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In this work we derive an analytic expression for the Kolmogorov-Sinai entropy of dilute wet granular
matter, valid for any spatial dimension. The grains are modeled as hard spheres and the influence of the wetting
liquid is described according to the capillary model, in which dissipation is due to the hysteretic cohesion force
of capillary bridges. The Kolmogorov-Sinai entropy is expanded in a series with respect to density. We find a
rapid increase of the leading term when liquid is added. This demonstrates the sensitivity of the granular
dynamics to humidity, and shows that the liquid significantly increases the chaoticity of the granular gas.
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I. INTRODUCTION

The field of granular physics has undergone considerable
progress in recent times �1,2�. As part of soft matter physics,
granulates have inspired the development of nonequilibrium
statistical mechanics �3,4�. Its potential to the foundation of
physics can hardly be overestimated, since granular gases
provide a road away from the well-developed Boltzmann-
Enskog theory of conservative gases towards dissipative sys-
tems far from thermal equilibrium. In connection with geo-
physics, some aspects of landslides may be understood in
terms of a solid-liquid phase transition of wet granular matter
�5–7�, and wet granular gases are of technological relevance
in granulators, pelletizers, and other instances in process en-
gineering.

Wet granular gases are systems consisting of mesoscopic
particles and a liquid phase wetting the particles. Despite
their importance, the theory of wet granular matter is still
nascent. There is a growing number of experimental �8� and
numerical work �9� on this subject, but the hysteretic nature
of the liquid bridge interaction was not taken into account in
the modeling. We stress that the attraction force mediated by
capillary bridges is not a function of distance but depends on
the collision history. The theory of wet granular matter ad-
vanced with the recent simulation and models describing the
free cooling state �10,11�. To the best of our knowledge, the
hysteretic dissipative dynamics of wet granular matter was
treated analytically first in �12�. In this paper we elaborate on
this approach which treats the wet granulate as a complex
dynamical system and uses powerful tools available in this
area. Such is the Lyapunov spectrum,

� j = lim
t→�

1

t
ln

�� j�t�
�� j�0�

. �1�

It gives the rate of exponential divergence or convergence
of two equal copies of the system in phase space, �� j�t�
=� j

�1��t�−� j
�2��t�, with perturbed initial conditions �� j�0�. A

positive Lyapunov exponent indicates chaotic behavior, i.e.,

sensitive dependence on the initial conditions �13�. Since we
are dealing with a closed system the sum of all positive
Lyapunov exponents equals the Kolmogorov-Sinai entropy
�KSE� �14,15�.

The KSE is an indispensable tool in the modern descrip-
tion of dynamical systems. First, from it we learn about the
degree of chaoticity because its inverse is the time scale of
predictability. Second, this dynamical entropy is a well-
defined quantity for both equilibrium and nonequilibrium
systems. Third, when tiny deviations of initial conditions that
were not observable in the beginning are enlarged by the
evolution, this can be interpreted as the production of infor-
mation about the initial conditions. Finally, the KSE is
known to be related to macroscopic properties such as trans-
port coefficients �16–22�.

Our objective is to compute the KSE for the wet granular
gas. Pioneering work has been done by van Beijeren et al.
�23� and Dorfman et al. �24� in the analytic treatment of
sums of Lyapunov exponents for the gas of hard elastic
spheres. We develop a generalization of the method sug-
gested in �23�.

This paper is organized as follows. In Sec. II we describe
in detail the hysteretic interaction of wet granulates. This
capillary model allows the sticking of particles by attractive
forces in contrast to the “standard model” for dry granulates
which assumes that a certain fraction of energy is lost instan-
taneously by inelastic collisions. In Sec. III we use the ter-
minology developed in Sec. II to relate the behavior of the
two-particle system to the full N-particle system. Thereby we
are lead to determine the probability distribution for collid-
ing pairs of particles in Sec. IV. In Sec. V we derive the
formula that expresses the expansion of velocity space as a
function of the two-particle initial conditions for arbitrary
spatial dimension. In Sec. VI the results of Secs. III–V are
combined to accomplish the computation of the KSE.

II. CAPILLARY MODEL

There is an experimentally well confirmed capillary
model for the dynamics of wet granulates that will be applied
here �7�. The system consists of hard spherical grains with
equal diameter � and equal mass m. These are covered by a
liquid film, so that every time two particles touch, a liquid
bridge is formed. The capillary model assumes that bridges
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are formed instantaneously. As we focus on the dilute gas,
we may restrict our considerations to pair interactions.

Experiments and computations �25,26� yield a capillary
force law that is excellently described by

F =
��� cos 	w

1 + 0.74s + 1.25s2 , �2�

with the wetting angle 	w, the surface tension �, and
s=s�� /Vbridge being the surface separation s expressed in the
natural length unit �Vbridge /� of the liquid bridge volume
Vbridge.

The capillary model assumes that the bridge pinches off at
a critical surface separation s=scrit �i.e., at a distance
rcrit=�+scrit of the centers�. To leading order, the rupture
distance scrit equals the cubic root of the bridge volume
Vbridge. The energy that was stored in the stretched liquid
bridge before the rupture is dissipated into the liquid and lost
for the granular motion. We emphasize that this is the only
dissipative mechanism in the capillary model �cf., the review
article �5�, especially Fig. 7 therein, for the capillary regime
in which the capillary model applies�. In the moment of the
rupture, the system is non-Hamiltonian because the atomic
degrees of freedom of the liquid to which energy flows are
masked out in the description of the granular dynamics. Of
course the forces acting on the grains are finite at the rupture,
so that the trajectories �as functions of time� are continuous
in the granular phase space and differentiable with respect to
the initial state before the rupture.

