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We investigate on the procedure of extracting a “spectral density” from mixed QM/MM calculations
and employing it in open quantum systems models. In particular, we study the connection between
the energy gap correlation function extracted from ground state QM/MM and the bath spectral den-
sity used as input in open quantum system approaches. We introduce a simple model which can give
intuition on when the ground state QM/MM propagation will give the correct energy gap. We also
discuss the role of higher order correlators of the energy-gap fluctuations which can provide useful
information on the bath. Further, various semiclassical corrections to the spectral density, are applied
and investigated. Finally, we apply our considerations to the photosynthetic Fenna-Matthews-Olson
complex. For this system, our results suggest the use of the Harmonic prefactor for the spectral den-
sity rather than the Standard one, which was employed in the simulations of the system carried out
to date. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769079]

I. INTRODUCTION

In the study of the dynamics of large systems such as
photosynthetic complexes, reduced models, which provide in-
formation on a small set of system degrees of freedom at the
price of tracing out the rest of the bath degrees of freedom,
have become very popular. Amongst these methods, which
are open quantum systems approaches, one can find vari-
ous quantum master equations1–21 and stochastic Schrödinger
equations,22, 23 which often rely on describing the system-bath
interaction through a two-time bath correlation function or a
bath spectral density. Therefore, it is of considerable interest
to obtain these quantities. While a full quantum mechanical
treatment of such large systems is out of reach, one viable ap-
proach is to use a mixed quantum-classical approach for the
nuclear-electronic degrees of freedom. However, there is no
unique way of obtaining a bath correlation function or a bath
spectral density when resorting to quasiclassical theories. In
this work, we provide criteria that can be helpful to choose an
appropriate strategy for this task.

As a case study, we consider the Fenna-Matthews-Olson
(FMO) light-harvesting pigment protein complex found in
green sulfur bacteria. For this system, recent efforts have
been undertaken to extract the bath spectral densities from
mixed quantum-classical calculations.24–26 The FMO com-
plex has a trimeric structure, where each monomer con-
tains, within the protein scaffolding, eight bacteriochlorophyll
(BChl) molecules, which can transport electronic excitation
energy. Up to recently, it was thought that only seven of the
BChl’s actually were present and most of the previous studies
have focused on that case. Shim’s results25 which we employ
in this work, are indeed based on the case of one monomer
with seven BChl molecules. Experimentally, it has been pos-
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sible to extract a spectral density for the BChl with the low-
est transition energy.27, 28 However, one can expect that each
BChl has a different spectral density, due to its specific protein
environment.

One theoretical approach to obtain the spectral densi-
ties from a microscopic description is a mixed quantum
mechanics/classical mechanics (QM/MM) model.29 In this
approach, the nuclear degrees of freedom are treated classi-
cally and the relevant system quantities are calculated quan-
tum mechanically. Then, from the microscopic description,
spectral densities and correlation functions can be extracted
and employed in the reduced models.

A specific QM/MM approach, which has become pop-
ular in recent years in the context of photosynthetic
complexes24, 25, 30, 31 and has been employed for FMO,24, 25

consists in propagating the nuclei in the ground electronic
state of the FMO complex, thus the change in the classical
forces due to excitation of the BChls is ignored. The bath cor-
relation function and spectral densities are then extracted from
the energy gap trajectories, i.e., the electronic transition ener-
gies which depend on the time dependent nuclear configura-
tion. This transition energy is calculated using quantum chem-
istry, for example, TDFT25 or semi-empirical approaches.24

One thus obtains a time dependent energy gap two-time cor-
relation function. Usually, a spectral density (SD) is derived
from the time correlation function, to characterize the fre-
quency dependent coupling of the electronic transitions to the
environmental degrees of freedom. In the previous investiga-
tions on the FMO complex,24–26 the spectral densities differ
by orders of magnitude respect to each other and also with
respect to the SD extracted from experiment.27, 28

In this work we revisit the data of Shim.25 We shed light
on the connection between the mixed QM/MM gap corre-
lation function and the open quantum system bath correla-
tion function using a simple model. The mixed QM/MM gap
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correlation function is real. However, in general, the full quan-
tum correlation function will have an imaginary part. We
employ different semiclassical a posteriori corrections to re-
cover this part and compare the resulting spectral densities.
Much work has been carried out on these a posteriori semi-
classical corrections,32–37 but the question of which approx-
imation is best remains open. Towards answering this ques-
tion, we show that a simple model of shifted harmonic Born-
Oppenheimer surfaces leads to two of the semiclassical a pos-
teriori corrections, each obtained with a different phase space
probability distribution. We thus establish the link to a mi-
croscopic picture. This model of shifted harmonic potential
surfaces is of particular interest, since the spectral density
used in the open quantum system approaches emerges from
such a description.

Finally, we will investigate whether the results of the
QM/MM fulfill the requirements needed to employ the ex-
tracted spectral density in open quantum system methods.
These methods rely on the validity of assumptions such as
linear coupling of the system to the bath and a bath of har-
monic oscillators. We attempt to investigate whether these
assumptions are valid in our case by evaluating higher or-
der correlators of the energy gap time traces. In addition,
we compare the spectral densities obtained at different tem-
peratures. In most open quantum system approaches, when
the harmonic bath approximation is employed, the spectral
density is temperature independent. Thus, one can use this
invariance as a criteria for choosing which of the applied
a posteriori corrections is most reasonable to be employed
in these methods. In particular, our findings suggest that the
best a posteriori semiclassical approximation for FMO is the
Harmonic38, 39 correction rather than the Standard40–42 one,
which has been employed so far in the context of the simula-
tion of exciton dynamics in photosynthetic complexes.24–26, 31

Together, these aspects provide a clearer microscopic pic-
ture of the complex approximations involved in com-
bining ground state QM/MM and open quantum system
approaches.

The paper is structured as follows: we begin by intro-
ducing the general quantum two-time correlation function in
Sec. II. We introduce its time symmetries and its Fourier
transform and subsequently we define the spectral density.
A brief summary of the general a posteriori semiclassi-
cal approximations to the quantum Fourier transform of the
correlator from the classical Fourier transform is given in
Sec. II C. In Sec. III, we introduce the concept of an en-
ergy gap correlation function for two-level systems as mod-
els for molecules coupled to a bath and show how this leads
to a quantum bath correlation function and spectral den-
sity which are consistent with the open quantum system ap-
proach. In Sec. IV, we show that one can introduce a mi-
croscopic model which leads to some of the same prefactors
described in the general case in Sec. II C. Finally, we inves-
tigate the conditions of linear system-bath coupling and har-
monic bath in Sec. V. In particular, we evaluate high-order
multi-time correlation functions for the bath. These consid-
erations are applied to our specific QM/MM calculations for
FMO in Sec. VI. We conclude in Sec. VII by summarizing our
findings.

