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Space-time correlation functions constitute a useful instrument from the research toolkit of continuous-
media and many-body physics. Here we adopt this concept for single-particle random walks and
demonstrate that the corresponding space-time velocity autocorrelation functions reveal correlations which
extend in time much longer than estimated with the commonly employed temporal correlation functions.
A generic feature of considered random-walk processes is an effect of velocity echo identified by the
existence of time-dependent regions where most of the walkers are moving in the direction opposite to their
initial motion. We discuss the relevance of the space-time velocity correlation functions for the experi-
mental studies of cold atom dynamics in an optical potential and charge transport on micro- and nanoscales.
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Introduction.—Finiteness of velocity is a fundamental
property of any physical process taking place in space and
time. This concept was incorporated in the framework of
random-walk theory [1], a formalism that is particularly
successful in describing diffusion phenomena [2]. If the
speed of a walking particle is constant, the coupling between
the distance traveled and the time it takes leads to the
confinement of the spreading process to a casual cone.
Within the cone the density of particles is described by the
phenomenological diffusion equation [3]. The space-time
coupling also regularizes fast superdiffusion by removing
possibly unphysical divergences from the momenta of the
corresponding processes [4,5].

The velocity of a random-walk process can be treated
as an additional dynamical variable whose evolution is
itself a random process. The Green-Kubo relation [6]
highlights the importance of the corresponding temporal
autocorrelation function by connecting its integral to the
diffusion constant [7]. It is evident, however, that the
velocity autocorrelations of a random walk cannot last
longer than the time between two consecutive reorienta-
tion events.

Following this premise, we next ask whether more
extended correlations can be detected by unfolding the
velocity correlation function into the spatial domain.
Here, we answer this question positively by introducing
a characteristic that reveals hitherto unnoticed properties
of random-walk processes. We define the space-time (s-f)
velocity autocorrelation function for single-particle
random walks by adopting a concept widely used in fluid
dynamics [8], gas, and plasma kinetics [9]. For models
yielding normal and superdiffusive dynamics, we show
that this function helps to uncover long-lived correlations
that extend beyond the horizon dictated by the standard
temporal correlation function. Furthermore, the unfolding
into the spatial domain allows for a meaningful description
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of velocity correlations when the temporal correlation
function simply does not exist. We argue that the process-
specific generalized correlation function can be accessed
experimentally. Thus it can serve as a tool to determine
stochastic processes underlying macroscopic diffusion phe-
nomena observed in experiments.

Continuous-time random walks and s-t velocity
autocorrelation function.—We consider single-particle
processes that belong to a class of continuous-time random
walks (CTRWs) [2]. In its simplest one-dimensional real-
ization, such a walk is performed by a particle moving
ballistically with a fixed velocity v; between two turning
events. The duration of the ith “flight,” that is the time
interval between two consecutive turnings, 7; = t;1| — t;,
is governed by a probability density function (PDF) ¢ (7).
At the end of each flight the particle changes its velocity to
anew random value v, |, sampled from the PDF h(v), and
then starts a new flight. Two random variables, 7; and v;,
are statistically independent, but the spatial and temporal
evolution of the walker during the flight is coupled,
X;+1 — x; = v;7;. This general setup is able to reproduce
normal and anomalous diffusion regimes [10,11], and there
is a multitude of real-life systems and processes whose
dynamics can be described by this model [12—16].

The key property of the described CTRW model is a
well-defined velocity of a walker at any instant of time.
It allows us to introduce a space-time velocity autocorre-
lation function for a single-particle process by redefining
the conventional expression [8,9]

Cou(x, 1) = (v(0, 0)v(x, 1)). ey

That is, we assume that the particle starts its walk with
initial velocity v(x = 0, r = 0) = v,. After a time ¢ the
particle is found at the point x with some velocity v(x, ).
To estimate C,,(x, t), an observer at time ¢ averages the
product of the actual and the initial velocities of all

© 2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.110.170604

PRL 110, 170604 (2013)