By a collision we denote the moment when two particles
in the entire N-particle system touch each other. Since we are
interested in statistical statements and a point in time is of
measure zero, we can assume without loss of generality that
there is a unique sequence of collisions. For a certain pair of
colliding particles, we refer to the “collision cycle” as the
time interval �ti , tf� that comprises the collision of these two
particles. The collision cycle starts at ti when the last particle
of the two breaks free from its former collision partner and
ends at tf in the moment when the liquid bridge between
them ruptures.

During its collision cycle the radial motion of the two-
particle system traverses a hysteresis loop. This is shown in
Fig. 1 for the force �2� �dashed line� and for a simpler force
law �solid line�. The solid line in Fig. 1 falls off linearly with
the surface separation s. This is the extended capillary model
in contrast to the minimal capillary model of �7� which as-
sumes a constant force. The corresponding hysteretic “poten-
tial” of the extended capillary model is


�r�
Eloss

=�
− 1, � � r before first collision,

− � rcrit − r

rcrit − �
�2

, � � r � rcrit after collision,

0, rcrit � r after collision,

� , r � � .
	

�3�

In both, the minimal and the extended capillary model, the
hysteretic loss of energy, i.e., the area Eloss=−
�

�+scritFrdr in
Fig. 1, is a characteristic system property. When the energy

in the center of mass system is below Eloss, colliding particles
will form a stable bound state with periodic collisions. With
faster relative motion the liquid bridge exists for a finite time
until the particles scatter off each other. We define a corre-
sponding relative velocity vloss by Eloss=mvloss

2 /4 �with the
additional factor 1 /2 because m /2 is the reduced mass�.
From this point on we distinguish between scattering events
and collisions leading to bound states. For the scattering, the
restitution coefficient 
=Ef /Ei of the capillary model is an
increasing function of the initial energy or velocity:


�Ei� =�1 −
Eloss

Ei
or 
�vi� =�1 −

vloss
2

vi
2 . �4�

The binding threshold Eloss of the capillary model contrasts
sharply with the widespread models for dry granules that
assume either a constant or with increasing velocity a de-
creasing coefficient of restitution for the collision of vis-
coelastic particles �2,36�.

Let us denote by vcrit the critical modulus of the relative
velocity v� i�v�1−v�2 that determines wether the incoming par-
ticles will form a bound state or scatter. For head-on
collisions �impact parameter b=0� vcrit=vloss, otherwise
vcrit�vloss since there is additional energy in the rotary mo-
tion. The next step is to determine vcrit as a function of b.

Determination of critical velocity

The bridge interaction is a central force problem. If vi is
lower than vloss, the effective potential


eff�r� =
mb2vi

2

4r2 + 
�r� �5�

�of the liquid bridge potential given by Eq. �3�� does not
reach a maximum in r after the collision and leads to a bound
state. For most vi�vloss the particles scatter, but there are

FIG. 1. Radial forces between a pair of wetted spheres. Solid
line: The radial force of the extended capillary model is
plotted versus the center distance r. There is no interaction
between the particles as they approach. After the collision applies

F� �r�=−Fmax
rcrit−r

rcrit−�
r�
r for r� �� ,rcrit�, otherwise there is no force.

Dashed line: Experiments yield a decreasing force law �25,26� with
a discontinuity at the rupture. Therefore the even simpler minimal
capillary model which assumes a constant force that drops to zero at
the critical separation is a good alternative approximation. The hys-
teretic interaction is the relevant property which is described by
both the minimal and the extended capillary model.
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some bound cases with high angular momenta, correspond-
ing to high impact parameters. Figure 2 shows three effective
potentials for a given initial velocity vi and different impact
parameters b. In the case drawn with solid lines, b and vi
fulfill the critical relation vi=vcrit�b�. For the higher b �dotted

line in Fig. 2� we have vi�vcrit�b� so that a bound system is
formed. Hence the criterion is that 
eff�r� touches the
asymptotic energy Eloss−mvi

2 /4 in a single point. For the
extended capillary model it is possible to calculate
these intersections explicitly. These are the roots of
�Eloss−mvi

2 /4+
eff�r2, which is a fourth order polynomial in
r with one trivial root at r=0 and another unphysical root for
r��. So there are two real roots for the bound state which
turn into a complex conjugated pair of roots for the scatter-
ing state. �Since the derivative of 
eff is continuous and
negative at r=rcrit, the turning point rmax of a bound state
follows correctly from this analytic consideration to be
rmax�rcrit without the need to take the nonanalytic
point r=rcrit of 
eff into account.� The easiest way is to com-
pute the discriminant of the fourth order polynomial
�Eloss−mvi

2 /4+
eff�r2, which is equal to

16v4b4 + �8v6 − 4v4�5� + 9� + v2�27 + 18� − �2��b2 − v6

+ v8 + 3v6� + 3v4�� − 1�� + v2�� − 3��2 − �3,

with �=�
2rcrit−�

�rcrit−��2 . The discriminant vanishes as the two

physical roots coincide. Since the impact parameter b enters
the problem only through the angular momentum term in Eq.
�5�, the discriminant is a quadratic function of b2. Therefore
it is elementary to give bcrit�vi� as the inverse function of
vcrit�b� explicitly:

bcrit�vi�
�

=
�− 8 − 20�2 + �4 + 16w2 + 20�2w2 − 8w4 − ��8 + �2 − 8w2�3/2

4�2w�� − 1�
, �6�

with �=
rcrit

rcrit−� and w=
vi

vloss
. This function is plotted as the inset

in Fig. 2. Much more concise is the corresponding function
for the minimal capillary model:

vcrit�b� =
vloss

�1 −
b2

rcrit
2

. �7�

In the following sections including the main results
�41�–�44� of this paper, we shall be completely general with-
out the need to specify the minimal or extended capillary
model.

