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We consider a random walk model that takes into account the velocity distribution of random walkers.
Random motion with alternating velocities is inherent to various physical and biological systems. Moreover,
the velocity distribution is often the first characteristic that is experimentally accessible. Here, we derive
transport equations describing the dispersal process in the model and solve them analytically. The asymptotic
properties of solutions are presented in the form of a phase diagram that shows all possible scaling regimes,
including superdiffusive, ballistic, and superballistic motion. The theoretical results of this work are in excel-
lent agreement with accompanying numerical simulations.
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I. INTRODUCTION

What is common in the motion of charged particles in
plasmas, of grains in inelastic gases, of tracers in turbulent
flows, of locomoting animals, and of diffusing cells? The
answer is that they perform a nonstop random motion with
random velocities. Furthermore, in many cases their velocity
distributions are qualitatively different from a conventional
Maxwellian and typically have pronounced power law as-
ymptotics. The transport processes in these systems can be
anomalously fast. We propose here a random walk model
with special emphasis on a nontrivial velocity distribution of
moving entities that is able to describe such anomalous
behavior.

In astrophysical plasmas, planetary magnetospheres, and
solar wind, particles generally possess a non-Maxwellian
high-energy tail �1�. The “Lorentzian plasma” is character-
ized by the generalized Lorentzian ��� velocity distribution
h�v�� �v�−2�−2. In homogeneous granular gases, stationary
solutions of the kinetic equations for the velocity distribution
have power law tails h�v�� �v�−� �2�. The exponent � de-
pends on the dimension of the problem and properties of
inelastic collisions between grains. For Maxwellian mol-
ecules in one dimension, �=2. There is also experimental
evidence for anomalously slow-decaying velocity distribu-
tions in dense granular systems �3�. In turbulent flows, tracer
particles are carried by a random velocity field and separate
from each over. The relative distance between the particles
grows linearly with time, �r�t��� t, on time scales below the
classical correlation time �4�, and at larger time scales, the
separation behaves even superballistically, �r�t��� t3/2 �5–7�.
In two-dimensional turbulence the distribution of relative ve-
locities is Lorentzian �8�. A large variety of living organisms
spanning the full hierarchy of body sizes move randomly
with varying velocities and exhibit anomalous diffusion. Spi-
der monkeys �9�, zooplankton �10�, bacteria �11�, and cells
�12,13� are just a few of many examples sharing similar
movement patterns. For completeness we also mention the

related topics of nonextensive thermodynamics �14�, soft-
mode turbulence in electroconvection �15�, and some more
astrophysical models �16�.

The standard continuous time random walk model
�CTRW� �17,18� may be viewed as a general concept suit-
able for describing the phenomena mentioned above. In this
approach a random walker makes instantaneous jumps of
varying lengths intermitted by random waiting times. Al-
though successful for many applications this method pos-
sesses some unphysical features. For example, in the param-
eter range corresponding to superdiffusion the mean square
displacement might become infinite �19�. Different coupling
models were introduced to overcome this problem, e.g., long
jumps of particles were penalized by corresponding long
waiting times. With the correct behavior of moments and
proper scaling, these models still have a conceptual draw-
back. They consider a particle sitting at a point and making
an instantaneous jump to the destination point, whereas in
real systems particles move with a certain velocity. This
means that at the moment of measurement, the real particle is
neither at the starting nor at the destination point—it is
somewhere in between. At first glance this is not a significant
difference. However, for the regimes of anomalous diffusion
it drastically influences the shape of the density profile �see
below�. Therefore, giving the particle a finite velocity during
its flight brings the random walk model closer to real physi-
cal systems. The Lévy walk with a constant velocity is the
first example of such a model �19�.

However, as we stressed above, in many situations the
velocity of random walkers is far from being constant and is
rather sampled from a broad distribution. On the other hand,
the velocity distribution is often the first and only distribu-
tion that can be measured experimentally. Therefore, in the
present paper we make the velocity distribution the key part
of the model and generalize the CTRW approach to incorpo-
rate it.

