PRL 95, 198001 (2005)

PHYSICAL REVIEW LETTERS

week ending
4 NOVEMBER 2005

Kolmogorov-Sinai Entropy of the Dilute Wet Granular Gas
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We present an analytical expression for the Kolmogorov-Sinai entropy of a wet granular gas. The
influence of the liquid is modeled by a hysteretic interaction force. For the dilute limit (two-particle
collisions only), we find a simple expression accounting for the contribution of both the scattering states
and the bound states in arbitrary dimensions. It is shown that the system is significantly more chaotic than
a gas of (dry) hard spheres, as reflected by a pronounced increase of the Kolmogorov-Sinai entropy.
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While equilibrium statistical mechanics is an established
field of classical physics, the search for general principles
governing the nonequilibrium has never stopped. In recent
times, promising new concepts have been put forward,
which concern fluctuations in driven many-particle sys-
tems [1-6]. In particular, the fluctuation theorems formu-
lated by Evans, Cohen, Morriss, and Gallavotti [1-3]
provide a direct link between fluctuations in the entropy
flux of a driven system and the geometry of its trajectory in
phase space. More precisely, the formulation of Evans
et al. [4] states that

pU; = A)
ST = —A) exp(BVF A7), (1)
where p(J, = A) gives the probability for the average
entropy flux, projected on the direction of the applied field
F,, to be equal to A when averaging over the time 7. The
system volume is V, while S is the reciprocal temperature
1/kgT. The entropy flux is positive if it follows the applied
field. Thus, the nonzero probability p(J, = —A) repre-
sents an extension of the second law of thermodynamics
including fluctuations for a finite time.

Equation (1) is a very interesting achievement and has
already inspired a lot of further work. In particular, it is
desirable to devise well-defined nonequilibrium model
systems which allow one to verify this prediction. As a
fairly accessible example, granular systems [7-9] have
attracted interest recently as paradigmatic models for tests
of the fluctuation theorem as stated in Eq. (1) [10,11]. Their
particularity is that impacts between grains are inelastic, as
usually described by the so-called restitution coefficient e.
This is defined by € = |p¢|/|p;|, where p; and p¢ are the
relative momenta before and after impact, respectively. As
opposed to the standard hard spheres gas, a granular gas is
thus a dissipative system, and Eq. (1) may be legitimately
applied. This has been done in a few cases, corroborating
many aspects of (1) with great success [10,11]. However, it
may be viewed as a disadvantage of these systems that the
dissipation is “‘hidden’ in the inelastic collisions and is not
accessible as a physical process.
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A completely different situation is encountered with wet
granular gases. Here the dissipation is due mainly to the
formation and rupture of liquid capillary bridges between
adjacent spheres. This is strong enough to account for the
dramatic mechanical differences between dry and wet sand
[12]. It was recently shown that the main physical proper-
ties of these systems may be successfully modeled by hard
spheres interacting via hysteretic capillary forces, with the
impacts themselves being assumed elastic [12,13]. As a
result, the total energy of the system is a continuous
function of time.

In order to apply the fluctuation theorem to a wet granu-
lar system, one needs information about its Lyapunov
spectrum. In particular, the sum of all positive Lyapunov
exponents (LE) plays an important role in the course of
derivation of (1). Recently, sums of all positive LE have
been computed for systems of hard disks and spheres
without interaction [14-16]. Provided the system is closed
and sufficiently chaotic, which we will henceforth assume,
the sum of all positive LE is identical to the Kolmogorov-
Sinai entropy (KSE) [17]. In the present Letter, we present
expressions for the KSE of wet granular systems. Our
analytical treatment is a generalization of the approach
suggested in Ref. [14], with the liquid bridge force taken
into account.

Our model system consists of N equally sized hard
spheres (‘“‘grains’’) with diameter ¢ and mass m. In the
real system, the presence of a liquid leads to the formation
of a capillary bridge whenever two grains touch each other.
As long as this bridge is present, it exerts an attractive force
which is proportional to the size of the grain and to the
surface tension of the liquid [18]. Its most important fea-
ture is that it withstands a certain separation of the surfaces
it connects and pinches off only when the latter exceeds a
critical value. As a consequence, there is a hysteresis in the
interaction force, which therefore is nonconservative.
Figure 1 shows the force characteristic we use in this
Letter (extended capillary model [12]), which is closely
inspired by known force laws of wet granular materials
[18,19]. When two particles undergo a complete collision,
a fixed amount of energy E,; is lost, which corresponds to
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FIG. 1. The (attractive) force exerted by a liquid capillary
bridge between two spheres. Its hysteretic character gives rise
to dissipation within the system. Its form is a slight idealization
of the experimentally determined force characteristic [18].

the area of the hysteresis loop. This contrasts sharply with
common models assuming a constant coefficient of resti-
tution. We define a corresponding velocity by Ej, =
muvi, /4. The effective restitution coefficient of the capil-
lary model is a function of the initial energy or velocity:
E(Ei) = \/1 - (Eloss/Ei) or G(Ui) =41 - (vloss/vi)z' In
what follows, we refer to an impact as the point in time
when two spheres touch. This is preceded by a drift inter-
val, in which both collision partners move free of force.
The time interval [#, #;], which starts at the beginning of
the drift interval and ends when the liquid bridge between
them ruptures, will be called a collision cycle.

