found [47, 55] to be on the order of a

few µs, being a few orders of magnitude larger than the required exciton transfer time. Several

New Journal of Physics 14 (2012) 105013 (http://www.njp.org/)



12

~
~

...

...

Φx
j

Φc
j

R1
j

L1

j

C1

j

C12

j
C23

j
C34

j
C45

j
C56

j

Figure 5. The parallel combination of LRC oscillators shown in figure 2(a) can

be mapped to a linear chain of oscillators, such that only a single resonator would

need to be coupled directly to each qubit. The oscillators can be coupled, for

example, capacitively via capacitors C j
mn.

coherent beatings between two coupled qubits have been observed [27]. Table 1 represents the

summary of the proposed range of parameters for the superconducting simulator to imitate the

dynamics of the FMO complex.

In simulating the quantum environment of the FMO complex, the required transition

frequency of the LRC oscillators are in the range of 120 MHz–3 GHz and the coupling to the

qubits are around 8–100 MHz, see tables A.2 and A.3. These parameters are experimentally

reasonable. Although the geometry of figure 3 can provide coupling of an oscillator purely to

the qubit’s 8c (and NOT 8x ) if that oscillator shares the qubit’s symmetry axis, this symmetry

cannot be maintained if many oscillators are required. To circumvent this problem, the parallel

combination of resonators used to implement the desired SD can be mapped, for example,

to a linear chain of oscillators [56–58], such that only a single resonator would need to be

coupled directly to each qubit, see figure 5. This chain configuration will also make it easier to

geometrically fit several oscillators coupled to each qubit without spurious parasitic couplings.

The quality factor (transition frequencies/bandwidth) of the quantum oscillators in our proposed

simulator are 50 or less. The coupling to the output line can be tunable to adjust the quality

factor of each oscillator in situ. In [46], values of the flux sensitivity of the gap R j up to

0.7 GHz/m80 were demonstrated. However, this quantity should be kept as small as possible

to reduce coupling of flux noise to the qubit splittings. We therefore seek to maximize the

other factors in the coupling. To do this, we first take a relatively large mutual inductance of

M jk = 10 pH between the oscillator and the qubit control loop. This value is bounded by: (i) it

must be kept much smaller than the Josephson inductance of the two small junctions in the dc

SQUID to avoid significant perturbations of the qubit itself; and (ii) much larger than this would

require multiple windings or wiring layers, given the physical size of the loops concerned. With

M jk fixed, the coupling strength is then maximized by minimizing the oscillators’ inductance.

We choose a value of L jk = 100 pH, such that M jk = 10 pH does not significantly renormalize

the oscillator frequency (as would be the case if L jk and M jk were comparable). Then, for

an oscillator frequency of 120 MHz we require C jk = 10 nF. This is quite large, but achievable

in a parallel-plate geometry using sizes of the order of a few 100µm. These parameters give a

maximum coupling strength of 95 MHz, about five times larger than the required 18 MHz. Thus,

we can then reduce R j by a factor of five to achieve the desired coupling. For an oscillator

of 1.1 GHz, we require C jk = 300 pF, which gives a maximum coupling of 290 MHz, about

three times larger than the required 99 MHz. These examples show that the parameters given in

tables A.2 and A.3 are plausible. Note that the quality factor of these resonators is extremely

low, so that standard fabrication techniques can be used.

Implementation of our proposed simulator will be a challenging task, requiring a larger

collection of qubits (18) than have yet been demonstrated (currently up to four qubits have been
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observed in a single circuit [59, 60]). Additional engineering complications may arise beyond

those that have previously been addressed in single- and few-qubit experiments. For example,

cross talk between control lines can already be a challenging problem even in few-qubit systems.

In our case, this problem is mitigated by the fact that in the simplest scheme the many bias

lines are only used for static (rather than dynamic) control; therefore even if there are cross-

couplings, these can be diagonalized out to obtain the combination of physical bias adjustments

necessary to tune each individual Hamiltonian parameter. Another type of parasitic would

be cross-coupling between one set of oscillators and the qubit corresponding to another set.