We show that the model of random walks with random
velocities is analytically solvable and that it has clear and
tractable asymptotic properties. By using scaling arguments,
we construct the full phase diagram for possible regimes of
transport with its important superdiffusive, ballistic, and su-
perballistic domains. It was shown that for the generalized
Lorentzian velocity distribution, its knowledge alone is suf-

*Vasily.Zaburdaev@tu-berlin.de
†Michael.Schmiedeberg@tu-berlin.de
‡Holger.Stark@tu-berlin.de

PHYSICAL REVIEW E 78, 011119 �2008�

1539-3755/2008/78�1�/011119�5� ©2008 The American Physical Society011119-1

http://dx.doi.org/10.1103/PhysRevE.78.011119


ficient to describe the transport completely. All our analytical
results are confirmed by numerical simulations.

II. THE MODEL

We start by introducing our model. Consider for simplic-
ity the one-dimensional case. A particle moves for a random
time � �flight time� with a certain velocity v that can have
positive as well as negative values to include the direction of
motion. Then, it instantaneously changes the direction and
magnitude of its velocity to another random value and con-
tinues the flight for another random time. Flight time and
velocity are the two basic and independent random variables
of the model with probability density functions �PDFs� f���
and h�v�, respectively �instead of the flight time one can
equally consider the length of the flight�. They are normal-
ized to 1, �−�

+�h�v�dv=1, �0
+�f���d�=1, and the velocity dis-

tribution is symmetric, h�v�=h�−v�, so that there is no bias
in the system. Already 20 years ago the model of random
walks with a finite velocity of walking particles was sug-
gested �19–21� and later elaborated in Refs. �22�. There, a
walking particle with or without stops moves with a constant
magnitude of velocity and randomly changes the direction of
motion. From a conceptual point of view, this is the closest
“relative” of the model considered here, and we shall obtain
it as a particular case.

For given PDFs h and f , and the initial distribution of
particles n0�x�, we would like to know the evolution of the
density of particles n�x , t�. There is an additional quantity
whose dynamics helps to determine the density profile. We
introduce the probability density function ��x , t� that a par-
ticle changes its velocity at the location �x ,x+dx� in the time
interval �t , t+dt�, and refer to it as the frequency of velocity
changes. The equation governing the dynamics of � is very
similar to the standard CTRW transport equation �18� �see
also �23��:

��x,t� = �
−�

+�

dv�
0

t

��x − v�,t − ��h�v�f���d� + n0�x���t� .

�1�

A particle changes its velocity at the point �x , t�, when it has
already changed its velocity to the value v at a time t−� and
position x−v�, where � is the time of flight. The first term on
the right-hand side of Eq. �1� integrates over all these events,
taking into account that h�v�f��� is the probability for a cer-
tain velocity v and a flight time � to occur. The last term of
Eq. �1� assumes that there was an initial distribution of par-
ticles n�x , t=0�=n0�x�, and that they immediately changed
their velocities at t=0, thus starting the whole evolution.

Now we express the density of particles n�x , t� with the
help of the frequency of velocity changes:

n�x,t� = �
−�

+�

dv�
0

t

��x − v�,t − ��h�v�F���d� , �2�

where F��� is the probability not to change the velocity until
the time � : F���=1−�0

� f����d��. The density of particles at a
given point �x , t� is a result of the velocity changes in all

other points in the past, ��x−v� , t−��. F��� assures that the
particles do not choose another velocity before they pass the
point �x , t�. The integration over all possible velocities and
flight times gives �2�.

Equations �1� and �2� fully describe the dynamics of the
system with a given initial density of particles and the two
PDFs for the flight times and velocities. Moreover, as we
proceed to show, these equations can be solved analytically.