III. HOW TO RELATE THE TWO-PARTICLE SYSTEM TO
THE N-PARTICLE SYSTEM

In the previous section we have shown how on the level
of two-particle interactions the most important property of
the real wet granular gas, namely the hysteretic binding and
breaking of liquid bridges, can be modeled. Further, we have
seen that the bond energy of the liquid bridge gives rise to

the sticking of particles. In this section we treat the many-
particle system.

Let � denote the mean collision frequency per particle. If
the modulus of the initial relative velocity vi is lower than
vcrit, so that particles stick together, the collision cycle is not
terminated until a third particle bumps into the bound two-
particle system. We assume that the outstate of such a three-
particle event contains free particles because the formation of
higher mass clusters is rare in the gaslike state �cf. Fig. 10�.
The pair interactions taking place in the N-particle system
may be envisaged as shown in Fig. 3. The number of colli-
sions up to time t is denoted by s�t�. Since s�t� is strictly
monotonic its inverse t�s� exists. The collision rate of the
system, s / t�s�, tends for s→� to N� /2 �each collision in-
volves two particles�. To have the steps visible Fig. 3 has
been drawn for low N. The horizontal bars represent the
concept of collision cycles introduced in the last section.
There are two particles which are going to collide. As the
beginning of the collision cycle we take the time when the
last of these two particles has ruptured its liquid bridge con-
nection to some previous collision partner. The collision
cycle will end when these two particles rupture the liquid

�
eff

0 � r
crit

OO

r

0

FIG. 2. The effective potential for vi�vloss and three different
impact parameters. For the solid line in the middle b and vi are
critical. For the higher b �dotted line� the particles are bound, for a
lower b �dashed line� they scatter. The inset shows the complete
space of collision parameters. The critical velocity vcrit �plotted in
units of vloss for rcrit=2�� as a function of the scaled impact param-
eter b /� divides the plane in bound and scattering states.
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bridge between them. Thus a solid arrow in Fig. 3 shows that
one of the particles which just finished its collision cycle
immediately begins another one. The dashed arrow indicates
that a third particle �that came out of another collision cycle�
ends a bound two-particle state.

With this picture in mind the computation of the KSE can
be tackled. As stated by Pesin’s theorem the KSE equals the
sum of all positive Lyapunov exponents because the system
is closed and sufficiently chaotic �14�. Lyapunov exponents
describe the rate at which a certain direction in phase space
grows or shrinks for large times. There is a orthogonal set of
Lyapunov vectors � j describing the direction while the asso-
ciated Lyapunov exponent � j describes the exponential rate

� j�t� � � j�0�e�jt �8�

for long times t. According to the sign of � j one speaks of
stable or unstable directions. The deviations in the initial
conditions are infinitesimally small, i.e., the Lyapunov expo-
nents characterize the tangent space map associated with a
certain trajectory. In an ergodic system the Lyapunov spec-
trum 
� j� is independent of the trajectory according to Os-
eledec’s theorem �27�. There is no doubt about the ergodicity
of the gas of N�1 hard spheres �28�.

Since in a dilute system the free flight time and the mean
free path are large compared to the interaction time and the
range rcrit of the interaction, perturbations of velocities are
amplified as compared to spatial deviations �23�. This is not
to be understood as neglect of the spatial Lyapunov expo-
nents. The capillary model is symplectic �11� so that for each
positive exponent � j there is a negative exponent �k=−� j and
the fact that the spatial deviations remain small means that
the spatial directions mainly contain negative Lyapunov ex-
ponents, while the positive ones are assigned to velocities.
So the conjecture is that the velocity space coincides �ap-
proximately� with the unstable manifold of the system.
Based on this conjecture the KSE, hKS, is given by the loga-
rithmic volume growth rate in velocity space:

hKS = lim
s→�

1

t�s�
ln�det �

i=1

s

Mi� . �9�

The deviation matrix Mi of the i’s collision cycle is restricted
to velocity space, so that it describes the evolution of veloc-
ity perturbations. There are three crucial points here: �i� This
limit exists by virtue of Oseledec’s multiplicative ergodic
theorem �27�. �ii� We have a unique collision sequence. �iii�
Although there are pair interactions occurring with time
overlaps, there is no ordering problem when writing down
the total deviations as a product of collision cycles because
the coexisting liquid bridge interactions always affect dis-
joint pairs �by the assumption that there are two-particle
clusters only� and deviation matrices of disjoint pairs com-
mute. Therefore the matrices Mi can describe the full colli-
sion cycle of a single pair of particles, ignoring all other
interactions taking place simultaneously in the N-particle
system. Our approach differs from �23� because the capillary
model has a hysteretic interaction with finite interaction
time. The dry limit follows by turning off the interaction,
Eloss→0, as a special case.

The expression �9� can be simplified dramatically:

hKS

N
=

1

N
lim
s→�

1

t�s�
ln�det �

i=1

s

Mi�
=

1

N
lim
s→�

1

t�s��i=1

s

ln�det Mi�

=
1

N
lim
s→�

s

t�s�

�
i=1

s

ln�det Mi�

s
=

�

2
�ln�det M�� . �10�

Herein the brackets �¯� denote averaging over the two-
particle phase space only.