This would create correlations between the environments seen by each qubit which go beyond

the model we are simulating. Another concern might be that coupling of each qubit to many

oscillators might provide additional, spurious dissipation channels which could significantly

reduce the lifetime of the individual qubits. Of course this cannot be ruled out without doing

an actual experiment; however, one favorable aspect of the proposed system in this regard is

that the coupling of the oscillators to the (bare) qubits is in principle purely longitudinal, i.e.

the (bare) qubits cannot exchange photons with the oscillators and therefore cannot relax due

to an interaction with them [61, 62]. This fact relies on the gradiometric geometry of the qubits

(figure 2), and the chain model for the oscillators (figure 5), which exploits the qubits’ geometric

symmetry to suppress spurious transverse coupling. It is important, however, to emphasize the

fact, illustrated in figures 1(b) and A.2(c), that once the qubits are coupled to each other, the

coupling of the collective modes of the system to the oscillators becomes transverse, such that

photons can be exchanged between the oscillators and the collective modes of the system. This

is precisely what we propose to emulate. All of the above numbers and observations suggest

that the site energy differences to coupling ratios of the FMO complex as well as corresponding

temperature and environmental couplings are achievable with superconducting circuits.

6. Conclusion

We have demonstrated that an appropriately designed network of superconducting qubit-

resonator design can simulate not only the coherent exciton transport in photosynthetic

complexes, but also the effect of a complicated quantum environment. We have highlighted

its experimental feasibility with present-day technology. In particular, we have shown

that a straightforward combination of superconducting qubits (representing the chlorophyll

molecules) and resonators (simulating the phonon environment) can be used to obtain a

reasonable approximation to the exciton and phonon degrees of freedom in the FMO complex.

For example, we show ways to engineer an SD that reproduces that of a biological system. One

of the advantages of our proposed quantum simulator, compared to the computational methods,

is simulating both diagonal and off-diagonal noise. Because of the additional complexity of

considering the off-diagonal noise, most of the non-Markovian computational methods only take

the diagonal noise into account. Another nice feature of our setup is that, by design, we have

a single-molecule setup which allows for detailed studies of non-Markovian energy transfer

pathways.

An important feature of our proposal is the potential to achieve a high level of environment

engineering, in such a way that external noise is used to benefit the quantum coherent energy

transfer process inside the molecule. However, the broader scope of our work is along the

lines of biomimesis: the artificial recreation of biological processes, which are already highly

optimized through evolution.
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Appendix A. Figures and tables
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Figure A.1. The parameterization of the temperature-dependent (a) super-Ohmic

SD and (b) experimental [38] SD of the FMO complex into distinct quantum

oscillators. The blue dashed lines are the spectral densities and the red solid

lines are accurate simulation with LRC oscillators coupled to the flux qubits,

see figure 2(a). The temperature for both spectral densities is 77 K. The super-

Ohmic SD is simulated with seven damped LRC oscillators and the experimental

one is simulated with 15 damped oscillators. The blue bars show the transition

energies [14] for the FMO complex.
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Figure A.2. Sketch of the basic processes in excitonic energy transfer. Consult

table 1 (or table A.1) for numerical values of the time scales of the respective

processes. Let |g〉 be the electronic ground state and |M〉 and |N 〉 be two

delocalized electronic excited states. (a) Decay between an excited state and the

ground state, characterized with the decay time T1 (another name for this process

is exciton recombination). (b) Dephasing of a superposition between ground state

and an excited state. This process usually happens on a very fast time scale

and is not relevant for the present discussion. (c) Decay in the single exciton

manifold without the loss of the excitation to the ground state, characterized

by the decay time between exciton states. (d) Dephasing in the single exciton

manifold. Consider a superposition of exciton states |ψ〉 = 1√
2
(|M〉 + |N 〉). Then

this dephasing process causes the initial density matrix |ψ〉〈ψ | to decay to

an equal mixture 1/2(|M〉〈M | + |N 〉〈N |) at long times. The time scale of this

process is characterized by the dephasing time in the single exciton manifold.
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Table A.1. Comparison of parameters for the FMO complex and the quantum

simulator. The time scales shown below are for the dressed states of flux qubits

coupled to the quantum harmonic oscillators. Notice that the decay time in a

single qubit (T1) does not need to be mapped directly from the FMO dynamics.

