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Electronic-vibrational dynamics in molecular systems that interact with an environment involve a
large number of degrees of freedom and are therefore often described by means of open quantum
system approaches. A popular approach is to include only the electronic degrees of freedom into
the system part and to couple these to a non-Markovian bath of harmonic vibrational modes that
is characterized by a spectral density. Since this bath represents both intra-molecular and external
vibrations, it is important to understand how to construct a spectral density that accounts for intra-
molecular vibrational modes that couple further to other modes. Here, we address this problem by
explicitly incorporating an intra-molecular vibrational mode together with the electronic degrees of
freedom into the system part and using the Fano theory for a resonance coupled to a continuum to de-
rive an “effective” bath spectral density, which describes the contribution of intra-molecular modes.
We compare this effective model for the intra-molecular mode with the method of pseudomodes, a
widely used approach in simulation of non-Markovian dynamics. We clarify the difference between
these two approaches and demonstrate that the respective resulting dynamics and optical spectra can
be very different. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4765329]

I. INTRODUCTION

In many problems of chemical and biological physics,
large molecules or complexes of interacting molecules are
embedded in an environment, e.g., a fluid solvent, protein
scaffold, or a surface. Examples are organic dyes in liq-
uid solution and solid state matrices,1–5 organic semicon-
ductors on surfaces,6 or chlorophyll molecules in protein
complexes (light-harvesting complexes).7–11 Much of the in-
formation about such complex molecular systems is ob-
tained from optical spectroscopy.3, 12–22 However, the inter-
pretation of spectra is often complicated due to the coupling
of the electronic excitations of the molecules to the many
intra-molecular modes and external vibrational modes of the
environment.

To be able to describe these complex electronic-
vibrational (vibronic) dynamics, one often makes use of open
quantum system approaches, which divide the entire com-
plex into a set of explicitly treated degrees of freedom (DOF),
the “system,” and a bath of harmonic vibrational modes that
are coupled to the system. Two important concerns when us-
ing this approach are the choice of which DOF are to be
included into the system Hamiltonian and how the bath is
modeled, e.g., as Markovian or non-Markovian in its dy-
namics. (In this paper we refer to a “Markovian bath” when
the bath correlation function is a delta function in time,
that is, it decays infinitely fast with respect to the relevant

a)Electronic mail: roden@berkeley.edu.
b)Electronic mail: eisfeld@mpipks-dresden.mpg.de.

time scales, and a “non-Markovian bath” if not, since the
reduced dynamics will be of Lindblad form in the former
case.)

In application to molecules embedded in an environ-
ment, two primary choices for the system part have been
employed. In the first model, which we term the “vibronic
system model” (VSM), the system part contains the relevant
molecular electronic states together with one or more “im-
portant” vibrational modes. The latter are typically the intra-
molecular modes (IMs) for individual molecules that couple
most strongly to the molecular electronic excitation. These
IMs that are explicitly incorporated into the system Hamil-
tonian are usually described by Born-Oppenheimer (BO) po-
tentials in the different electronic states that are shifted with
respect to each other by a shift �Q along a vibrational co-
ordinate Q. The vibrational modes in the system are then
coupled to a bath of harmonic modes, representing the many
other intra-molecular and external vibrational DOF. This cou-
pling is commonly described by the bath spectral density,
which expresses the coupling strength as a function of the
frequency of the harmonic bath modes. Because of the in-
clusion of both electronic and vibrational DOF into the sys-
tem part, we refer to this model as the “vibronic system
model.”

Since the inclusion of vibrational DOF into the system
part causes an immense growth of the corresponding system
Hilbert space, simulations based on the VSM are usually lim-
ited to either a small number of vibrational modes in the sys-
tem or a small number of interacting molecules and electronic
states. Therefore, a second model is widely used in which
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the system part contains only the electronic states and the
electronic excitation couples to a harmonic bath representing
all vibrational DOF. We shall refer to this as the “electronic
system model” (ESM). Since the bath now also includes the
IMs, which couple strongly to the electronic excitation, in
the ESM the bath is typically non-Markovian. This is in con-
trast to the VSM, where the fact that the most strongly cou-
pled modes are incorporated explicitly into the system is of-
ten taken to justify a Markovian description of the remaining,
more weakly coupled modes.

Although the VSM and the ESM are both widely used,
the relation between the two approaches is still not clear in
some key respects. One important issue is how to treat IMs
that are coupled to additional modes (usually of the environ-
ment). In the VSM, it is straightforward to take such IMs into
account, since they may be explicitly incorporated into the
system as described above. In the ESM, however, it is not a
priori clear how to implement the IMs in an equivalent man-
ner while retaining the relative simplicity and compact repre-
sentation of the ESM. Since the system degrees of freedom
are characterized by a smaller Hilbert space in the ESM than
in the VSM, the ESM is more scalable and hence preferred
when carrying out numerical simulations of larger molecular
aggregates. Thus, a proper inclusion of IMs in the ESM would
be very useful for calculations with large pigment-protein ag-
gregates. Therefore, the goal is to find an “effective” bath
spectral density in the ESM that represents the IMs in a form
that is equivalent to their explicit incorporation in the VSM.
This problem has been addressed in Ref. 23 (see also refer-
ences therein) for the case of an Ohmic spectral density with
exponential cutoff in the VSM.

In the present work, we establish a relation between the
ESM and the VSM by proceeding analogously to Fano’s treat-
ment of a resonance coupled to a continuum.24 In particu-
lar, we derive a formula for an effective bath spectral den-
sity for the ESM that allows IMs to be taken explicitly into
account.

We also show how the model for the intra-molecular
mode used here is connected to the so-called method of
“pseudomodes,”25–27 (PM) a widely applied concept to de-
scribe non-Markovian dynamics (see also Refs. 28–30). We
clarify the relation and the difference between the treatment of
pseudomodes and the intra-molecular modes within the ESM.
We further demonstrate that the difference between the PM
and IM models results in qualitatively different dynamics and
optical spectra.