II. THE QUANTUM CORRELATION FUNCTION AND
THE SPECTRAL DENSITY

In this section, we introduce the definition of the quantum
two-time bath correlation function. The generic Hamiltonian
of a system coupled to a bath, in the absence of external fields,
can be expressed as

Ĥ = ĤS (q,p) + ĤB (Q,P) + ĤSB (q,p, Q, P) , (1)

where ĤS is the system Hamiltonian, ĤB is the bath Hamil-
tonian, ĤSB is the system-bath Hamiltonian. In addition,
(q,p) = (qj , pj ) and (Q,P) = (Qk, Pk), indicate the general-
ized multidimensional conjugated coordinates for the system
and the bath, respectively. The indexes j = 1, . . . , f and k = 1,
. . . , F run over the system ( f ) and bath (F) degrees of free-
dom, respectively. The notation (q, p) = (qj , pj ) is a short-
hand notation for the full set (q1, p1, . . . qN , pN ), where N is
the number of degrees of freedom. The system-bath Hamilto-
nian can be written as a function of the system, Â, and bath,
B̂, operators:

ĤSB (q,p, Q, P) =
∑
m

Âm (q,p) ⊗ B̂m (Q, P) . (2)

The influence of the bath on the system can be described
by time-correlation functions. We will mostly focus on the
two-time bath correlation function

Cnm(t − t ′) = trB{B̂n(t, Q, P)B̂m(t ′, Q, P)ρ̂B}. (3)

Here, B̂m(t, Q, P) = eiĤBt/¯B̂m(Q, P)e−iĤBt/¯, and

ρ̂B = e−βĤB

trB{e−βĤB} , (4)

where β = 1/(kBT) and T is the temperature. In the follow-
ing, we will be interested only in the n = m correlators, which
we will indicate as C(τ ) with τ = t − t′, dropping the sub-
script notation for simplicity. In Sec. V, we will briefly dis-
cuss higher order correlators.

The correlator defined above is in general complex and
one can show, see, e.g., Refs. 40 and 43, that it has the follow-
ing symmetries with respect to time:

C(−t) = C∗(t) = C(t − iβ¯). (5)

A. Fourier transform of the time correlation function
and symmetries of the correlator

We define G(ω), the Fourier transform of the time corre-
lation function

G(ω) ≡ F[C(t)](ω) =
∫ ∞

−∞
eiωtC(t)dt. (6)

The function G(ω) is in general, temperature-dependent,
real and positive. In this work, we will refer to it as the
temperature-dependent coupling density (TDCD).

It will be convenient to split G(ω) into a symmetric and
antisymmetric component which originate, respectively, from
the real and imaginary parts of C(t),

G(ω) = Gsym(ω) + Gasym(ω), (7)

Gsym/asym(ω) = 1

2
(G (ω) ± G (−ω)) . (8)
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In this definition, we have followed the convention of
Ref. 33. Note that in the literature there exist other defini-
tions, e.g., the corresponding equations in Ref. 44, differ by
a factor of 2 from the ones used here.45 The detailed-balance
condition, which follows directly from the second time sym-
metry in Eq. (5), implies that the overall TDCD is related to
its asymmetric46 part by

G(ω) = 2

1 − e−β¯ω
Gasym(ω) (9)

= (1 + coth(β¯ω/2))Gasym(ω). (10)

It will be convenient to abbreviate Gasym(ω) by defining

J (ω) ≡ Gasym(ω).

Using Eq. (9) and the definition of G(ω), Eq. (6), one can
express the correlation function as a function of J(ω),

C(t) = 1

2π

∫ ∞

−∞
dω e−iωt (coth(β¯ω/2) + 1) J (ω). (11)

B. The spectral density

Another quantity which is often of interest is the so-
called “spectral density”. The spectral density describes the
frequency dependent coupling of the system to the bath. There
are different definitions of spectral density in the literature
(for example, J(ω) is sometimes referred to as the spectral
density). We follow the convention of defining the spectral
density as a positive frequency function,

j (ω) = �(ω) J (ω)/π. (12)

Here �(ω) is the Heavyside function, which is one for posi-
tive arguments and zero for negative ones. The scaling by π

has been introduced for later convenience. Note that

J (ω) = π · (j (ω) − j (−ω)). (13)

C. General semiclassical a posteriori approximations

For systems of more than a few degrees of freedom,
and in general, it is difficult to calculate the exact correla-
tion function, and therefore its Fourier transform, by using a
fully quantum mechanical treatment. However, using classical
mechanics one can obtain its classical counterpart with much

less effort. Therefore, it is common to attempt to construct the
quantum spectral density from the classical one.

We define the fully classical correlation function as the
classical ¯→ 0 limit of Eq. (3),

Ccl(t) =
∫

dQdP B(t, Q, P) B(0, Q, P) W(Q, P) . (14)

Here W (Q, P) is the classical bath phase-space density, de-
fined as

W (Q, P) = e−βHB(Q,P)∫
dQdPe−βHB(Q,P)

. (15)

Here, the quantum bath operators B̂ in Eq. (3) have been sub-
stituted by classical functions of the phase space variables
B (t, Q, P).

The classical TDCD is defined as

Gcl(ω) = F[Ccl(t)](ω) =
∫ ∞

−∞
eiωtCcl(t)dt. (16)

Note that Ccl(t) is a real and symmetric function in contrast
to its quantum counterpart. This is also the case in the mixed
QM/MM simulations employed for FMO.24, 25 The QM/MM
correlation function obtained is real and no information about
the important imaginary part of the quantum correlator is
available a priori.

It is now desirable to be able re-construct, at least par-
tially, the exact quantum spectral density from the classical
one, through a simple description. Ideally, such a correction
should be applied a posteriori and should not require ex-
tensive additional computation. Much work has been carried
out in this direction, see, e.g., Refs. 32–37. As described in
Ref. 33, one can define various semiclassical approximations
to the full quantum mechanical G(ω) starting from its classical
counterpart Gcl(ω). We report each of these approximations in
Table I, second column.