First, we determine the frequency of velocity changes
��x , t� and then substitute it in the equation for the particle
density �2�. We apply the Fourier transform with respect to
the spatial coordinate in �1�. Due to the shift property of the
Fourier transform, an additional exponential factor e−ikv� ap-
pears under the integral. Integration with respect to v gives
the Fourier transform of h�v� with a reciprocal velocity k�.
The Fourier transform of Eq. �1� reads

�k�t� = �
0

t

�k�t − ��hk�f���d� + n0,k��t� , �3�

where the indices k and k� denote the Fourier components.
Next, we apply the Laplace transform with respect to time
and use its convolution property to obtain

�k,p = �k,p�hk�f����p + n0,k, �4�

where the index p corresponds to the Laplace component.
Then, the final expression for the frequency of velocity
changes in the Fourier-Laplace domain, �k,p, follows imme-
diately:

�k,p =
n0,k

1 − �hk�f����p
. �5�

Similarly, the Fourier-Laplace transform of �2� together with
�5� gives

nk,p =
�F���hk��pn0,k

1 − �hk�f����p
. �6�

This is our analytical expression for the density of particles
in the model with random velocities in the Fourier-Laplace
representation �cf. �18,23��.

III. ASYMPTOTIC PROPERTIES

For the analysis of the asymptotic properties of the den-
sity profile, we consider large spatial and temporal scales:
x , t	1. In the Fourier-Laplace space this corresponds to the
limit k , p→0. Hence, instead of taking the full transforms of
the functions involved, we take only the first terms in their
expansions with respect to small k and p. This is a common
step in the asymptotic treatment of random walk models. As
compared to the standard CTRW, there is an additional tech-
nical difficulty hidden in the coupling of the velocity and the
flight time distributions. Before we systematically analyze
the possible regimes of transport, let us consider two con-
crete examples. In the first one, the velocity has a constant
value, and therefore it reproduces the results of the Lévy
walk model �19–22�. In the second example, we take the
generalized Lorentzian velocity distribution typical for sev-
eral systems mentioned in the Introduction.
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First assume that the velocity v can take only two values

v0; therefore h�v�= ���v−v0�+��v+v0�� /2. This corre-
sponds to the Lévy walk model. For exponentially distrib-
uted flight times, f���= �1 /�0�e−�/�0, the asymptotic expansion
of �6� with respect to small k and p is straightforward and
reads

nk,p =
n0,k

p + k2�0v0
2 .

In real space and time coordinates, it gives the classical dif-
fusion equation with a diffusion constant D=v0

2�0, which is
the natural answer for a random walk with a finite average
flight time �0 and constant velocity v0.

For flight time distributions with a power law tail, f���
=� / �1+ t�1+� with 0���1, we recover the results for Lévy
walks �cf. �19,21,22��:

nk,p =
cos�
�� − 1��

�p2 + k2v0
2�1/2 cos�
��

,

�7�

cos 
 =
p

�p2 + k2v0
2

.

To illustrate such a solution, we calculate the inverse
Laplace-Fourier transform of �7� for the case �=1 /2:
n�x , t�=�−1��v0t− �x���t2v0

2−x2�−1/2. In Fig. 1�a�, we plot it in
rescaled coordinates together with the results of numerical
computations, where we directly simulate the paths of an
ensemble of random walkers. For comparison the result for a
coupled CTRW model is shown where a particle waits for a
random time � and then makes an instantaneous jump of a
length �x�=v� �dashed line and open symbols�. Note the
qualitative difference of the density profiles.

Let us consider for a moment space of arbitrary dimen-
sion d�1. All the above formulas are still valid if the quan-
tities x, v, and k are considered as d-dimensional vectors.
Take the velocity distribution in generalized Lorentzian �or
Cauchy� form: h�v��1 / �1+v2��d+1�/2. Independent of the
choice of the flight time distribution, we obtain a surprisingly

simple answer for the density of particles in real space and
time coordinates:

n�x,t� =

�	d + 1

2

t

���t2 + x2���d+1�/2 , �8�

which is also a generalized Lorentzian �one of the Lévy-
stable distributions�. For d=1 the density profile �8� is pre-
sented in Fig. 1�b�. This is a very remarkable result since it
demonstrates that a �generalized� Lorentzian velocity distri-
bution always leads to the �generalized� Lorentzian density
profile for any distribution of flight times or jump lengths.
We note here that such a result is very unlikely to be recov-
ered in any other CTRW model. Furthermore, a Lorentzian
velocity profile appears in real physical phenomena such as
two-dimensional turbulence �8� and it is also one of the
model distributions of kinetic theory �2�.