The remainder of the paper is organized as follows: In
Sec. II we introduce the open system approach, together with
the definitions and notations used in the present work. The
following Sec. III describes the VSM and ESM approaches to
modeling of electronic-vibrational dynamics. In Sec. IV, we
establish the connection between the ESM and the VSM, and
derive the effective spectral density for the ESM that provides
an equivalent representation of the intra-molecular modes. We
then clarify in Sec. V the relation between the IM model and
the method of pseudo-modes, and compare the dynamics and
optical spectra resulting from these two different representa-
tions of vibrational modes. We conclude with a summary and
an outlook (Sec. VI).

II. GENERAL OPEN SYSTEM APPROACH
WITH HARMONIC BATH

Consider a molecule interacting with an environment.
The electronic excitation of the molecule is assumed to couple
to both the intra-molecular and external vibrational modes.
Using the framework of open quantum systems, we write the
total Hamiltonian as

Htot = Hsys + Hint + Hbath, (1)

that is, as a sum of the system part Hsys, the bath Hbath, and
the interaction Hint between system and bath. We will specify
the system part later, when we consider the VSM and ESM.
The bath

Hbath =
∑

λ

ωλa
†
λaλ (2)

is assumed to be a set of harmonic modes with frequencies
ωλ and annihilation (creation) operators aλ (a†

λ). We set ¯≡ 1
throughout this work.

The interaction between system and bath is given by the
sum of products of bath (aλ, a

†
λ) and system (L) operators,

Hint =
∑

λ

(
κ∗

λaλL
† + κλa

†
λL

)
, (3)

with coupling constants κλ. The system operator L will take
different forms for the different specific models we consider
in Sec. III.

The magnitude of the coupling to the bath can be encoded
in the bath spectral density

J (ω) =
∑

λ

|κλ|2 δ(ω − ωλ), (4)

which is taken to be a continuous function of the frequency
ω. To treat finite temperatures T, we introduce the bath corre-
lation function31

C(t) =
∫ ∞

0
dω J (ω)

(
cos(ωt)coth

ω

2T
− i sin(ωt)

)
(5)

(we set the Boltzmann constant kB to unity) and its Fourier
transform

C(ω) =
∫ ∞

−∞
dt eiωtC(t), (6)

which we shall refer to as the “bath correlation spectrum.”
It is often useful to calculate C(ω) directly from J(ω) (or

vice versa), rather than via Eqs. (5) and (6). This can be done
via the relation32

C(ω) =
(

1 + coth
( ω

2T

))
JA(ω) (7)

with the anti-symmetrized spectral density

JA(ω) =
{

J (ω), ω ≥ 0

−J (−ω), ω < 0.
(8)

We note that in general C(ω) is a complicated function leading
to non-Markovian dynamics.
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III. VIBRONIC AND ELECTRONIC SYSTEM MODELS

A. Vibronic system model

We consider a single molecule embedded in an environ-
ment. For simplicity, we take into account only two electronic
states of the molecule, namely, the ground state |g〉 and one
excited state |e〉. We shall also include only a single vibra-
tional mode in the system degrees of freedom. This vibra-
tional mode (the IM) is assumed to be harmonic with the
same frequency � in both electronic states, so that the two
Born-Oppenheimer potentials of the mode in the two elec-
tronic states have the same shape. We further assume that the
two potentials are shifted with respect to each other in energy
by the electronic transition energy ε and are also character-
ized by a relative shift of �Q along the coordinate Q of the
vibrational mode (see Fig. 1).

Such a model of shifted harmonic Born-Oppenheimer
potentials for the vibrational modes that are explicitly incor-
porated in the system part is often used in the literature (see,
e.g., Refs. 32–34) and was found in many cases to be a reason-
able description of these modes (see, e.g., Refs. 35 and 36).
The harmonic shape of these potentials will allow us later to
establish the connection of the VSM with the ESM.

In the electronic ground state, the vibrational mode has
the Hamiltonian

Hg = � b†gbg (9)

with the annihilation operator bg = (Q + iP )/
√

2, where Q
and P are the dimensionless position and momentum oper-
ators of the mode. In the excited electronic state, located at
energy ε above the ground state, we have

He = ε + � b†ebe, (10)

where be is the annihilation operator for the mode’s po-
tential in the excited electronic state. The latter is shifted
by the dimensionless excited-state displacement �Q, so that
be = ((Q − �Q) + iP )/

√
2. The excited state annihilation

operator is related to the ground state annihilation operator
bg by a simple shift:

be = bg −
√

X, (11)

}

}

E
ne

rg
y

Q

ΔQ0

0

ε

Ω

Ω

FIG. 1. Harmonic Born-Oppenheimer potentials of a single vibrational mode
with coordinate Q in the two electronic states. The frequency of the mode is
given by � and the potentials are shifted with respect to each other by ε in
energy and by �Q along the coordinate Q.

where

X = (�Q)2/2 (12)

is the so-called Huang-Rhys factor,37 which quantifies the
strength with which the electronic excitation couples to the
vibrational mode.

The system part Hsys of the total Hamiltonian in Eq. (1)
is thus given by

H VSM
sys = Hg|g〉〈g| + He|e〉〈e|, (13)

which, using Eqs. (9)–(11), can be written as

H VSM
sys = (ε + �X)|e〉〈e| − �

√
X|e〉〈e|(b†g + bg

)
+� b†gbg. (14)

From Eq. (14), one sees that the model of the two oscillators
shifted with respect to each other in ground and excited states,
described here, amounts to a single oscillator that couples lin-
early (see second term) to the electronic excitation.

