
Abstract. Quantum effects in the dynamics of a pair of mono-
polar vortices, arbitrary in their nature, are described in both
the Heisenberg and SchroÈ dinger languages. This system proves
to be very closely and universally related to a linear quantum
oscillator, which allows us to call it a `Hermite' system, in
regard to the eigenfunctions of such an oscillator.

1. Introduction

Two-dimensional point vortices are known to form highly
curious mechanical systems. Their properties are far different
from those of the habitual `natural' systems, in which the
kinetic and potential components of energy are clearly
discriminated and which obey the normal, Newtonian laws
of motion (see, e.g., Refs [1 ± 4]). While the investigation of
classical vortical dynamics has nevertheless been developed
fairly well [2] (although highly surprising evolution patterns
can be encountered even there [5 ± 8]), quantum-mechanical
approaches are still in their infancy (see Ref. [4] and the
references therein) and do not yet go far beyond the
determination of the energy spectra. (It is interesting that
Hamiltonian spin dynamics, being no less specific than and
somewhat similar to the quantum dynamics of vortices, is
elaborated much better [9, 10].) For this reason, it appears
important (even from a methodological standpoint) to
advance in the quantum-mechanical techniques of descrip-
tion and to study not only energetic but also dynamical
features of the quantum motion of vortices.

2. Classical distributed vortices

First of all, we recall the basic properties of distributed
vortical motions in continuous fluid media and the language
used to describe such motions. A general, universal law,
which is reflected by nearly all fundamental properties of
ideal (dissipationless) flows, says that the curl of the general-
ized momentum of the fluid particles in a medium is frozen in
the flow of this medium:

q rot p
qt

� H� �v� rot p� : �1�

This follows from the Hamiltonian nature of the motion of
fluid particles and from the existence of the PoincareÂ ± Cartan
integral invariant in classical mechanics [2, 3]. The momen-
tum p can be exemplified by the usual mechanical momentum
Mv in the dynamics of ideal fluids and the mechanical ± field
momentum Mv� qA=c in the magnetohydrodynamics of
charged fluids (plasmas or electron pairs in a superconduc-
tor).

We here consider only two-dimensional flows of contin-
uous media in the xy plane, and hence the curl of the
generalized momentum is a (pseudo)scalar P: H� p � Pez.
Because a (homogeneous) medium involved in vortical
motion can, as a rule, be assumed to be incompressible, the
velocity field is also specified by one (pseudo)scalar, the
stream function v � H� �Cez�. All specific properties of
various continuous fluid media (various types of fluid
dynamics or various types of vortices) are determined by a
linear relation between the two scalars:

P � L�C� �2�
(for example, L / D in the dynamics of ideal fluids). An
extremely important characteristic of the flow is the Green's
function of Eqn (2), c, which allows an `inversion' of the
problemÐ the determination of the flow in terms of the given
vorticity profile:
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�
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[obviously, c � c�r� in an isotropic medium]. All key
integrals of motion of a continuous medium can be expressed
in the `vorticity representation', precisely through this
function. This transition from v as the base characteristic to
H� p is equivalent (and similar in terms of convenience) to
the transition from the field to charge representation in
classical electrodynamics. Indeed, it can be readily seen that
the energy, generalized momentum, and angular momentum
of the fluid as a whole, which are conserved due to the original
space ± time symmetry of the system, can be rewritten as [5]

E � nd

2

�
pv d2r � nd

2

�
PC d2r

� nd

2

��
P�r�P�r 0�c�rÿ r 0� d2r 0 d2r ;

P � nd

�
p d2r � nd ez �

�
rP�r� d2r ; �3�

M � nd

�
r� p d2r � nd

2
ez

�
r 2P�r� d2r ;

where n is the concentration of fluid particles of the medium
and d is the thickness of the medium in the z direction. We
neglect the `curvature' of the vortices; therefore, this thickness
should be either very large �d!1� compared to all other
characteristic scales of the problem, for the `end' effects to be
negligible, or, conversely, very small �d! 0�, for any motion
in the z direction to be absent in principle (up to dimensional
quantization). We note in passing that not only does the form
of c depend on the original relation between p and v but this
function is also sensitive to the geometry of the problem (see
below). However, only the first (energy) integral is specific to
the given type of vortex, while the other two integrals are
absolutely universal; the answers that emerge below are
`universal' precisely due to this fact.