Results of numerical simulations with various exponents
� excellently collapse on the theoretical curve and confirm
the independence of the density profile of the flight time
distribution.

IV. SCALING

Now we would like to give a more general prediction for
possible regimes of transport in the model returning to d=1.
Instead of determining all details of the density profile, we
only investigate its scaling properties. To do so, we employ
the results for the standard CTRW model �18�. There, it is
shown that the density profile has the self-similar form
n�x , t�= �1 / t����x / t��. If the lengths of jumps of particles are
distributed as a power law g��x��� �x�−1−2� and the waiting
times as well have a power law tail ����� t−1−�, the exponent
� in the scaling function � depends on � and � in the
following way �18�:

� = ��/2� , 0 � � � 1, 0 � � � 1,

1/2� , 0 � � � 1, � � 1,

�/2, � � 1, 0 � � � 1.
� �9�

The scaling of different transport regimes is determined by
the argument of the function �. It shows how the spatial

FIG. 2. Phase diagram of possible regimes of transport in the
model of random walks with random velocities, where � and � are
the exponents in the power law tails of velocity and flight time
distributions, respectively. The resulting scaling is given by �: x
� t�.
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FIG. 1. Rescaled density of particles at different times: �a� the
finite velocity problem �v0=1, �=1 /2� �solid line and symbols� and
coupled CTRW model �dashed line and open symbols�; �b� Lorent-
zian profile given by �8� with d=1. Lines and symbols are theoret-
ical and numerical results, respectively.
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expansion of the cloud of random walkers scales with time:
x� t�. To derive the scaling relation in our model, we con-
struct a pair of functions “equivalent” to g�x� and ���� of the
standard model and use the exponents given in �9�. Since
���� is a waiting time distribution, it represents the time
“cost” of a single jump. Hence we can directly identify it
with our PDF f for the flight times. The distribution of jump
lengths is calculated from

g�x� = �
−�

+�

dv�
0

+�

��x − v��h�v�f���d� , �10�

where for the velocity distribution we employ a power law of
the general form h�v�� �v�−1−2�. Evaluation of the integrals in
Eq. �10� gives quite an involved expression. However, we
are interested only in the asymptotic properties of g�x�,
namely, the exponent ��� ,�� of its power law tail. This ex-
ponent is then substituted into Eq. �9� to obtain the correct
value for �. We present the results for the scaling exponent
in the form of a phase diagram in Fig. 2. Solid lines border
the regions with different dependencies of � on the param-
eters � and �. The color coding from white to dark gray
classifies the different regimes of transport: diffusion, super-
diffusion, ballistic, and superballistic. Vertical and horizontal
solid and dashed lines mark critical values of � and � at
which different moments of h and f start to diverge. The line
�=� /2 separates the regions where the effective jump length
distribution �Eq. �10�� is more strongly influenced by the
velocity or flight time distribution, respectively.

Let us discuss in brief the main features of this phase
diagram. All examples considered so far fit into this diagram.
Note that, besides the classical diffusive transport, superdif-
fusive, ballistic, and superballistic scalings are possible. In

the latter case, the mean velocity has to be infinite
���1 /2�. An important difference of our model as compared
to the standard CTRW is the absence of the subdiffusion
regime, which has a clear physical reason. With nonzero ran-
dom velocities there is no possibility to trap a particle for a
long time. We have checked the phase diagram with numeri-
cal simulations, by computing density profiles and observing
their collapse after the corresponding rescaling.

V. CONCLUSION

Concerning the applications of the model, we note that
any real physical or biological process may involve other
typical random walk features, such as persistence, waiting
times, multidimensionality, etc. They can easily be added to
our model; however, they would significantly increase the
parameter space and mask the effects of the velocity distri-
bution. Moreover, a correlation between velocities and flight
times could also be included �24,25�.

Summarizing our results, we suggest a model that is able
to describe the random motion of particles with nontrivial
velocity distributions. It is analytically solvable and allows
for a careful and complete asymptotic analysis. It embraces a
wide spectrum of stochastic transport regimes from classical
diffusion to superballistic dispersal. Therefore, it is an indis-
pensable tool for describing random motion in physical and
biological systems with inherent velocity distributions.
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