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Abstract—The transport of charged particles across a strong magnetic field with a small random component
is studied in the double diffusion approximation. It is shown that the density of the particles whose initial dis-
tribution is stretched along the field satisfies a subdiffusion equation with fractional derivatives. A more gen-
eral initial particle distribution is also considered, and the applicability of the solutions obtained is discussed.
© 2005 Pleiades Publishing, Inc.
1. In this paper, we consider the diffusion of magne-
tized charged particles in a strong time-independent
longitudinal magnetic field with a small random trans-
verse component. Such a situation often occurs in sys-
tems in which there is a preferential direction of the
magnetic field, e.g., in tokamaks, open magnetic traps,
and other types of magnetic confinement systems. A
stochastic magnetic field can be described in the sim-
plest diffusion approximation [1–3]. Although this
well-known approach has a long history and is widely
used in studying the problems of heat transport in
plasma, it is expedient to briefly outline its main aspects
in order to provide a better insight into the phenomenon
in question. The geometry of the problem is as follows.
The magnetic field B points preferentially in the z direc-
tion. This indicates that the component of the magnetic
field that is parallel to the z axis is much stronger than
its random transverse component δB, B|| @ δB. An
important point is that the magnetic field is nondiver-
gent, — · B = 0. A flux tube of such a field is shown in
the figure, which is borrowed from the excellent review
by Isichenko [4]. In a certain plane z = z0, we choose a
contour that encloses a bundle of magnetic field lines.
In moving in the longitudinal (positive or negative)
direction, we see that individual magnetic field lines
move away from one another and the contour is
deformed: it becomes more and more curved, but the
area enclosed by it is conserved because of the conser-
vation of the magnetic flux. As a result, the distance d
between the walls of the magnetic flux tube decreases
exponentially. When moving away from the z = z0

plane, we see that the contour fills the perpendicular
plane more and more uniformly. After averaging over
the tube cross-sectional area, we can say that the aver-
aged density b of the magnetic field lines decreases so
as to satisfy the diffusion equation in which the role of
time is played by the z coordinate (or, in a more general
case, the superdiffusion equation in which the role of
1063-780X/05/3112- $26.00 1071
the Laplacian is played by its fractional power , with
β < 1),

(1)

Here, DB is the effective diffusion coefficient [5] and z
is the absolute distance from the initial position of the
contour. Let us briefly comment on this equation. In the
problem as formulated, the mean magnetic field is gen-
erally the same over the entire space and has a certain
constant strength B0. However, if we wish to trace the
behavior of the density of a bundle of magnetic field
lines marked by the particles moving along them, then
we see that, because of the magnetic field fluctuations,

∆⊥
β

∂b
∂z
------ DB∆⊥ b.=

d

Magnetic flux tube in a magnetic field with a random com-
ponent.
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this density behaves according to a diffusion law, as is
implied by Eq. (1). In other words, by the quantity b
satisfying Eq. (1), we mean the density of the marked
magnetic field lines. As was said above, this approach
implies that, before applying the averaging procedure,
we must choose a certain contour enclosing magnetic
field lines in order to trace its deformation and expan-
sion in moving along the z axis. At this point, it is useful
to mention other approaches to describing a stochastic
magnetic field. The equation for an individual magnetic
field line can be written as

(2)

where r' is the coordinate in the plane perpendicular to
the z axis. The corresponding averaging procedure,
which inevitably involves certain assumptions about
the behavior of the random magnetic field component
δB⊥ , reduces Eq. (2) to Eq. (1). The form of Eq. (2)
clearly points to the analogy with the problem of a ran-
dom two-dimensional incompressible flow with a time-
dependent velocity field and with the problem of
Hamiltonian chaos [6]. An analogous result on the dif-
fusion of magnetic field lines can also be obtained in
terms of quasilinear theory (see, e.g., [7]). The above
behavior of the magnetic field may stem from different
reasons, primarily from various plasma instabilities
(see the papers cited above and also [8]).