3. Classical point vortices

It is conventional to attribute the term point vortices to local
singularities of the vorticity field

P �
X
i

Gi d�rÿ ri� ;

which are characterized by their intensitiesGi and coordinates
ri. Actually, vorticity is not concentrated at isolated points
but is smeared over some area called the vortex core, of size a.
If this quantity is small compared to other parameters of the
problem (possibly, except d ) Ð such as the distance between
the closest vortices Ð the finite size of the core can be
neglected, to a first approximation.

Here, we only consider vortices with the same amplitude
(see the next section) and sign of intensity G0. In this case,
integrals (3) can be rewritten as

E � NG 2
0

X
i> j

c�ri ÿ rj� ;

P � NG0 ez �
X
i

ri ;

M � NG0

2

X
i

r 2i :

Here, we use the notation N � nd for the linear (two-
dimensional) concentration of the medium; the energy E is
renormalized by eliminating the self-energy of the vortices
(infinite at a � 0), which has no effect on their relative
motion. (We can again draw an analogy to charges in
classical electrodynamics: it is convenient to study their
mechanical motion assuming that they are points and
eliminating their self-energy.) The second integral, which
expresses the conservation of the `center of gravity' for a
vortical system of identical `particles', is trivial and has no
significant effect on the dynamics of their relative motion.

It can be easily seen that according to fundamental
equation (1), each vortex in such a discrete system is carried
by the flow produced by all other vortices, with no variation
in its intensity, and therefore the problem of the evolution of
the continuous medium (formulated in terms of partial
differential equations) reduces to a mechanical problem of
the motion of individual `particles' (described by ordinary
differential equations). It is this fact that makes such a P
representation so attractive (in addition, it is warranted by
genuine physical, quantum effects Ð see Ref. [4] and our
presentation below). As is well known, this mechanical
problem is Hamiltonian, with G 2

0

P
i> j c�ri ÿ rj� playing the

role of the Hamiltonian function, xi�t� and yi�t� playing the
role of canonical variables, and the corresponding Poisson
brackets given by the formula [1 ± 4]

f f; gg � 1

G0

X
i

�
q f
qxi

qg
qyi
ÿ q f
qyi

qg
qxi

�
:

These properties determine the following features of
vortical dynamics. If we focus our attention on the dynamics
in the xy plane, we see that in sharp contrast to Newtonian
mechanics, the positions of particles determine their velocities
rather than accelerations (on this basis, Kozlov [3] proposed
to call the mechanics of point vortices Cartesian); this means
that monopole vortices have no inertia, their motion is only
controlled by `particle' interaction, and they cannot be
characterized by any mass. If, however, we note that the
configuration space of the vortices is also their phase space,
such that one normal coordinate (for example, x) can be
regarded as a generalized coordinate and the other (y,
according to our choice) as a generalized momentum (which
halves the `effective' dimensionality), we observe that the
Hamiltonian of the problem,H, can in no way be represented
as the simple sum of a potential energy U�x� and a kinetic
energy / y 2. This unnatural (in the strict meaning of this
word) situation results in numerous unexpected peculiarities
in the behavior of discrete vortical system [6 ± 8].