These corrections all originate from expansions in ¯ and
use of the symmetry properties of the two-time correlation
function and its Fourier transform. Note that if one expands
the quantum correlator C(t) in powers of ¯, the first term is
real and symmetric and corresponds to Ccl(t). The assumption
that C(t) = Ccl(t), which leads to the standard approximation,
is in general not correct. In fact, since both of the correlation
functions are obtained after thermal averaging, we see that
they must differ at least by their respective partition functions.

TABLE I. Column two: Various expressions for obtaining a semiclassical temperature-dependent coupling density TDCD G(ω) from the classical Gcl(ω) as
discussed in, e.g., Ref. 33. Column three: Expressions for obtaining the semiclassical asymmetric TDCD J(ω) from the classical Gcl(ω). These follow from the
expressions in column two and from detailed balance (Eq. (9)).

Method Expression for G(ω) Expression for J(ω) = Gasym(ω)

Standard40–42 Gstd(ω) = 2
1+e−β¯ω Gcl(ω) J std(ω) = tanh

(
β¯ω

2

)
Gcl(ω)

Harmonic38–40 Gharm(ω) = β¯ω
1−e−β¯ω Gcl(ω) J harm(ω) = β¯ω

2 Gcl(ω)

Schofield47 Gscho(ω) = eβ¯ω/2Gcl(ω) J scho(ω) = sinh
(

β¯ω
2

)
Gcl(ω)

Egelstaff48 Gegel(ω) = eβ¯ω/2
∫ ∞
−∞ eiωtCcl(

√
t2 + (β¯/2)2)dt J egel(ω) = sinh

(
β¯ω

2

)
F[Gcl(

√
t2 + (β¯/2)2)](ω)

Schofield-Harmonic33 Gs−h(ω) = eβ¯ω/4
√

β¯ω
1−e−β¯ω Gcl(ω) J s−h(ω) =

√
β¯ω

2 sinh
(

β¯ω
2

)
Gcl(ω)
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At low frequencies, ωβ¯ ≡ ωb < 1 (i.e., ¯ω < kBT) all
approximations give nearly identical results and give the same
value for ωb = 0.

The various approximations for J(ω), and thus for the
spectral density, can straightforwardly be derived from those
of G(ω) by using Eq. (9). The resulting expressions are re-
ported in column three of Table I and the prefactors follow
the same trend as those for G(ω) as a function of frequency.

Now, given all the functional forms described above, the
question is how to choose the most appropriate one. For the
FMO complex, it is unclear at first sight which one would be
the best. In Sec. IV, we will investigate a model to elucidate
the origin of these prefactors. This will help to discriminate
between these corrections. In Sec. VI, we will apply all of
the corrections listed in Table I to our energy gap traces and
discuss the differences between each approach.

III. ENERGY GAP CORRELATION FUNCTION
FOR A SIMPLE MODEL

In the mixed QM/MM calculations for photosynthetic
systems,24, 25, 31 the nuclear trajectories are propagated in the
electronic ground state using MD with short time steps. For
a set of longer times steps within these trajectories, the elec-
tronic transition energies of the BChl molecules are computed
using an electronic structure calculation method. Because it
is computationally costly to calculate the electronic states for
the full set of seven/eight coupled BChls simultaneously,24

the system was divided into seven/eight subsystems for which
the electronic states were calculated separately. Thus, in
these calculations no excited state interactions are included
explicitly.49 The Hamiltonian of the coupled BChls is then
written as H = ∑N

n=1 Hn + ∑
n<m Vnm where Hn denotes the

Hamiltonian of BChl n and Vnm is the Coloumb (transition
dipole-dipole) interaction between them. To establish a con-
nection to the open quantum system approach, each BChl is
treated as an electronic two level system. These two-level sys-
tems and the electronic interaction between them are taken to
be the system part. The coupling to internal nuclear degrees
of freedom and the surrounding protein will then lead to fluc-
tuations of these quantities in time (for more details see, e.g.,
Ref. 31). From the time dependence of the transition energy
between electronic ground and excited state for each BChl, a
classical ground-excited state energy-gap correlation function
can be obtained. In turn, spectral densities can be extracted
from the energy-gap correlation functions.

The gap correlation function, as obtained from the
MD simulations, is a quantity which up to Sec. II, has
not been connected to the open quantum system approach.
In this section, we will explore a simple model with
Born-Oppenheimer (BO) surfaces which can clarify the
connection.

A. Quantum correlation function and energy gap
correlation function for a molecule

Lets us begin by considering a single molecule
(BChl) treated in the Born-Oppenheimer approximation. The
molecule is modeled as a two-level system with an electronic

adiabatic ground |g〉 and excited |e〉 state. We can think of
the BO-surfaces as having the dependence of the environ-
ment (protein and other BChls) already included, ignoring,
however, the resonant dipole-dipole interaction. The approxi-
mation of two levels is reasonable in the limit where the next
excited state is very far in energy space from the first. Usu-
ally, non-adiabatic couplings can be also neglected, as chosen
in our calculations.

Given this model, we investigate how the general correla-
tion function, Eq. (3), is related to the energy gap correlation
function.

We write the full Hamiltonian formally as

Ĥ = Ĥg(Q,P) |g〉〈g| + Ĥe(Q,P) |e〉〈e| , (17)

where Ĥg(Q) and Ĥe(Q) are the nuclear Hamiltonians
for the ground and excited state in the BO approxi-
mation. In mass scaled coordinates (Qj = √

mjqj ; Pj

= pj/
√

mj ), the Hamiltonians can be expressed as

Ĥg(Q,P) =
∑F

j=1
Pj/2 + Vg(Q) and Ĥe(Q,P) = Ĥg(Q,P)

+ �̂eg(Q), where Vg(Q) denotes the grounds state potential
energy surface. For later purpose, we have expressed the
excited state nuclear Hamiltonian with respect to the ground
state potential by introducing the energy gap operator,

�̂eg(Q) = Ĥe(Q,P) − Ĥg(Q, P)

= ¯ωeg + λ0 + Ve(Q) − Vg(Q). (18)

This operator quantifies the energy difference between the ex-
cited state and the ground state surface. A coordinate indepen-
dent constant energy difference ¯ωeg + λ0 has been explicitly
written down, so that the remaining part Ve(Q) − Vg(Q) does
not contain any coordinate independent contributions. This di-
vision and the meaning of ¯ωeg and λ0 will become clear in
Sec. III B.