We thus have determined how the magnetic field
should be described in the model developed here. The
next step is to describe the behavior of charged parti-
cles. It is well known that the squared ratio of the parti-
cle gyrofrequency to the collision frequency deter-
mines the ratio between the longitudinal and transverse
transport coefficients in a magnetic field. We assume
that the magnetic field is strong and, accordingly, that
the particles are magnetized, (ωB/ν)2 ∝ Dn||/Dn⊥  @ 1. In
the limit in which this ratio tends to infinity, the parti-
cles move exactly along the magnetic field lines and do
not jump from one line to another (the questions of the
transverse transport and about the applicability limit of
this approximation will be discussed in more detail
below). The density distribution of the particles along a
magnetic field line is determined by collisions among
them and by their collisions with other plasma parti-
cles. This distribution is also described by a diffusion
equation,

(3)

where l is the coordinate along the magnetic field line
and the longitudinal diffusion coefficient Dn is assumed
to be constant and to be the same for all particles (here-
after, we omit the subscript indicating that the diffusion
is in the longitudinal direction). Since the magnetic
field fluctuations are small, we can set l . z.

dr'
dz
-------

δB⊥

B0
----------,=

∂nb

∂t
-------- Dn

∂2
nb

∂l
2

----------,=
Hence, we have described the model with which we
will study the transport of charged particles in a sto-
chastic magnetic field. All the simplifying assumptions
of the model are well known and seem to be suitable for
providing an adequate description of the physical pic-
ture of heat transport. Note again that, in the above sim-
plified model, the magnetic field is time-independent
and the magnetized particles take a random walk
exactly along the magnetic field lines, without jumping
from one line to another. Thus, if a randomly moving
particle returns to its initial position, its transverse dis-
placement is zero. The task now is to give a rigorous
derivation of the equations that describe transverse dif-
fusion in the problem as formulated.

2. Although the diffusion equations describing the
magnetic field evolution and the evolution of the parti-
cles are simple and well studied, their simultaneous
solution in the model under consideration is a nontrivial
task. From the formal (mathematical) point of view,
Eqs. (1) and (3) are not coupled to one another: Eq. (3)
describes the particle transport as a function of time and
the z coordinate, while Eq. (1) describes the expansion
of the magnetic field lines in the transverse direction as
a function of the same z coordinate. It is easy to see,
however, that, when the stochastic behavior of a mag-
netic field line and the particle diffusion along it are
taken into account simultaneously, the result is effec-
tive transport in the transverse direction (for simplicity,
one can consider ballistic motion of the particles along
the field; in this case, the transverse particle transport
will occur in accordance with the diffusion of the mag-
netic field lines). Simple scaling estimates based on the
set of Eqs. (1) and (3) yield the following self-similar
relationship between the variables in the problem, or
equivalently, the following new relationship between
the spatial and the time scales:  ∝ t1/4. The most likely
candidates that possess this self-similarity property and
that can be used to describe the diffusion of passive par-
ticles (i.e., the particles that have no effect on the
medium) are, e.g., equations with the squared Lapla-
cian on the right-hand side and equations with a time-
dependent diffusion coefficient. However, equations of
the first type represent an unphysical situation because
their Green’s function is not of fixed sign, whereas
equations of the second type imply that the problem is
spatially inhomogeneous. These preliminary consider-
ations show that the answer should be sought in another
class of equations. It should be emphasized that, in
what follows, the desired equations will be rigorously
derived based on a precise formulation of the problem.

In constructing the most general solution for the par-
ticle distribution step by step, we consider a simple
problem in which the particles are initially localized at
the point (r0, ζ), i.e., n0(r) = n0δ(r' – r0)δ(z – ζ). The
radius vector r is defined by the pair (r', z), where r' is
the position vector in the plane that is perpendicular to
the z axis and passes through the point z. In this case,
the solution is quite evident—it is simply a product of

r
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the solutions to Eqs. (1) and (3) with the initial condi-
tions B0 and n0/B0, respectively:

(4)

The same solution can be obtained in a mathematically
more precise way. For simplicity, we consider a planar
problem in which the position vector r' has only one
component, r'  x (with this simplification, we will
arrive at the same final result but after far more illustra-
tive manipulations). The probability density for the
occurrence of a particle at a given point is equal to

.