Because quantum mechanics appears to be technically
much more sophisticated than classical mechanics, we here
consider only the pair interaction of vortices. Upon passing to
the variables R � r1 � r2 and r � r1 ÿ r2, the classical
dynamics of such a system proves to be controlled by the
integrals of motion

E � NG 2
0c�r� ; P � NG0 ez � R ; M � NG0

4
r 2 � const ;

which specify the laws R � const and r � const. If we
introduce new canonical variables q and p expressed through
the components of the vector r as q � ��������������

NG0=2
p

x and
p � ��������������

NG0=2
p

y (not to be confused with the above-men-
tioned canonical momentum of fluid particles), the classical
(effectively `one-dimensional') equations of motion assume
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the form

_q � fq;Hg ;
_p � fp;Hg ;

�
H � NG 2

0c
� ����������������

q 2 � p 2
p �

; M � q 2 � p 2

2

�4�

with the usual Poisson bracket in this case. Here, along with
the specific Hamiltonian, we intentionally write the `uni-
versalizing' momentum integral (for a system of two vortices
opposite in sign, the momentum integral plays a similar role
[4, 5]; however, this case is much more similar to that of the
motion of ordinary particles, because the dipole vortex has
`inertia', and we do not consider it here). The quantization of
such a system is ideologically trivial [4].

4. Quantizing the intensities
and interaction energy of vortices

The first implication of the quantum-mechanical effects is the
discretization of the possible vorticity values for an individual
vortex G0. Indeed, according to Bohr's rule, an integer
number of de Broglie waves must fit into any closed contour
encompassing the vortex core, i.e.,�

p dr �
�
Pd2r � 2p�h � ��1;�2; . . .� :

Because vortices with multiple `charges' are unstable and
decompose into elementary vortices, we can assume in our
case that G0 � 2p�h (the choice of a unique sign is not
important in principle and affects only the rotational
direction). Linguistically, the standard quantum-mechanical
derivation of this discreteness (see, e.g., Ref. [4]) deals with the
wave-function phase rather than vorticity, but it coincides in
essence with the above derivation.

As regards equations of motion (4), they can easily be
quantized by replacing the Poisson bracket of functions,
f f; ggq; p, with the commutator of operators, � f̂; ĝ�� f̂ ĝÿĝ f̂ ,
and taking the relation �q̂; p̂� � i�h into account. It can easily be
seen that the energy spectrum of a system of two identical
vortices can then be obtained from the Bohr ± Sommerfeld
rule (in Ref. [4] and the references therein, this procedure is
called `geometric quantization'), according to the formula�

p dq � p�q 2 � p 2� � 2p�h

�
k� 1

2

�
: �5�

Here, the integration in the phase plane (and, simultaneously,
in a regular plane!) is performed along the trajectory of
motion of the classical system Ð a circle of radius����������������

q 2 � p 2
p

. From here on, k is the principal quantum
number. We note the following interesting circumstance
(which was unfortunately ignored by Blatter et al. in their
excellent review article [4]). In fact, the angular momentum of
the vortical system,

M � �h

�
k� 1

2

�
;

is quantized here; due to the Hamiltonian `one-dimension-
ality' of the system, it contains 1=2 instead of 1, which is
typical of usualmotions in a plane (cf. Ref. [11]). It can readily
be seen that the obtained spectrum H� ����������������

k� 1=2
p � corre-

sponds in its physical meaning to especially highly excited,

extremely semiclassical energy levels, because, according to
Eqns (4),

k � pNr 2

2
4 1 ; �6�

where r is the physical distance between the two vortices;
evidently, this distance far exceeds Nÿ1=2 in the continuous-
medium approximation. Undoubtedly, such a large dimen-
sionless factor results from differences between the quantiza-
tion of themotion of individual particles and the quantization
of collective flows of a continuous medium.

Apparently, it is due to this circumstance that no interest
has been given in the literature to the quantum laws ofmotion
in vortical systems. From the practical standpoint, it is quite
sufficient to restrict the consideration to the classical
mechanical equations for a system of point vortices, taking
only the discreteness of their intensities into account
(similarly, a classical description of the motion of charged
particles is possible in many problems of plasma physics,
although the internal structure of these particles is exclusively
controlled by quantum physics).