Since we expect the Lyapunov exponents to be of the
order of the collision frequency �, they are �according to the
limit in Eq. �9�� only well-defined if we let the system evolve
for a time

tLyapunov �
1

�
= tcoll.

In the subsequent discussion we will point out that this can
be fulfilled even if there was no external driving mechanism
to keep the dissipative system in a stationary state. Clearly,

without a thermostat the system cools, Ṫ�0 �10,11�. The

collision frequency � is of the order �Ṫ� /Eloss. On the other
hand, cooling will be irrelevant on time scales below

tcool=T / �Ṫ�. So the hierarchy

tcoll � tLyapunov � tcool

of time scales can be fulfilled if

Eloss � T . �11�

This implies that for weak liquid bridges as compared to the
thermal energy we may speak of a Lyapunov spectrum inde-
pendently from the question of the thermostat. No additional

FIG. 3. The collision sequence s�t� and the collision cycles: the
step function s�t� is the total number of collisions in the entire
N-particle system until time t. The horizontal solid and dashed bars
symbolize the collision cycles for scattering and bound pairs, re-
spectively. For the derivation it is important that overlapping cycles
affect different pairs of particles. The dashed arrow indicates a third
particle that hits and breaks up a bound two-particle state.
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limitation is set, since the condition �11� is already required
to be consistent with the gas state �displaying mainly single
particles instead of clusters� which is studied in this work.

Two tasks remain. The determination of the probability
distribution for the formula �10� is done in the next section.
To make use of momentum conservation the subspace is

spanned by the center of mass position R� �
r�1+r�2

2 and velocity

V� � v�1+v�2

2 of the two-particle system, as well as the distance
r��r�1−r�2 between the centers of the spheres and their rela-
tive velocity v� �v�1−v�2. The last step is to compute for any
spatial dimension D the matrix M appearing in Eq. �10�,
which maps for a specific point in the 4D-dimensional phase

space �R� ,r� ,V� ,v�� the initial velocity deviations

��V� i

�v� i

� �12�

from the beginning of the collision cycle to the final devia-
tions

��V� f

�v� f

� = M��V� i

�v� i

� �13�

at the end of the collision cycle. This is done in Sec. V.
Before we derive the joint probability density a comment

on the velocity distribution itself is in order. It is well-known
that for dissipative gases the velocity distribution can deviate
from the Maxwell-Boltzmann velocity distribution �29� de-
pending on the state and driving mechanism. For explicit
results we shall use the Maxwell-Boltzmann velocity distri-
bution,

P�v1,v2�dDv1dDv2 = ��

�
�D

e−��v1
2+v2

2�dDv1dDv2

= ��

�
�D

e−��2Vi
2+1/2vi

2�dDVid
Dvi

= P�Vi,vi�dDVid
Dvi �14�

with �= m
2T . The result for the KSE will also be given in a

form that is readily evaluated for any velocity distribution.
For the distribution �14� the modulus vi of the initial relative
velocity is distributed according to

P�vi�dvi =

2��

2
�D/2

��D

2
� vi

D−1e−�/2vi
2
dvi . �15�

IV. ENSEMBLE AVERAGE

We determine the probability distribution for two particles
under the condition that they will collide in the future. There-
fore we depict the initial configuration of an arbitrary pair of
particles in relative coordinates r�i=r�1−r�2 as follows �Fig. 4�:
we rotate our coordinate frame such that the horizontal axis
is per definition

e�x �
v� i

vi
, �16�

with the initial relative velocity v� i=v�1−v�2. This means that
particle 2 rests in the origin while particle 1 moves horizon-
tally to the right. Clearly, the particles will collide if and only
if �i� the impact parameter is low enough,

b =�ri
2 − �r�i,

v� i

vi
� � � ,

and �ii� particle 1 is to the left of particle 2,

�r�i,v� i� � 0.

For any pair of velocities v�1 ,v�2, there are initial relative spa-
tial positions that lead to a collision. So we have to integrate
over the entire velocity space RD�RD,

��

�
�D�

RD
dDv1�

RD
dDv2e−��v1

2+v2
2�. �17�

We take condition �i� into account by integrating the impact
parameter over the interval �0,��. From the conventional
assumption of molecular chaos �i.e., the positions and veloci-
ties of two particles are uncorrelated� follows that the impact
is uniformly distributed within the cross section,

P�b�db = �D − 1�
bD−2db

�D−1 , 0 � b � � . �18�

Further, we need to know the horizontal distance xi�0 to
the collision point. Together with the impact parameter
b this determines the relative spatial position completely
in the plane of incidence, since according to �ii�, r�=be�y

− �xi+��2−b2�e�x always points to the left.
The probability distribution of xi follows from the dis-

tance covered by the particles in the laboratory frame. De-
noting by x1 and x2 the length that particles 1 and 2, respec-
tively, have traveled in the laboratory frame since the
beginning of the collision cycle, we have the equal time con-
dition

x1

v1
= tfree =

x2

v2
, �19�

where tfree stands for the time of free flight that both particles
have in common. From this follows for the initial separation
of particles

b

�

�

particle 1
particle 2

r

x

FIG. 4. The relative coordinate system with respect to particle
2.
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xi = vitfree =
vi

v1
x1. �20�

The probability density of the traveled distances x1 and x2 are
known in a gas to be

e−xj/l
dxj

l
, j = 1,2. �21�

The length scale l is the mean free path in the laboratory
frame. Hence under the assumption of molecular chaos the
probability density of the initial separation xi is

