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The energetic splitting of the two exciton states of a molecular dimer depends strongly on the rel-
ative orientation of the monomers with respect to each other. The curvature of the corresponding
adiabatic potential energy surfaces can lead to torsional motion of the monomers. It has been sug-
gested recently that this torsional motion could provide a possible relaxation mechanism for the
upper state which proceeds via a crossing of the two singly excited state potentials. Another, com-
peting, relaxation mechanism is provided by coupling to the environment, leading to direct exciton
relaxation. Here we examine theoretically the combined dynamics of torsional motion and excitonic
relaxation for a π -aggregated dimer. Using two-dimensional (2D) spectroscopy, it is shown how tor-
sional motion through a crossing of the adiabatic excitonic potential surfaces could be distinguished
from direct relaxation. For the calculations a mixed quantum/classical approach is used, where the
torsional motion is treated by an Ehrenfest type of equation, while the excitonic dynamics includ-
ing dephasing and direct relaxation is described by a quantum master equation. © 2012 American
Institute of Physics. [doi:10.1063/1.3674993]

I. INTRODUCTION

The study of the optical properties of molecular dimers
plays an important role in understanding excitonic couplings
in molecular aggregates, since one can perform detailed in-
vestigations including nuclear degrees of freedom (see, e.g.,
Refs. 1–11). In such molecular dimers, transition dipole-
dipole interaction leads to a splitting of the two singly ex-
cited states.12 The absorption strength of each state depends
strongly on the relative orientation of the monomers. For ex-
ample, if both transition dipoles are parallel to each other and
perpendicular to the distance vector between the monomers,
only absorption into the energetically higher dimer state is
allowed.13 If the monomers are not perfectly parallel, both
states carry oscillator strength.

Usually it is assumed that the arrangement of the
monomers in the dimer is time-independent. However, recent
quantum chemical investigations of dimers formed by pery-
lene bisimid molecules14, 15 suggest that upon excitation from
the electronic ground state to the excited states of the dimer
a strong torsional motion takes place, due to the curvature
of the respective excited state potential surfaces (as sketched
in Fig. 1(c)). It has been suggested that this torsional motion
plays an important role in the relaxation dynamics. Quantum
chemical calculations14 indicate that the electronic potential
curves of the two exciton states cross each other and it has
been proposed that the torsional motion takes place through
the crossing. Recently also the involvement of charge transfer
states has been discussed.15

On the other hand, interaction with the environment also
provides an efficient relaxation channel. One expects that in
solution the large coupling strength of the excited states to the

a)Electronic mail: eisfeld@mpipks-dresden.mpg.de.

environment results in fast relaxation on a timescale shorter
than the time needed to reach the crossing region (picosecond
range). Thus the torsional dynamics would play a minor role.
However, for the case with weak coupling to the environment
the relaxation associated with torsional motion might become
the dominant channel. Such a situation can for example real-
ized experimentally in Helium nanodroplets.10

In the present work, we aim at a distinction between re-
laxation processes induced by the environment and torsional
motion through the crossing by means of two-dimensional
(2D) electronic spectroscopy. Two-dimensional electronic
spectroscopy has proven to be an informative tool that gives
insight into the dynamics of molecular systems.16, 17

Two-dimensional electronic spectroscopy yields infor-
mation on the exciton dynamics in molecular aggregates18

and was used to obtain information about coherence and
transfer properties of various systems. In particular the ap-
plication to biological light harvesting complexes has be-
come a matter of increasing interest in the recent years.19–24

Two-dimensional electronic spectroscopy has for example
also been used to study the delocalization length25 and
interactions26 in molecular J-aggregates. Since the dimer is
the smallest aggregate (and allows a fairly detailed theoret-
ical treatment) it has been extensively investigated.27–34 In
these studies, the position and the orientation of the molecules
within the aggregates is assumed to be time-independent.

The paper is organized as follows: In Sec. I we introduce
the employed dimer model system together with a specifica-
tion of the chosen potentials with respect to the torsional de-
gree of freedom. An estimate of the timescale related to the
torsional dynamics is given. In Secs. III and IV the general
expressions used to calculate the 2D signals on the basis of
response functions are introduced. In Sec. VI we show model
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FIG. 1. (a) Sketch of the arrangement of the two monomer units, which can
rotate around the stack axis of the dimer. The corresponding angle is denoted
by θ and defined as shown in the figure. (b) Sketch of the coplanar transition
dipole moments within the (x, y)-plane of the body frame. (c) Sketch of the
potential energy surfaces with an illustration of torsional motion and direct
relaxation.

calculations that elucidate the signatures of the relaxation and
torsional motion. A formulation of the response functions in
rotating wave approximation is given in Appendix A. In Ap-
pendix B we briefly discuss orientational averaging, which is
important for randomly oriented dimers. In Appendix C the
double coherence (DC) contribution is given.

II. MODEL OF THE MOLECULAR DIMER

For each monomer we take the electronic ground state
|φg

n〉 and the singly excited state |φe
n〉 into account (n = 1, 2).

As an electronic basis for the dimer we define the states

|g〉 = ∣∣φg
1

〉∣∣φg
2

〉
, (1)

|e1〉 = ∣∣φe
1

〉∣∣φg
2

〉
, (2)

|e2〉 = ∣∣φg
1

〉∣∣φe
2

〉
, (3)

|f〉 = ∣∣φe
1

〉∣∣φe
2

〉
. (4)

We will refer to the state |g〉 as the dimer electronic ground
state. The states |e1〉 and |e2〉 span the so-called one exciton
space. Finally the state |f〉 will be referred to as the doubly
excited state.

As mentioned in the introduction we are interested in the
dynamics of the relative orientation of the two monomers with
respect to each other, which is induced by a change of the
electronic states. In the following we will only take one de-
gree of freedom for the relative motion of the monomers into
account, which corresponds to a torsion as sketched in Fig. 1.
This coordinate is denoted by θ .

The dimer Hamiltonian can be expanded in the electronic
basis given by Eqs. (1)–(4). It reads

HD = |g〉 (H g
1 + H

g
2

) 〈g|
+ |e1〉

(
H e

1 + H
g
2

) 〈e1| + |e1〉 J 〈e2|

+ |e2〉 J 〈e1| + |e2〉
(
H

g
1 + H e

2

) 〈e2|
+ |f〉 (H e

1 + H e
2

) 〈f| , (5)

where the Hamiltonians H
g
i and H e

i are related to the ground-
and singly excited state of monomer unit n and J is the tran-
sition dipole-dipole interaction between the monomers. This
interaction has a strong dependence on the relative orientation
of the monomers with respect to each other.

To proceed further, we will use the fact that the electronic
transition energy of the monomers is of the order of 2–3 eV,
which is roughly ten times larger than the interaction between
the monomers. In zeroth order the dominant interaction be-
tween the monomers will be a resonant dipole-dipole inter-
action J between the states |e1〉 and |e2〉 (in the disorder-free
case degenerate), which leads to a splitting in the one-exciton
space. We assume that in the ground state |g〉 and in the dou-
bly excited state |f〉 the interaction only leads to an energy
shift. Note that this shift and the interaction J depend on the
angle θ .

If we ignore static disorder and take the transition ener-
gies of the two monomers to be equal, the states

|b1,2〉 ≡ 1√
2

(|e2〉 ± |e1〉) (6)

are obtained from the diagonalization of the one exciton
space, where in the localized state representation coupling
matrix elements appear.

In Born-Oppenheimer approximation, the dimer Hamil-
tonian can then be written as

HD(θ ) =
∑

j∈{g,b1,b2,f}
Hj (θ ). (7)

Here the Hamiltonians for nuclear motion in the electronic
state j are given by

Hj (θ ) ≡ T + Vj (θ ), (8)

where T denotes the kinetic energy operator of the torsional
motion and Vj(θ ) is the Born-Oppenheimer surface of state j
= g, b1, b2, f. In Sec. II A the Born-Oppenheimer potentials
are specified.

For the calculation of optical spectra the transition
dipoles of the dimer are of primary importance. In Fig. 1 the
transition dipoles of the dimer are sketched. We chose the
body-frame coordinate system (x̂, ŷ, ẑ) such that the z-axis is
perpendicular to the plane spanned by the monomer transition
dipoles �μge

1 and �μge
2 . The y-axis is the bisecting line between

�μge
1 and �μge

2 . Here �μge
n ≡ 〈φ

g
n | �μn|φe

n〉 with �μn denoting the
dipole operator of monomer n.

