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In the present paper, the generalized continuous time random walk model with a coupled
transition kernel is considered. The coupling occurs through the dependence of the
waiting time probability distribution on the preceding jump length. For the description of
this model, a method is suggested that includes the details of the microscopic distribution
over the waiting times and arrival distances at a given point. A close analogy to the
problem of a random walk with finite velocity is demonstrated for the particular case of
coupling, when a waiting time is a simple function of a preceding jump length. With its
help an analytical solution for the generalized random walk model is found, including
both effects (finite velocity and jump dependent waiting times) simultaneously.

KEY WORDS: continuous time random walk model, coupled transition kernel, green’s
function, fractional derivatives, levy flights.

1. INTRODUCTION

A wide variety of Random Walk models have been studied in great detail and in
different contexts, providing a deep understanding of their properties. (1,2) The con-
tinuous time random walk model (CTRW)(3) is probably the most advanced and
flexible one. Anomalous diffusion transport phenomena, including Levy flights
and possible trapping of particles, significantly broadened its field of applica-
tions into biology, economics and social sciences. They also served as the basis
for the distribution of the language of the fractional derivatives. This is becom-
ing a powerful and useful tool in modern physics. (4,5) Various generalizations
and complications of the CTRW were proposed recently, e.g. truncated Levy
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flights, (6) or the finite velocity random walks.(7−11) From the point of view of the
general theory of random walks, the latter case is especially interesting. It has
a transition probability kernel, which can not be factorized in terms depending
only on space or time coordinates alone. (8,11) The most thorough and complete
results for this particular problem appeared in ref. 12 and almost simultaneously
in refs. 13, 14. Later the results were partially repeated in ref. 15 (see also ref.
16). A recent attempt to describe such phenomena in a general form was made
in ref. 17. However, the chosen initial equations were too rough to capture all the
peculiarities of the process. Refs. 13 and 14, where CTRW with a coupled transi-
tion probability was discussed, share the same disadvantage. The present paper is
devoted to the detailed analysis of the generalized CTRW model with a coupled
transition probability. Here, the waiting time distribution function is chosen to be
an arbitrary function of the length of the preceding jump. One can bear in mind a
natural “physiological” analogy. After making a jump one needs time to rest and
recover. The longer the jump distance, the longer are the recovery and the waiting
time. This is just one of many possible models that can be treated by the general
approach discussed here.

2. STANDARD CTRW MODEL

First we briefly describe the standard CTRW.(3) Consider one dimensional motion
of independent noninteracting particles. Each particle can make a jump of length x ,
with a probability density g(x). It is usually chosen to be symmetric g(x) = g(−x).
After a particle arrives at some point, it waits for a time τ , distributed with another
probability density f (τ ), and makes a subsequent jump. Functions g and f are
characteristics of the current model and responsible for the macroscopic transport
properties. This model gives a microscopic description of the diffusion process.
However, classical diffusion is just one particular case of a general set of possible
regimes. If, for example, g has a slow decaying power law tail and its second
moment,

〈
x2

〉 = ∫ ∞
−∞ x2g(x)dx , is infinite (so called Levy flights), it leads to the

superdiffusive behavior. If in turn f is heavy tailed and the mean waiting time,
〈τ 〉 = ∫ ∞

0 t f (t)dt , is infinite (“traps” of particles), we are in the situation of a
slower subdiffusive transport. When two effects are present simultaneously, a self-
similarity of the problem is defined by their interplay. It is now well known that
such anomalous transport can be described in terms of the fractional differential
equations: (4)

∂γ n

∂tγ
= −K (−�)βn, (1)

with a spreading of a cloud of particles according to the scaling law x ∝ tγ /(2β).
The constant K and exponents γ < 1, and β < 1 are defined by the power law tails
of f and g (see below). It should be noted, that a passage from the microscopic
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details to the asymptotic transport equation is not trivial at all. For the discussion
and peculiarities of this derivation we refer to a series of works (12,18,19) and already
cited reviews. Some of the important aspects will be revisited in this paper as well.

3. GENERALIZED CTRW WITH COUPLED TRANSITION PROBABILITY

Now we introduce a more general model. Suppose that a waiting time probability
distribution is a function of a preceding jump length. It means that particles, which
jump from x to x + y, wait before making the next jump for a time τ , determined
by the probability density function f (τ, |y|). The most natural and one of the
simplest is exponential, although it is not important for the following formulae.
We use it here only for the illustration:

f (τ, |y|) = 1

τr (|y|) e−τ/τr (|y|).