PHYSICAL REVIEW LETTERS

week ending
26 APRIL 2013

particles that are located within a bin [x, x + dx].
The so-measured quantity can be formalized as

N

where P(v, x, v, 1) is the joint PDF for a particle to start
with velocity vy and to be in the point x at time ¢ with
velocity v [17]. Since the particle has first to arrive to the
point x for the measurement to occur, we use the formula
for the conditional probability and divide the joint density
by the spatial PDF P(x, r). The latter is a well-studied
characteristic of the CTRW processes [2]. In contrast, a
challenging quantity to tackle is the joint probability of
particles’ positions and velocities. To focus on its role, we
introduce the spatial density of the velocity correlation
function,

Clx, t) = /jo fjo vu P(v, x, tlvg)h(vy)dvydv. (3)

dvodv,  (2)

Here we split the joint PDF, P(v,x vgt) =
P(x, v, tlvg)h(vy), in order to factorize the averaging
with respect to initial velocities [18]. There are two
noteworthy features of this new quantity. First, after the
integration over x, Eq. (3) yields the standard temporal
velocity —autocorrelation function C(f) = (v(0)v(r)).
Second, to return to the original s-¢ velocity autocorrela-
tion function, Eq. (1), C(x, ¢) has to be normalized with
the spatial density P(x, 1),

Cou(x, 1) = Clx, )/ P(x, 1). “4)

Therefore, our further analysis is restricted to the function
C(x, t), while the obtained results can be immediately
mapped onto C,,,(x, t) by virtue of Eq. (4).

We are now set to derive an equation for P(v, x, t|vg).
We first introduce the frequency of velocity changes,
vy, (x, 1), with v, (x, t)dxdt counting the number of parti-
cles whose flights ended in the interval [x, x + dx] during

Ck, s) =

L[, V(r)e *Tvh(v)dv] L[ 2, l/f(T)e_’k"”voh(vo)dvo]

the time interval [z, t + dt]. The additional subscript v
tracks the history of particles and denotes only those which
had velocity v, at 7 = 0. The balance equation for v,
assumes the form of an integral equation, reading

vy, (X, 1) = /j: dv /: vy, (x —vr, t — T)h(v) Y (T)dT
+ ¢0)d(x — o). (5)

A particle changes its velocity at the end of the flight of
duration 7 that was initiated at the point x — vr7.
Multiplication by ¢ (7)d7 and h(v)dv yields the probabil-
ity of having a flight time 7 and velocity v. We also assume
that all particles start their random walks at r = 0 and
x = 0. The last term on the right-hand side accounts for
the particles that finish their very first flight at the given
instant of time z. Correspondingly, P(v, x, t|v) is

P(v, x, tlvy) = [Ot vy, (x —v7, t — 1)h(v)W(7)dT
+ W(1)6(x — vot)6(v — vy). (6)

A particle has a velocity v at point (x, ?) if it has previously
changed its velocity at time ¢ — 7 and still is in the process
of flight with velocity v. The probability to stay in the flight
until time 7 is given by W(¢) = 1 — [}, ¢(7)d. The second
term on the right-hand side of Eq. (6) accounts for the
particles that are still in their first flight. The above two
equations can be resolved by using a combined Fourier-
Laplace transform with respect to x and ¢ which turns
convolution-type integrals into algebraic products. We
use L[---] and a hat to denote the Laplace and Fourier
transforms, and a tilde for a combination of the two,
whereas k and s denote coordinates in the Fourier and
Laplace spaces. We find P(v, vy, k s), and by using
Eq. (3), obtain the general expression for the velocity
correlation density in the Fourier-Laplace space,

1= Lh(kr) ¢ (7]

Equation (7) constitutes the central result of this
Letter. When integrating this function over x, the first
term, describing the contribution from the particles that
have changed their velocities several times, vanishes.
It is only the particles remaining in their first flight that
contribute to C(¢). This implies that C(t) = (v*)W(¢).
Below we consider several regimes of diffusion
which are possible in the current random-walk model,
ranging from the standard diffusion to ballistic
superdiffusion.