Nevertheless, it seems ideologically very important to
consider the specific features of the quantum dynamics of
such nontrivial Hamiltonian systems, which is manifested
even in the energy spectra Ek obtained previously in many
studies. As physical examples of `unnatural' vortical Hamil-
tonians H / c, we can mention ÿ ln r for an ideal (or
superfluid) liquid [1 ± 3]; the Macdonald function K0�r=b�
for plasmas and massive superconductors (here, b � c=ope is
the London length, or collisionless-skin length) [4, 5, 12]; a
combination of the Struve and Neumann functions,
H0�r=b 0� ÿN0�r=b 0�, for Pearl vortices in superconducting
films and current sheets in plasmas �b 0 � c 2=�o2

ped �� [4, 5,
12 ± 14], which changes into 1=r for r4 b 0; or 1=r 4, which
characterizes the long-range fluctuational (Van der Waals)
interaction of vortices in layered superconductors [15, 16]. It
is most interesting that the answers prove to be highly
universal and apply simultaneously to the above-mentioned
functions and to any other symmetric functions c�r�.

5. Heisenberg representation

Most closely related to the classical technique of describing
dynamical systems (4) is Heisenberg's ideology of discretiza-
tion of continuous variables. Although it has remained nearly
unclaimed in quantummechanics by virtue of severe technical
difficulties emerging in practical problems [11], it unexpect-
edly proves to be an extremely convenient and adequate
investigation tool in our case of nontrivial vortical Hamil-
tonians.

According to this approach, the transition from the
canonical variables q, p, and H to infinite matrices should be
made in Eqns (4), as noted above, with replacing the Poisson
bracket by the commutator. In view of the commutation
relation for canonical variables, �q; p� � i�hE (where E is the
unit matrix), this yields

q_ � 1

i�h
�q;H� ;

p_ � 1

i�h
�p;H� ;

8>><>>: H � NG 2
0c
� ����������������

q2 � p2
p �

: �7�

The dynamical problem is considered solved if it is possible to
find q and p satisfying Eqns (7) such that H proves to be a
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diagonal matrix and the kth number in its diagonal is (the
above-determined) Ek.

Although the classical problem is essentially nonlinear,
the quantum-mechanical answer is virtually identical to that
found by Heisenberg himself for a (one-dimensional) harmo-
nic (i.e., linear) oscillator: because the combination q2 � p2

(angularmomentumM!) is diagonal in this case, the nonlinear
function H� ����������������q2 � p2

p � is trivial:

q � i

����
�h

2

r 0 1 0 � � �
ÿ1 0

���
2
p � � �

0 ÿ ���
2
p

0 � � �
� � � � � � � � � � � �

0BB@
1CCA ;

p �
����
�h

2

r 0 1 0 � � �
1 0

���
2
p � � �

0
���
2
p

0 � � �
� � � � � � � � � � � �

0BB@
1CCA ; �8�

H � NG 2
0

c�1� 0 0 � � �
0 c� ���3p � 0 � � �
0 0 c� ���5p � � � �
� � � � � � � � � � � �

0BB@
1CCA :

For brevity, we have written only the amplitude values of the
matrices. We recall that the phase of each element Ai j of the
matrix A is, generally, exp

�
i�E i ÿ Ej�t=�h

�
[11]. Because c�r� in

all physical problems is a monotonically decreasing function
of its argument (see Refs [5, 7]), the eigenenergy Ek of a
vortical pair decreases as k increases.

6. SchroÈ dinger representation

We can now consider a sort of projection of the actual two-
dimensional motion in the xy plane onto the q axis and find
what the SchroÈ dinger approach to the description of quantum
vortical motion yields.