From the equation of particle motion (see Eq. (2)), we
have

Here, V(t) is a random Gaussian variable with a zero
mean, which describes the collision-induced random
variations in the velocity of a particle moving along a
magnetic field line. The quantity (t) is the sum of
independent random quantities and is therefore a ran-
dom Gaussian quantity having the probability density
function

.

Analogously, we have

where (t), too, is a random Gaussian quantity with the
probability density function

Consequently, the sought-for probability density func-
tion is equal to

Taking the integrals in this function yields formula (4).

n r t,( ) n0
e

z ζ–( )2

4Dnt
------------------–

4πDnt
------------------- e

r' r0–( )2

4DB z ζ–
-------------------------–

4πDB z ζ–
----------------------------.=

δ r r t( )–[ ] δ r' r' t( )–[ ]δ z z t( )–[ ]=

dr/dt V t( )h, h B0 δB⊥+( )/ B0 δB⊥+ ,= =

z t( ) z0 z̃ t( )+ z0 V t '( ) t '.d

0

t

∫+= =

z̃

1

4πDnt
-------------------e

z̃
2/ 4Dnt( )–

x t( ) x0 x̃ t( )+ x0 V t '( )δB z t( )( )
B0

--------------------- t 'd

0

t

∫+= =

=  
δB z'( )

B0
--------------- z',d

0

z t( )

∫
x̃

1

4πDB z t( )
------------------------------e

x̃
2/ 4DB z t( )( )–

.

n x z x0 z0 t, , , ,( ) δ x x0– x'–( )δ z z0– z'–( )∫∫=

× 1

4πDB z'
------------------------e

x'
2
/ 4DB z'( )– 1

4πDnt
-------------------e

z'
2
/ 4Dnt( )–

dz'dx'.
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The above mathematical procedure corresponds to a
random time replacement or to the substitution of one
random process for the argument (carrier) of another
random process. The resulting random process will be
nondiffusive, and, moreover, it will be non-Markovian.
In what follows, it will be shown that the random-walk
process just considered, namely, the one whose argu-
ment is also a random-walk process, obeys a subdiffu-
sion scaling.

To do this, we consider an initial particle distribu-
tion that is uniform along the z axis. In experiments,
such a distribution can be produced, e.g., with the help
of a laser pulse.

It should be kept in mind, however, that, in this situ-
ation, particles with different coordinates ζ can occur at
the same magnetic field line; in this case, the above ini-
tial condition in the form of a delta function for the
equation describing the diffusion along this field line is
incorrect. However, for a two-dimensional random-
walk process, the probability that the trajectory will
return to its initial point is zero. This question, which is
important for achieving a realistic formulation of the
problem of the transverse evolution of particles distrib-
uted initially around the z axis in such a manner that the
transverse size of the distribution is much less than its
longitudinal size, will be discussed below.

In the model formulation of the problem, the solu-
tion is obtained by integrating formula (4) over ζ and by
setting r0 = 0:

(5)

The integral in formula (5) is expressed through the
Meyer’s G function, which is defined in terms of a
fairly involved contour integral containing Euler’s
gamma function [9]. The solution obtained, however,
can be investigated without reference to the asymptotic
expressions of this complicated special function. Let us
try to find out what equation function (5) would satisfy.
Taking the Fourier transformation of function (5) in the
variable r' and then the Laplace transformation of the
resulting function in the time t, we can easily calculate
the integral to obtain

(6)

Here, the subscripts p and k refer to the Laplace and
Fourier components of the function and the quantities p
and k themselves are the variables in the Laplace and
Fourier representations, respectively. We transform
expression (6) by multiplying it by the denominator of

n r' t,( ) 2 n0
e

z ζ–( )2

4Dnt
------------------–

4πDnt
------------------- e

r'
2

4DB z ζ–
-------------------------–

4πDB z ζ–
---------------------------- ζd

∞–

z

∫=

=  
1

8π2
DB Dnt

-----------------------------G03
30 r'

4

256DB
2
Dnt

-------------------------
0  0  1/2, ,

 
 
 

.

np k,
1

pDn
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p/Dn DBk2
+
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its right-hand side and by applying the inverse Fourier
transformation in the coordinate:

To within a factor of , the expression on the left-hand
side is nothing more than the fractional time derivative
of order 1/2. Finally, in conventional coordinates, the
equation satisfied by function (5) is rewritten as

(7)

In order for Eq. (7) to be capable of describing particles
that obey a uniform distribution in the longitudinal
direction and a given distribution in a direction trans-
verse to the magnetic field, it is sufficient to make the
replacement n0  n0(r'). We thus have shown that the
expansion of an initial particle distribution stretched
along the z axis is described by a subdiffusion equation.