In this body-fixed coordinate system one has

�μge
1 (θ ) = μ1(ŷ cos(θ/2) − x̂ sin(θ/2)), (9)

�μge
2 (θ ) = μ2(ŷ cos(θ/2) + x̂ sin(θ/2)), (10)

where μn denotes the absolute value of �μge
n . In the following,

we take the absolute values of the monomer transition dipoles
to be equal, i.e., μ1 = μ2 ≡ μ. The transition dipole opera-
tor of the dimer is given by μ̂ = μ̂1 + μ̂2. In the body-fixed
frame of the dimer one thus has

�μI ≡ �μgb1 = √
2μ cos(θ/2)ŷ, (11)
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�μII ≡ �μgb2 = √
2μ sin(θ/2)x̂. (12)

Note the strong dependence on the transition dipole moments
on the torsional angle θ . Similarly, for the transition from the
singly excited manifold to the doubly excited state one has

�μIII ≡ �μb1f = �μgb1 = �μI , (13)

�μIV ≡ �μb2f = −�μgb2 = −�μII . (14)

There are no direct transitions between |g〉 and |f〉. This as-
sumption is justified by the rotating wave approximation, as
the chosen pulse frequency distributions yield no appreciable
contribution, where the resonance condition with the respec-
tive energy difference is fulfilled. An illustration of the transi-
tion dipole moments within the (x, y)-plane is shown in Fig. 1.

A. The potential energy surfaces

In the following, we will investigate how different sys-
tem dynamics, either relaxation induced by system-bath in-
teraction or torsional motion through the curve crossing
(CC), influence the 2D-specta. For this aim we do not use
the complicated potential obtained from quantum chemical
calculations,14 but rather simple forms of these potentials,
which however share the characteristic properties of the quan-
tum chemical results. The potentials are chosen such that the
features of torsional motion become clearly visible.

The used model potentials are shown in Fig. 2. The
ground state potential has a minimum at roughly 30◦ and the
two exciton states cross each other at around 60◦.

In the singly excited state the potentials are chosen
in a way that the gradient of the energetically higher 1-exciton
state potential at the absorption point leads to torsional
motion up to the intersection with the energetically lower
1-exciton state potential within the range of picoseconds. In
the present work, we will focus on the signatures of this dy-
namics in the 2D spectra. To understand the calculated 2D
spectra more easily, we will take the potential surface of the
doubly excited state, which also plays a role in nonlinear spec-
troscopy, to be independent of θ . The treatment of more com-
plicated potential surfaces is straightforward.

-60 -30 0 30 60
0

1

2

3

4

θ [degree]

E
[e

V
]

Vb1

Vb2

Vg

FIG. 2. Illustration of the potentials used for the calculations. The dou-
bly excited surface (not shown) is taken to be independent of the torsional
angle θ .

B. Estimate of time scales

Before considering the calculation of 2D spectra in
detail, we will estimate the timescale for torsional dynamics.
The time T* needed for the motion in the upper state from
the absorption point to the curve crossing at an angle of θ*

= 60◦ can be obtained from the solution of Newton’s equation
of motion I d2

dt2 θ = − dVb1
dθ

, where I denotes the moment of in-
ertia. For the calculations, the value I = 2.7 × 10−43 kg m2 is
used.49 As a plausibility test, we also determined the moment
of inertia of a perylene bisimid molecule from the molecular
geometry and found I ∼ 1.063 × 10−43 kg m2. From these
values we estimate the time T* to be of the order of a few ps.

III. CALCULATION OF 2D-SPECTRA

Two-dimensional optical spectra originate from the inter-
action of three laser pulses with a material system. We define
the components of all electric fields with respect to a labora-
tory system X̂, Ŷ , Ẑ. The dimers will be assumed to be ran-
domly oriented within this laboratory system. By interaction
with the electric fields the third order nonlinear polarization
�P (3)(t) is generated. The jth electric field �Ej (�r, t ′) at time t′

and position �r is

�Ej (�r, t ′) = ε̂j Ej (t ′ − tj ) cos(ωj (t ′ − tj ) − �kj �r)

= 1

2
ε̂j Ej (t ′ − tj ) e−i(ωj (t ′−tj )−�kj �r) + c.c. (15)

Here �kj denotes the wave-vector, ωj is the frequency, and ε̂j

denotes the polarization of the jth field. The envelope func-
tions Ej(t − tj) of the pulses are localized around the times tj.
The total electric field is then given by

�E(�r, t ′) =
3∑

j=1

�Ej (�r, t ′). (16)

The outgoing field is detected in a phase-matching direction,
which we choose as �ks = − �k1 + �k2 + �k3.

The third-order polarization P
(3)
αβγ δ(�r, t ′) for finite pulse

widths is obtained from a convolution of the third order
response function S

(3)
αβγ δ with the pulses:

P
(3)
αβγ δ(�r, t ′) =

∫ ∞

0
dτ3

∫ ∞

0
dτ2

∫ ∞

0
dτ1S

(3)
αβγ δ(τ3, τ2, τ1)

×Eβ(�r, t ′ − τ3)Eγ (�r, t ′ − τ3 − τ2)

×Eδ(�r, t ′ − τ3 − τ2 − τ1). (17)

In this work we use the Greek indices α, β, γ , δ, which also
appear in Eq. (17), to denote the projection onto the axes
{α̂, β̂, γ̂ , δ̂} ∈ {X̂, Ŷ , Ẑ} of the laboratory frame. For exam-
ple, μα = α̂ · μ̂(t) is the projection of the dipole-operator
of the dimer onto the lab-axis α̂. The time intervals of free
propagation are defined as τk = t ′k+1 − t ′k , where t ′k denotes
the time at which the kth interaction of the system with
the electric field is evaluated. The indices are related to the
temporal sequence of the interactions, so that τ k is always
positive. For the characterization of pulse sequences in third
order nonlinear spectroscopy it is convenient to introduce
characteristic time intervals. While the coherence time τ
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τ T t

t1 t2 t3 t4 t′

t′1

t′2
t′3

τ1

τ2

τ3

FIG. 3. Sketch of the pulse sequence, where the time variables and intervals
used in the present work are indicated.

= t2 − t1 switches sign upon exchange of the time ordering of
pulse 1 and pulse 2, the population time T = t3 − max(t1, t2) is
related to the delay between pulse 3 and the second incoming
pulse (either pulse 1 or pulse 2), see Fig. 3 and Ref. 35. The
detection time t starts at the arrival of the third pulse and
measures the interval up to the detection of the signal.

The 2D-spectrum is obtained by the two-dimensional
Fourier-transform28

σαβγ δ (ωτ , T , ωt ) = i

∫ ∞

−∞
dτ

∫ ∞

−∞
dte−iωτ τ

× eiωt tP
(3)
αβγ δ (τ, T , t) , (18)

where the third order polarization P (3)
α (t ′, �r) from Eq. (17) is

expressed as a function of τ , T, and t. The position vector
is not included anymore, since for the given detection direc-
tion only the components with a phase factor exp(i(−�k1 + �k2

+ �k3)�r) are retained. Thus, a separation of this factor is pos-
sible. Depending on whether the polarization evolves with
a positive or negative complex phase during τ , rephasing
and non-rephasing signal contributions are distinguished (see
Appendix A).

IV. EVALUATION OF THE RESPONSE FUNCTIONS

The third order response function, which is used to cal-
culate P (3)

α (t ′, �r), is a fourth rank tensor, given by

S
(3)
αβγ δ(τ3, τ2, τ1) = 〈S̃(3)

αβγ δ

〉
(19)

Here 〈· · ·〉 denotes an average over all orientations of the
dimers (discussed in detail in Appendix B) and

S̃
(3)
αβγ δ(τ3, τ2, τ1) =

(
i

¯

)3

〈〈μα|G(τ3)VβG(τ2)VγG(τ1)Vδ|ρ0〉〉.