For the coupling to the bath, defined in Eq. (3), we use
a model analogous to the one described in Ref. 33. For the
ground state oscillator, the coupling to the bath is via the co-
ordinate Q, whereas for the (shifted) excited state oscillator
it is via the (shifted) coordinate Qe = Q − �Q. Accordingly,
we take for the coupling (system) operator L in Eq. (3), the
operator

LVSM = |g〉〈g|bg + |e〉〈e|be (15)

= bg − |e〉〈e|
√

X. (16)

That is, in the electronic ground state the IM couples with
the IM annihilation operator bg to the bath, whereas in the ex-
cited electronic state it couples with the displaced IM operator
be = bg − √

X, as a result of the potential shift in the excited
state.

The results of the present paper rely on the specific form
chosen for the system-bath coupling. In other works, e.g.,
Refs. 23 and 34, see also Chapter 8 of Ref. 32, different cou-
pling Hamiltonians for the coupling of a vibrational mode or
reaction coordinate to a bath are used. In particular, also the
form

∑
λ(κ2

λQ2/(2ωλ) − κλqλQ) for the coupling between
the coordinate Q of the system mode and the coordinates qλ of
the bath modes that appears in the so-called Caldeira-Leggett
Hamiltonian is widely applied.32, 38

B. Electronic system model

The vibronic system model, described in Sec. III A, has
the drawback that the Hilbert space of the system part grows
rapidly as the number of explicitly incorporated vibrational
modes or the number of interacting molecules/electronic
states is increased. To avoid this, the ESM is widely used (see,
e.g., Refs. 7 and 39–42). Here, the system degrees of free-
dom contain only the electronic DOF and all vibrational DOF
are incorporated in the bath to which the electronic excitation
couples.

For the description of the ESM, we consider again a
molecule embedded in an environment, as in Sec. III A for
the VSM. As in the VSM, we take only two electronic states
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into account. The system part contains only the two electronic
states, so that the system Hamiltonian reads

H ESM
sys = ε0|g〉〈g| + ε|e〉〈e|, (17)

with the energy ε0 of the ground state (which we set to zero
from now on) and the energy ε of the excited electronic state.

The transition between the two states couples linearly to
the harmonic bath. We describe this by taking

LESM ≡ −|e〉〈e| (18)

for the system coupling operator L in Eq. (3). Note that
this model of linear coupling between the electronic projec-
tor |e〉〈e| and an implicitly infinite number of bath modes is
equivalent to taking infinite dimensional harmonic BO sur-
faces (instead of the harmonic bath) in ground and excited
electronic states that are shifted with respect to each other in
each dimension, with shifts proportional to the correspond-
ing coupling constant κλ in Eq. (3). This equivalence can be
shown by a reformulation of the total Hamiltonian Htot (for
an infinite number of modes) that is analogous to the refor-
mulation of H VSM

sys done in Eq. (14) in Sec. III A for a single
IM.

The rest of the model is as described in Sec. II for the
general harmonic bath model. Thus, we use the bath corre-
lation spectrum C(ω) of Eq. (6) (or the spectral density J(ω)
in Eq. (4)) to describe the coupling of the electronic excita-
tion to intra-molecular and external vibrational modes, which
together are represented by the harmonic bath.

IV. CONNECTION BETWEEN VIBRONIC
AND ELECTRONIC SYSTEM MODEL

We show here how a quantitative relation between the
VSM and the ESM can be established. In particular, we shall
address the question how a damped intra-molecular vibra-
tional mode, which within the VSM is explicitly incorporated
into the system part (Sec. III A), can be equivalently described
within the ESM. It will be shown that this is possible by
taking an “effective” spectral density JESM(ω) in the ESM,
which can be calculated from the spectral density JVSM(ω) to
which the system vibrational mode couples within the VSM
description.

A. Diagonalization of the bath

We start by considering the total Hamiltonian for the
VSM, with the single IM incorporated in the system part.
From Eqs. (2), (3), (14), (16), and (17), we see that it can
be written as

H VSM
tot = H̃ ESM

sys + Hvib

−
√

X|e〉〈e|
(

�bg +
∑

λ

κ∗
λaλ + h.c.

)
, (19)

where

H̃ ESM
sys ≡ H ESM

sys + �X|e〉〈e| (20)

and

Hvib ≡ �b†gbg +
∑

λ

ωλa
†
λaλ +

∑
λ

(
κ∗

λaλb
†
g + h.c.

)
. (21)

In Eq. (19) the electronic projector |e〉〈e| couples linearly to
all bath modes aλ and to the single mode bg, which are all
comprised in Hvib. This form is similar to the ESM described
before, however, with the difference that within Hvib the sin-
gle mode bg is coupled to the other modes aλ (see Eq. (21)), in
contrast to the bath of normal modes used in the ESM. There-
fore, to find the effective spectral density JESM(ω) for the
ESM, we will diagonalize Hvib by means of a unitary trans-
formation S so that all modes will be uncoupled. To this end,
we define a vector operator ā with components bg and {aλ},
i.e., the annihilation operators of all vibrational modes:

ā = (bg, a1, . . . , aN )T , (22)

where λ = 1, 2, . . . , N and (···)T denotes the transpose. Then
we can write

Hvib = ā†Mā, (23)

with

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� κ∗
1 κ∗

2 · · · κ∗
N

κ1 ω1 0 · · · 0

κ2 0 ω2
. . .

...

...
...