The possibility of using a fractional-derivative sub-
diffusion equation with an appropriate self-similarity
property in analogous problems was pointed out by
Balescu [10]. In that paper, the parameters of the equa-
tion were chosen to satisfy the dimensional estimates of
the characteristic spatial and time scales of the problem
and also to be consistent with the results that were
obtained for the moments of the distribution function in
other models. It was not, however, clearly formulated to
what extent this equation is applicable to the physical
problem. In a subsequent paper [11] (see also [12]),
Vanden Eijnden and Balescu used a hybrid kinetic
equation in order to derive an asymptotic expression for
the particle density that was analogous to the expres-
sion obtained from an equation with fractional deriva-
tives and that provided exactly the same behavior of the
moments of the distribution function. An important
advantage of [11] is that Vanden Eijnden and Balescu
considered the possible mechanisms for collisional
transverse transport; this problem, however, is more
complicated and goes beyond the scope of the present
paper (see [13]). In what follows, a simple and rigorous
derivation of an effective transport equation that is valid
on arbitrary time scales will be proposed that does not
require any additional model assumptions. Moreover,
solution (4) applies to any localized initial particle dis-
tribution. The solution method proposed here also helps
to demonstrate a relationship with the model of ran-
dom-walk processes in continuous time and to analyze
memory effects that are exhibited by subdiffusion equa-
tions (see below) and are often fall out of consideration
and thereby are not discussed in the literature. It should
be noted that there are alternative approaches to solving
the problem under consideration, e.g., the approach
developed by Kota and Jokipii [14], who used the Kubo
formalism, which is based on an analysis of the velocity
correlation functions and yields a subdiffusion scaling,
too.

np p

Dn

------------- DB∆⊥ np

n0δ r'( )
Dn p

-----------------.+=

π

∂1/2
n

∂t
1/2

----------- DB πDn∆⊥ n
n0δ r'( )

t
-----------------.+=
At this point, it is also expedient to mention a paper
by Zybin and Istomin [15], who studied particle trans-
port in a random magnetic field and considered an anal-
ogous model called the “second-order diffusion”
model. They asserted that, in such a formulation of the
problem, the transverse transport is purely diffusive and
the assumption of a subdiffusion scaling is erroneous.
Note that the subdiffusion regime in the double diffu-
sion model was proposed as early as 1962 by Getmant-
sev [16] (see also [17]). A more detailed discussion of
the history of this issue, as well as of the relevant
numerical and theoretical results, can be found in [4], in
a recent review by Bakunin [18], and in a paper by Kota
and Jokipii [14]. It is of interest to note that the true der-
ivation of the subdiffusion scaling at the beginning of a
paper by Zybin and Istomin [15] was subsequently
declared invalid. The main error made by the authors of
[15] in considering their model example was that they
estimated the rate of diffusion of particles along the
magnetic field lines by the particle characteristic veloc-
ity. However, this estimate in fact corresponds to
switching from the original diffusive motion of the par-
ticles to their ballistic unidirectional motion and leads
naturally to a diffusion scaling. The use of such an
approach can stem from the assumption that the mag-
netic field is unsteady or from the assumption that the
particles can jump from one magnetic field line to
another due to collisions. Averaging over the ensemble
of realizations of the magnetic field, i.e., switching from
a fixed random magnetic field configuration to an aver-
aged configuration, also can yield analogous results,
which are erroneous in the model under consideration.