(20)

Here 〈〈 A|B〉〉 ≡Trel{A†B} and V denotes the transition opera-
tors in Liouville space with matrix elements given by

〈〈kl
∣∣Vβ(θ )

∣∣mn〉〉 = δln( �μkm(θ ))β − δkm( �μln(θ ))β, (21)

where the indices k, l, m, n label the eigenstates of the dimer.
We denote by ( �μln)β the component of the transition dipole
operator for a transition from electronic eigenstate l to n along
the β̂-axis of the laboratory frame. The Green-operators in
Lioville space are given by

G(t ′) = �(t ′) exp(−iL̂t ′/¯), (22)

where the Liouville operator L̂ is defined by L̂ρ = [HD, ρ]
− �ρ. The operator � has been introduced to account for dis-
sipative processes. The initial state will in the following be
taken to be of the form

ρ0 = |g〉〈 g | ⊗ ρ ini
nuc. (23)

Thereby ρ ini
nuc is related to the initial position of the torsional

coordinate at the minimum of the ground state.
It is convenient to write

S̃
(3)
αβγ δ(τ3, τ2, τ1) =

(
i

¯

) 4∑
n=1

[
(R̃n)αβγ δ (τ3, τ2, τ1)

− (R̃n)∗αβγ δ (τ3, τ2, τ1)
]
, (24)

where the response functions (R̃n)αβγ δ are given by

(R̃1)αβγ δ(τ1, τ2, τ3) =
∑

Trnuc
{
( �μnm)αGmn,il(τ3)( �μlj )β

×Gij,eh(τ2)( �μhf )γGef,ca(τ1)( �μca)δ

×P (a)ρ ini
nuc

}
, (25)

(R̃2)αβγ δ(τ1, τ2, τ3)=
∑

Trnuc
{
( �μnm)αGmn,il(τ3)( �μlj )β

×Gij,gf (τ2)( �μge)γGef,ad (τ1)( �μda)δ

×P (a)ρ ini
nuc

}
, (26)

(R̃3)αβγ δ(τ1, τ2, τ3)=
∑

Trnuc
{
( �μnm)αGmn,kj (τ3)( �μki)β

×Gij,eh(τ2)( �μhf )γGef,ad (τ1)( �μda)δ

×P (a)ρ ini
nuc

}
, (27)

(R̃4)αβγ δ(τ1, τ2, τ3) =
∑

Trnuc
{
( �μnm)αGmn,kj (τ3)( �μki)β

×Gij,gf (τ2)( �μge)γGef,ca(τ1)( �μca)δ

×P (a)ρ ini
nuc

}
. (28)

Here the sum runs over all Latin indices which label the
four electronic states of the dimer.

Note that we have expanded only with respect to elec-
tronic degrees of freedom. All dipole matrix elements and
all Green-operators are still operators with respect to the tor-
sional angle.

The green operators G appearing in Eqs. (25)–(28) can
be obtained from a solution of the Liouville-von-Neumann
equation, which we take to be of the form (¯ = 1)

∂

∂t ′
ρ = −i [HD, ρ] − �ρ. (29)

Here we have not explicitly written the dependence of the op-
erators on the nuclear coordinate θ . Note that all operators
are also operators in the four-dimensional electronic Hilbert
space. In the basis of electronic eigenstates of the dimer
Hamiltonian, Eq. (29) becomes

ρ̇kl = −i(Hk(θ )ρkl − ρklHl(θ ))

−
∑
m,n

�kl,mn(θ )ρmn (30)

with ρkl = 〈k|ρ|l 〉 and {k, l} ∈ {g, b1, b2, f}. Hk and Hl are
given in Eq. (8).
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V. MIXED QUANTUM/CLASSICAL DESCRIPTION

To evaluate the response functions, we will use a mixed
quantum/classical description where the electronic degrees of
freedom evolve quantum mechanically under the influence
of nuclear motion, which is treated classically. We describe
the dynamics of the nuclear coordinates by classical trajec-
tories with a time evolution governed by an Ehrenfest type
of equation.36 Thereby the nuclear motion takes place on an
averaged potential U(θ ). The specific form of this potential
depends on whether populations of electronic states or coher-
ences between them are considered and will be given later in
Eqs. (39) and (40).

For a given potential U(θ ) the equation of motion for the
classical angle θ (t) reads

I
∂2

∂t ′
θ (t ′) = − ∂

∂θ
U (θ ), (31)

where I is the moment of inertia, which was introduced in
Sec. II B.

The equation of motion in the electronic Hilbert space is

ρ̇kl(t
′) = −iωkl(θ (t ′))ρkl(t

′) −
∑
m,n

�kl,mn(θ (t ′))ρmn(t ′),

(32)
where

ωkl(θ (t ′)) = Vk(θ (t ′)) − Vl(θ (t ′)) (33)

denotes the transition frequency between the adiabatic poten-
tials Vk and Vl at the torsional angle θ (t′).

In the mixed quantum/classical description the operators
�μ and G appearing in the response functions (25)–(28) be-
come functions of the time-dependent angle θ (t′). Then, for
example, �μnm(θ (τ3 + τ2 + τ1)) from Eq. (25) is the transition
dipole moment between the electronic states m and n, eval-
uated at the torsional angle which has been reached at time
τ 3 + τ 2 + τ 1. Similar, in the tensor elements of the Green-
functions, e.g., Gmn,il(τ3), the torsional angle θ (τ 3 + τ 2 + τ 1)
enters parametrically besides the explicit dependence on τ 3.

A. Approximations within the mixed
quantum/classical description

In the following, we give further details how the mixed
quantum/classical propagation is evaluated. To obtain sim-
ple expressions we will introduce some additional approxi-
mations.

Within the secular approximation37 we will assume that
the “relaxation operator” � does not couple coherences with
populations and different coherences. Furthermore relaxation
is only taken into account within the one-exciton space. Thus,
the only non-vanishing elements in Eq. (30) are

�kl,kl, k �= l, (34)

�kk,ll , k �= l, k, l ∈ {b1, b2}, (35)

�kk,kk, k ∈ {g, b1, b2, f}. (36)

Then the relaxation of populations and the dephasing of co-
herences can be treated separately according to the formulas

ρ̇mm(t ′) =
∑

k

−�mmkk(θ (t ′))ρkk(t ′) (37)

and (for k �= l)

ρ̇kl(t
′) = −iωkl(θ (t ′))ρkl(t

′) − �kl,kl(θ (t ′))ρkl(t
′). (38)

If different eigenstates of the system are populated, we
take the potential U(θ ) as the average

U (θ ) = Ū (θ ) =
∑

k

Vk(θ )ρkk (39)

of the adiabatic potential surfaces Vk(θ ), weighted with the
populations ρkk.

If the considered Liouville-space pathway contains a co-
herence |k〉〈 l |, we propagate with the potential

U (θ ) = 1

2
(Vk(θ ) + Vl(θ )). (40)

A more sophisticated treatment using, e.g., surface hopping
methods would allow to consider the combined nuclear-
exciton dynamics in more detail. However the simple model
introduced above allows already to identify many general fea-
tures.

In the following we will discuss how we treat the dynam-
ics during the three time periods τ , T, and t.

1. Evolution during coherence and detection time,
τ and t

During the relatively short delay times τ and t (which are
on the femtosecond timescale) compared to the time needed
for complete relaxation (in the picosecond range), we take the
nuclear position as fixed at θ (0) and θ (τ + T), respectively.
This assumption leads to the Green-functions

G (τ ) = � (τ ) exp (−iL (θ (0)) τ ) (41)

during the time interval τ and

G (t) = � (t) exp(−iL(θ (τ + T ))t) (42)

during the time interval t. Note that these are operators only
with respect to electronic degrees of freedom, since we fixed
the nuclear coordinate.

2. Evolution during the population time T

For the propagation during the population time, the
Green-function is obtained from

G (T ) = � (T ) exp

(
−i

∫ T +τ

τ

L(θ (t ′))dt ′
)

. (43)

As mentioned above, within the secular approximation re-
laxation of populations and dephasing of coherences can be
treated separately.

a. Dephasing. In this case we consider Gabcd with a = c,
b = d and a �= b. Then the Liouville-von-Neumann equation
(Eq. (29)) takes the form given in Eq. (38). A simple solu-
tion is possible due to the special form of the potential for the
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FIG. 4. Sketch of the potential surfaces with illustration of the torsional dy-
namics during the population time and the corresponding time-dependence of
θ for different cases. (a) and (d) Torsional motion on the averaged potential
while the system resides in a coherence between the singly excited states b1
and b2. (b) and (e) Relaxation of the b1 population takes place due to system-
bath interaction. (c) and (f) Torsional motion takes place through the curve
crossing. The solid (black) curves are for initial population in Vb1 , the dashed
(red) curve is for initial population in Vb2 .

classical motion Ukl(θ ) = 1
2 (Vk(θ ) + Vl(θ )), which does not

depend on the density matrix ρ. The classical motion is per-
formed independent of the electronic propagation. The trajec-
tory θ (t′) obtained in this way can then be inserted into the
response functions (see Eqs. (63)–(66)).