Let us denote by v,;; the modulus of the critical relative
velocity ¥; = ©; — ¥, which discerns whether the parti-
cles will form a bound state or scatter. For the head-on
collisions (impact parameter b = 0), v = Ujoss; Other-
Wise, Ui = Vjoss, Since there is an additional energy in the
rotary motion. In the latter case, one can find the critical
impact parameter which depends on the initial relative
velocity and separates sticking and scattering events.

If the modulus of the initial relative velocity v; is smaller
than v, the particles stick together, and the collision
cycle is not terminated until a third particle bumps into
the bound two-particle system. In this case, the interaction
time is of the order of »~!, where » is the mean collision
frequency of one particle. The total collision rate of the
system is Nv/2 (each collision involves two particles).

We should note here that, while our system is dissipa-
tive, we intend to use a method developed for equilibrium
dynamics, with a fixed velocity distribution and constant
temperature. We therefore consider the system on a time
scale during which the temperature can be considered
constant, but the number of collisions is large enough to
see the influence of the liquid bridge force on the KSE, as

well as to perform proper averaging procedure (see below).
This is possible if E /T << 1, where T is the granular
temperature, defined as the average kinetic energy per
degree of freedom. We thus consider only temperatures
well above condensation. This also prevents us from hav-
ing to discuss effects due to the formation of larger
clusters.

To judge the chaotic behavior of the system, one studies
its sensitivity to the initial conditions. Evolution of their
perturbation can be characterized by the LE, which give
the rate of exponential divergence (contraction) of trajec-
tories in the phase space. Further, one can say that a
deterministic system is chaotic if its KSE per unit time is
positive [20]. Let R = (7, + 7,)/2 and V = (3, + 0,)/2
denote the center of mass position and velocity, respec-
tively, of the two impact partners, as well as 7 = 7| — 7,
and ¥ = ¥ — ¥, their spatial separation and relative ve-
locity, respectively. Since in the dilute system the free drift
time is large compared to the interaction time, the devia-
tions in velocity space are amplified much stronger than
those in real space [14]. We thus conjecture the velocity
space to coincide (approximately) with the unstable mani-
fold of the system. Consequently, we consider the KSE to
be given by the logarithmic volume growth rate in velocity
space.

The next step is to compute the matrix M that transforms
initial velocity deviations from a specific point in the 4D
phase space (R, 7, V, §) of the two-particle system

8V,
87,
at the beginning of the collision cycle to the final deviations
5V 8V,
=M ! 2
(o) =(55) @

at the end of the collision cycle. Thus, we use the following
expression for the KSE kg as a starting point:

1
hgg = lim — 1
KS SLI?O t(s) n

detli[ M, ‘ 3)
i=1

where M; is the deviation matrix of the ith collision cycle
and #(s) is the time elapsed after s collisions. This limit
exists by virtue of Oseledec’s multiplicative ergodic theo-
rem [17,21]. Although there will frequently be pair inter-
actions overlapping in time, there is no ordering problem
when writing down the total deviations as a product of
collision cycles, because the coexisting liquid bridge inter-
actions affect disjoint pairs, and deviation matrices of these
pairs commute. Then the expression (3) can be simplified
dramatically (see also [14]):

% = %(ml detM|).

The angle brackets (...) denote averaging over the full
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two-particle phase space only. Because of the possible
formation of bound states, there are two types of scattering
matrices, splitting the expression above into two terms:

hKS

v
N 2

[(In] detM,|), <, . + (In|detM]), >, 1 (4)

Next we have to determine the matrices My and M,.
After a lengthy but straightforward calculation, we arrive
at the surprisingly simple result

99 2 (D/2)—1
| detM| = (1 - X £><1 - %H(Ui - Ucm)>

1

xA D_2
% (1 + sim?) , )

which depends only on the initial relative velocity wvj;,
scattering angle ¢, impact parameter b, and x;—the dis-
tance traveled to the collision along the direction of the
relative velocity, which is approximately equal to the initial
distance between colliding particles at t = ;. D is the
dimensionality of the problem. Quite remarkably, Eq. (5)
is valid for both the scattering and the bound case. The only
difference is the actual value of the scattering angle and
final velocities. The step function € indicates that a bound
state is terminated by a third particle and a new collision
cycle restarts with the same velocity distributions. In the
limit v, — 0, we recover the result for ideal hard spheres
[14].