The mean waiting time dependence τr (|y|) is defined by the concrete problem,
for which one wishes to apply the model. Referring again to the hypothetical
physiological example, we can say that each step requires some energy, thus, a
corresponding time of recovery is necessary before making the next step. A natural
assumption is that the resting time is proportional to the spent energy or the length
of the preceding jump:

τr (|y|) = τ0 + α|y|γ , γ, α > 0, τ0 ≥ 0. (2)

The probability to stay in a given point until time τ , provided that a par-
ticle has arrived there from a distance |y|, is easily expressed as F(τ, |y|) =
1 − ∫ τ

0 f (τ ′, |y|)dτ ′ for any f (τ, |y|). For the jump lengths probability density
we use the standard power law form, g(x) = β(1 + |x |)−2β−1, β > 0. It allows us
to access different regimes of diffusion by varying the value of β: β > 1 classical
diffusion, β < 1 Levy flights and superdiffusion (provided there are no traps of
particles).

Particles resting at a given point have different life times and distances from
which they arrived. In order to distinguish between these particles we introduce
the microscopic density function N , depending on four parameters: coordinate x ,
time t , current resting time τ , and travelled distance y (there are only the first three
of them in the standard model (18)).

It should be stressed, that this additional step to the microscopic level is
absolutely necessary for correct and complete description of the CTRW model.
For example, it is well known that the asymptotic transport equations for the CTRW
of the form (1) (and even initial equations in the integral form, widely used in the
literature) do not conserve the continuity of evolution. This feature of transport
equations is also closely related to the problem of aging in CTRW models. (20,21)

Suppose we take some initial condition at t = 0 and let it evolve according to (1)
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for some time t1 > 0. Then we take its profile at t = t1 as a new initial condition
for the same equation and wait for another time t2. It is easy to check that the
resulting density profile would be different from that started originally at t = 0
and stopped at t = t1 + t2 without interruption (i.e. solutions of (1) do not possess
the semigroup property). This indicates inherently asymptotic nature of Eq. (1),
and the reason for that is the ignorance of the microscopic details. In ref. 19 it was
shown that it was possible to derive the transport equation, which preserves the
continuity of evolution, but only with the microscopic details explicitly taken into
account. This concept is followed in the present paper as well.

The macroscopic density, n(x, t), is given by the integral of N (x, t, τ, y) over
all possible waiting times and travelled distances:

n(x, t) =
+∞∫

−∞

t∫
0

N (x, t, τ, y) dτ dy. (3)

By writing t as an upper limit of the time integral, we assume that all particles
were introduced to the system simultaneously at time t = 0 with zero resting times.
This is done for simplicity and also to exclude the possible memory effect (see
ref. 19 for details). By the same reason we assume that in the initial distribution
all particles have zero arrival distances. The balance equation for a number of
particles in a given point has a standard form (cf. ref. 18):

n(x, t) =
+∞∫

−∞
g(y)

t∫
0

F(τ, |y|)Q(x − y, t − τ ) dy dτ + F(t, 0)n0(x). (4)

The density is a sum of outgoing particles from all other points at different times
given by the flow Q, weighted by jump length probability, and provided they
survived after their arrival till the time t . The last term on the right hand side is
just the influence of the initial distribution. The survival time distribution, and
therefore the transition probability kernel, depend now on both the waiting time
and jump length. This is the crucial difference as compared to the standard CTRW
model. A similar situation arises in the problem of a finite velocity of random
walks. (12) The finite velocity of a moving particle provides an effective additional
delay time, which also depends on the travelled distance.

The expression for the outgoing flow Q is given by the conditional probability
formula (18):

Q(x, t) =
+∞∫

−∞

t∫
0

N (x, t, τ, y) f (τ, |y|)
F(τ, |y|) dy dτ. (5)

It has a simple physical interpretation. At a given moment of time t , N (x, t, τ, y)
is a survived part of particles initially arrived to x from x − y time τ ago. It means
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that there were N (x, t, τ, y)/F(τ, |y|) of such particles at the time t − τ . Now
multiplying it by f (τ, |y|) we find its part, which is ready to fly away at time t
(after the waiting time τ ), and therefore gives the contribution to the outgoing flow
(5).

In a majority of cases, one usually searches an effective transport equation for
the macroscopic density of particles n(x, t) observable in experiments. This does
not appear to be an easy task, because of the complicated interrelation of micro-
and macroscopic densities, N and n, through the set of Eqs. (3–5). Nevertheless,
by using the self-similar dependence of N on its variables, the balance equation (4)
can be rewritten in terms of n only. (12,18) In the present paper we use ideologically
the same technique as in ref. 12, but in a slightly different realization. By equating
the right hand sides of Eqs. (3) and (4), it is easy to determine that N has a
self-similar dependence on its parameters:

N (x, t, τ, y) = F(τ, |y|) [g(y)Q(x − y, t − τ ) + n0(x − y)δ(y)δ(t − τ )] . (6)

Strictly speaking, the above equation represents the microscopic model of the
generalized random walk process and serves the basis for writing down the balance
equation (4) in the integral form. In some sense, an inverse derivation of this result
is due to the adopted standard “physical” point of view. It is more natural to
introduce first the macroscopic density and flow and then, if necessary, investigate
its microscopic details. Here, we want to outline that for random walk problems
the microscopic details (3) should be considered necessarily prior to writing down
the balance equation for the macroscopic density.