The matrix elements (for k �= l) of the Green-operator are
then given by

Gklkl(T ) = �(T ) exp{−iϕ(T )} (44)

with ϕ(T ) = ∫ T +τ

τ
(ωkl(θ (t ′)) − i�kl,kl(θ (t ′)))dt ′.

For an illustration of the torsional motion during the pop-
ulation time if a coherence between the singly excited states
appears in the respective Liouville-space pathway, see left
hand side of Fig. 4.

b. Relaxation. Now we are interested in Gaabb. As
said before we assume that the populations do not couple
to coherences. Thus, the Liouville-von-Neumann equation
(Eq. (29)) takes the form given in Eq. (37). Since we assume
that relaxation only takes place in the one-exciton space,
i.e., between the states |b1〉 and |b2〉, we define the transi-
tion rates kb1 = −�b2b2b1b1 = +�b1b1b1b1 , kb2 = −�b1b1b2b2

= +�b2b2b2b2 , and �mmkk = 0 for other values of m and k. Then

∂

∂t ′
ρb1b1 (t ′) = −kb1ρb1b1 (t ′) + kb2ρb2b2 (t ′),

(45)
∂

∂t ′
ρb2b2 (t ′) = kb1ρb1b1 (t ′) − kb2ρb2b2 (t ′).

In the more general case we consider first, relaxation takes
place due to interactions with the surrounding bath and is
not restricted to certain positions of the torsional angle. Here,
from detailed balance, we take

kb2 (θ )

kb1 (θ )
= exp[−¯ωb1b2 (θ )/kBT ], (46)

where T is the temperature and kB the Boltzmann constant.
For simplicity, we assume zero temperature, so that kb2 = 0.
Furthermore we take kb1 as constant. If kb1 and kb2 are
independent of θ , a simple analytic solution is possible and
one obtains

Gjjnn (T ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0
kb1 f (T )+kb2

kb1 +kb2
− kb2 (f (T )−1)

kb1 +kb2
0

0 − kb1 (f (T )−1)
kb1 +kb2

kb2 f (T )+kb1
kb1 +kb2

0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

jn

(47)

with f (T ) = exp(−(kb1 + kb2 )T ).
In contrast to the case of Eq. (40), now the electronic

evolution is coupled to the nuclear motion via the potential
Ū = Vb1ρb1b1 + Vb2ρb2b2 , which leads to the classical equa-
tion of motion

I θ̈ (t ′) = −(∂θVb1 (θ (t ′))ρb1b1 (t ′) + ∂θVb2 (θ (t ′))ρb2b2 (t ′)
)
.

(48)

A sketch of torsional motion when the dimer is in a co-
herence between the one-exciton states is given in the middle
panel of Fig. 4. Note that this figure is just aimed to illustrate
schematically that during torsional motion population trans-
fer takes place. A more precise illustration of the population
evolution combined with torsional motion is given in Fig. 7.

c. Torsional motion through the curve crossing. We will
treat the influence of the CC in such a way, that torsional mo-
tion completely passes through the intersection. To see the
dynamics associated with torsional motion more clearly, we
ignore relaxation processes upon system-bath interactions.

Then, if b1 is populated initially, the equation of motion
reads

I θ̈ (t ′) = − ∂

∂θ
Vb1 (θ (t ′)). (49)

and Gjjb1b1 (T ) = δjb1 with j = b1, b2.
In the case of an initial population of b2, the propagation

is performed solely on the lower surface according to

I θ̈(t ′) = −∂θVb2 (θ (t ′)) (50)

and Gjjb2b2 (T ) = δjb2 for j = b1, b2.

B. The final response functions

In the following, we use the rotating wave approximation
to reduce the number of summations in the response func-
tions (Eqs. (25)–(28)) by keeping only transitions with ener-
gies resonant with the laser frequency. Thereby we make use
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of the fact that the central frequency of the pulses is that of the
monomeric electronic transition energy, which is much larger
than the splitting between the singly excited dimer states. Fur-
thermore, the energetic pulse width is assumed to cover both
singly excited state potentials in the whole range of θ , while
it is much smaller than the other energy differences between
electronic states. The response functions after RWA are given
in Appendix A together with an assignment to a temporal
sequence of the three pulses (which are assumed to be non-
overlapping). According to Eq. (18) the final 2D-spectrum is
obtained from a two-dimensional Fourier-transformation with
respect to τ and t.

For convenience we define the “line-shape” function

G(±)
ij,ij (ω; t ′) = i[±ω − ωij (θ (t ′)) + i�ij ]−1, (51)

where the second argument t′ denotes the time at which the
angle θ is evaluated.

In the following, we will not be interested in double co-
herence contributions, which are located at energies corre-
sponding to the sum of the eigenenergies of the one-exciton
states at the position of the ground-state minimum. Therefore,
in this section we will concentrate on the response functions
R1, R2, R∗

1 , R∗
2 , R3, and R4. For completeness formulas for R∗

3
and R∗

4 can be found in Appendix B.
We start with the response functions R3 and R4. In these

response functions the system evolves in the ground state g
during the population time T. After orientational averaging,
one has

R3 (ωτ , T , ωt ) =
∑
{i,j}

∈{b2 ,b1}

Oij μgjG(+)
jg,jg (ωt ; T ) μjg

×Ggggg (T ) μgi

×G(−)
gi,gi(ωτ ; 0)μig, (52)

R4 (ωτ , T , ωt ) =
∑
{i,j}

∈{b2 ,b1}

Oij μgjG(+)
jg,jg (ωt ; T ) μjg

×Ggggg (T ) μgi

×G(+)
ig,ig (ωτ ; 0) μig. (53)

In the formulas above the bold subscripts g denote the elec-
tronic ground state and

Oij = 1

5
δij + 1

15
(1 − δij ) (54)

appears due to the orientational averaging as described in Ap-
pendix B. Thus, diagonal peaks (i = j) are weighted three
times as much as cross-peaks (i �= j).

The response functions R3 and R4 from Eqs. (52) and (53)
are termed “ground state bleaching” (GSB) contributions; the
system resides in a ground state population after the second
pulse. This property is a distinguishing feature compared to
“excited state emission” (ESE) and “excited state absorption”
(ESA) contributions, where the system resides in the singly
excited state manifold during the population time. The ESE
contribution consists of the response functions R1 and R2, the
ESA contribution comprises the terms R∗

1 and R∗
2 . A more

detailed discussion of the respective contributions is given,

e.g., in Ref. 38. For later use we will divide each of the latter
response functions into two parts which we denote by “relax-
ation part” and “dephasing part” depending on whether the
evolution of population or coherence contributions during the
time T in terms of the respective Liouville-space pathway is
considered:

R̃1 (ωτ , T , ωt ) = R̃relax
+;g (ωτ , T , ωt ) + R̃

deph
+;g (ωτ , T , ωt ) , (55)

R̃2 (ωτ , T , ωt ) = R̃relax
−;g (ωτ , T , ωt ) + R̃

deph
−;g (ωτ , T , ωt ) , (56)

R̃∗
1 (ωτ , T , ωt ) = R̃relax

−;f (ωτ , T , ωt ) + R̃
deph
−;f (ωτ , T , ωt ) , (57)

R̃∗
2 (ωτ , T , ωt ) = R̃relax

+;f (ωτ , T , ωt ) + R̃
deph
+;f (ωτ , T , ωt ) , (58)

where

R̃relax
+;g (ωτ , T , ωt ) =

∑
{i,j}

∈{b2 ,b1}

Oij ( �μgi)αG(+)
ig,ig (ωt ; T ) ( �μgi)β

×Gii,jj (T ) ( �μjg)γG(+)
jg,jg (ωτ ; 0) ( �μjg)δ,

(59)

R̃relax
−;g (ωτ , T , ωt ) =

∑
{i,j}

∈{b2,b1}

Oij ( �μgi)αG(+)
ig,ig (ωt ; T ) ( �μgi)β

×Gii,jj (T ) ( �μjg)γG(−)
gj,gj (ωτ ; 0) ( �μgj )δ,

(60)