With nowadays achievable decay times in superconducting qubits, which are

three orders of magnitude larger than the excitation transfer time between the

qubits, the dynamics of the FMO complex can be simulated.

Parameter FMO model Quantum simulator

Decay time (T1) ≈ ns ≈ 10µs

(single site electron–hole recombination)

Average exciton transfer time ≈ 5 ps ≈ 25 ns

(from site 8 to site 3)

Decay time between the exciton states ≈ ps ≈ 5 ns

(jump between exciton states)

Dephasing in exciton manifold ≈ 100 fs ≈ 500 ps

(pure dephasing)

Time scale of quantum beatings (τosc) ≈ 200 fs ≈ 1 ns

Coupling between sites ≈ 10–122 cm−1 ≈ 60–730 MHz

Relative static site energy shifts ≈ 10–500 cm−1 ≈ 60 MHz–3 GHz
∣
∣ε̃i − ε̃ j

∣
∣≡

∣
∣1i −1 j

∣
∣

Dynamic fast fluctuations [65] ≈ 250 ± 100 cm−1 at 300 K ≈ 1.5 GHz ± 600 MHz

(dephasing rate) ≈ 40 ± 10 cm−1 at 77 K ≈ 240 ± 60 MHz

300 K ≈ 208 cm−1 60 mk ≈ 1.2 GHz

Temperature 100 K ≈ 69.5 cm−1 20 mk ≈ 417 MHz

77 K ≈ 53 cm−1 15 mk ≈ 317 MHz

Table A.2. Decomposition of the temperature-dependent super-Ohmic spectral

density at 300 K shown in figure 4(a) and simulation with six LRC oscillators

coupled to each flux qubit, see figure 2(a).

FMO complex

Transition frequency (cm−1) Coupling strength (cm−1) Quality factor

Oscillator no. 1 ≈ 27 ≈ 2.42 ≈ 0.67

Oscillator no. 2 ≈ 74 ≈ 8.60 ≈ 0.49

Oscillator no. 3 ≈ 140 ≈ 11.98 ≈ 0.47

Oscillator no. 4 ≈ 246 ≈ 14.10 ≈ 0.80

Oscillator no. 5 ≈ 380 ≈ 10.00 ≈ 1.27

Oscillator no. 6 ≈ 560 ≈ 5.40 ≈ 1.84

Quantum simulator

Transition frequency Coupling strength (MHz) Quality factor

Oscillator no. 1 ≈ 162 MHz ≈ 14.50 ≈ 0.67

Oscillator no. 2 ≈ 444 MHz ≈ 51.56 ≈ 0.49

Oscillator no. 3 ≈ 839 MHz ≈ 71.83 ≈ 0.47

Oscillator no. 4 ≈ 1.5 GHz ≈ 84.54 ≈ 0.80

Oscillator no. 5 ≈ 2 GHz ≈ 59.95 ≈ 1.27

Oscillator no. 6 ≈ 3 GHz ≈ 32.38 ≈ 1.84
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Table A.3. Decomposition of the temperature-dependent experimental [38]

spectral density at 300 K shown in figure 4(b) and simulation with 15 LRC

oscillators coupled to each flux qubit, see figure 2(a).