The total Hamiltonian can be rewritten as

Ĥ = Ĥg · Î + (¯ωeg + λ0)|e〉〈e| + �̂|e〉〈e|, (19)

where we have defined the reduced gap operator �̂ ≡ �̂eg

− ¯ωeg − λ0.
To establish a connection to the open quantum system

model, as presented in Sec. II, we choose

ĤB = Ĥg(Q,P), (20)

ĤSB = �̂(Q) |e〉〈e| , (21)

ĤS = (¯ωeg + λ0) |e〉〈e| , (22)

where we have set the energy of the electronic ground state |g〉
to zero. From the form of ĤSB we identify the system operator
Âe = |e〉〈e| and the bath operator B̂ = �̂eg(Q). We can now
define the usual bath correlation function as

C(t) = trB{�̂(t)�̂(0)ρ̂B}, (23)

where we have dropped the dependence on bath coordinates
in the notation for simplicity. �̂ can be thought of as a “gap”
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operator, that is, as a measure of the energy difference be-
tween the ground and excited state at a given nuclear configu-
ration. From now on we will indicate reduced gap correlation
functions as

α(t) ≡ trB
{
�̂(t)�̂(0)ρ̂B

}
, (24)

to distinguish them from the general bath correlation func-
tion C(t). Equation (24) corresponds to the full quantum gap
correlation function that one would obtain, e.g., from a quan-
tum simulation on the FMO complex, considering only two
electronic levels per molecule and after including the protein
environment.

B. Quantum correlation function and energy gap
correlation function for harmonic surfaces

While the approach outlined in Sec. III A is applicable
to arbitrary potential surfaces, in most of the open quantum
system approaches used to describe the FMO complex, the
bath is taken as an (infinite) set of harmonic oscillators for
the environment of each BChl. Each oscillator coordinate is
then assumed to be linearly coupled to the electronic excita-
tion of the BChls, i.e., HSB = |e〉〈e| ⊗ ∑

j κ̃jQj where κ̃j is
a coupling constant.

To establish the connection between the reduced gap
operator and this system-bath interaction, we now consider
identical shifted harmonic potential surfaces, as sketched in
Fig. 1. The nuclear Hamiltonians defined in the general case
in Sec. III A become Ĥg(Q,P) = 1

2

∑F
j=1(P 2

j + �2
jQ

2
j ) and

Ĥe(Q,P) = ¯ωeg + 1
2

∑
j (P 2

j + �2
j (Qj − δQj )2), where �j

is the frequency of the jth oscillator. This model for a fi-
nite small number of vibrational modes of the chromophores,
has been successfully employed to describe the optical prop-
erties of molecular aggregates.50–53 These Hamiltonians can
be rewritten as function of a

†
j and aj, the ground state

bosonic creation and annihilation operators which are related

FIG. 1. Shifted identical harmonic Born-Oppenheimer surfaces, � is the fre-
quency of each harmonic potential, and δQ is the coordinate shift between the
minima of the ground and excited state potentials. This model is the one em-
ployed in Sec. III B to derive classical and semiclassical expressions for the
Fourier transform of the bath correlation function G(ω) and for the spectral
density.

TABLE II. Expressions of the system bath quantities for the case of two
Born-Oppenheimer harmonic surfaces as sketched in Fig. 1.

Quantity Expression

System Hamiltonian ĤS = (
¯ωeg + λR

) |e〉〈e|
System-bath Hamiltonian ĤSB = |e〉〈e| �̂(Q)

Bath Hamiltonian ĤB = Ĥg = ∑
j ¯�ja

†
j aj

Energy gap operator �̂eg(Q) = ¯ωeg + λR − ∑
j

√
2¯�3

jXjQj

Reduced energy gap operator �̂(Q) = �̂eg(Q) − (¯ωeg + λR)
Reorganization energy λ0 = λR = ∑

j
1
2 �2

j δQ
2
j

Coupling constant κj = ¯�j

√
Xj

Huang-Rhys factor Xj = �jδQ
2
j /

(
2¯

)
Unitless constant ζ j = ¯�j/(kBT)

to the conjugated coordinates by Qj = √
¯/(2�j )(a†

j + aj )

and Pj = i
√
¯�j/2(a†

j − aj ). One obtains

Ĥg =
∑

j

¯�ja
†
j aj

Ĥe = Ĥg + ¯ωeg + λ0 −
∑

j

κj (a†
j + aj ).

(25)

Here, the constant shift λ0, previously introduced in Eq. (18),
corresponds to the frequently empoyed reorganization energy
λ0 ≡ λR = ∑

j
1
2�2

j δQ
2 = ∑

j ¯�jXj . We have also intro-

duced the so-called Huang-Rhys factor:54 Xj = �j

2¯ δQ
2
j and

a (frequency dependent) coupling constant κj = ¯�j

√
Xj .

Note that the total Hamiltonian is now in the standard form
of an open quantum system model, as in Eq. (1), with the rel-
evant quantities given in Table II. In particular the reduced
energy gap operator is given by

�̂ = −
∑

j

κj (a†
j + aj ). (26)

From this expression of the energy gap operator one ob-
tains the quantum two-time bath correlation function (see,
e.g., Ref. 44)

α(t) =
∫ ∞

0
j (ω)

[
coth

(
¯ωβ

2

)
cos (ωt) − isin (ωt)

]
dω

(27)
with the temperature independent spectral density,

j (ω) =
F∑

j=1

κ2
j δ(ω − �j ). (28)

Note that from the definition Eq. (13) we have J (ω)
= π (j (ω) − j (−ω)) =π

∑F
j=1 κ2

j [δ(ω − �j ) − δ(ω + �j )],
which is also temperature independent.

To establish a connection to the classical correlator,
which is real and symmetric, we note that j(ω) can be obtained
from the real part of α(t) via

j (ω) = 2

π
tanh

(
¯ωβ

2

) ∫ ∞

0
Re{α(t)}cos (ωt) dt. (29)

When using this expression to obtain the spectral density
from QM/MM simulations one often assumes that Ccl(t)
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≈ Re{α(t)}, following the Standard approximation. Then, af-
ter a Fourier transform and use of symmetry relations for G(ω)
one finds the following expression:

j (ω) = 1

π
tanh

(
¯ωβ

2

)
Gcl(ω). (30)

This is the expression (up to the constant prefactor 1/¯) used
in Refs. 25 and 31, to obtain spectral densities.