R̃relax
+;f (ωτ , T , ωt ) =

∑
{i,j}

∈{b2 ,b1}

Oij ( �μfi)αG(+)
fi,fi (ωt ; T ) ( �μfi)β

×Gii,jj (T ) ( �μjg)γG(+)
jg,jg (ωτ ; 0) ( �μjg)δ,

(61)

R̃relax
−;f (ωτ , T , ωt ) =

∑
{i,j}

∈{b2 ,b1}

Oij ( �μfi)αG(+)
fi,fi (ωt ; T ) ( �μfi)β

×Gii,jj (T ) ( �μjg)γG(−)
gj,gj (ωτ ; 0) ( �μgj )δ,

(62)

and

R̃
deph
+;g (ωτ , T , ωt ) =

∑
{i �=j}

∈{b2 ,b1}

(1/15) ( �μgi)αG(+)
ig,ig (ωt ; T ) ( �μgj )β

×Gij,ij (T ) ( �μgj )γG(+)
ig,ig (ωτ ; 0) ( �μig)δ,

(63)

R̃
deph
−;g (ωτ , T , ωt ) =

∑
{i �=j}

∈{b2 ,b1}

(1/15) ( �μgi)αG(+)
ig,ig (ωt ; T ) ( �μgj )β

×Gij,ij (T ) ( �μig)γG(−)
gj,gj (ωτ ; 0) ( �μgj )δ,

(64)

R̃
deph
+;f (ωτ , T , ωt ) =

∑
{i �=j}

∈{b2,b1}

−(1/15) ( �μfj )αG(+)
fj,fj (ωt ; T ) ( �μfi)β

×Gij,ij (T ) ( �μgj )γG(+)
ig,ig (ωτ ; 0) ( �μig)δ,

(65)
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R̃
deph
−;f (ωτ , T , ωt ) =

∑
{i �=j}

∈{b2,b1}

−(1/15) ( �μfj )αG(+)
fj,fj (ωt ; T ) ( �μfi)β

×Gij,ij (T ) ( �μig)γG(−)
gj,gj (ωτ ; 0) ( �μgj )δ.

(66)

In the latter equations, the factors Oij (defined in
Eq. (54)) and ± 1

15 stem from orientational averaging. Each
Green operator and each transition dipole is evaluated at a
certain angle. The rightmost transition dipole operators and
the Green operator between them are evaluated at the angle
θ (0) = θ0. All other terms are evaluated at θ (T). Note that
the value θ (T) depends on the specific path. We have divided
the latter response function in relaxation and dephasing terms
to facilitate the interpretation of the 2D spectra presented
in Sec. VI.

The relaxation parts of the response functions are char-
acterized by the indices iijj of the Green-propagator related to
the population time interval. Thus, the first and the last pair
of interactions includes the same transition dipole moments
(pattern mmnn with {m, n} ∈ { �μI , �μII } according to the def-
initions from Eqs. (11) and (12), where m and n can either be
equal or not). On the other hand, the dephasing parts charac-
terized by the indices ijij of the Green-tensor during T allows
either the interaction pattern mnnm (R̃deph

+;g and R̃
deph
−;f ) or mnmn

(R̃deph
−;g and R̃

deph
+;f ) with m �= n. Note that in the final 2D spec-

trum, peak positions are determined by the poles of G(ωτ ; T )
and G(ωt ; 0), which are located at the energy differences of
the first and the final transition.

VI. MODEL CALCULATIONS

A. Used parameter values

We present the results of our model calculation with spe-
cific attention to the question how underlying dissipative pro-
cesses can be identified on the basis of features in the 2D-
spectra. For this aim we study the evolution of 2D-spectra as a
function of the population time T. To identify clear signatures
of relaxation and torsional motion we focus on two limiting
cases:

(1) Relaxation between the two singly excited states is much
faster than the time needed to reach the CC.

(2) Relaxation between the two singly excited states is much
slower than the time needed to reach the CC. Direct re-
laxation due to interactions with the bath is neglected
in this case. We assume torsional motion to completely
pass through the CC.

For our chosen potential surfaces the time T* to reach the
crossing at θ = 30◦ is roughly 3.5 ps.

For the calculations presented below the dephasing con-
stants and the relaxation rates have been chosen as follows:
For dephasing between singly excited states (see Eq. (38)) we
take � ≡ �kl, kl = 1 ps−1 = 3.534/T*. The other dephasing
constants are set to � ≡ �kl, kl = 40 ps−1 = 141.36/T*.

For direct relaxation (see Eq. (45)) we take kb2

= 0 ps−1. The rate kb1 = 1 ps−1 = 3.534/T ∗ corresponds to

the dephasing rate between the singly excited states b1 and b2
in agreement with Ref. 30.

For both situation (1) and (2) we use the same dephasing
rates. In case (1) we take nuclear motion into account, but the
relaxation is so fast that this effect can hardly be seen.

B. Time-dependence of torsional motion

Before considering the 2D spectra, we first take a look
at the time-dependence of torsional motion during the popu-
lation time T. Again, we consider the cases from Sec. V A
2 separately. Based on these dynamics, features in the 2D-
spectra can be understood.

a. Coherence between singly excited states: Solving
Eq. (38) with the averaged potential Eq. (40) for the param-
eters specified in Sec. VI A we find the dynamics displayed
in Fig. 4(d). The monomers slowly rotate into a parallel ori-
entation. For the chosen values of the dephasing constants the
coherences have decayed completely after 3 ps.

b. Population transfer takes place in form of direct relax-
ation due to interactions with the bath: The time-dependent
torsional angle is given in Fig. 4(e). After 2 ps population
transfer has almost completely taken place.

c. Torsional motion through the curve crossing takes
place: The torsional dynamics subsequent to absorption from
g to b1 and b2 is calculated separately (see Fig. 4(f)).

It is worth mentioning once again that we only employ
a simplified phenomenological description of the processes at
the crossing. In particular, we do not take such trajectories
into account, which arise from a change of the potential sur-
face near the crossing point. A detailed discussion of the com-
plex interplay between relaxation and dephasing processes at
a curve crossing is given, e.g., in Ref. 39.

C. 2D spectra

In the following we show only the imaginary part
of the 2D-spectra (Eq. (18)), as it provides sufficient in-
formation about the underlying dissipative processes and
torsional motion. 2D spectra related to our model system
are presented in Figs. 5 and 6 for different population times
T.50 Besides the full spectra (last row) we also show the
individual contributions of GSB, ESE, and ESA, since these
individual contributions allow a simple understanding of the
full spectrum. The DC contributions will be discussed in
Appendix C.

The GSB, ESE, and ESA contributions, which add up to
the full 2D-spectrum, are assigned to the response functions
in terms of

SGSB = R3 + R4, (67)

SESE = R1 + R2, (68)

SESA = −R∗
1 − R∗

2 , (69)

i.e., each contribution contains a rephasing and a non-
rephasing response function.
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FIG. 5. Contributions to the 2D-spectrum in the case of direct relaxation: GSB (first row), relaxation part of ESE (second row), dephasing part of ESE (second
row), relaxation part of ESA (fourth row), dephasing part of ESA (fifth row), complete 2D-spectrum without GSB (sixth row), and complete 2D-spectrum
(seventh row). The contour lines indicate peak intensity levels within the interval between −Imax and Imax with an incremental step size of 0.1Imax and additional
levels at −0.05Imax, −0.01Imax, 0.01Imax, and 0.05Imax, where Imax denotes the maximal absolute value of the 2D-spectra in the respective row of the figure.

The double coherence contribution is given by

SDC = −R∗
3 − R∗

4 . (70)

In order to make also low-intensity structures visible, we
apply a scaling of the data points of the 2D-spectrum σ 2D(ωτ ,
ωt) by the function arcsinh( f · σ 2D(ωτ , ωt)) with f = 10.