Obviously, wemust consider the procedure for solving the
familiar equation

i�h
qj
qt
� Ĥ

 �������������������������
q 2 ÿ �h2

d2

dq 2

s !
j �9�

(we here let the wave function be denoted by j to avoid
confusion with c used above). Generally, imparting a clear
mathematical meaning to nonlocal operators (such as the
square root or even the logarithm of a derivative) is not a
trivial task (see, e.g., Ref. [17]). However, it can be resolved
quite simply in this case. We can use the completeness of the
eigenfunction system for a one-dimensional (in q) harmonic
oscillator to represent the sought wave function j as

j �
X
k

ckjk ;

where

jk �
1���

�h4
p ���������

2kk!
p exp

�
ÿ q 2

2�h

�
Hk

�
q���
�h
p
�
;

withHk being the Hermite polynomials. Then, because �������������������������
q 2 ÿ �h2

d2

dq 2

s !
jk �

��������������
2k� 1
p

�hjk ;

we obviously have

Ĥj �
X
k

ckEkjk :

Therefore, the eigenfunctions of the Hamiltonian for the pair
interaction of vortices are the eigenfunctions (cf. the preced-
ing section) of the operator M̂, which coincide with the
standard Hermite functions. This answer is completely
universal [which, as promised, is an obvious manifestation
of the universal nature of law (1)] and applicable to any kind
of vortices in any isotropic medium. Differences between
hydrodynamic behaviors manifest themselves only in the
spectrum Ek / c�2k� 1� and the time dependence of jk.
However, these differences may be important; for example,
because the energy levels are not equidistant here, no coherent
states typical of a normal oscillator are present [11].

It is interesting that the above solution is exact rather than
semiclassical. We can conclude that physically highly excited
levels of the quantum motion of (any) two interacting
monopolar vortices can be described (in quantum physics)
by the classical Hermite functions (cf. the preceding section).
For this reason, we find it expedient to introduce the term
Hermite states by analogy with the currently popular
Rydberg states in highly excited atoms and ions [18]. We
emphasize once again that this property of reducibility to the
basis model applies rigorously in vortical dynamics.

7. Anisotropic vortices

The isotropy of the original fluid medium, which gives rise to
a unified integral of motion M, additional to the specific
energy, is in no way a necessary attribute of the vortical
problem. Another example of a nontrivial Hamiltonian is the
problem of vortical motion in an HTSC-ceramics-type
layered superconducting medium, in which the electron flow
is only permitted in the xy plane [15]. At distances that are
long compared to the London length, the interaction of two
vortices that are identically tilted (i.e., parallel to the line
x � 0, yÿ z tan a � 0) obeys the law

c / tan2 a�x 2 ÿ y 2�
�x 2 � y 2�2 ;

and hence their classical motion (for instance, in the plane
z � 0) is described by Eqns (4) with the Hamiltonian

H � A

2

�
�q 2 ÿ p 2� 1

�q 2 � p 2�2 �
1

�q 2 � p 2�2 �q
2 ÿ p 2�

�
; �10�

where A is a proportionality factor. We symmetrized the
Hamiltonian from the very beginning, keeping in mind the
subsequent transition to a quantum-mechanical description,
which implies that the operators constituting this Hamilto-
nian are not commutative. Actually, the level contours of c
near the coordinate origin (at r4 c=ope) are closed ellipses
(see Ref. [15]), which deviate from the contours given by
Eqn (10) in an understandable way; however, this effect can
be taken into account in perturbation theory for the system in
Eqns (4) and (10).

The Bohr ± Sommerfeld quantization of the energy levels
of motion (5), taking into consideration that the classical
trajectory of motion specified by the condition H � E is a
Bernoulli lemniscate (whose lobes are isolated from each
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other, according to the above remark on the reconnection of
the level contours of H), yields the spectrum (relative to the
lemniscate area; see Ref. [19])

Ek � A

2p�h�2k� 1� ; �11�

here, negative k values, which describemotion along the lobes
turned by 90�, are quite admissible. Actually, the quantum
`tunnel' interaction of the lobes that are separated in the case
of classical motion should result in the splitting of energy
levels (into odd and even states) and in their small shift with
respect to those given by Eqn (11); this effect, however, can
also be included in perturbation theory.