FMO complex

Transition frequency (cm−1) Coupling strength (cm−1) Quality factor

Oscillator no. 1 ≈ 20 ≈ 3.0 ≈ 0.93

Oscillator no. 2 ≈ 37 ≈ 5.9 ≈ 1.35

Oscillator no. 3 ≈ 72 ≈ 9.7 ≈ 1.89

Oscillator no. 4 ≈ 118 ≈ 7.8 ≈ 4.00

Oscillator no. 5 ≈ 142 ≈ 2.8 ≈ 9.00

Oscillator no. 6 ≈ 190 ≈ 16.5 ≈ 5.00

Oscillator no. 7 ≈ 237 ≈ 10.4 ≈ 8.80

Oscillator no. 8 ≈ 260 ≈ 6.1 ≈ 10.80

Oscillator no. 9 ≈ 282 ≈ 9.9 ≈ 11.75

Oscillator no. 10 ≈ 325 ≈ 4.8 ≈ 18.06

Oscillator no. 11 ≈ 363 ≈ 6.3 ≈ 20.17

Oscillator no. 12 ≈ 380 ≈ 5.3 ≈ 29.23

Oscillator no. 13 ≈ 426 ≈ 4.4 ≈ 30.43

Oscillator no. 14 ≈ 478 ≈ 3.4 ≈ 48.00

Oscillator no. 15 ≈ 500 ≈ 1.3 ≈ 35.71

Quantum simulator

Transition frequency Coupling strength (MHz) Quality factor

Oscillator no. 1 ≈ 120 MHz ≈ 18.00 ≈ 0.93

Oscillator no. 2 ≈ 222 MHz ≈ 35.38 ≈ 1.35

Oscillator no. 3 ≈ 432 MHz ≈ 58.16 ≈ 1.89

Oscillator no. 4 ≈ 707 MHz ≈ 46.77 ≈ 4.00

Oscillator no. 5 ≈ 851 MHz ≈ 16.79 ≈ 9.00

Oscillator no. 6 ≈ 1.1 GHz ≈ 98.93 ≈ 5.00

Oscillator no. 7 ≈ 1.4 GHz ≈ 62.36 ≈ 8.80

Oscillator no. 8 ≈ 1.6 GHz ≈ 36.57 ≈ 10.80

Oscillator no. 9 ≈ 1.7 GHz ≈ 59.36 ≈ 11.75

Oscillator no. 10 ≈ 1.9 GHz ≈ 28.78 ≈ 18.06

Oscillator no. 11 ≈ 2.2 GHz ≈ 37.77 ≈ 20.17

Oscillator no. 12 ≈ 2.3 GHz ≈ 31.79 ≈ 29.23

Oscillator no. 13 ≈ 2.6 GHz ≈ 26.38 ≈ 30.43

Oscillator no. 14 ≈ 2.9 GHz ≈ 20.39 ≈ 48.00

Oscillator no. 15 ≈ 3 GHz ≈ 7.79 ≈ 35.71

Appendix B. Coordinate representation of the model Hamiltonian

In this section we derive the model Hamiltonian of a single molecule, given in equation (1)

for N = 1, from the Born–Oppenheimer approximation. Restricting to two electronic states,

the ground state |g〉 and the excited state |e〉, the Hamiltonian in the Born–Oppenheimer

approximation is [30]:

H = Hnuc,g(R)|g〉〈g| + Hnuc,e(R)|e〉〈e|, (B.1)
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where R describes the collection of 3Nnuc modes relevant to the molecule (both local and

protein modes), R = {R1, . . . , R3Nnuc
}, with Nnuc being the number of nuclei. The Hamiltonians

Hnuc,g/e(R) describe the kinetic and potential energy of the nuclei, Tnuc and Vnuc, respectively:

Hnuc,g/e(R)= Tnuc + Vnuc,g/e(R). The potential energy is given by Vnuc,g/e(R)= Vnuc−nuc(R)+

Eg/e(R) with the inter-nuclear potential energy Vnuc−nuc and the potential energy due to the

electrons Ea(R). We assume a displaced harmonic oscillator model for the potential of ground

and excited state:

Vnuc,g(q)= Ug +

3Nnuc∑

i=1

h̄ωi

2
q2

i , (B.2)

Vnuc,e(q)= Ue +

3Nnuc∑

i=1

h̄ωi

2
(qi − di)

2. (B.3)

Here, we introduced the renormalized coordinates q = R − R0, where R0 are the equilibrium

positions in the electronic ground state (minimum of the ground state potential energy surface).