. . .
. . . 0

κN 0 · · · 0 ωN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

It is convenient to also introduce a vector that contains all the
couplings:

κ̄ ≡
√

X(�, κ1, . . . , κN )T . (25)

The total Hamiltonian can then be written as

H VSM
tot = H̃ ESM

sys + ā†Mā − |e〉〈e|(κ̄†ā + ā†κ̄
)
. (26)

We now diagonalize M by means of a unitary transformation
S, i.e.,

D ≡ SMS† (27)

is a diagonal matrix that contains the eigenvalues of M. The
total Hamiltonian now reads

H VSM
tot = H̃ ESM

sys + c̄†Dc̄ − |e〉〈e|(v̄†c̄ + c̄†v̄
)
, (28)

where we have introduced

c̄ ≡ Sā, (29)

with c̄ = (c0, c1, . . . , cN )T and

v̄ ≡ Sκ̄, (30)

with v̄ = (v0, v1, . . . , vN )T . Denoting the eigenvalues of M by
ξρ , we can write

H VSM
tot = H̃ ESM

sys +
∑

ρ

ξρc
†
ρcρ − |e〉〈e|

∑
ρ

(
v∗

ρcρ + vρc
†
ρ

)
,

(31)
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where ρ = 0, 1, . . . , N. The new couplings can be calcu-
lated from vρ = (Sκ̄)ρ , where S is the matrix consisting of
the eigenvectors of M. Comparison with Eqs. (1)–(4), (17)
and (18) implies that Eq. (31) corresponds to an ESM with
spectral density

JESM(ω) =
∑

ρ

|vρ |2 δ(ω − ξρ). (32)

Note that because of the appearance of the shifted electronic
Hamiltonian H̃ ESM

sys instead of the original electronic Hamilto-
nian H ESM

sys in Eq. (31), in addition to requiring the new effec-
tive spectral density, we also need to now add an energy �X
to the excited electronic state (Eq. (20)). From the above for-
mulation one sees that the effective spectral density JESM(ω)
for the ESM of Eq. (32) can be obtained by diagonalizing the
matrix M.

The elements of M are determined by the VSM spectral
density

JVSM(ω) =
∑

λ

|κλ|2δ(ω − ωλ) (33)

and by the frequency � of the single mode that was incorpo-
rated into the system part. The new bath frequencies are given
by the eigenvalues ξρ of M and the corresponding couplings
vρ are calculated via the transformation in Eq. (30) (where the
coupling X to the single mode enters, cf. Eqs. (25) and (30)).

This diagonalization can be done numerically, which we
will use to verify the analytical results presented below. Start-
ing from a spectral density JVSM(ω) that is a continuous func-
tion of ω, we can obtain the discrete couplings κλ from the
values of JVSM(ωλ) at discrete frequencies ωλ via a simple
quadrature:

κλ =
√

JVSM(ωλ) �ωλ, (34)

with finite frequency intervals �ωλ = (ωλ+1 − ωλ−1)/2
(and defining �ω1 = ω2 − ω1 and �ωN = ωN

− ωN−1 at the boundaries). After the diagonalization, the in-
verse procedure is undertaken to obtain the values JESM(ξρ) of
the corresponding spectral density for the ESM at the discrete
frequencies ξρ , by explicitly calculating

JESM(ξρ) = |vρ |2/�ξρ. (35)

The finite intervals �ξρ are obtained analogously to the �ωλ,
but now using the eigenvalues ξρ instead of ωλ.

B. Treatment analogous to Fano’s approach

From the form of the matrix M in Eq. (24), we see that
this formulation of the system IM coupled to a bath of har-
monic modes is equivalent to the problem of a resonance cou-
pled to a continuum that was first considered by Fano in 1935.
In particular, rewriting the spectral density as43

JESM(ω) =
∑

ρ

|vρ |2δ(ω − ξρ) (36)

= 1

π

∑
ρ

Im
|vρ |2

ξρ − (ω + iε)
, (37)

one sees that one can proceed completely analogously to the
treatment in Refs. 24 and 43 for a single resonance coupled to
one continuum (where our matrix M and vector κ̄ in Eqs. (24)
and (25) correspond, respectively, to the matrix H and vector
|M〉 in Ref. 43). We thereby obtain the following form for the
effective spectral density JESM(ω):

JESM(ω) = X ω2 JVSM(ω)

π2(JVSM(ω))2 + (ω − � − F (ω))2
. (38)

Here, F(ω) is given by the principal value integral

F (ω) ≡ P
∫ +∞

−∞
dE

JVSM(E)

ω − E
. (39)

Using this result, the effective spectral density JESM(ω) for
the ESM can now be readily calculated for a broad range of
different VSM spectral densities JVSM(ω). It should be noted
that the coupling X to the single mode, which is explicitly
incorporated into the system part within the VSM, appears in
Eq. (38) simply as a global scaling factor (cf. Eqs. (25), (30)
and (32)).

C. Special cases of spectral densities

In the following we will consider two commonly applied
special cases for the spectral density (SD) JVSM(ω) for the
VSM. First, we consider the case where the single vibra-
tional mode in the system part (i.e., the IM) couples to a
constant spectral density, which for zero temperature corre-
sponds to a Markovian bath, i.e., to a bath correlation func-
tion that is a delta function in time. Second, we consider
the case where the IM couples to an Ohmic spectral density
with an exponential cutoff. For these two examples, we have
confirmed that the effective spectral densities JESM(ω), calcu-
lated via the Fano approach, are in perfect agreement with
those calculated by direct numerical diagonalization of the
matrix M.

