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Abstract—The penetration of a current and, accordingly, a magnetic field into the plasma of pulsed systems
characterized by short temporal and spatial scales can be investigated in electron magnetohydrodynamics. A
study is made of the rapid penetration of the magnetic field of an injected high-current ion beam into a plasma.
© 2000 MAIK “Nauka/Interperiodica”.
This work is a continuation of studies devoted to the
rapid penetration of a magnetic field into a plasma or
plasmalike media. An investigation of this phenomenon
in the electron magnetohydrodynamic (EMHD) model
revealed many interesting processes that were not cap-
tured with the help of the classical theory of the skin
effect. Among the works on this problem, we should
mention an important paper by Kingsep et al. [1], in
which it was predicted that the magnetic field could
penetrate into the plasma in the form of a nonlinear
constant-amplitude wave moving at a constant velocity.

Our purpose here is to study the characteristic
behavior of the magnetic field of a high-current
charged-particle beam injected into a plasma. The short
temporal and spatial scales of the problem, τ and a,
allow us to apply the EMHD approach [1], which is
valid under the conditions
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The beam can be modeled merely by the external
current jb , because the mechanical component of the
beam-particle generalized momentum dominates over

its field component, |p | @  (or, in other words,

the Larmor radius of the beam electrons substantially
exceeds the spatial scale a). Analogously, we can
neglect the friction between the beam and plasma par-
ticles in comparison with the Ohmic resistance,
because the effective Coulomb collision frequency is

proportional to , where Eb is the energy of the
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beam particles. Under conditions (1)–(3), the plasma
ion velocity is much lower than the plasma electron
velocity, so that the plasma ions can be assumed to be
immobile.

The geometry of the problem is illustrated in Fig. 1.
The z-axis is directed along the external current z || jb;
the plasma occupies the half-space 0 < z < a; and the
system is uniform along the y-axis, ∂/∂y ≡ 0. At the ini-
tial time t = 0, the reverse current in the plasma com-
pletely neutralizes the external (beam-driven) current
and B ≡ 0. Outside the plasma, at any instant, we have
B = B0, where B0 is the self-magnetic field of the beam.
Under the assumptions adopted, the ion and electron
beams can be treated in the same manner; we should
only keep in mind that, in the case of an electron beam,
the beam current flows in the direction opposite to that
of the beam.

We start with the set of equations

and the equation of electron motion

Assuming, for simplicity, that n = const and σ = const
and performing the necessary manipulations, we obtain
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(5)

We should point out the following important property of
equation (4). In the limit of infinitely high conductivity,
equation (4) passes over to the familiar frozen-in equa-
tion in which the frozen-in quantity is the curl of the

generalized plasma-electron momentum P = p – A.

The problem of the transport of a magnetic field by
an external current was solved by Kingsep et al. [2]
without allowance for electron inertia. The physical
model they developed can be outlined as follows. The
magnetic field penetration is described by the dynamic
equation

(6)

In the initial stage, when the profile of B is steep, the
magnetic field penetrates into a plasma due to diffu-
sion. In later stages, when the profile of B becomes suf-
ficiently smooth, the magnetic field becomes frozen in
the current-carrying electrons and is transported by
them. The magnetic field enters the plasma through the
boundary z = 0 with the velocity v = j/ne. The exact
solution to equation (6) is

(7)

As a result of the competition between diffusion and
the linear transport of the magnetic field out of the
plasma, the steady-state magnetic-field profile

is established at the boundary z = a (Fig. 2).
In our problem, we take into account electron iner-

tia, insert (5) into (4), and perform simple but rather
laborious manipulations to obtain the following one-
dimensional equation, describing this physical model:

(8)

(9)

Following [2], we neglect the effects at the beam

boundary; i.e., we omit the term curl , which

accounts for the magnetic field generation.
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Taking the Fourier transformation of (8) in the
z-coordinate, we arrive at a linear differential equation.
This equation can be easily integrated to yield the time
dependence of the Fourier transformed magnetic field.
With allowance for the initial conditions, we can repre-
sent the exact solution to equation (8) in terms of the
Fourier integral,

(10)

The specific form of both the initial condition (9) and
equation (8) allows us to follow the penetration of the
initial jump (9) in the magnetic field into a plasma using
the Lax method, i.e., expanding the solution into a
series in functions with different smoothness [3]. To do
this, we represent the exact solution (10) as the sum of
discontinuous and smooth functions, B = Bsing + Bcon. As
the discontinuous function Bsing, we adopt Bsing = ϕ(z,
t)θ(S(z, t)), where θ(x) is the Heaviside step function.
We substitute Bsing into equation (8) and collect the fac-
tors in the generalized functions θ(S(z, t)), δ(S(z, t)),
δ'(S(z, t)), and δ''(S(z, t)). If we succeed in finding the
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Fig. 1. Geometry of the problem.

Fig. 2. Penetration of a magnetic field into the plasma with-
out allowance for electron inertia.



464 ZABURDAEV
functions ϕ(z, t) and S(z, t) with which to force the fac-
tors in the delta function and its derivatives to zero, then
we could state that the remaining function Bcon would
be at least continuous. The desired functions ϕ(z, t) and
S(z, t) satisfy the equations

(11)

(12)

Equation (11) implies that S = f(x – vt). Equation (12)
can be integrated by the method of characteristics. With
allowance for the fact that, at t = 0, the function Bsing

should satisfy the initial condition (9), we obtain the
final expression for Bsing:

(13)

Analyzing (13), we can see that the initial discontinuity
(9) propagates with the current velocity v and is expo-
nentially damped as time elapses. The diffusion acts to
reduce the jump rather than smooth the profile. Apply-
ing the same procedure, we can show that the remain-
ing function Bcon = B – Bsing is infinitely differentiable.
Of course, the solutions obtained and the boundary
conditions are discontinuous because we work in the
EMHD theory. In reality, the magnetic field changes
sharply on a spatial scale of about c/ωpe . On infinitely
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Fig. 3. Penetration of a magnetic field into the plasma with
allowance for electron inertia.
long time scales, the discontinuity disappears and the
magnetic field profile becomes smooth, in which case
neglecting the highest derivative in equation (8) yields
equation (6). The time evolution of the solution is illus-
trated in Fig. 3.

Thus, in our problem, unlike in the nonlinear prob-
lems treated by Gordeev et al. [4, 5] with allowance for
electron inertia, no small-scale solitons are generated:
we deal with a discontinuity (rather than a soliton) that
appears on a spatial scale of about c/ωpe and is expo-
nentially damped with time. The effective distance over

which the jump propagates is equal to leff ≈  =

.
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