Let us discuss what contributes to the KSE and why it is
different for the wet granular case. We are considering the
dilute gas limit no? < 1, and the result for the KSE is
intrinsically presented in the form of an expansion with
respect to this small parameter (see below). In formula (5),
unity in the first parentheses can be safely neglected. The
initial distance between particles is of the order of the mean
free path and, thus, inversely proportional to the density of
particles. This gives the leading term in the expansion of
the KSE at low densities, which is known for the dry case.
The derivative of the scattering angle with respect to the
impact parameter in the scattering regime gives the cor-
rection to the next order, but for the bound state the
situation is different. The scattering angle (and its deriva-
tive) grows linearly with time because of the rotation and
bouncing of two particles in a cluster until a third particle
breaks it. This time is again of the order of the mean free
path divided by the center of mass velocity. Therefore, this
term in bound collisions contributes to the leading one in
the expression for the KSE.

To finally obtain the KSE, we take the average of the
logarithm of (5) over all possible impact parameters, rela-
tive velocities, and initial distances between colliding par-
ticles. For the velocities, we chose a Maxwellian
distribution. For the initial distances, it turns out that their
probability distribution is not a simple exponential, as for
the free path of the particle, but has the form:

VitV +v2)/(wil), ©)

‘Uil

where [ = (2+/20n) " 'in2D and [ = (v27o?n) " in 3D is
the mean free path. After averaging with the velocity
distributions in 2D, for example, this yields an expectation
value (x;) = 0.71! for the initial distance. Using the con-
ventional assumption of molecular chaos (i.e., the relative
positions of two particles are uncorrelated), we arrive at

_ (M \P D p. VI Tvy (odbP!
<>_<ﬁ> fRDd U][de (%) v j;) O'D_l

% f X (/2102 42~ D+ )
o 1

for the averaging integral, which is to be applied to Eq. (4).
In terms of the natural length scales of the problem, / and

o, we obtain
) >Ui < Uerit

hKS 14 l Bﬂb
X =_3D~-1)h—+ il
N > {(D 1) lna_ <ln<0'
X (O X, o D=2
+ {In| 2 (= + =
<ln[ ; (l cost D smﬁ) }>

ob
2 \(D/2)-1
+ {In 0|aﬁs 1 — Lo .
ab Ui2 V> Verit

The first term, as in the dry case, gives the leading and
dominating term of the expansion with respect to small
density: — InnoP. The second one is a correction due to the
sticking collision. The scattering angle for the bound state
can be estimated from the angular momentum conservation
¥, ~ const + t;bv;/0? and is proportional to the interac-
tion time 5. It is equal to the mean free path of the particle
with higher cross section 30/2 and doubled mass, divided
by the center of mass velocity. Therefore, it gives the
correction (— lnn02)<1>vi<vcm, proportional to the sticking
probability.

Finally, the general expression for the KSE of the wet
granular gas is (see Fig. 2 cf. [14])

% = —pAlnno® + vB + O(noP),

where A is the sum of the dry limit value (D — 1)/2 and the
sticking probability:

D—1 2P /m\p2 [odbP!
A==+ (= =
2 F(§)<T> ﬁ ol

cril(b)
% f g
0

The general expression for B in arbitrary dimension is
enormously complicated. We present here the result for
D = 2, which reads

va—le—(m/4T)u2_
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FIG. 2. The increase of the leading term coefficient A =
(D = 1)/2 + AA in the KSE due to the liquid bridge interaction
for two (solid line) and three (dashed line) dimensions.
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The analytical expression for the coefficient A is the central
result of the present Letter. We can see that the leading
term of the KSE immediately reacts on the humidity even
for a small water content, which is indicated by the strictly
positive slope of the corresponding curves in Fig. 2 in the
applicability region E),/T << 1. The dry limit of the
coefficient B gives the value —0.52 for D = 2. It is lower
than the theoretical and numerical results of Ref. [14],
which are 0.1045 and 0.679, respectively. One of the
reasons for that is the different definition of the collision
cycle. The accurate calculation of B is a separate and
complicated problem [16], but, as it gives the next order
correction to the KSE, its careful analysis was out of the
focus of this Letter.

In conclusion, we have shown that the presence of a
liquid in a granular gas significantly enhances the KSE of
this system and that analytic expressions for it can be
written down. We should point out that the details of the
force characteristic due to the liquid bridges are of minor
importance. Other force laws, such as a constant but hys-
teretic force [13], lead to similar results. The leading term
in the expansion of the KSE with respect to density
(no” < 1) is greatly influenced by the existence of bound
states. They are not present in the standard granular sys-

tems, in which dissipation comes about via the restitution
coefficient. Finally, it should be mentioned that relations
between the Lyapunov spectrum of microscopic dynamics
and macroscopic properties such as viscosity and heat
conductivity have been established within the last years
for several systems, in most detail for the Lorentz gas [20].
We hope that our results on the KSE of the wet granular gas
might help to develop analogous relations for dissipative
systems such as wet granular gases as well.
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