1. Constant spectral density

We take a constant spectral density

JVSM(ω) = γ /π, (40)

where γ is the damping rate of the single vibrational mode
(the strength of the coupling to the bath). Inserting this con-
stant JVSM(ω) into the formula Eq. (38), we get

JESM(ω) = 1

π

X γ ω2

(ω − �)2 + γ 2
, (41)

since the principal value integral F(ω) in Eq. (39) gives zero.
The resulting spectral density of the ESM in Eq. (41) is a
Lorentzian centered at �, which is multiplied by the func-
tion ω2. (Note that often a different definition for the spec-
tral density is used that excludes the factor ω2,31 that is,
J̃ (ω) = J (ω)/ω2; this would merely change Eq. (41) to a
simple Lorentzian.) Figure 2 shows the behavior of JESM(ω)
for four different values of the frequency � of the single
mode of the VSM, namely, � = 5, 10, 15, 20 (thin solid
(red) curves). The maximum of the curves increases with in-
creasing �. The underlying constant spectral density JVSM(ω)
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FIG. 2. Effective spectral densities JESM(ω) for the ESM, calculated for the
two special cases of a constant spectral density JVSM(ω) and an Ohmic spec-
tral density with exponential cutoff for the VSM. The chosen constant spec-
tral density JVSM(ω) is shown as the thick green solid line given by JVSM(ω)
= γ /π , where we have chosen γ = 1 (see Eq. (40)). For this case of a con-
stant SD, the resulting spectral density JESM(ω) for the ESM is shown for
four different values � = 5, 10, 15, 20 of the frequency of the single mode
of the VSM (thin red solid lines). The maximum of each curve is approxi-
mately located at the corresponding value of �. For the case of the Ohmic
spectral density with exponential cutoff, thick blue solid line, with η = 0.25
and � = 6.5 (see Eq. (42)), the resulting effective spectral densities JESM(ω),
are shown for the same four values of � as the thin red dashed lines. (The
maximum position of the dashed lines increases similarly with increasing �.)
In all cases we have chosen a Huang-Rhys factor of X = 0.01 for the single
mode in the VSM. The effective spectral densities JESM(ω) are calculated
from Eqs. (41) and (45). All energies (ω, �, γ , �) and the spectral density
are given in the same (arbitrary) units.

= γ /π is shown in Fig. 2 as the thick solid (green) line and we
have chosen a coupling strength of γ = 1 in all of these calcu-
lations. For each of the red curves, the maximum is approxi-
mately located at the corresponding frequency �. It is impor-
tant to note that the curves have an asymmetric shape; towards
high energies their tail converges to the constant (X γ /π ) as ω

→ +∞ (we have chosen X = 0.01 so that they converge to
0.01/π ) and for ω → +0 they go to zero (see Eq. (41)). This
means that for high energies, the effective bath for the ESM
gets a constant character, resulting from the underlying con-
stant SD taken in the VSM. These properties of the effective
spectral density will change in the following, when we con-
sider a VSM spectral density of Ohmic form with an expo-
nential cutoff.

2. Ohmic spectral density with exponential cutoff

As an example of a more realistic spectral density, which
is zero for ω ≤ 0 and falls off at higher energies, we consider
an Ohmic spectral density with exponential cutoff

JVSM(ω) = η ω e−ω/� �(ω) (42)

(where �(ω) denotes the unit step function, which is 1 for ω

> 0 and 0 otherwise). This form is frequently used in the lit-
erature, e.g., in studies of electronic energy transport for light
harvesting systems.36 We note that this spectral density was
already considered in Ref. 23, although different assumptions
regarding the coupling to the bath in the VSM were made
in that work and the cutoff � taken to infinity, resulting in a
different expression for the effective spectral density of the
ESM compared to the one obtained here (see Eq. (45)). For

the spectral density in Eq. (42), the principal value integral
F(ω) in Eq. (39) yields

F (ω) = η(ω e−ω/� Ei(ω/�) − �), (43)

where Ei(x) denotes the exponential integral defined as the
principal value integral

Ei(x) ≡ P
∫ +∞

−x

dy e−y/y. (44)

Inserting Eqs. (42) and (43) into the formula in Eq. (38) re-
sults in

JESM(ω) = (45)

X η ω3 e−ω/� �(ω)

π2η2ω2e−2ω/� + (ω − � + η� − η ω e−ω/� Ei(ω/�))2
.

This resulting ESM effective spectral density is also shown in
Fig. 2 (thin red dashed lines) for the four frequencies � = 5,
10, 15, 20 of the single mode (same values of � as for the con-
stant SD considered above). The underlying Ohmic spectral
density with exponential cutoff JVSM(ω) of Eq. (42) is shown
as the thick blue solid curve, where we have chosen η = 0.25
and � = 6.5. The Huang-Rhys factor of the single mode is
again X = 0.01, as for the constant SD considered before. The
resulting curves for JESM(ω) differ from the curves obtained
for the constant SD (thin red solid lines). In particular, their
maxima lie at slightly higher energies and not at the frequen-
cies �. Furthermore, the width of the peaks depends on where
the peaks lie with respect to the corresponding JVSM(ω) (blue
line). The peak with � = 20 is narrower than the correspond-
ing peak for the constant SD (solid line), since at this energy,
the Ohmic spectral density with exponential cutoff is below
the constant spectral density, that is, the coupling to the bath
is weaker. For the peak with � = 15, however, the coupling to
the bath is of approximately the same strength for both cases
(the green and blue curve intersect in this region) and thus
the two resulting peaks of the corresponding effective spectral
densities have approximately the same width. Accordingly,
for the peaks with � = 5 and � = 10, where the blue curve
is above the constant green line, the dashed peaks are broader
than the corresponding peaks for the constant SD. This shows,
as anticipated, that the effective spectral density JESM(ω) de-
pends on the local coupling strength of the underlying spectral
density JVSM(ω) in the region where the frequency � of the
IM lies.

V. RELATION BETWEEN INTRA-MOLECULAR MODES
AND PSEUDOMODES

A. Pseudomodes

Another often used formal approach to describe non-
Markovian dynamics is the so-called method of pseudomodes
(PMs).25–27 These PMs appear, for example, from a pole
decomposition of a given spectral density of the ESM and
can be represented equivalently as vibrational modes incor-
porated into the system part,25–27 similar to the incorpo-
ration of the intra-molecular modes (IMs) in the VSM in
Sec. III A. The real part of the pole corresponds to the fre-
quency of a PM, the imaginary part describes the damping by
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a Markovian bath, and the weight of the pole corresponds to
the Huang-Rhys factor. It is important to note that the only
difference between a PM and an IM as described in Sec. III A
is that instead of the coupling operator LVSM given in Eq. (16)
that results from an IM, the PM is coupled to the bath by the
operator27

LVSM
PM = bg. (46)

This means that in the PM description, the shift �Q between
the BO potentials in different electronic states is neglected
in the coupling to the bath. That is, the vibrational mode in-
cluded in the system part is assumed to always couple to the
bath as if the molecule were in its electronic ground state, re-
gardless whether it is electronically excited or not.