IV. CLASSICAL AND SEMICLASSICAL LIMITS OF THE
CORRELATORS AND SPECTRAL DENSITIES FOR
HARMONIC SURFACES

As outlined in Sec. III, the harmonic model allows for
a simple analytic solution in the quantum mechanical case.
Now we will show that the system also has a solution in the
classical case. In particular, in this section, we will introduce
a model to construct exact relations between the classical gap-
correlation and the quantum one. To this end, we will consider
classical dynamics in the ground state BO potentials within an
initial value representation of the initial state which is consis-
tent with the mixed QM/MM approach. For each initial value,
we calculate a trajectory and the corresponding reduced clas-
sical energy gap between the two surfaces, i.e., �(Q(t), P(t)).
We then average over many trajectories.

A. Classical equations of motion

The classical equation of motion of the jth harmonic
bath coordinate is Q̈j + �2

jQj = 0. Solving this differential
equation with the initial condition (Qj0, Pj0) = (Qj(t = 0),
Pj(t = 0)) yields the time dependent coordinate trajectories

Qj (t) = Qj (t ; Qj0, Pj0)

= Qj0 cos(�j t) + Pj0

�j

sin(�j t). (31)

For each trajectory, the energy gap is then given by

�(t) = �(t ; Qj0, Pj0)

= −
∑

j

(
�2

j δQj

)
Qj (t ; Qj0, Pj0), (32)

where the parametric dependence of Qj and � on the initial
conditions (Qj0, Pj0) has been explicitly indicated.

B. Energy gap correlator

The evaluation of the reduced gap correlation func-
tion, Eq. (24), in the classical limit, results in the following
expression:

α(t) =
∑
jk

∫
dP0dQ0W(Q0, P0)

×�(t ; Qj0, Pj0)�(0; Qk0, Pj0), (33)

where W(Q0, P0) is the initial distribution and dP0dQ0 de-
notes the set of all coordinates, i.e., dQ0 = dQ10 · · · dQM0.
For harmonic potential surfaces, Eq. (14), is time-evolved fol-
lowing Eq. (32). In this section, we will investigate two dif-

ferent choices for the initial distribution, namely, a Boltzmann
distribution, as in Ref. (16), and a Wigner distribution which
resembles the quantum thermal state. We will refer to the
two cases as the classical limit and the semi-classical limit,
respectively.

C. Classical and semiclassical correlation functions

1. Classical limit

To obtain the classical limit of the correlator, we choose
the Boltzmann distribution for the initial coordinates which
corresponds to a purely classical thermal state. The distribu-
tion is defined as follows:

Wboltz(Q0, P0) =
∏
j

Wboltz
j (Qj0, Pj0), (34)

with Wboltz
j (Qj0, Pj0) = β�j

2π
e− β

2 (P 2
j0+�2

j Q
2
j0), and it is normal-

ized to one, i.e.,
∫

dPj0dQj0Wboltz
j (Qj0, Pj0) = 1. Note that

(�2
j δQj )2 = 2¯Xj�

3
j . Using Eq. (33) and the Boltzmann dis-

tribution for initial positions and momenta, we obtain

αboltz(t) =
∑

j

(¯�j )2Xj cos
(
�j t

) ( 2

ζj

)
. (35)

Here we have introduced the abbreviation ζ j ≡ ¯�j/(kBT).

2. Semiclassical limit

In order to obtain the semiclassical limit, we take the
quantum Wigner distribution for the initial coordinates and
use it in Eq. (33). The Wigner distribution is given by

Wwig(Q0, P0) =
∏
j

Wwig
j (Qj0, Pj0), (36)

where we have used the compact notation

Wwig
j (Qj0, Pj0) ≡ 2 tanh

(
ζj

2

)
e
− tanh(ζj /2)

(
�j

¯
Q2

j0+ 1
¯�j

P 2
j0

)
.

The normalization of the Wigner distribution is chosen such
that

∫ dPj0dQj0

2π¯
Wwig

j (Qj0, Pj0) = 1. The resulting expression
of the energy gap correlation function is

αwig(t) =
∑

j

(¯�j )2Xj cos(�j t) coth

(
ζj

2

)
. (37)

D. Classical and semiclassical spectral densities

After a Fourier transform of the classical correlators in
Eqs. (35) and (37) we obtain, for the Boltzmann distribution

Gboltz(ω) = π
∑

j

(
2kBT

¯ω

)
κ2

j (δ(ω − �j ) + δω + �j )),

(38)
and for the Wigner distribution

Gwig(ω) = π
∑

j

coth

(
¯ω

2kBT

)
κ2

j (δ(ω − �j ) + δ(ω + �j )).

(39)



224103-7 Valleau, Eisfeld, and Aspuru-Guzik J. Chem. Phys. 137, 224103 (2012)

Here κj = ¯�j

√
Xj as in Table II. Now, using Eq. (28) for

the spectral density j(ω) in the quantum case, and using J(ω)
= π (j(ω) − j(−ω)) we can write

Gboltz(ω) = 2kBT

¯ω
J (ω), (40)

Gwig(ω) = coth

(
¯ω

2kBT

)
J (ω). (41)

By inverting these equations the exact quantum J(ω)
can be expressed in terms of the classical Gboltz(ω)
= ∫ ∞

−∞ eiωtαboltz(t)dt or the semiclassical Gwig(ω)
= ∫ ∞

−∞ eiωtαwig(t)dt

Jboltz(ω) = ¯ω

2kBT
Gboltz(ω), (42)

Jwig(ω) = tanh

(
¯ω

2kBT

)
Gwig(ω). (43)

We see that in our harmonic model the semiclassical
Wigner distribution yields the same prefactor as for the Stan-
dard approximation described in Sec. II C, while the Boltz-
mann distribution gives the same prefactor as the Harmonic
approximation, also described in Sec. II C.