Unfortunately, the use of the matrices q and p from
Eqns (8) in the Heisenberg representation is not advanta-
geous in this case, because H proves to be a two-diagonal,
rather than diagonal, matrix: it has nonvanishing compo-
nents Hi j with i � j� 2. However, Born, Heisenberg, and
Jordan have shown in their classic study [20] that if we can
diagonalize this matrix using the transformation
H0 � Sÿ1HS with a matrix S, then we obtain q0 � Sÿ1qS
and p0 � Sÿ1pS, respectively (because this transformation
preserves the commutation relation between the canonical
variables). Because we already know the eigenvalues H0, we
also know the matrix Hÿ lkE, k � 1; 2; . . . ; which can be
used to obtain the eigenvectors of the transformation and to
subsequently construct S. In other words, the new problem
also offers at least a recursive relation for the construction of
its Heisenberg description.

Implementation of the SchroÈ dinger ideology also involves
some difficulties. Of course, the expansion of the eigenvalues
jk of Ĥ in terms of the Hermite functions makes it possible to
remove the annoying denominator in Eqn (10), but the
numerator again permits us to obtain only a recursive
relation for the expansion coefficients cki (here, k is the index
of an eigenfunction rather than a power, and i is the current
index rather than the imaginary unit):

cki
p�2k� 1� � cki�2�i� 2��i� 1�

�
1

�2i� 5�2 �
1

�2i� 1�2
�

� ckiÿ2
2

�
1

�2i� 1�2 �
1

�2iÿ 1�2
�
:

It can be seen that the odd and evenHermite functions appear
independently in the expansion (this is also evident from the
symmetry of the problem; see above). The solution of this
recursion is not known to us, and we therefore write an
explicit expression only for the function with k � 1 �E � 0�,
which corresponds to the `separatory' (along x � �y) motion
in the lemniscate. This function is a solution of the equation

�h2
d2j
dq 2
� q 2j � 0 ;

i.e.,

j1 /
������
q 2

�h

4

r
J�1=4

�
q 2

2�h

�
;

where J�1=4 is the Bessel function (two solutions are present
due to the degeneracy of the considered infinite motion and
themerger of motions with k > 0 and k < 0 at the separatrix).

In complete agreement with the oscillation theorem [11], such
a j function has an infinite number of zeros.

Nevertheless, although the anisotropic case is far different
from the original situation, it allows us to make significant
progress in studying two-dimensional vortical systems based
on the standard solution of the problem of a one-dimensional
harmonic oscillator, in the framework of both the Heisenberg
and SchroÈ dinger approaches.

8. Conclusion

We have demonstrated that the quantum dynamics of a
vortical system is, in some respects, highly universal and
unified, even for media substantially differing in their
hydrodynamics (ideal fluids, plasmas, superconductors,
etc.). Based on the language developed to describe a normal
linear oscillator, it can be characterized as `Hermite' (in terms
of its close relation to the Hermite functions rather than self-
adjointness). The nature of this relationship is in the
coincidence of the additional momentum integral in two-
dimensional, `Cartesian' vortical motion with the Hamilto-
nian of a one-dimensional, `Newtonian' system.

A practical observation of the examined quantum
dynamics appears to be a very difficult but not hopeless
task. Obviously, thin films of superfluid helium would be the
most appropriate object of observation. Indeed, because both
d and a can (at least, in principle) be of the order of atomic
sizes for such films, the necessary condition r > a does not
contradict the realization of a regime with k � 1 [see
condition (6)], i.e., it does not contradict a strong `shot'
effect in the possible distances r. However, atomic sizes and
energies must also be resolved. Potentially, similarly thin
superconducting films have macroscopic a values (the
coherence lengths, or the sizes of the Cooper pairs), which
are in no way less than 100 A

�
; therefore, k > 104 for them.
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