3. Subdiffusion equations have been known for a
fairly long time: rich experience has been gained in
using them, and their properties, solutions, and asymp-
totics have been examined in detail [19–21]. However,
not all of the papers considering subdiffusion equations
were based on a reasonable physical model (or even any
model at all) from which they were derived. This is why
it is necessary to mention interesting papers [22–24]
(see also [25]). It is expedient to point out only the main
properties of Eq. (7) (see [26]) because our purpose
here is not to consider the general features of subdiffu-
sion equations. The Green’s function for Eq. (7) is a
self-similar function of the form (see formula (5))

(8)

In our case, the self-similarity property, which, as a rule,
greatly simplifies the analysis of the equations, is attract-
ing in character. This means that any initial particle dis-
tribution will asymptotically evolve to the Green’s func-
tion profile. Recall also that the subdiffusion regime cor-
responds to a slower expansion of a particle cloud than in
the case of conventional diffusion: the characteristic
cloud width  increases according to the law

(9)

G r t,( ) 1

t
1/2

------Φ r'

t
1/4

------ 
  .=

r

r
2

DB Dnt( )1/2
.∝
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Note that this law determines the applicability limit of
the model proposed here: on long time scales, the evo-
lution of a particle cloud is governed by the competition
between subdiffusion expansion (9) and the slow trans-

verse diffusion  ∝  D*t, which was ignored up to this
point because of the assumption of a strongly magne-
tized plasma (see above). The determination of the
effective transverse diffusion coefficient D* for parti-
cles in a stochastic magnetic field is a fairly compli-
cated task. Following [2, 3], this coefficient can be esti-
mated by the formula D* = (δB/B)(Dn⊥ Dn)1/2; in this
case, we have Dn(δB/B)2 > Dn⊥  (of course, other esti-
mates can also be used, see, e.g., [27]). A comparison
of the above expansion rates yields the following esti-
mate for the applicability limit of the model developed

here: t ! t* = ( /Dn⊥ )(B/δB)2. We see that, for a
strongly magnetized plasma and for small magnetic
field fluctuations, this time can be fairly long.

All the features mentioned above could also be
derived directly from formula (5). For an asymptotic anal-
ysis, however, the Laplace–Fourier transformation
method makes this derivation somewhat more illustrative.
Moreover, in rare cases only, the Green’s function can be
expressed in terms of tabulated special functions in con-
ventional coordinate space, as in the above analysis.

An important property of subdiffusion equations is
that they exhibit memory effects, which were analyzed
in [28]. Equation (7) does not possess the property of
continuous evolution. In other words, if we consider a
state to which the system has evolved by a certain time
as a new initial condition, then the continuity of the
evolution is violated. Through a special choice of the
initial condition, it is also possible to affect the initial
stage of the process. For subdiffusion equations of form
(7), these effects manifest themselves on macroscopic
time scales. In [28], it was shown that, in order to pro-
vide an adequate description of the situation, it is nec-
essary to take into account the dependence on the
microscopic details of the transport process, as well as
of the initial distribution. Presumably, the reason why,
in our case, the continuity of the evolution is violated is
associated with the averaging of the magnetic field over
a small cross-sectional area in formulating the initial
condition in the diffusion approximation. This averag-
ing corresponds to a redistribution of the particles over
the magnetic field lines in such a way that no two of
them have different coordinates and occur at the same
field line. In order to preserve the continuity property, it
is necessary to take into account the distribution of the
particles over the magnetic field lines and to solve the
diffusion equations with an initial condition that
remembers all information about the prehistory of the
evolution. In so doing, however, it is necessary to know
the behavior of each magnetic field line and, conse-
quently, to solve exact dynamic equation (2), which is
a separate and complicated task. This is why, in what
follows, we will again use the above averaged descrip-

r
2

DB
2
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tion of the magnetic field but will give an estimate of
the extent to which this approach is realistic.

4. In order to demonstrate the consequences of the
memory effects, which, in the case at hand, stem from
the characteristic features of the initial particle distribu-
tion over the magnetic field lines, we consider a prob-
lem in which the particles are initially distributed over
a cylindrical region Ω of a certain radius and of compa-
rable height. In this problem, we are dealing with two
possible situations. In the first situation, the particles
are distributed in such a way that no two of them occur
at the same magnetic field line and have different coor-
dinates. In this situation, the solution for the particle dis-
tribution is obtained by simply integrating formula (4)
(the case when the region Ω lies in a plane perpendicu-
lar to the z axis also presents no problem because, in
this case, each of the particles occurs at its own mag-
netic field line):

(10)