P�xi�v1,v2� = C�
0

� dx1

l
�

0

� dx2

l
e−�x1+x2�/l

���xi − x1
vi

v1
��� x1

v1
−

x2

v2
�

= C�e−xi/l�v1+v2�/vi

up to a normalization factor. Obviously this yields the inte-
gration

v1 + v2

vi
�

0

� dxi

l
e−xi/l�v1+v2�/vi �22�

as part of the ensemble average. Putting Eqs. �17�, �18�, and
�22�, together we can compute arbitrary expectation values:

�¯� = �D − 1���

�
�D�

RD
dDv1�

RD
dDv2

v1 + v2

vi

��
0

� dbbD−2

�D−1 �
0

� dxi

l
e−��v1

2+v2
2�−xi/l�v1+v2�/vi

¯

�23�

with vi= �v�1−v�2�. In passing we take a look at the distribu-
tion of xi in Fig. 5. The joint distribution �23� implies that xi
is approximately distributed according to an exponential fall
off, as one may expect, because the distances in the labora-
tory frame follow such a law. However, there are differences:
the mean is lower, e.g., �xi��0.71 l for D=2, and the distri-
bution falls off faster than exponentially for small xi �cf.
�23��.

V. EXPANSION OF VELOCITY SPACE

We aim to compute the determinant of the matrix M as
defined by Eq. �13�. There are always two distinct deviation
matrices Mbound for vi�vcrit and Mscatt for vi�vcrit, so that
the phase space average naturally decomposes into

�ln�det M�� = �ln�det Mbound��vi�vcrit
+ �ln�det Mscatt��vi�vcrit

.

After determining these matrices, Eq. �10� will enable us to
compute

hKS

N
=

�

2
��ln�det Mbound��vi�vcrit

+ �ln�det Mscatt��vi�vcrit
� .

�24�

Because of momentum conservation, V� i=V� f, the matrix M is
of the blocked form

M = � 1D �D

�D M�
� ,

where 1D and �D are unity and zero matrices of dimension
D�D, respectively. Therefore the only contribution to the
growth in velocity space stems from the relative velocities,

det M = det M�. �25�

The final relative velocity �37� is

v� f = �vi
2 − vloss

2 �cos �e�x + sin �e�y� . �26�

As defined in Eq. �16� e�x points in the direction of the in-

coming velocity and e�y =e�x�
r��v� i

�r��v� i�
=

r�vi
2−v� i�r�,v� i�

�r�vi
2−v� i�r�,v� i��

is the or-

thogonal vector spanning the plan of motion, such that

r� = − Xie�x + be�y ,

with Xi=xi+xcol and xcol=−�r�col ,e�x�=��2−b2 is the
x-distance of the particles in the moment of collision.

When considering deviations of Eq. �26� one has to take
into account contributions due to the change of the angle
�38� �=��b�r� ,v� i� ,v�,

�� =
��

�b
�b +

��

�b

Xi

vi
�vy +

��

�vi
�vx, �27�

as well as contributions caused by rotations and inclinations
of the orbital plane of motion:

�
�e�x

�e�y

�e�z

]

� =�
0

�vy

vi

�vz

vi
. . .

−
�vy

vi
0

Xi

b

�vz

vi
. . .

−
�vz

vi
−

Xi

b

�vz

vi
0

] ] �

��e�x

e�y

e�z

]

� .

�28�

Equations �27� and �28� hold for arbitrary spatial dimension
D. The resulting deviation matrix M� is rather complicated:

FIG. 5. The distribution of xi after averaging out the velocities.
The dashed curve is an exponential distribution with the same
mean. Clearly P�xi� deviates from an exponential at distances xi

below the mean free path l.
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M� =�
cos �



− 
vi�v sin � − �1 + Xi�b�
 sin � 0 . . .

sin �



+ 
vi�v cos � + �1 + Xi�b�
 cos � 0 . . .

0 0 
�cos � +
Xi

b
sin �� 0 . . .

] ] 0 
�cos � +
Xi

b
sin ��

] �

� �29�

with the restitution coefficient �4� and the abbreviations �b

� ��
�b , �v� ��

�v . The determinant of M �which equals M�, cf.
Eq. �25�� is surprisingly simple:

det M = �− 1 + xi
��

�b
��1 −

vloss
2

vi
2 �D/2−1�1 +

xi

b
sin ��D−2

,

�30�

where we eliminated xcoll�xi using

xcoll�b � − 2,

xcoll

b
sin � � 2 − 2

b2

�2 ,

cos � � 2
b2

�2 − 1.

This reduces in the dry case, vloss=0, to the expressions �18�
�D=2� and �19� �D=3� in �23�. The first factor in Eq. �30� is
always nonzero since ��

�b �0.

VI. RESULTS FOR KOLMOGOROV-SINAI ENTROPY

In Fig. 6 the relative dynamic r��t� �which equals the mo-
tion of one of the two particles in the center of mass system
up to a factor of 2� is sketched. In both cases, the determinant
of M is of the form �30�, but the meaning of the angle
��b ,vi� is quite different. For impact velocities above the
critical value, � is the scattering angle

�scatter�b,vi� = � − arcsin
b

�
− arcsin

b

rcrit�1 − �vloss

vi
�2

− �
�

rcrit

d�
�r� ,

whereas for vi�vcritical the angle � is a function of time,

�bound�t3,b,vi� =
�

2
− arcsin

b

�
− t3

�arc�b,vi�
tarc�b,vi�

− �osc�t3,b,vi� .