Taking this modified PM coupling to the bath, Eq. (46),
and proceeding analogously to Sec. IV A, the calculation of
an effective JESM(ω) may be carried out as before for an IM.
However, since for the PM the coupling to the bath is now via
the operator LVSM

PM (Eq. (46)) instead of the IM operator LVSM

(Eq. (16)), the PM total Hamiltonian is given by

H PM
tot = H̃ ESM

sys + Hvib −
√

X|e〉〈e|(�bg + h.c.) (47)

instead of the IM total Hamiltonian H VSM
tot in Eq. (19), with

H̃ ESM
sys and Hvib again given by Eqs. (20) and (21). The

only difference between Eq. (47) and the IM Hamiltonian of
Eq. (19) is that now the coupling terms (

∑
λ κ∗

λaλ + h.c.) no
longer appear in the third term. From this it follows that for
the PM, one can proceed equally as for the IM in Sec. IV A,
except that after diagonalizing the matrix M (Eq. (24)) for the
PM one has to take a different coupling vector

v̄PM ≡ Sκ̄PM, (48)

instead of Eq. (30), with

κ̄PM ≡
√

X(�, 0, . . . , 0)T , (49)

instead of Eq. (25). The resulting effective spectral density for
an ESM corresponding to the PM is then given by

J PM
ESM(ω) =

∑
ρ

|vPM
ρ |2 δ(ω − ξρ), (50)

instead of by Eq. (32), where the vPM
ρ are the components of

the vector v̄PM of Eq. (48).
In the case when the PM couples to a Markovian bath,

that is, to the constant spectral density JVSM(ω) in Eq. (40),
it is well-known27 that the effective spectral density for the
ESM is given by a single Lorentzian

J PM
ESM(ω) = 1

π

X γ �2

(ω − �)2 + γ 2
, (51)

centered at the frequency � and with width γ and height pro-
portional to �2X. Here � and X are again the frequency and
the coupling of the vibrational mode, in this case the PM, and
γ is the strength of the coupling to the Markovian bath. The
difference compared to JESM(ω) for the IM, given in Eq. (41),
is that now the Lorentzian is multiplied by the constant �2 in-
stead by the function ω2. We have confirmed that the J PM

ESM(ω)
given in Eq. (51) is in perfect agreement with the result ob-
tained by numerically diagonalizing the matrix M and calcu-
lating J PM

ESM(ω) via Eqs. (48)–(50).

If multiple PMs are incorporated into the system part and
each of these is coupled to its own independent Markovian
bath, the resulting effective spectral density for the ESM is
given by the sum of the corresponding Lorentzians for each
PM.

B. Demonstration of differences between PM
and IM dynamics

In the following, we will demonstrate that the neglect of
the shift �Q in the coupling to the bath, that is, the difference
between PM and IM, can result in strong differences in wave
packet dynamics and in optical spectra. For this, we consider
the case of a Markovian bath and zero temperature. This pro-
vides a simple, often used model in which the effect of the
bath is merely a damping of the vibrational motion in the sys-
tem and allows a straightforward interpretation of vibrational
wave packet dynamics and absorption spectra.

We implement the Markovian bath by taking the bath cor-
relation function

Cmarkov(t) = 2γ δ(t), (52)

which, for the case of zero temperature considered here, cor-
responds to a constant bath spectral density and where γ

quantifies the strength of the coupling to the bath.
The dynamics of the system can then be calculated by

solving the standard Lindblad master equation44

∂tρ(t) = −i[Hsys, ρ(t)] + γ ([Lρ,L†] + [L, ρL†]) (53)

for the reduced density operator ρ(t) of the system.

1. Motion of vibrational wave packet

To show the extent of differences in system dynamics that
can arise depending on whether the shift �Q is taken into
account in the coupling to the bath, we look at the motion
of a vibrational wave packet in the excited electronic state
potential.

We consider the expectation value

〈Q〉(t) = tr(Q ρ(t)) (54)

= tr
((

b†g + bg

)
ρ(t)

)
/
√

2 (55)

of the vibrational coordinate Q, which is obtained from solu-
tion of the Lindblad equation, Eq. (53).

We start with the initial state ρ0 = |e〉〈e| ⊗ |0g〉〈0g| in
which the molecule is excited electronically and is in the
ground vibrational state |0g〉 of the electronic ground state po-
tential (indicated with the subscript “g”). Thus, we start in the
upper potential with a Gaussian wave packet centered at the
minimum position of the lower potential (see Fig. 1). This
choice is motivated by our subsequent consideration of the
absorption spectrum, where we will use the same initial state
(see Sec. V B 2 below).

Figure 3 shows resulting trajectories of 〈Q〉 versus the en-
ergy expectation value 〈E〉 = tr(H VSM

sys ρ(t)) and versus time
(insets). The excited state BO potential, which is shifted by
�Q with respect to the ground state potential, is indicated
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FIG. 3. Motion of the vibrational wave packet (solid line) in the excited elec-
tronic state potential (dashed line). The plots show the expectation value 〈Q〉
of the vibrational coordinate versus the expectation value 〈E〉 of the energy
(and in the inset plot 〈Q〉 versus time). Left column: the shift �Q is ignored
in the coupling to the bath (PM). Right column: the shift is taken into account
(IM). Results are shown for the initial state ρ0 = |e〉〈e| ⊗ |0g〉〈0g| in which
the molecule is electronically excited and in the ground vibrational state of
the ground electronic state potential. γ measures the strength of the coupling
to the Markovian bath.

in all plots by a dashed line. The left hand panels show the
dynamics from the PM approach in which the shift �Q is ig-
nored in the coupling to the bath. The right hand panels show
the dynamics resulting from the IM approach in which the
shift is taken into account. The strength γ of the coupling to
the Markovian bath is increased going from top to bottom.