V. MODELS FOR SYSTEM-BATH COUPLING-HIGHER
ORDER CORRELATORS

As discussed in the Introduction, there has been a lot
of interest in modeling the exciton dynamics of the FMO
complex using open quantum system approaches. These usu-
ally require as input a bath two-time correlation function or
(equivalently) a spectral density and they rely on the assump-
tion of linear coupling to the bath and on a bath described by
harmonic oscillators.55

In Sec. III B, we have discussed that this model corre-
sponds to shifted adiabatic BO surfaces of identical curvature.
We have shown that in this case, the energy gap two-time
correlation function for a classical ground-state propagation
is directly proportional to the quantum one and we have ex-
tracted the appropriate (frequency dependent) proportionality
constant. For other shapes of the potential surfaces involved,
one will in general obtain different proportionality constants,
although the delta-peaks of the spectral densities can be lo-
cated at the same energies (the positions are determined by
the shape of the ground state potential).

It is not clear, a priori, if the approximation of shifted
harmonic surfaces (or equivalently linear coupling to a har-
monic bath) is a good one for the system under consideration.
To gain some insight on this question, from an analysis of
QM/MM trajectories, one possibility is to consider higher or-
der correlators. If the approximation of linearly coupled har-
monic oscillators is inadequate, one expects that higher order
correlators will have a significant relative weight.

We proceed to discuss some properties of correlations of
the bath gap operator, Eq. (18). The energy gap operators can
be described by a function of the bath coordinates and ex-

panded in terms of these as

�̂ =
∑

i

ξ
(0)
i +

∑
i

ξ
(1)
i Qi +

∑
ij

ξ
(2)
ij QiQj + . . . . (44)

When only terms up to first order in Q are significant, as in
the case of the Harmonic surfaces in the linear system bath
coupling limit, Table II, we can write the two-time correlation
function as

α(t, 0) = 〈�̂(t)�̂(0)〉 =
∑
ij

ξ
(1)
i ξ

(1)
j 〈Q(t)Qj (0)〉. (45)

Here, we have excluded the zeroth-order term which corre-
sponds, e.g., to a reorganization energy, and is usually renor-
malized into the system Hamiltonian. The angular brackets
〈. . .〉 = trB {. . . , ρ̂B} indicate thermal averaging over the bath
degrees of freedom. Similarly, the three-time correlation func-
tion becomes

α(t ′, t, 0) = 〈�̂(t ′)�̂(t)�̂(0)〉
=

∑
ijk

ξ
(1)
i ξ

(1)
j ξ

(1)
k 〈Qi(t

′)Qj (t)Qk(0)〉. (46)

In the case of a harmonic bath, the three-time correlation func-
tion will vanish, and in general any odd permutation of the
harmonic bath coordinates will vanish.

However, if one considers the case where one retains the
second order term in Eq. (44), the two-time correlator will
become

α(t, 0) =
∑
ijkl

�ij�kl〈Qij (t)Qkl(0)〉, (47)

where we have defined �ij and Qij (t) as

�ij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 ; i = j = 0

ξ
(1)
i ; j = 0 ∧ i = 0

ξ
(1)
j ; i = 0 ∧ j = 0

ξ
(2)
ij ; i, j = 0

Qij (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ; i = j = 0

Qi(t) ; j = 0 ∧ i = 0

Qj (t) ; i = 0 ∧ j = 0

Qi(t) · Qj (t); i, j = 0

.

Analogously, the three-time correlator becomes

α(t ′, t, 0) =
∑

ijklmn

�ij�kl�mn〈Qij (t ′)Qkl(t)Qmn(0)〉. (48)

If the bath is harmonic, it is straightforward to show that
all terms with an odd number of coordinate operators in the
averages will vanish. Yet, we see that in general, unless the
coupling to the bath coordinates is linear and the bath con-
sists of Harmonic oscillators, the three-point correlator will
not vanish. It may therefore be necessary to go beyond the
simple description using only the two-time correlator.



224103-8 Valleau, Eisfeld, and Aspuru-Guzik J. Chem. Phys. 137, 224103 (2012)

VI. APPLICATION TO THE FMO COMPLEX

In this section, we apply the approximations discussed
in Sec. II C, to the energy gap trajectories obtained from the
mixed QM/MM simulations for the FMO complex of Pros-
thecochloris aestuarii as carried out recently by us in Ref. 25.
The nuclear trajectories were obtained by classical MD using
the AMBER 99 force field. An isothermal-isobaric (NPT) en-
semble was employed in the MD simulations. For the calcu-
lation of the energy gap, snapshots of the nuclear coordinates
were taken at every 4 fs. For each ground state configuration,
the gap was obtained by computing the energy correspond-
ing to the Qy transition of the BChl’s using time-dependent
time-dependent density functional theory with BLYP func-
tional within the Tamm-Dancoff approximation.

The calculations were carried out at 77 and 300 K and
both temperature were treated on the same footing. We do not
expect there to be additional sampling problems for the low
temperatures because, up to current knowledge, FMO does
not undergo any major conformational changes in this tem-
perature range. More details on the computation can be found
in Ref. 25.

The calculation of the SD from the time dependent gap
energy is based on the model described in Sec. III. The ac-
tual MD simulation might deviate from this model, e.g., be-
cause the thermostat could influence the dynamical evolution
and thus the correlation function. We plan to investigate this
aspect in future work. For now we will assume that the ther-
mostat does not influence the dynamics and that the models
introduced in Sec. III provide a reasonable description of a
two level molecule treated in the QM/MM approach.

A. TDCD and spectral density from mixed QM/MM
with a posteriori semiclassical corrections

Using the energy gap trajectories obtained in Ref. 25,
we evaluated the different semiclassical approximations as re-
ported in Table I. We denote the time-points at which the en-
ergy gap is calculated by ti and the corresponding energy gap
by Xi where i = 0. . . N − 1 runs over the N the time-points.
As in Ref. 25 we evaluated the correlator by using a discrete
representation, which implements the kth element of the two-
time correlator as

Ck = 1

(N − k)

N−k∑
i=1

(Xi − X̄)(Xi+k − X̄), (49)

where X̄ is the mean. Here, one assumes that the N − k val-
ues Xi give a faithful initial distribution which reproduces the
Boltzmann distribution. To minimize spurious effects in the
Fourier transform, we multiplied the time trace by a Gaussian
of variance σ 2

gaussian = 0.09 × t2
max = 2.304 × 105 fs2 with

tmax = 1600 fs, the length of the correlation function (as re-
ported in Ref. 25). The Gaussian is normalized to have uni-
tary area in frequency domain56 following our definition of
the Fourier transform in Eq. (6), so that in frequency do-
main this corresponds to a convolution with a Gaussian with
a FWHM of 26 cm−1. Next, we computed the different semi-
classical quantities of Table I using our initial time trace.
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FIG. 2. Positive frequency part of the temperature-dependent coupling den-
sities G(ω) obtained, as described in Sec. VI A with each of the Standard,
Harmonic, Schofield, and Schofield-Harmonic corrections as (see Table I,
column two). In panel (a) results are at 77 K and in panel (b) 300 K.