In the second situation, the particles are distributed over
a cylindrical region Ω in such a way that they obey a
certain given distribution along each of the magnetic
field lines that cross the cylinder. What are the conse-
quences of such a distribution? Let us consider a mag-
netic field line such that its portion inside the cylinder
coincides with the cylinder axis and has a length a (with
such a symmetric model condition, the final result will
not change qualitatively, because we will be interested
in the behavior of the particles on spatial scales much
greater than the dimensions of the region Ω). Let the
coordinate origin be at the center of one of the bases of
the cylinder. In this case, the particle density is calcu-
lated by the formula (z > a)

(11)

where G(z, t) and B(r', z) are the Green’s functions of

Eqs. (1) and (3), respectively; A = ; and Az0 =

. If we use approximation (10) for the cho-

sen magnetic field line, then we arrive at a different
solution,

(12)

The main difference between density distributions (11)
and (12) is as follows. In formula (11), the particle evo-
lution is described by a single diffusion equation with
the initial condition n0(z) and the diffusive random walk

n r t,( ) n0 r0 ζ,( ) e

z ζ–( )2

4Dnt
------------------–

4πDnt
------------------- e

r' r0–( )2

4DB z ζ–
-------------------------–

4πDB z ζ–
---------------------------- r0 ζ .dd

Ω
∫=

n r t,( ) B r' z a–,( ) n0 ζ( )G z ζ– t,( ) ζ  . Ad

0

a

∫=

B r' z a–,( )G z z0– t,( ),

n0 ζ( ) ζd
0

a∫
ζn0 ζ( ) ζd

0

a∫

n' r t,( ) n0 ζ( )G z ζ– t,( )B r' z ζ–,( ) ζ .d

0

a

∫=
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of a given magnetic field line comes into play at the
point z = a. In formula (12), we are dealing with point
sources producing particles that diffuse along their own
magnetic field lines, which, in turn, are distributed dif-
fusively and originate from given points. By subtract-
ing one integral from another, we can estimate the accu-
racy of the averaged approximate formula (10). We
subtract formula (11) from formula (12) and take into
account the condition z @ a to obtain

(13)

where  =  – ζ)n0(ζ)dζ is a certain longitudinal

dimension of the region Ω that is averaged over the ini-
tial distribution. We thus see that, because of the diffu-
sive character of the function B on long spatial scales
z @ a, the discrepancy ∆n1 is small in comparison to the
mean value n of the particle density on such spatial
scales. This indicates that the particle transport is
asymptotically described by subdiffusion equation (7).

Let us now turn to Eq. (7), because it is the equation
for which we wish to analyze the influence of the mem-
ory effects. As the initial condition, we choose a general
particle density distribution whose asymptotic behavior
is described by Eq. (7). Let the region Ω be stretched
along the z axis and let the characteristic longitudinal
dimension of this region be much greater than the spa-
tial scale on which we will follow the evolution of the
particle density and which, in turn, substantially
exceeds the transverse dimension of the region, l|| @
r' @ l⊥ . The mean length a' of the portion of the mag-
netic field line that is inside the region can be estimated

from the diffusion scaling: a' = /DB. We are thus
faced with the situation that was considered above. The
only difference is that, in formula (13), we must replace
the length a with the estimate a' and integrate over the
cross-sectional area S of the region,

We denote by A0 = const the integral over the region
on the right-hand side of this formula. For n0 = const,
the integral is approximately equal to –Sa'2n0/2 ~

− , which will be used below for estimates. In
order to calculate the accuracy of this integral estimate
at the point (r', z), we must take the sum of the contri-
butions from the regions of length on the order of a' and

∆n1 n n' . 
∂B
∂z
------ r' z,( ) n0 ζ( )G z ζ– t,( ) a ζ–( ) ζd

0

a

∫–≡

. Az0'
∂B
∂z
------ r' z,( )G z t,( ),

Az0' (a
0

a∫

l⊥
2

∆n2 . 
∂B
∂z
------ r' r0– z,( )G z t,( ) n0 r0 ζ,( ) a' ζ–( ) ζ r0dd

0

a'

∫
S

∫

. 
∂B
∂z
------ r' z,( )G z t,( ) n0 r0 ζ,( ) a' ζ–( ) ζ r0.dd

0

a'