When N is substituted into the formula for the flow (5) in the self-similar
form (6), it eliminates the denominator in (5):

Q(x, t) =
+∞∫

−∞

t∫
0

[g(y)Q(x − y, t − τ ) + n0(x − y)δ(y)δ(t − τ )] f (τ, |y|) dy dτ.

The above equation can be solved with respect to Q(x, t) by using the Fourier and
Laplace transforms. They convert the space and time convolution type integrals
into a simple product of the Laplace–Fourier transforms of the integrands:

Qk,p = n0,k f p(0)

1 − {g(y) f p(|y|)}k
. (7)

Here indexes k and p correspond to the Fourier and Laplace components respec-
tively. Applying the same transformation to the balance equation (4) we find:

nk,p = {g(y)Fp(|y|)}k Qk,p + Fp(0)n0,k

= n0,k{g(y)Fp(|y|)}k f p(0)

1 − {g(y) f p(|y|)}k
+ Fp(0)n0,k . (8)
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Actually, this is the answer to the problem of generalized random walks with
a coupled transition probability. It should be noted here that to obtain this result,
we used just a few assumptions about the initial conditions and never referred to
the explicit form of the density f (τ, |y|).

4. EXAMPLES AND FINITE VELOCITY OF RANDOM WALK

To demonstrate the strength of the method and to compute some formulas in
usual time and space coordinates, we take the simplest waiting time distribution
function:

f (τ, |y|) = δ(τ − τr (|y|)), τr (|y|) = α|y|, α > 0.

The linear dependence of waiting times on the travelled distance makes this model
very similar to that with the finite velocity of walking particles. (12) Indeed, now
we have an effective constant velocity of jumps 1/α.

The combination {g(y) f p(|y|)}k in (8) becomes {g(y)e−αp|y|}k , and the result
can be written as:

nk,p = n0,k{g(y)Fp(|y|)}k

1 − {g(y)e−αp|y|}k
+ n0,k . (9)

In the above expression the initial delta-like condition, n0(x)δ(t), was separated.
After a first time step of the random walk, all particles would be distributed
according to the jump length distribution g, and then the first term on the right
hand side of (9) would come into play. To give an illustrative interpretation of this
result (9), it is necessary to summarize in brief the peculiarities of random walks
with finite velocity (for details see ref. 12).

It is well known that the classical diffusion equation, derived from the stan-
dard random walk model, possess one unphysical property. At any small t > 0
the density of particles is nonzero for any distant x even for the delta-like initial
distribution of particles, and, therefore, implies an infinite velocity of their mo-
tion. That is why the introduction of the finite velocity of walks is an important
generalization, which is much closer to the realistic picture of physical processes.
The CTRW model with finite velocity has been studied in detail in the context of
the radiative transfer in plasmas. (12)

Finite velocity brings significant changes to the corresponding Green’s func-
tion when the superdiffusive spreading of a cloud of particles, x ∝ t1/(2β), is faster
then the light front |x | = vt . This corresponds to a slow decaying tail of g with
β < 1/2. We suppose that in the model of the finite velocity there is no anoma-
lously long waiting times, and the asymptotic regime is determined by the jump
length’s distribution alone. For β > 1/2 the spreading of the cloud is distorted
only at far tails leaving the superdiffusive self-similarity unchanged. For β > 1,
when

〈
x2

〉
is finite, the classical diffusive behavior takes place. It is useful to give
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here an expression for the Fourier–Laplace transform of the Green’s function of
the finite velocity problem, Gv:

Gv,k,p = Fp

1 − f p{g(y)e−p|y|/v}k
.

Notations here are similar, g(y) and f (τ ) (not to confuse with f (τ, |y|)) denote
the jump length and the waiting time distributions. Since we are interested in the
asymptotic (macroscopic) behavior of the density profile, rather then using full
Laplace and Fourier transforms, it is possible to take their expansion in Taylor
series with respect to small k and p. In the absence of traps, but in the presence of
extremely long jumps (β < 1/2), it is sufficient to retain first terms in expansion of
f p and Fp. They are 1 and 〈τ 〉 respectively. The main contribution in the expansion
stems from the term {g(y)e−p|y|/v}k :

Gv,k,p = 〈τ 〉
1 − {g(y)e−p|y|/v}k

= 2 〈τ 〉 π−1 sin(2πβ)�(2β)

(p/v + ik)2β + (p/v − ik)2β
. (10)

The combination in the denominator, (p/v + ik)2β + (p/v − ik)2β , was also ob-
tained in(13−15). When transformed to the usual coordinates, it can be referred to
as the fractional material derivative (v−1∂/∂t ± ∂/∂x)2β . It also guaranties the
absence of particles beyond the light front. By setting k to be equal zero in (10)
we can see that the total number of resting particles is decreasing according to∫ +∞
−∞ Gvdx ∝ t2β−1. There is an irreversible transformation of resting particles

into flying ones (expression is given below). In the problem of the radiative trans-
fer, these two sorts have quite different nature. Resting particles are excitations
of ions in plasma while flying ones are the emitted γ quanta. The total number
of all particles, which is the sum of resting and flying once, is, of course, always
conserved.