Here t3 denotes the time during which the two-particle sys-
tems remains bound until it is freed by a third particle. The
angle between two contacts �arc�b ,vi� equals
2
�

rmax�b,vi�d�
�r� and there is a similar integral for the time
tarc it takes to run through one arc. The index 
 ought to
remind us that the potential �3� enters only through these
integral expressions. For t3� tarc the angle �bound grows lin-
early with time, while the bound oscillations �osc are negli-
gible.

Depending on the details of the interaction potential, �arc
and tarc can grow beyond all bounds as the pair �b ,vi� ap-
proaches the critical line �b ,vcrit�b�� �cf. Fig. 2� in the bound
regime �from below�. This singular behavior occurs in the
extended capillary model �linear force, Fig. 1�, whereas in
the minimal capillary model �constant force� both quantities
remain finite. Close to the divergence the motion is an out-
ward directed spiral, so that the turning point is never
reached and the periodic collisions end. The interaction time
can also diverge for scattering states �reaching the critical
line in Fig. 2 from the top�, but this singularity is integrable
with respect to velocity. In the bound case the divergence is
cutoff by the third particle and because of angular momen-
tum conservation we have the estimate

�bound�t3,b,vi� � const +
t3bvi

�2 . �31�

We will use the right-hand side as an approximation. The
stopping time t3 is a random variable itself and distributed
according to

�arc

(a) (b)

FIG. 6. The relative motion for �a� sticking and �b�
scattering.
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Vi

l�
e−Vi/l�t3dt3, �32�

for a given center of mass velocity Vi of the bound system.
There is a smaller mean free path l� for the bound two-
particle system: since its total cross section changes with
time the effective diameter �eff is 3

2� so that the mean center-
center distance at contact is 5

4�. Another factor of �2
3 is

caused by the mass ratio �31�, thus

l� = �4

5
�D−1�2

3
l . �33�

In the following, we shall evaluate averages that are linear in
t3, so that we can forthwith substitute the expectation value,
t3= l�

Vi
, of the distribution �32�. Then from Eq. �31� follows

��bound

�b
�vi� �

vil�

Vi�
2 . �34�

In both cases, binding and scattering, ��
�b is at least of the

order of 1
� , while xi is of the order of the mean free path

l =

��D + 1

2
�

�2��D−1�/2 ��D−1n�−1, �35�

with n being the number density of grains. Formulas for the
mean free path are well-established �30� and other character-
istic quantities for the motion of tracer particles are also
available �31�. We remark that investigating the trajectories
of tracer particles is a promising technique for the experi-
mental confirmation of results presented in this paper.

Our goal is to expand the KSE in the small dimensionless
parameter n�D�1. So this is an expansion for the dilute wet
granular system. The unity in the first and the last factor in
Eq. �30� contributes to the KSE only in linear and higher
orders, while we are interested in the logarithmic and zeroth
order terms:

�det M� = xi� ��

�b
��1 −

vloss
2

vi
2 	�vi − vcrit��D/2−1

� � xi

b
sin ��D−2

. �36�

With the step function 	, Eq. �36� is valid for scattering and
binding because we assume that the collision with the third
particle rethermalizes the two-particle system, so that the
next collision cycle starts with the same initial distribution.
Since the “third” particles have an energy of the order of the
granular temperature T�Eloss we can safely neglect the for-
mation of bound states of three or more particles �cf. Fig.
10�. A cluster size expansion will be discussed at the end of
this section.

After introducing the appropriate length scales l and � we
are lead to examine

hKS

N
=

�

2��D − 1�ln
l

�
− �D − 2��ln

b

�
� + �D − 1��ln

xi

l
�

+ �ln��� ��bound

�b
���

vi�vcrit

+ ��D

2
− 1�ln 


+ ln��� ��scatt

�b
���

vi�vcrit

+ �D − 2��ln�sin ���� . �37�

The first two terms in the square bracket yield

− ln n�D − CD, �38�

with a numerical constant CD= D−1
2 ln 2+

�D−1�2

2 ln �− D−2
D−1

− �D−1�ln �� D+1
2

�. This is independent of the ensemble aver-
age and the interaction potential.

If xi was distributed exponentially with mean l, the third
term in Eq. �37� would give rise to the negative of Euler’s
constant, −�Euler�−0.5772, independent of the dimensional-
ity of the problem. As discussed before, lower values of xi
are favored. That is why we find by numerical computation a
lower expectation value, e.g., for D=2:

�ln
xi

l
� � − 1.01. �39�

The fourth term in Eq. �37� is �cf. Eq. �34��

�ln��� ��bound

�b
���

vi�vcrit

= − �ln n�D + C̃D��1�vi�vcrit
+ �ln

vi

Vi
�

vi�vcrit

, �40�

with the numerical constant C̃D= �D−1�ln 5
4 + ln 3

2 + D−1
2 ln �

−ln �� D+1
2

�.
Together with Eq. �38� the logarithm ln n�D herein forms

the leading term of the density expansion. Therefore the
logarithm ln n�D in Eq. �40� is a correction of the leading
term as it is known for the dry case �23�. The KSE has the
following density expansion:

hKS

N
= − �AD ln n�D + �BD + O�n�D� , �41�

with the leading coefficient

AD = AD�Eloss

T
,
rcrit

�
�

=
D − 1

2
+

D − 1

��D

2
��

m

4T
�D/2

��
0

� dbbD−2

�D−1 �
0

vcrit�b�

dvvD−1e−m/4Tv2
, �42�

and the density independent part
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BD =
1