For vanishing coupling strength γ , the two models be-
come identical and describe the free system dynamics with-
out influence of the bath (see Eq. (53)). Therefore, we expect
that for a small ratio of γ /� � 1, the difference in the dynam-
ics between the two models will be small, increasing as γ is
increased.

This can indeed be observed in Fig. 3. However, even
for the smallest value γ = 0.1 �, there are clear differences
between the trajectories on the left and the right side. For in-
stance, on the left side, the curve of 〈Q〉 versus 〈E〉 intersects
with itself, whereas on the right side it does not.

The most striking difference between the results shown in
left and right panels is the spatial location to which the wave
packet of the oscillator in the excited electronic state relaxes.
The plots show that for the IM (right hand panels), the wave
packet always relaxes towards the minimum position of the
upper potential, while for the PM (left hand panels) it relaxes
more and more towards the minimum position of the lower
potential (located at zero on the x-axis) as γ is increased. This
is because for the PM, due to the neglect of the shift in the
system-bath coupling the bath always damps the vibrational
motion as if the molecule were in the electronic ground state,
so that the system evolves towards the equilibrium position of
the ground state potential, regardless of whether it is in the
ground or excited electronic state. This damping by the bath
becomes stronger as the system-bath coupling strength γ is
increased.

2. Absorption

Absorption spectra provide a complementary route for
obtaining information about vibrational dynamics. We calcu-
late the absorption spectrum via Fourier transformation of the
dipole correlation function

D(t) = tr((μ̂ ⊗ 1vib)ρ(t)) (56)

(see, e.g., Refs. 45 and 46). Here, μ̂ denotes the transition
dipole operator μ̂ = μ(|g〉〈e| + |e〉〈g|) (we set μ ≡ 1) and
1vib denotes the unit operator in the space of the vibrational
mode of the system.

The dipole correlation function D(t) is calculated by solv-
ing the Lindblad equation, Eq. (53), with the initial condition

ρ0 = μ̂|g〉〈g| ⊗ |0g〉〈0g|. (57)

Since we consider zero temperature here, the vibrational
mode of the system may be taken to be initially in its ground
state |0g〉 of the electronic ground state BO potential, as
before.

In Fig. 4, we show the absorption spectra for the same
cases that were considered in Fig. 3. As in Fig. 3, the left
hand panels show results from the PM and right hand panels
show results from the IM model.

We note first that the peak corresponding to the 0-0 tran-
sition in the IM spectra is a narrow line, whereas in the PM
spectra it is broadened. Furthermore, for the PM calculations,
the entire spectrum, including the 0-0 peak, becomes broader
as γ is increased, while for the IM the 0-0 line stays narrow
and only the peaks at higher energies become broader.

To explain this, it is convenient to consider the evolution
equation

∂t |ψ(t)〉 = −i|e〉〈e|(H VSM
sys − iγL†L

)|ψ(t)〉 (58)

(corresponding to a Markovian quantum state diffusion de-
scription, see, e.g., Ref. 27). For the present case of zero tem-
perature the initial state of the bath is its ground state; this
allows us to calculate the dipole correlation function as27

D(t) = 〈ψ0|ψ(t)〉 (59)



204110-9 Roden et al. J. Chem. Phys. 137, 204110 (2012)

FIG. 4. Absorption spectra at zero temperature for the same parameters as in
Fig. 3. Left panels: pseudomode (PM) model in which the shift �Q is ignored
in the coupling to the bath. Right panels: intra-molecular mode (IM) model
in which the shift is taken into account. Here, we have taken a Huang-Rhys
factor of X = 0.5 that corresponds to a shift �Q = 1 between the ground and
excited state potentials.

with the initial state |ψ0〉 = |e〉|0g〉 (note that we have set μ

≡ 1 for simplicity). The result is equal to that obtained via the
Lindblad equation, Eq. (53), and Eqs. (56) and (57). Depend-
ing on whether the shift �Q is included or neglected in the
coupling to the bath, the operator L in Eq. (58) is either given
by LVSM or by LVSM

PM (see Eqs. (15) and (46)).
The initial state |e〉|0g〉 is the same as the initial state cho-

sen for the wave packet dynamics shown in Fig. 3. For the
explanation of the spectra, it is convenient to switch from the
wave packet perspective to a representation with respect to
eigenstates |ne〉 of the harmonic BO potential in the excited
electronic state. We expand the initial state |0g〉 of the vibra-
tional mode in this basis as

|0g〉 =
∞∑

ne=0

〈ne|0g〉|ne〉, (60)

where the amplitudes 〈ne|0g〉 correspond to the Franck-
Condon factors |〈ne|0g〉|2 = e−XXne/ne! determined by the
Huang-Rhys factor X.

For the IM model, L = LVSM, inserting this expansion
into Eq. (58) results in the dipole correlation function

D(t) =
∞∑

ne=0

|〈ne|0g〉|2 e(−i �−γ )net . (61)

The absorption spectrum is then obtained as a sum of terms
corresponding to the individual states |ne〉:

A(ω) ∝
∞∑

ne=0

|〈ne|0g〉|2 neγ

(ω − ne�)2 + (neγ )2
. (62)

Equation (62) shows that each ne gives a Lorentzian contri-
bution centered at an energy ne� with an area proportional to
|〈ne|0g〉|2 and with a width of neγ .