The respective energies of the electronic states at the minimum of the respective potentials are

Ug and Ue. We have assumed that the frequency ωi of mode i remains unchanged in the exited

state. The displacement of the i th mode in the excited state is given by di . The q-dependent

energy gap is given by the difference of the two potentials:

Vnuc,e(q)− Vnuc,g(q)=1U +

3Nnuc∑

i=1

h̄ωi

2
d2

i −
3Nnuc∑

i=1

h̄ωi diqi , (B.4)

where the first term 1U = Ue − Ug is the energy difference between the potential minima of

ground and excited states. The second term gives the reorganization energy:

λ=
∑

i

λi =
∑

i

h̄ωi

2
d2

i . (B.5)

The third term gives the linear dependence of the gap on the coordinates of the harmonic

oscillator, and is the exciton-vibrational coupling term. The total Hamiltonian in the harmonic

approximation is thus:

Htot =
(

1U +
∑

i

λi

)

|e〉〈e|
︸ ︷︷ ︸

Hel

+

(

Tnuc +
∑

i

h̄ωi

2
q2

i

)

1

︸ ︷︷ ︸

Hph

+
∑

i

h̄ωi diqi |e〉〈e|
︸ ︷︷ ︸

Hel−ph

.

(B.6)

Here we defined the respective Hamiltonians for the electronic system, phonon bath and

electron–phonon coupling, Hel, Hph and Hel−ph. The system identity operator is given by

1 = |g〉〈g| + |e〉〈e|.

Appendix C. Energy transfer pathways for the FMO complex

We briefly explain the red arrows in figure 1(b), which show schematically the downwards

energy transfer pathways for the FMO complex, similar to [63] which considered a seven-site

model for the FMO complex.
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From a system–bath model like equation (1), one can derive a master equation for the

density matrix by using, for example, Redfield theory with the secular approximation [64].

Redfield theory assumes weak coupling and a Markovian bath. This leads to decoherence rates

in the energy basis between energy states M and N given by [14] (without loss of generality

h̄ωM N = EM − EN > 0):

Ŵ
↑
M N = 2π γM N J (ωM N ) n(ωM N ), (C.1)

Ŵ
↓
M N = 2π γM N J (ωM N ) [n(ωM N )+ 1] . (C.2)

Here, Ŵ
↑
M N (Ŵ

↓
M N ) is the rate up (down) in energy and n(ωM N ) is the mean number of vibrational

quanta with energy h̄ωM N that are excited at a given temperature T :

n(ωM N )= 1/[exp(h̄ωM N/kBT )− 1]. (C.3)

The factor γM N =
∑

j |〈M | j〉|2|〈 j |N 〉|2 arises from the basis transformation between site and

energy basis. In figure 1(a), the red arrows show a selected number of downward transitions

with γM N J (ωM N )> 0.3 cm−1.
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[32] Shim S, Rebentrost P, Valleau S and Aspuru-Guzik A 2012 Biophys. J. 102 649–60

[33] Valleau S, Eisfeld A and Aspuru-Guzik A 2012 Reason is but choosing: On the different alternatives for bath

correlators and spectral densities from mixed quantum-classical simulations arXiv:1207.3087

[34] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1–85

[35] Egorov S A, Everitt K F and Skinner J L 1999 J. Phys. Chem. A 103 9494–9

[36] Ritschel G, Roden J, Strunz W T and Eisfeld A 2011 New J. Phys. 13 113034

[37] Haken H and Reineker P 1972 Z. Phys. 249 253–68

Haken H and Strobl G 1973 Z. Phys. 262 135–48

[38] Wendling M, Pullerits T, Przyjalgowski M A, Vulto S I E, Aartsma T J, van Grondelle R and van Amerongen