In each plot the horizontal and vertical lines indicate the
relevant energy differences of the problem considered. As ωτ

corresponds to the absorption frequency related to the first
transition, vertical lines at the energy difference between the
ground state and the states b1 and b2 at the initial angle 30◦

are shown. The same holds for the ωt-coordinate, where the

respective energy values are indicated by solid black lines.
In Sec. V B it was mentioned that the ωt-position of spectral
features corresponds to the energy difference related to the
final transition. Because of possible position change of the
torsional angle during the population time, this energy differ-
ence can be modified compared to the initial position. Further-
more, the doubly excited state is involved in ESA processes,
so that additional transition energies appear due to the differ-
ent slopes of ground-state and doubly excited state potential.
The horizontal gray dashed line at ∼2.4 eV indicates the en-
ergy difference between the ground-state potential and the CC
(at 60◦). Furthermore, the two horizontal dotted black lines
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FIG. 6. Same as Fig. 5 but now for the case of torsional motion through the curve crossing.

indicate the transition energies of the states b1 and b2 at the
initial angle 30◦ to the doubly excited state. By the gray short-
dashed line between 2.8 eV and 3.0 eV the energy difference
between the CC and the doubly excited state is marked.

Before discussing the full 2D spectrum we first consider
the components separately.

1. Ground state bleaching

The first line of both figures shows the GSB contri-
bution. The first thing to note is that for both situations
(1) and (2) the GSB spectra are identical and independent
of the population time T. This can be easily understood
from Eqs. (52) and (53): Since we have assumed that the

torsional motion can be neglected during coherence time
τ and during detection time t, the system will stay during
the population time T at the initial angle, and no torsional
dynamic takes place. Then in both cases the Green function
Ggggg = 1 appears (since we have taken the corresponding
energy as the zero of energy). Thus, the GSB signal exhibits
peaks located at the four positions (ωb1/2g, ωb1/2g), which
are just the crossing points of the solid black lines. The
different peaks have a large intensity difference, because the
relative intensities are determined by the ratio of the absolute
values of the involved transition dipole moments �μgb1 and
�μgb2 , which at the initial angle have a ratio of roughly 3.7.
Therefore only a remanescence of the lower diagonal peak is
visible.
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While the GSB contribution yields no information about
the dynamics in the singly excited state manifold, ESE and
ESA reflect the relaxation and dephasing processes in the 1-
exciton basis and the related torsional motion during the pop-
ulation time.

2. ESE and ESA

For the purpose of easier interpretation, ESE (second and
third row) and ESA (fourth and fifth row) contributions to the
2D-spectrum are further separated with respect to coherences
and populations evolving during T. For a better assessment,
we also provide the time in units of T*, the time needed to
reach the CC.

a. Excited state emission. We first consider ESE. For
both direct relaxation and torsional motion through the cross-
ing, the signal associated with being in a coherence during the
population time T is identical (see third line of Figs. 5 and 6).
However, for the relaxation part (second line) there are clear
differences visible between the direct relaxation and the tor-
sional motion through the curve-crossing. For small times T
≈ 100 fs = 0.028 T* both signals are still more or less identi-
cal, since neither direct relaxation nor torsional motion have
taken place to an appreciable extent. The spectra consist of
two peaks on the diagonal (at the energies of the b1 and b2
states for the initial angle θ = 30◦), see also Figs. 4(b) and
4(c).

For population times T ≥ 1500 fs the situation is quite
different: For T = 1500 fs = 0.424 T* (third column) torsional
motion is still negligible (θ ≈ 30◦) and direct relaxation has
nearly completely taken place, resulting in a strong reduc-
tion of the peak at (ωτ , ωt ) ≈ (Eb1 (30◦), Eb1 (30◦)) and the
appearance of a cross-peak at (ωτ , ωt ) ≈ (Eb1 (30◦), Eb2 (30◦))
in Fig. 5. The amplitude of this cross-peak is also quite low,
since in the respective pathway the product (μgb1 )2(μgb2 )2

appears, which is small because at θ ≈ 30◦ the transition
dipole moment μgb2 has a small absolute value. Furthermore
the weighting factor from the orientational average is for this
pathway only 1/15. At even larger population times T, the
magnitude of the signal is further decreased (see fourth and
fifth column of Fig. 5).

For the corresponding ESE signal in the case that direct
relaxation is negligible (Fig. 6), a totally different behavior
for times T ≥ 1500 fs is found. In the following we will fo-
cus on the situation where after the second pulse the exciton
state b1 is populated, since this gives the main contribution.
The reason for the dominance of the related peak structure
is that the ratio of the absolute values of the involved tran-
sition dipole moments �μgb1 and �μgb2 is significantly larger
than 1 and enters with the power of four in the weighting
of the b1- and b2-population parts of the ESE contribution.
At T = 1500 fs = 0.424 T* we find only small changes com-
pared to T = 100 fs = 0.028 T*. Now the angle has increased
to a value of θ ≈ 35◦ leading to a slight decrease of the en-
ergy of the b2 state and an increase of the ground potential,
which is recognizable in the 2D-spectrum in form of a lower-
ing of the peak position in the ωt direction. At T = 2500 fs

= 0.707 T*, this effect is more pronounced, as an increase
up to θ ≈ 45◦ has taken place. For T = 3450 fs = 0.976 T*

the crossing point is nearly reached. The shift to energies
below the energetic level of the crossing (at ωt = 2.4 eV,
marked by a gray long-dashed line) stems from increased po-
tential energy of the electronic ground state at the position of
the crossing (see second row of Figs. 6 and 7, either right-
most position). For T = 3600 fs = 1.019 T* the crossing point
has been passed. For the trajectories without change of the
electronic state in the crossing region, which we exclusively
take into account, the peak intensities remain unchanged dur-
ing torsional motion. On the other hand, in the less impor-
tant case that population transfer occurs near the crossing
point, an immediate decrease of the intensity of the emi-
nent peak appears. This effect is due to the different absolute
values of the transition dipole moments between the ground
state and the excitonic eigenstates in the crossing region and
the modified orientational average of the related transition
pathways.

Let us briefly come back to the “coherence” contribution.
For constant θ0 = 30◦ one finds a symmetric structure of two
diagonal- and cross peaks, respectively. All peaks have the
same intensity, as they stem from excitation processes based
on the same set of transition dipole moments (only the tem-
poral order is different). The diagonal peaks are related to the
response function R1 and are characterized by an excitation
sequence of �μig(0) �μjg(τ ) �μjg(τ + T ) �μig(τ + T + t) with i, j
∈ b1, b2 and i �= j. The cross peaks are associated with an
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FIG. 7. Excitation schemes at T = 0 fs (a, d), T = 1500 fs (b, e), and
T = 3600 fs (c, f) (from left to right) in the cases of torsional motion through
the crossing (left column) and direct relaxation (right column). The sizes of
the violet discs indicate the relative populations in the respective electronic
states. The green arrows can be perceived as the dependence of the potential
energy on the torsional angle, which evolves in time.
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excitation pattern �μig(0) �μjg(τ ) �μig(τ + T ) �μjg(τ + T + t), i,
j ∈ b1, b2, i �= j from R2 (the dephasing parts of R1 and R2

are given in Eqs. (63) and (64)). Note that in the related equa-
tions τ and t are set to zero in the arguments of the transition
dipole moments because of the frozen torsional motion dur-
ing those intervals, while both variables are introduced in the
previous expressions again in order to allow an assignment
of the interactions to the times at which they appear. All four
peaks undergo an inversion of phase after 7.275 fs from mod-
ulation by a frequency corresponding to potential difference
at the initial torsional angle. The signal as a whole decreases
with increasing population time due to the influence of the
dephasing constant, which leads to a loss of coherence. Fur-
thermore, the position of the four-peak structure as a whole
is shifted as a result of motion on the averaged singly ex-
cited state potential. Thereby the relative distances between
the peaks are modified because of the θ -dependent splitting
between the singly excited eigenstates.

b. Excited state absorption. The ESA contribution
(row four and five) yields similar information as the ESE
contribution. Now, however, the energy differences between
the singly excited states and the doubly excited state enter.
The relaxation parts of the spectra have opposite (negative)
sign compared to the analog ESE contributions because of
the negative sign of the complex conjugate counterparts to
the individual response function in the expression for the
third-order response (Eq. (24)). For the dephasing part of the
ESA contribution, the situation is more complicated. There
the negative sign of the respective response functions is com-
pensated by the negative sign of the involved transition dipole
moment �μfb2 , which only appears once and does therefore
not cancel by interacting twice, as in the case of relaxation.
Though, due to the negative sign of the orientational averag-
ing factor for ESA contribution, the ESA dephasing parts are
nevertheless negative. In the case of ESA, the diagonal peaks
and the cross peaks of the dephasing parts stem from the R∗

2 -
and R∗

1 -contribution, respectively (see Eqs. (65) and (66)).

c. The total spectrum. Since experimentally it is difficult
to obtain the individual contributions, in the last row the total
spectrum, i.e., the sum of all individual contributions, is plot-
ted. Although now the GSB contribution dominates the signal
for large population times T, there is still a clear distinction
between the two relaxation processes possible. While for di-
rect relaxation quite early (T < 1500 fs) no negative contribu-
tion is present anymore, in the case where direct relaxation is
negligible a negative contribution can be seen. The most strik-
ing difference and a clear signature of torsional motion is the
continuous movement of the ESE and ESA peaks along the ωt

direction, while in the case of direct relaxation a splitting into
two separate peaks appears. To see this effect more clearly it
is advantageous to subtract the constant background from the
GSB signal. The difference between the complete spectrum
and the GSB contribution is shown in the second row from
the bottom in Figs. 5 and 6.