2�− CD + �D − 1��ln
xi

l
� − C̃D�1�vi�vcrit

+ �ln
vi

Vi
�

vi�vcrit

+ �ln��� ��scatt

�b
���

vi�vcrit

+ �D − 2�� �ln 
�vi�vcrit

2
+ �ln�sin ����� . �43�

The general form of the leading term, valid for any veloc-
ity distribution, is

AD =
D − 1

2
+

Pbound

2
. �44�

We want to emphasize that so far all results of this section
are general with respect to the spatial dimensionality of the
problem and the details of the particle interaction. The prob-
ability Pbound= �1�vi�vcrit

in Eq. �44� is given by integrating
velocity and impact factor over the bound states in Fig. 2.
Only here the detailed interaction models �6� and �7� enter
the problem.

Let us now turn to explicit results. For the Gaussian ve-
locity distribution �15� and odd spatial dimensions the veloc-
ity integral of Pbound is an incomplete gamma function. In
even dimensions the integral is elementary, yielding for D
=2

A2��,�� = 1 −
1

2
�

0

1

dxe−�f�x,��, � =
Eloss

T
,

as a function of the bridge energy over granular temperature,
�, and the wetting content, �=rcrit /��1. The remaining in-
tegration variable is the impact parameter, x=b /�. The ex-
cess of the critical energy over the bridge energy, f�x ,��
=Ecrit /Eloss, depends on the model details. In the minimal
capillary model from Eq. �7� follows

f�x,�� = �1 −
x2

�2�−1

.

The coefficient AD of the minimal capillary model is plotted
in Fig. 7 as a function of the liquid bridge energy for two and
three dimensions. Very similar curves follow from the ex-
tended capillary model. For the plot the limit of short liquid
bridges, rcrit=�, was chosen. This corresponds to a small
amount of liquid that is just sufficient to wet the surface
roughness of realistic spheres. Independent of rcrit /��1, in
the dry limit �or equivalently the high temperature limit� AD
approaches �D−1� /2, which is the known result for hard
spheres �23�. For a higher content of wetting liquid,
rcrit /��1, the dependence of the leading term on the binding
energy becomes flatter, but in an experimental situation there
is a simultaneous gain in Eloss when liquid is added. Varying
the surface tension of water by adding a salt to the wetting
solution is an experimentally feasible way to measure this
curve directly with a fixed amount of wetting liquid, such
that rcrit /� can be kept constant.

From this graph we see the sensitive dependence of the
KSE on the cohesion force of the wetting liquid. To gain

analytic insight we investigate exemplarily the two-
dimensional case plotted. Substituting z=1/ �1−x2� gives

A2��,1� = 1 −
1

4
�

1

� dz

z2

e−�z

�1 − 1/z
. �45�

Splitting up the integration at z=1/� allows one to separate
the nonanalytic part.

A2��,1� = 1 −
�

4
�

1

� dz

z2

e−z

�1 − �/z
−

1

4
�

1

1/� dz

z2

e−�z

�1 − 1/z
.

�46�

The first integral in Eq. �46� can be expanded in powers of
�� �0,1� since z�1. The second integral equals 2 for
�→0, while its first derivative has a logarithmic divergence:

A2��,1� =
1

2
+ ��C −

ln �

4
� + O��2� . �47�

The constant C is 
1
� exp�−z� /4z+ln 2/2+ �1−1/e� /4

�0.56. This shows that the slope of A2 is vertical at Eloss
=0.

Let us finally look at the next higher order term BD of the
density expansion. For simplicity we restrict ourselves to the
case D=2, so that

B2 =
1

2�− C2 + �ln
xi

l
� − C̃2�1�vi�vcrit

+ �ln
vi

Vi
�

vi�vcrit

+ �ln��� ��scatt

�b
���

vi�vcrit

� . �48�

The last term in Eq. �48� is exactly equal to unity in the limit
of dry granulates,

FIG. 7. The increase �AD=
Pbound

2 of the leading coefficient AD

= D−1
2 +�AD: The solid line is for two, the dashed line for three

dimensions D. Since A= D−1
2 in the absence of the liquid bridge

interaction we recover the result for dry granulates as a special case.
With the approximation for the wet granular gas used in the deri-
vations one is restricted to temperatures above the bridge energy
Eloss. Otherwise the method applied has to be extended to take
clusters of more than two particles sticking together into account.
The far extreme case, Eloss�T, is known as the so-called sticky gas.
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lim
Eloss→0

�ln��� ��scatt

�b
���

vi�vcrit

= �
0

� db

�
ln

2

�1 − � b

�
�2

= 1,

but decreases as the critical velocity increases when we turn
on the liquid bridge interaction. The coefficient B2 for the
zeroth order in the expansion �41� is plotted in Fig. 8. It is
known for the dry limit �23� that the accordance of BD with
numerical simulation cannot keep up with the successful
confirmation of AD. The origin of this discrepancy is the
assumption that the unstable manifold coincides with veloc-
ity space and it is quite involved to improve on that �32�. In
the dry limit our method yields B2=−0.52�8�, which is lower
than the analytical estimate �B2=0.1045� and the simulated
result �B2=0.679� of �23�. From the knowledge of the coef-
ficients AD and BD follows the KSE in the dilute system for
various wetting contents as shown in Fig. 9 for D=2.