H 2000 J. Phys. Chem. B 104 5825–31

[39] Seibt J, Winkler T, Renziehausen K, Dehm V, Würthner F, Meyer H-D and Engel V 2009 J. Phys. Chem. A

113 13475–82

[40] Strümpfer J and Schulten K 2009 J. Chem. Phys. 131 225101

[41] Kreisbeck C, Kramer T, Rodrı́guez M and Hein B 2011 J. Chem. Theory Comput. 7 2166

[42] Kreisbeck C and Kramer T 2012 arXiv:1203.1485

[43] Clarke J and Wilhelm F K 2008 Nature 453 1031–42

[44] Yoshihara F, Harrabi K, Niskanen A O, Nakamura Y and Tsai J S 2006 Phys. Rev. Lett. 97 167001

[45] Ashhab S, Niskanen A O, Harrabi K, Nakamura Y, Picot T, de Groot P C, Harmans C J P M, Mooij J E and

Nori F 2008 Phys. Rev. B 77 014510

[46] Paauw F G, Fedorov A, Harmans C J P M and Mooij J E 2009 Phys. Rev. Lett. 102 090501

[47] Chiorescu I, Nakamura Y, Harmans C J P M and Mooij J E 2003 Science 299 1869–71

[48] Omelyanchouk A N, Savel’ev S, Zagoskin A M, Il’ichev E and Nori F 2009 Phys. Rev. B 80 212503

[49] Semiao F L, Furuya K and Milburn G J 2010 New J. Phys. 12 083033

[50] Caruso F, Spagnolo N, Vitelli C, Sciarrino F and Plenio M B 2011 Phys. Rev. A 83 013811

[51] Eisfeld A and Briggs J S 2012 Phys. Rev. E 85 046118

[52] Hauss J, Fedorov A, Hutter C, Shnirman A and Schön G 2008 Phys. Rev. Lett. 100 037003

[53] Bertet P, Chiorescu I, Burkard G, Semba K, Harmans C J P M, DiVincenzo D P and Mooij J E 2005 Phys.

Rev. Lett. 95 257002

[54] Bertet P, Chiorescu I, Harmans C J P M and Mooij J E 2005 arXiv:cond-mat/0507290

[55] Steffen M, Kumar S, DiVincenzo D P, Rozen J R, Keefe G A, Rothwell M B and Ketchen M B 2010 Phys.

Rev. Lett. 105 100502

[56] Mori H 1965 Prog. Theor. Phys. 34 399–416

[57] Hughes K H, Christ C D and Burghardt I 2009 J. Chem. Phys. 131 024109

[58] Prior J, Chin A W, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050404

[59] Reed M D, DiCarlo L, Nigg S E, Sun L, Frunzio L, Girvin S M and Schoelkopf R J 2012 Nature

482 382–385

[60] Lucero E, Barends R, Chen Y, Kelly J, Mariantoni M, Megrant A, O’Malley P, Sank D, Vainsencher A,

Wenner J, White T, Yin Y, Cleland A N and Martinis J M 2012 Nature Physics, doi:10.1038/nphys2385,

arXiv:1202.5707

New Journal of Physics 14 (2012) 105013 (http://www.njp.org/)



21

[61] Kerman A J and Oliver W D 2008 Phys. Rev. Lett. 101 070501

[62] Kerman A J 2010 Phys. Rev. Lett. 104 027002

[63] Brixner T, Stenger J, Vaswani H M, Cho M, Blankenship R E and Fleming G R 2005 Nature 434 625–8

[64] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (New York: Oxford University

Press)

[65] Panitchayangkoon G, Hayes D, Fransted K A, Caram J R, Harel E, Wen J, Blankenship R E and Engel G S

2010 Proc. Natl Acad. Sci. 107 16862–7

New Journal of Physics 14 (2012) 105013 (http://www.njp.org/)