In Figure 2, we show the temperature-dependent cou-
pling densities TDCDs (as defined in Eq. (6)), for site 1 of the
FMO complex (site 1 at 77 K and 300 K) evaluated using the
different approximations listed in Table I column two. We no-
tice how, as expected, there are little differences between the
approximations at low frequencies. Only at higher frequen-
cies the TDCD differs significantly for each approach. The
Egelstaff approximation incorrectly predicts a negative spec-
tral density for low frequencies in this case and was therefore
not shown in the plots.

From the general definition of each semiclassical correc-
tion, it is not clear which one is most accurate. To better rea-
son on which one to choose, we will look at the temperature
dependence of the spectral density. Further, we will compare
to experimental results and finally we will evaluate the three
point correlator (Sec.VI D).

B. Analysis of prefactors in terms of temperature
dependence of the spectral density

From our discussion in Sec. I, we recall that many open
quantum system approaches rely on the assumption of lin-
ear coupling to a bath of harmonic oscillators. This leads to
a temperature-independent spectral density j(ω), as discussed
in Sec. III B. Inspection of Fig. 2 shows that for all but the
Harmonic approximation the TDCD (from which one obtains
J(ω) which is directly proportional to the spectral density
j(ω)) obtained from the QM/MM is not similar at different
temperatures. This is more apparent at higher frequencies.
To gain further insight into this temperature dependence, in
Fig. 3, we compare the asymmetric TDCD (J(ω) = π j(ω) ; ω
> 0) obtained using the Standard (panel a) and the Harmonic
(panel b) approximations for site 1 of the FMO complex.
Results for all sites at both temperatures are reported in the
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FIG. 3. Panel (a) comparison of the asymmetric component of temperature-dependent coupling density J(ω) ≡ Gasym(ω) ; for site 1 of the Fenna-Matthews-
Olson complex, obtained with the Standard approximation (Table I, first line, third column) at 77 K and at 300 K. Panel (b) comparison of J(ω) obtained for
site 1 with the Harmonic approximation (Table I, second line, third column) at 77 K and at 300 K. We see clearly that the Harmonic prefactor gives a roughly
temperature independent J(ω), while large differences are seen using the Standard prefactor.

supplementary material.62 One clearly sees that for the Stan-
dard correction there is a huge difference between the 77 K
and the 300 K results. However, in the case of the Harmonic
correction the spectral densities obtained at the two tempera-
tures nicely lie on top of each other, as one would require for
a temperature-independent spectral density. This result sug-
gests that the Harmonic correction is the appropriate one to
employ to obtain spectral densities to be used in open quan-
tum system models which assume linear coupling to a bosonic
bath.

Note, that the good agreement at both temperatures for
the Harmonic correction might be purely accidental or due to
the fact that the MD is not fully converged. We would need to
run much longer QM/MM trajectories to improve the statis-
tics and check the convergence of the distributions. This lack
of statistics could also explain the fact that for the SD aver-
aged over all chomophores (panels c and d), the agreement
between both temperatures is slightly better than for the indi-
vidual sites.

Finally, we would like to remark that a temperature de-
pendence of the reorganization energy has been observed in
the context of electron transfer donor-acceptor energy gap
spectral densities.57, 58

C. Comparison to experimental spectral density

In Fig. 4 panels (a) and (b) we compare the asymmetric
TDCD for site 3 (Standard and Harmonic correction), with

the asymmetric TDCD obtained from fluorescence line nar-
rowing (FLN) experiments.27 We focus on the low frequency
part (up to ∼500 cm−1), which is relevant for energy transfer
in the FMO complex. The FLN results are obtained from the
lowest excitonic peak of the FMO absorption spectrum which
is believed to be generated almost entirely by BChl 3. There-
fore, we compare the experiment to the theoretical spectral
density obtained from the QM/MM for BChl 3.

The experimental spectral density shown in Fig. 4 is
based on the dotted curve j̃ exp(ω) of Fig. 2 of Ref. 28, which
is in good agreement with the one-phonon vibrational profile
(OPVP) of Ref. 27, because of the small total Huang-Rhys
factor. Note that the extraction of the OPVP uses the same
model of shifted harmonic potential surfaces as we did in
Sec. III B. Thus it corresponds to a SD which is suitable as in-
put in the open system approaches. In this harmonic model the
profile j̃ exp(ω) is related to our definition of the spectral den-
sity by j exp(ω) = (¯ω)2 j̃ exp(ω). The positive frequency part
of the asymmetric TDCD, J(ω) is obtained from the spectral
density, as defined in Eq. (13), by J exp(ω) = π j exp(ω).

From panels (e) and (f) of Fig. 4, we see that the magni-
tude and overall line shape of both the Standard and the Har-
monic correction are in good agreement with the FLN data, in
contrast with previous results.25, 59

A closer inspection of the curves in panels (c) and (d) of
Fig. 4 shows that the width of the peaks obtained from the
QM/MM simulation is much broader than that obtained from
the FLN data. As described in Sec. VI A, this broadening
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FIG. 4. Panel (a) shows J(ω) for site 3 of the FMO complex calculated with the Standard approximation at 77 and 300 K and the green curve corresponds
to the experimental spectral density rescaled by π to obtain J(ω) as defined in Eq. (13).27, 28 (More details on the experimental spectral density are given
in the text.) Panel (b) shows J(ω) for site 3 calculated with the Harmonic approximation at 77 and 300 K and again the green curve corresponds to the
experimental spectral density.27, 28 The agreement with the experimental (green) spectral density is slightly better for the Harmonic approximation than for the
Standard approximation. Panels (c) and (d) correspond to the same quantities as those of panels (a) and (b) in the low frequency region, here we note that both
approximations are roughly equivalent for ¯ω/kBT < 1 (e.g., at T = 77 K for ω < 55 cm−1 and at T = 300 K for ω < 200 cm−1). Further, the spectral density,
as defined in Eq. (13) can be obtained by dividing J(ω) by π .

is due to the finite length of the numerical correlator, and
to the convolution with a gaussian function in frequency do-
main, which results in a broadening of FWHM 26 cm−1. Also,
the position of the peaks do not perfectly coincide. There
might be various reasons for this discrepancy: The trajecto-
ries might be too short, the quantum chemical calculations
of the transition gap are not accurate enough, or the thermo-
stat leads to some spurious effects. One has also to keep in
mind that there are uncertainties in the experimental data as
well. The experimental data (in particular at higher frequen-
cies) probably do not represent the actual spectral density of
BChl 3 (excitonic effects might play a relevant role, and it was
difficult to extract the line shape from the representation of
Refs. 28 and 27).