The 0-0 peak, for which ne = 0, is a Lorentzian of zero
width, i.e., a delta function at energy zero and with an area
proportional to |〈0e|0g〉|2 = e−X—independent of the strength
γ of the coupling to the bath, as can be seen in Fig. 4.
This is evident from considering the corresponding state
|e〉|0e〉 as initial state in Eq. (58): the right hand side of the
equation is zero, showing that this state is stationary and
therefore yields a constant term in the dipole correlation func-
tion (see Eq. (61) for ne = 0) and accordingly a delta func-
tion in the spectrum. This is the state towards which the wave
packet relaxes on the right side of Fig. 3.

All higher states ne > 0 decay with a rate neγ , thus gen-
erating the broadened peaks at higher energies ne� in the
spectrum.

In contrast, for the PM model, L = LVSM
PM , the state

|e〉|0e〉 is no longer a stationary state of Eq. (58). Conse-
quently, the corresponding 0-0 peak in the spectrum is now
broadened, as can be seen in the spectra on the left side of
Fig. 4. An analytic expression for the spectrum can be derived
also in this situation (see the appendix of Ref. 47).

It is important to note that for finite temperatures the nar-
row 0-0 line in the IM spectra of Fig. 4 also gains a finite
width.

VI. CONCLUSIONS

In this work we have established a relation between sev-
eral widely used harmonic bath models for molecular sys-
tems interacting with an environment. In particular, we con-
sidered in detail the relationship between the “electronic sys-
tem model” (ESM) in which the system part contains only
electronic states and all vibrational modes are represented by
the bath, and the “vibronic system model” (VSM) in which
“important” intra-molecular modes (IMs) are also incorpo-
rated into the system part together with the molecular elec-
tronic states.

We have obtained a relation between the ESM and the
VSM, using a treatment analogous to the one applied by Fano
to the problem of a resonance coupled to a continuum. In this
way, we showed that it is possible to define an effective bath
spectral density for the ESM that is constructively determined
by the given underlying bath spectral density of the VSM.
This allows one to construct and use an ESM that consistently
takes into account key intra-molecular modes and their cou-
plings to the other modes. We demonstrated this relationship
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and the equivalence between the two models explicitly for two
important special cases of bath spectral densities for the VSM,
first, a constant spectral density and second, an Ohmic spec-
tral density with exponential cutoff.

The relation between the ESM and the VSM can be help-
ful to interpret effective spectral densities obtained from mea-
sured spectroscopic data, e.g., from (difference) fluorescence
line narrowing spectra8, 13, 14 of chromophores interacting with
a solvent or protein. Often clear peaks that can be associated
with IMs are visible in the spectra. Using the relations dis-
cussed in the present work, one can infer information about
the interaction of the IMs with the environment and the cor-
responding relaxation dynamics from the line-shape of these
peaks.

In Sec. V, we related the model for the IM to the method
of pseudomodes (PMs), which is often applied to describe
non-Markovian dynamics in terms of PMs that are incorpo-
rated into the system part and coupled to a Markovian bath.
We showed that for a Markovian bath, the only difference
between the PM and the IM model is that for the PM the
shift �Q between the Born-Oppenheimer potentials in dif-
ferent electronic states along the vibrational coordinate Q is
neglected in the coupling to the Markovian bath, whereas for
the IM it is taken into account. We made explicit dynamical
calculations to demonstrate that this difference between PM
and IM leads to qualitative differences in dynamics and opti-
cal spectra. Specifically, we showed that for the IM the peak of
the 0-0 transition in the absorption spectrum is a narrow line,
whereas for the PM it is broadened, and furthermore, that a
vibrational wave packet in the upper BO potential for the IM
is damped towards the minimum of that potential, while for
the PM it is damped towards the minimum of the lower BO
potential. Note that this result was derived for a specific cou-
pling of the coordinate Q to the bath (Eq. (3) with L = b),
which is often used. For other forms of the coupling one can
obtain different results.

The methods presented in this work can be used for dy-
namical description of intra-molecular modes in unified treat-
ments of electronic-vibrational dynamics in extended molec-
ular systems, e.g., in simulations of energy transfer in biolog-
ical and artificial light-harvesting complexes. To treat these
systems, one often uses an approach in which the supra-
molecular complex is treated as an aggregate consisting of
individual “monomers” that contain both the individual chro-
mophores, which interact via electronic resonant excitation
exchange, and the local environments of each of these. In
such a description the spectral density of single monomers is
an important quantity. We note that a straightforward exten-
sion of the single molecule treatment to the case of coupled
molecules such that the delocalized electronic states interact
with one common harmonic bath is in general not possible,
since for the coupled molecules the assumption of shifted har-
monic potential surfaces is no longer valid, and furthermore,
non-adiabatic couplings in the excited state have to be taken
into account.48

The relations established here between the different open
quantum system descriptions now allow a consistent com-
parison of the different approaches and approximations, e.g.,
non-Markovian approaches that are commonly applied in the

framework of the ESM with the more detailed description
of electronic-vibrational couplings that are possible within a
VSM description. In many situations where a description via
(approximative) non-Markovian methods based on the ESM
becomes inaccurate or numerically impractical, switching to
the VSM description can be useful. For instance, if the ef-
fective bath spectral density contains narrow peaks so that
the bath correlation function oscillates for a long time, com-
pared to the relevant time scales, resulting in “strongly non-
Markovian” dynamics, the approximations applied in an ESM
approach may become inaccurate.27 In such a situation it can
be advantageous to switch to the VSM description and to ex-
plicitly incorporate the modes that correspond to the sharp
peaks in the spectral density into the system part, while the
remaining modes are still treated as a Markovian (or weakly
non-Markovian) bath.27 Finally, the VSM can be useful, if one
is interested in the explicit dynamics of certain specific vibra-
tional modes, which then can be incorporated into the system
part, allowing direct observation of the vibrational or coupled
electronic-vibrational dynamics.
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