∫
S

∫

l⊥
2
a'

2
n0
switch from the sum to an integral over ζ with a weight-
ing function of 1/a',

Since the magnetic field satisfies Eq. (1), we can replace
the derivative with respect to the z coordinate with the
transverse Laplacian operator. Taking into account that
the Green’s function for the equation describing the par-
ticle density is independent of r', we can factor it out of
the integral sign. As a result, we arrive at the following
final estimate of the order of smallness of the approxi-
mation accuracy (see formula (4)):

(14)

where the particle density n(r', t) satisfies subdiffusion
equation (7) and is a self-similar function of form (8).

A more sophisticated problem is that in which the
magnetic field lines cross the initial region many times.
According to the theory of Brownian motion, the prob-
ability that the magnetic field line passes through the
initial region in a finite time (a finite value of the z coor-
dinate) is equal to unity. Since the diffusion equation
automatically takes into account the contribution of
such trajectories, it can be stated that the above diffu-
sion approximation adequately describes the situation
under analysis. Let us discuss this problem in more
detail. We choose a certain point with the coordinates
( , z1) in the region Ω. With a probability determined
by diffusion, a certain number of the magnetic field
lines that pass through the vicinity of this point also
pass through the vicinity of a point ( , z2) lying in the
region Ω (for definiteness, we set z2 > z1). By virtue of
the symmetry of the problem (see the comments on
Eq. (1) and formula (4)), we can reverse the direction of
motion1 and choose a bundle of magnetic field lines
passing through the vicinity of the point ( , z2) to see
that the same number of them should pass through the
vicinity of the point ( , z1). In other words, any two
points in the initial region are connected by magnetic
field lines whose density depends on the relative posi-
tions of the points. The contributions of these points to
the density of the magnetic field lines at a certain spatial

1 A similar effect underlies the mechanism of enhanced diffusion
in a stochastic magnetic field [2, 3]: a particle that starts from a
certain initial point will execute a random walk along a magnetic
field line and then, because of the slow transverse diffusion, it
will occur at a nearby magnetic field line and will move along it
but in the opposite direction; as a result, the particle, on average,
moves away over a long distance from the initial point.
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point ( , z3) should be calculated by summing them
with the corresponding diffusive weighting functions
B(|  – |, |z1 – z3 |) and B(|  – |, |z2 – z3 |). By
doing this, we automatically and correctly take into
account the trajectories that pass through all three of
these points (it is obvious that such trajectories always
exist). We thereby have shown that the above two
approaches to calculating the particle density at a given
point are completely equivalent to one another, specifi-
cally, the approach based on a correct total initial con-
dition that is formulated for the common magnetic field
lines and involves nontrivial density values n0( , z1)

and n0( , z2), which should be obtained by calculating
the probability for the trajectory to pass through three
fixed points (or even through more points, if account is
taken of the repeated returns of the trajectory), and the
approach based on formula (4) with the same initial
conditions on the particle distributions in the form of
delta functions but with allowance for the diffusive
expansion of the magnetic field lines. Consequently, for
an initial particle distribution over a region of finite
transverse dimension, the deviation of the evolution of
the particle density in the initial stage from that pre-
dicted by Eq. (7) can be attributed to the particles mov-
ing along the portions of the magnetic field lines that
are inside the initial region and have the mean length

a' = /DB. By virtue of estimate (14), the contribution
of these particles is small.

5. Thus, in considering the problem of the particle
transport in a strong time-independent longitudinal
magnetic field with a small random transverse compo-
nent, a simple method for calculating the particle den-
sity has been proposed and the criteria for its applica-
bility have been given. With this method, it has been
demonstrated that the evolution of an initial particle
distribution stretched along the magnetic field is
described by a subdiffusion equation with fractional
derivatives that has a self-similar solution consistent
with the well-known scaling  ∝ t1/4. It should be noted
that the problem considered above constitutes one of
the few examples of the rigorous derivation of an equa-
tion with fractional derivatives and thereby shows the
naturalness and importance of this approach to describ-
ing stochastic processes in which the subdiffusive
behavior of the particles is an inherent feature of the
physical phenomenon.
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