VII. SUMMARY AND CONCLUSIONS

We have presented a simple model to investigate different
relaxation pathways of a π -aggregated dimer, with particular
emphasis on torsional motion. It has been shown that 2D spec-
troscopy can give insights about the relaxation dynamics. In
the following we summarize our findings:

a. Distinction between different ways of relaxation: Con-
cerning the relaxation process, we considered two different
cases: On the one hand, in the case of strong interaction of
the system with the environment, relaxation from the upper
potential occurs before appreciable torsional motion takes
place. On the other hand, in the case of weak interaction
with the environment, the system can pass the curve crossing
due to torsional motion. In the ESE and ESA contributions
the two different situations can be clearly distinguished.
While the first kind of process leads to a continuous ex-
change of intensity between the initial diagonal peak at
(ωτ , ωt ) ≈ (Eb1 (θ (T =0)), Eb1 (θ (T =0))) and a cross peak at
(ωτ , ωt ) ≈ (Eb1 (θ (T =0)), Eb2 (θ (T =0))) indicating popula-
tion transfer, the second process merely results in an energetic
shift of the initial diagonal peak along the ωt-axis without
involvement of a cross peak. In both cases also a lower
diagonal peak appears at (ωτ , ωt ) = (Eb2 (θ (T )), Eb2 (θ (T ))),
which is low in intensity and unaffected by the relaxation
dynamics under the assumption of zero temperature. If the
energetically higher 1-exciton potential was steeper, torsional
motion would be favored compared to direct relaxation, and
the inverse effect is obtained for more flat potentials. On
the basis of the characteristic signatures in the 2D-spectra,
one can distinguish both relaxation processes, in principle.
Note, however, that at the curve crossing one expects strong
non-adiabatic couplings, which could lead to direct relaxation
just before the curve crossing is reached.

b. Conditions for the appearance of the respective
cases: In solution, where strong coupling of the singly
excited states to the environment leads to fast relaxation on
a timescale much shorter than the time needed to reach the
curve crossing in the picosecond range, the first process will
appear. The situation with weak coupling to the environment
can experimentally be realized in Helium nanodroplets.10, 40

The torsional dynamics could then be studied by spectro-
scopic techniques as described in Ref. 41, which provide
similar 2D signals as the ones considered in the present
work. See also the recent discussion in Ref. 34. Our theo-
retical investigations demonstrate a principle way to draw
conclusions about relaxation mechanisms from experimental
results.

c. Influence of temperature: We calculated our spectra
without regarding static disorder and for zero temperature,
where the described effects are clearly visible. At finite tem-
perature, the thermal distribution of the initial angle leads to
less distinct peak structures, which makes the evaluation more
difficult. Therefore it is advisable to perform the respective
measurements at low temperature in order to obtain more pro-
nounced effects.

d. Extraction of relevant components: Although the dif-
ferent contributions to the 2D-spectrum (GSB, ESE, and
ESA) on their own allow an uncomplicated interpretation,
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it remains challenging to extract them from the sum spec-
trum. One possible solution is to subtract the GSB contribu-
tion, which is independent of the population time, as a con-
stant background. Then the ESE and ESA contributions can
be distinguished on the basis of their opposite sign, if the re-
spective peak structures are sufficiently separated from each
other. In order to select certain excitation pathways, which
are characterized by the pattern of interactions with the tran-
sition dipole moments, it is possible to use a combined eval-
uation of 2D-spectra resulting from differently chosen pulse
polarizations. In this way the contributions of populations and
coherences can be separated, which allows to investigate de-
phasing and relaxation effects independent of each other. This
approach has been employed, e.g., in Refs. 42–45. Further-
more, it has been suggested that some Liouville pathways can
be extracted, using entangled pairs of photons.46

Even if the decomposition of measured 2D-spectra into
immediately analyzable contributions remains a challenging
task, we have shown that, in principle, 2D-spectroscopy is ap-
propriate as a tool to gain insight into the excited state dynam-
ics and the related dissipative phenomena.
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APPENDIX A: THE RESPONSE FUNCTION IN RWA

After the RWA the response functions take the form

(R̃1)αβγ δ (τ1, τ2, τ3) =
∑

{c,h,i,j}
∈{b2,b1}

( �μgi)αGig (τ3) ( �μgj )βGij,ch (τ2)

× ( �μhg)γGcg (τ1) ( �μcg)δ, (A1)

(R̃2)αβγ δ (τ1, τ2, τ3) =
∑

{d,g,i,j}
∈{b2 ,b1}

( �μgi)αGig (τ3) ( �μgj )βGij,gd (τ2)

× ( �μgg)γGgd (τ1) ( �μdg)δ, (A2)

(R̃3)αβγ δ (τ1, τ2, τ3) =
∑
{d,k}

∈{b2 ,b1}

( �μgk)αGkg (τ3) ( �μkg)βGgg (τ2)

× ( �μgd )γGgd (τ1) ( �μdg)δ, (A3)

(R̃4)αβγ δ (τ1, τ2, τ3) =
∑
{c,k}

∈{b2 ,b1}

( �μgk)αGkg (τ3) ( �μkg)βGgg (τ2)

× ( �μgc)γGcg (τ1) ( �μcg)δ, (A4)

(R̃∗
1 )αβγ δ (τ1, τ2, τ3) =

∑
{d,g,i,j}
∈{b2 ,b1}

( �μj f)αGfj (τ3) ( �μfi)βGij,gd (τ2)

× ( �μgg)γGgd (τ1) ( �μdg)δ, (A5)

(R̃∗
2 )αβγ δ (τ1, τ2, τ3) =

∑
{c,h,i,j}

∈{b2 ,b1}

( �μj f)αGfj (τ3) ( �μfi)βGij,ch (τ2)

× ( �μhg)γGcg (τ1) ( �μcg)δ, (A6)

(R̃∗
3 )αβγ δ (τ1, τ2, τ3) =

∑
{c,l}

∈{b2 ,b1}

( �μlf)αGfl (τ3) ( �μlg)βGfg (τ2)

× ( �μfc)γGcg (τ1) ( �μcg)δ, (A7)

(R̃∗
4 )αβγ δ (τ1, τ2, τ3) =

∑
{d,l}

∈{b2,b1}

( �μgl)αGlg (τ3) ( �μlf)βGfg (τ2)

× ( �μfd )γGdg (τ1) ( �μdg)δ. (A8)

The involved electronic states are written as bold charac-
ters in order to allow a distinction from indices of the same
letter. The so-called non-rephasing contributions are charac-
terized by a pulse sequence, where pulse 2 is followed by
pulse 1 and finally pulse 3 (short notation: 2 − 1 − 3). For
the rephasing contributions a sequence of 1 − 2 − 3 is char-
acteristic. Double coherence contributions are related to the
sequence 3 − 2 − 1.