Nevertheless, this good agreement in magnitude and
overall line shape makes us confident, that the QM/MM pro-
cedure can indeed be useful to extract spectral densities.

Finally, it seems that the Harmonic correction describes
the FLN data slightly better in terms of amplitude, respect to
the Standard correction.

D. Higher-order correlation function

From the theory of discrete processes, similarly to
Eq. (49), we see that the (k, j)-th element of the three-time

correlator is

C(k, j ) = 1

(N − k − j )

N−k−j∑
i=1

(�Xi) (�Xi+k) (�Xi+k+j )

(50)
with �Xi =Xi −X̄ where X̄ is the mean and N is the num-
ber of time points (as defined in Sec. VI A). We compare the
two-time and the three-time correlators by dividing them by
increasing powers of the standard deviation s ≡

√
m(2), thus

we use Eq. (49) for the two-time correlation function and di-
vide it by s2 and we divide Eq. (50) by s3. The results for
site 1 of the FMO complex at 77 and 300 K are reported in
Fig. 5. For the two-time correlator, Fig. 5 panels (a) and (b),
we see correlations up to at least 1000 time steps, while for
the three-time correlator, panels (c)–(f), we see a rather noisy
profile with values about one/two orders of magnitude smaller
than the largest value of the two-time correlations. This is ob-
served for all sites and temperatures. (Results for all sites can
be found in the supplementary material.62)

This means that since we find a small three-time corre-
lator, the linear coupling to a harmonic bath assumption is
probably good. In fact, as described in Sec. V this case cor-
responds to linear coupling to the bath and Gaussian corre-
lated bath operators. Of course, the statistics of the three-time
correlator is not great due to the finite length of the time tra-
jectories, but we think that the general tendency is correct.
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FIG. 5. Panel (a): Two-time correlation function of the energy gap fluctuations of site 1 of the FMO complex, normalized by s2 (the variance) at 77 K after
evaluating it as in Eq. (49). Panel (b): Two-time correlation function for site 1 at 300 K. Panel (c): Three-time correlation function of the energy gap fluctuations
of site 1 of the FMO complex, as defined in Eq. (50) normalized by s3 at 77 K. Panel (d): Three-time correlation function for site 1 at 300 K.

One should also keep in mind that there may be fortuitous
cases in which the three-time correlator is roughly zero and
the bath is not harmonic. Further, this comparison is based on
the order of magnitude of the correlations, the three-time cor-
relator is only much smaller. It may be that for some modes
of the system, certain frequencies, present in the three-time
correlator’s two dimensional Fourier transform give a more
important contribution to the dynamics than other frequencies
present in the spectral density. Nonetheless, the above result
encourages the idea that the assumption of linear coupling and
harmonic bath is valid. This, in turn, implies that one should
use the Harmonic semiclassical correction in Sec. II C, which
is also consistent with the prefactor found in Sec. III.

On a final note, to confirm with certainty that the bath is
Harmonic, one should evaluate higher order correlators, be-
yond the three-time correlator. However, to obtain a statisti-
cally relevant estimate, much longer time dependent energy
gap trajectories, which are expensive in terms of the QM/MM
propagation, would be required. Work in this direction is be-
ing carried out in our groups.

VII. CONCLUSIONS

In this work, we have investigated the connection be-
tween the gap correlation function extracted from ground state
QM/MM and the bath spectral density used as input in many
open quantum system approaches.

One important point is that the classical bath correlation
function is real while the quantum mechanical one is gen-
erally complex. There exist several semiclassical a posteri-
ori corrections which aim to fix this and we have employed
them on our time traces to recover a part of the imaginary
component.

The discussed prefactors originate from general expan-
sions in orders of ¯ and do not include information on the spe-
cific type of system-bath coupling, etc. We have investigated
two simple models and found that the prefactors obtained cor-
respond to two of the general semiclassical expressions. Thus,
we have linked the semiclassical limits with a microscopic po-
tential energy surface picture.

We have shown that the gap-correlation function ex-
tracted from ground state QM/MM only corresponds to the
fully quantum excited state calculations in the case of shifted
parabolas. This model for a few vibrational modes of the
chromophores has been successfully used to describe the
optical properties of molecular aggregates. Including only a
finite number of internal vibrations is probably a good ap-
proximation for molecules in the gas phase or suprafluid He-
lium nanodroplets.53 However, for molecules in solution or
when a protein environment is present it is no longer a good
approximation to include only only a few (undamped) modes.
In particular, one has to take into account the interaction of
the vibrations with the environment in addition to the direct
interaction of the electronic excitation with the environment.
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For this general situation, it is no longer clear whether the
model of shifted harmonic potential surfaces is indeed a good
description of the system.

Therefore, we have investigated whether the approxima-
tion of harmonic bath and linear coupling is accurate for our
QM/MM calculations for the FMO photosynthetic complex
by computing the next higher order correlator beyond the
two-time correlator. The three-point correlator seems to give
a small contribution which, while not being conclusive, sug-
gests to us that the Harmonic/linear coupling model is a good
approximation. The evaluation of the four-time correlation
function would be useful to bolster this claim.

The analysis of the temperature dependence of prefactors
for the spectral density also suggests that the Harmonic ap-
proximation is preferred to use for the FMO complex, and per-
haps other photosynthetic complexes, rather than the Standard
one when employing it in open quantum system approaches.

Having made these choices, the theoretical results are
in reasonably good agreement with the experimental spec-
tral density. These result in a much better agreement than in
our previous work, which underestimated the magnitude of
the spectral density25 and than other QM/MM calculations24

which overestimate the coupling to the bath by one order of
magnitude.

Finally, we have explained the link between bath corre-
lation function and gap correlation function and found mod-
els under which the gap correlation function can actually be
viewed as a general open quantum system bath correlation
function.
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