It is easy to see, that the Green’s function of the final velocity random walks
(10) is an essential part of the answer for our initial problem (9) with v = 1/α. Its
solution in common space and time variables is given by the convolution integral
of Gv(x, t) with F and g. It is important that for some particular β, Gv(x, t) can be
calculated explicitly (inverse Laplace and Fourier transform of (10) can be found).
For β = 1/4 it has an extremely simple asymptotic form(12):

Gv(x, t) ∝ θ (vt − |x |)
v1/2t3/2

, v = 1/α.

The density of particles, given by (9), can now be easily plotted (see Fig. 1).
The total number of particles is conserved (there are only resting particles so far)
and they are resting before and beyond the light front. Peaks on the graph reflect
the ballistic self-similarity of the problem |x | ∝ t/α.

Another interesting question is the collective effect of the finite velocity and
the waiting times proportional to the jump lengths. The answer can be found in a
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Fig. 1. The density of particles (9) at different times for the random walk model with waiting time
being proportional to the preceding jump length: τr (|y|) = α|y|. We set α = 1 and take delta-like
initial condition n0(x) = δ(x).

straightforward way and looks very similar. Only slight changes in (9) occur:

nk,p = n0,k{g(y)e−p|y|/v Fp}k

1 − {g(y)e−αp|y|−p|y|/v}k
+ n0,k . (11)

Now this is an expression for the resting particles only. As already mentioned,
a finite velocity of moving particles leads to their separation into two groups –
resting and flying. At a given point there are always sitting particles, described by
(11), and flying to somewhere else. The density of flying particles in a given point
is determined by the flow Q (7) from all other points, with a corresponding delay
time(12):

nfly(x, t) = 1

v

+∞∫
−∞

Q

(
x − y, t − |y|

v

) +∞∫
|y|

g(z) dz dy. (12)

It is remarkable that a new effective velocity veff = v/(1 + αv) appears in
the denominator of (11). For example, if α = v = 1, it would be equal to 1/2.
Nevertheless, the light front border moves with v = 1, and it is the real physical
limitation on the particle’s positions (see the additional exponential in the numer-
ator in (11)). That is why we expect bordered by |x | = vt density profile with the
local maxima corresponding to the self-similar scaling |x | ∝ veff t . In the (Fig. 2)
the total normalized density, which is the sum of resting (11) and flying (12)
particles ntotal = n + nfly, is plotted. Although it has discontinuities at |x | = vt ,
indicating the accumulation of particles at this border, they are integrable and the
total number of particles is conserved

∫ +∞
−∞ ntotaldx = const.
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Only the simplest case of the linear proportionality of the waiting times
to the travelled distance was considered above. Of course, other dependencies
are also allowed. The main obstacle on the way to the solution is finding the
Fourier transform of the g(y) f p(|y|) combination. Its expansion in Taylor series
with respect to small k and p in denominator of (9) gives the asymptotic scaling
relation between k and p. For the considered examples, k ∝ p corresponds to the
ballistic regime x ∝ t . If the resting time is quadratic in jump length τr = α|y|2,
then such a long recovery time is not only bounding superdiffusion to the ballistic
scaling, but suppresses it to the classical diffusion k2 ∝ p (x ∝ √

t). For the
general dependence (2) the question remains open and probably, can be answered
fully only with the help of the numerical analysis.

5. CONCLUSIONS

The generalized CTRW model was considered, taking into account the waiting
time’s dependence on the jump length. The method, based on the self-similar prop-
erties of the microscopic density distribution, allowed us to find the Green’s func-
tion of the corresponding transport equation analytically. For the model example,
with the waiting time proportional to the preceding step length, we demonstrated
its close analogy with the finite velocity problem. We believe that considered ex-
amples indicate a possibility to apply the developed approach to the biological
systems, where the random walk together with the recovery processes and the
finite velocity are present. Such problems could be the foraging movements of
animals (22,23) or the motion of zooplankton. (24,25)

Fig. 2. The total density of particles ntotal(x, t)(solid line) and density of resting particles n(x, t)(dashed
line) at different times for the generalized random walk model. Both effects, jump depending resting
times and finite velocity, are taken into account simultaneously. α = v = 1, veff = 1/2, n0(x) = δ(x).
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