A. Cluster expansion

In Eq. �24� we considered events including bound states
of two particles �a+b+c→ab+c→a+b+c� and scattering
events �a+b→a+b� by writing

�ln�det M�� = �ln�det Mbound��vi�vcrit
+ �ln�det Mscatt��vi�vcrit

.

�49�

The first term is proportional to Pbound which led to Eq. �44�.
Here we wish to point out how to generalize the computation
of the KSE to include clusters of higher particle number. All

equalities in Eq. �10� hold for arbitrary types of events, when
Mi denotes the deviation matrix associated with the ith event
and � is the generalized event frequency. Referring to the
event type by T we reorder the averaging. Collecting the
events of type T by introducing �type�j�,T �which is unity for
an event T and otherwise zero� we write �¯�T for
�¯�type�j�,T�:

2

�N
hKS = �ln�det M�� = �

T
�ln�det MT��T. �50�

The summation can be written as a systematic expansion in
the cluster size:

a + b → a + b �T1�
a + b + c �T2�

↗

a + b + c → ab + c → �ac + b

bc + a

ab + c
	 �T3�

�T4�
�T5�

↘
abc �T6�

]

with the events T1 and T2 considered before in Eq. �49�. The
events Tj with j�2 result in new many-particle-clusters
which are exponentially rare components of the wet granular
gas as is evident from Fig. 10. We remark that the scattering
of a bound state �T5� prolongs the mean bond time t3 to
become t3�=�t3, with �=1+2PT5

+3PT5

2 + ¯ =1/ �1− PT5
�2.

FIG. 8. The coefficient B2 of the density expansion �41�.

1

2

3

-1-3-5 0

FIG. 9. The two-dimensional KSE as a function of the density
for three different bridge energies Eloss. This energy depends on the
amount of wetting liquid added to the granular gas as is indicated in
the plot. Another way to change Eloss is to add a salt or a surfactant.

FIG. 10. The probability for a sphere to have a certain number
of liquid bonds ending on its surface. This distribution is measured
in a three-dimensional molecular dynamics simulation of a wet
granular gas with an occupied volume fraction of 3.9%, which cor-
responds to n�3=0.074. The granular temperature T has been varied
as indicated. The probability for two liquid bridges ending on one
particle, as necessary for a three-particle-cluster, is suppressed by
more than three orders of magnitude. An analytic approach to the
KSE is favorable because the direct numerical integration suffers
from high computing times for the full tangent space dynamics and
yields noisy results �33,35�. The liquid bond distribution shown is a
robust and reliable single-particle quantity.
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The unity in front of this series corresponds to breaking the
bound state in its first collision �T2�, the second term corre-
sponds to one scattering event of the bound pair, and the
following terms to multiscattering. The contribution to the
KSE is proportional to the logarithm of this time, ln t3�
=ln t3−2 ln�1− PT5

�. The first term ln t3�−ln�n�D� is the wet
granular contribution to the leading coefficient A as identi-
fied in Eq. �44�. The second term gives a correction to the
B-coefficient which is of the order PT5

=O��Eloss /T3� for
three dimensions.

VII. CONCLUSIONS

A. Summary

We worked out the crucial difference in the interaction of
wet granulates compared to the dry case. There is a liquid
bridge causing a radial hysteretic force over finite distance.
The detailed distance dependence is of minor importance.
The decisive ingredient in the capillary model is the extrac-
tion of a bridge energy that is independent of the initial ve-
locity in contrast to the “standard model” using a restitution
to extract a certain fraction of energy.

We found an enhanced chaotic behavior of the wet granu-
lar system. The leading term in the expansion of the KSE
with respect to the small density �n�2�1� changed due to
the possible sticking of particles. One can think of the pro-
longed interaction time enforcing the exponential separation
in velocity space. The continuous but in general not differ-
entiable transition to the limiting dry case has been estab-
lished.

This dynamical property recommends the wet granular
system as a suitable candidate for experimental, numerical,
and analytic tests of the Gallavotti-Cohen fluctuation theo-
rem �34� which requires hard chaos.

B. Outlook

In this analytic work we used an assumption on the un-
stable manifold and we neglected correlation effects in con-

secutive collisions. Although physically motivated, the next
challenge will be to verify these assumptions by direct nu-
merical simulations.

The rigorous derivation of phenomenological laws such
as the Navier-Stokes equation for viscous flow and the Fou-
rier law for heat transport is a fundamental problem under
intense discussion. Relations between the Lyapunov spec-
trum of the microscopic dynamics and macroscopic proper-
ties such as viscosity and heat conductivity have been estab-
lished within the last years, most detailed for the Lorentz gas
�16–22�. The severity and importance of these relations be-
come apparent from the fact that they have to bridge the gap
between microscopic reversibility and macroscopic irrevers-
ibility challenging physicists since Ludwig Boltzmann.

The dynamics of the wet granular system studied in this
work follows a mesoscopic law including dissipation, and
kinetic theory has already been extended to dry granular mat-
ter �2�. The next step is to extend also these transport rela-
tions. We hope that our results on the Lyapunov exponents
might stimulate this development. On the experimental side
mechanical properties of wet granulates are presently under
investigation �7�.

A further interesting problem is the computation of the
KSE for dense wet granulates. This might lead to a novel
description of clustering—as a nonequilibrium phase
transition—in terms of the Lyapunov spectrum. Yet this
problem is challenging as it needs new concepts, because the
identification of the velocity space with the instable manifold
is limited to the dilute gas.
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