An assignment of the response functions to different
kinds of Liouville space pathways is possible. Under the
chosen detection direction the contributions of excited state
emission ((R̃1)αβγ δ and (R̃2)αβγ δ) and ground state bleaching
((R̃3)αβγ δ and (R̃4)αβγ δ) only include transitions between the
electronic ground state (g) and the singly excited state man-
ifold (b1 and b2), for excited state absorption ((R̃∗

1 )αβγ δ and
(R̃∗

2 )αβγ δ) and double coherence processes ((R̃∗
3 )αβγ δ and re-

spective contribution to (R̃4)αβγ δ) also the doubly excited state
(f) is involved. A notation using additional subscript symbols
for the appearance of excitations, where besides the singly ex-
cited states exclusively to the ground state or also to the dou-
bly excited state is involved, can be introduced according to
Ref. 47. Using this notation, the rephasing and non-rephasing
contributions are identified as

S
(3)
R,rw = (R̃2g) + (R̃3g) − (R̃∗

1f ), (A9)

S
(3)
NR,rw = (R̃1g) + (R̃4g) − (R̃∗

2f ), (A10)

S
(3)
DC,rw = −(R̃∗

3f ) + (R̃4f ). (A11)

APPENDIX B: ORIENTATIONAL AVERAGE

In liquid solution the dimers will not exhibit a preferred
orientation, but are oriented isotropically. To perform the ori-
entational averaging of the third-order polarization, it is cus-
tomary to write the orientationally averaged response func-
tions as

〈(R̃n)αβγ δ〉 =
∑
νκχλ

Rνκχλ
n

〈
Ỹ

νκχλ

αβγ δ

〉
, (B1)

with orientation independent response functions R
νκχλ
n and

functions〈
Ỹ

νκχλ

αβγ δ

〉 = 〈(μ̂ν)α(μ̂κ )β(μ̂χ )γ (μ̂λ)δ〉, (B2)

Downloaded 07 Feb 2012 to 128.103.149.52. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



024109-14 J. Seibt and A. Eisfeld J. Chem. Phys. 136, 024109 (2012)

which contain all the information on the orientation.45, 48

Here, as in Eq. (B1), 〈· · ·〉 denotes the orientational average.
Note that in Eq. (B2) only the orientations of the transition
dipoles enter (denoted by a hat). Their magnitudes are con-
tained in R

νκχλ
n . The indices {ν, κ , χ , λ} denote the sequences

of transitions involved in the calculation of a certain response
function R̃n. For example, for the calculation of R̃1, μ̂ν can
be either μ̂gb1 or μ̂gb2 . As before, for instance the index α de-
notes the projection of the molecular frame vectors μ̂ν onto
the laboratory frame axis α, which is related to the polariza-
tion of the laser pulses according to Eq. (15).

If one parametrizes the orientation of the dimer with
respect to the laboratory frame, as sketched in Fig. 8, then one
has

〈
Ỹ

νκχλ

αβγ δ

〉 = ∫ dφdζdψ sin(ζ )(μ̂ν)α(μ̂κ )β(μ̂χ )γ (μ̂λ)δ P0

with the initial isotropic probability P0 = 1
8π2 . As ex-

plained in Sec. II (see Eqs. (11) and (12), together with
Eqs. (13) and (14)) the transition dipoles entering in the
calculation of the response functions are aligned parallel to
either the x- or the y-axis of the molecular frame. Since in the
present work we take all electric fields to be linearly polarized
in the same direction (which we take as the Z-axis of the
laboratory system), we have only to evaluate expressions of
the form 〈a b c d〉 where {a, b, c, d} is either x̂Z = sin ζ or
ŷZ = cos ζ .

The final result for the orientationally averaged response
function is given in Appendix B.

For our choice of the polarization direction, not all pos-
sible contributions to a response function survive the orienta-
tional averaging. For example for R̃1 from Eq. (A1), one of
the excitation sequences which gives no contributions after
the averaging is ( �μgb1 )α( �μb2g)β( �μgb2 )γ ( �μb2g)δ . However, this
kind of terms is equal to zero anyway due to the secular ap-
proximation introduced in Sec. V A.

Note that we assume the orientation of the molecular
frame of the dimer to remain fixed. Only the relative orien-
tation of the monomers depends on time.

After taking the orientational average under the assump-
tion that all pulses are polarized in Ẑ-direction, the equa-
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FIG. 8. Sketch of the laboratory frame (axes X, Y, Z) and molecular reference
system (axes x, y, z). For the transformation the Euler angles φ, ζ , and ψ are
used. The transition dipole moments of the dimer μI, μII, μIII, and μIV are
lying in the x-y-plane, see Fig. 1.

tions (A1)–(A8) can be reformulated again.

O1
GSB,ij =

{
1
5 , i = j

1
15 , i �= j

, (B3)

O1
DC,ij =

{
1
5 , i = j

− 1
15 , i �= j

, (B4)

O2
ESE,ij,ch =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
5 , i = j = c = h

1
15 ,

⎧⎪⎨
⎪⎩

i = c and j = h and i �= j

i = j and c = h and i �= c

i = h and j = c and i �= j

0, otherwise
(B5)

O2
ESA,ij,ch =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
5 , i = j = c = h

1
15 , i = j and c = h and i �= c

− 1
15 ,

{
i = c and j = h and i �= j

i = h and j = c and i �= j

0, otherwise

,

(B6)

R1 (ωτ , T , ωt ) =
∑

{c,h,i,j}
∈{b2 ,b1}

O2
ESE,ij,ch μgiG(+)

ig (ωt ) μgj

×Gij,ch (T ) μhgG(+)
cg (ωτ ) μcg, (B7)

R2 (ωτ , T , ωt ) =
∑

{d,g,i,j}
∈{b2 ,b1}

O2
ESE,ij,gd μgiG(+)

ig (ωt ) μgj

×Gij,gd (T ) μggG(−)
gd (ωτ ) μdg, (B8)

R3 (ωτ , T , ωt ) =
∑
{d,k}

∈{b2 ,b1}

O1
GSB,dkμgkG(+)

kg (ωt ) μkg

×Ggg (T ) μgdG(−)
gd (ωτ ) μdg, (B9)

R4 (ωτ , T , ωt ) =
∑
{c,k}

∈{b2 ,b1}

O1
GSB,ck μgkG(+)

kg (ωt ) μkg

×Ggg (T ) μgcG(+)
cg (ωτ ) μcg, (B10)

R∗
1 (ωτ , T , ωt ) =

∑
{d,g,i,j}
∈{b2,b1}

O2
ESA,ij,gd μj fG(+)

fj (ωt ) μfi

×Gij,gd (T ) μggG(−)
gd (ωτ ) μdg, (B11)

R∗
2 (ωτ , T , ωt ) =

∑
{c,h,i,j}

∈{b2 ,b1}

O2
ESA,ij,ch μj fG(+)

fj (ωt ) μfi

×Gij,ch (T ) μhgG(+)
cg (ωτ ) μcg, (B12)
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R∗
3 (ωτ , T , ωt ) =

∑
{c,l}

∈{b2,b1}

O1
DC,lc μlfG(+)

fl (ωt ) μlgG(+)
fg (ωτ ) μfc

×Gcg (T ) μcgδ(T ), (B13)

R∗
4 (ωτ , T , ωt ) =

∑
{d,l}

∈{b2,b1}

O1
DC,ld μglG(+)

lg (ωt ) μlfG(+)
fg (ωτ ) μfd

×Gdg (T ) μdgδ(T ). (B14)

APPENDIX C: DOUBLE COHERENCE CONTRIBUTION

In the response functions R∗
3 and R∗

4 the factor δ(T)
appears based on the assumption that the pulses are instan-
taneous and that the time intervals can be approximately
considered as being contracted to zero. Accordingly, double
coherence contributions can only appear at T = 0 fs. Thus, the
distinction between different relaxation mechanisms plays no
role for double coherence contributions.

1R. E. Merrifield, Radiat. Res. 20, 154 (1963).
2R. Fulton and M. Gouterman, J. Chem. Phys. 41, 2280 (1964).
3T. Förster, in Modern Quantum Chemistry III, edited by O. Sinanoglu
(Academic, New York, 1965).

4J. Seibt, P. Marquetand, V. Engel, Z. Chen, V. Dehm, and F. Würthner,
Chem. Phys. 328, 354 (2006).

5A. Eisfeld, Chem. Phys. Lett. 445, 321 (2007).
6M. H. Hennessy, Z. G. Soos, R. A. Pascal, and A. Girlando, Chem. Phys.
245, 199 (1999).

7A. Eisfeld, L. Braun, W. Strunz, J. Briggs, J. Beck, and V. Engel, J. Chem.
Phys. 122, 134103 (2005).

8J. Guthmuller, F. Zutterman, and B. Champagne, J. Chem. Theory Comput.
4, 2094 (2008).

9J. Guthmuller, F. Zutterman, and B. Champagne, J. Chem. Phys. 131,
154302 (2009).
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