Lévy walks: From normal to ballistic superdiffusion.—
The Lévy-walk process [2] is a particular case with a

I:/:o W(t)e‘ikvoTU%h(vo)dvo]. (7

bimodal choice of the velocity PDF, h(v) = [6(v — ug) +
8(v + uy)1/2, and the PDF of flight time
1
P R 8

where 7 sets the time scale of the process. The positive
scaling exponent y > 0 plays a key role in defining the
type of the diffusion. If y > 2, then the mean square of the
flight time is finite and the process reproduces normal,
Brownian-like diffusion, with the linear scaling of the
mean squared displacement, {(x?(¢)) « ¢ [2]. The mean
squared flight time diverges for 1 <y <2, which leads
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to anomalously fast spreading, (x*(1)) = 37 [4,19]. In the
extreme case of 0 <y <1, the first moment of the flight
time diverges. The anomaly is strong and dominates evo-
lution leading to the ballistic scaling of the mean squared
displacement, (x*(¢)) = 2. In all cases, however, the den-
sity of particles P(x, t) is confined to the ballistic cone,
x € [—upt, ugyt].

When vy > 2, inside of the casual cone and in the
asymptotic limit, the density of particles obeys the standard
diffusion equation [3],

IP(x, 1) ujTy

_2‘

= DAP(x, 1); D= 9

In this case, the first term of Eq. (7) in normal coordinates
reduces to a simple result,

u%ro AP(x, 1)
-1 at

2
D
Coene 1) = % AP(x, 1) = (10)

It reveals an interesting relation between the PDF of the
process and the corresponding correlation density function,
namely, that C(x, t) is proportional to dP(x, t)/dt and,
according to Eq. (4), the normalized s-t correlation func-
tion C,,(x, 1) « d1InP(x, t)/dt. Note that the contribution
of the second term in Eq. (7) corresponds to the ballistic
delta peaks, running with the speed u, and decaying in
time according to W(z). Ballistic peaks are the hallmark of
Lévy walks [20]. Their contribution is typically considered
to be asymptotically vanishing in the regime of standard
diffusion. However, only these peaks contribute to the
temporal correlation function C(7) and therefore cannot
be neglected. By taking into account that the number of
particles in the peaks also decays as W(r), it immediately
follows from Eq. (4) that the normalized s-¢ correlation
function, Eq. (1), remains constant at the ballistic fronts,
Cou(x = Fugt, 1) = ud.

The results presented by Egs. (9) and (10) are valid for
an arbitrary choice of /(¢) that has finite second moment,

% 724 (1)d7 < oo, including the case of the exponential
PDF (1) =e~"/70 /7. In this case, C(t) = ude"/™, while
C(x, 1), for example, at x =0, scales like r~3/2. This
example highlights the fact that the s-¢ velocity correlation
functions provide access to long-lived correlations and
therefore increase the chance of their detection.

For 1 <y <2, the mean squared flight time diverges.
It induces a superdiffusive behavior with the density of
particles obeying a generalized diffusion equation [21],

OP(x, 1)
at

where K = Tgflug(y — DIT1 — y]cos(7y/2) and A?/2
is the fractional Laplacian operator [22]. Note that this
description is valid in the inner part of the casual cone
only. In there, C(x,t) is proportional to the fractional
Laplacian of the density of particles,

—K(=A)"2P(x, 1), (11)

~ugKT (—AY2P(x 1) = ugty 9P(x, 1)

C )= ———
centr(x ) ’y—l ’)/—1 ot

’

(12)

or, by virtue of Eq. (11), to the time derivative of this
density. Therefore, the velocity autocorrelations are nega-
tive near the point x = 0; see Fig. 1. Upon the departure
from the origin, the correlation density becomes positive
and produces two local maxima.

By setting y < 1 in Eq. (8), one can enhance the anoma-
lous character of the process. The average flight time
diverges and this implies a ballistic scaling for the density
of particles. Again, C(x, t) can be evaluated in the Fourier-
Laplace space. As an illustration, we consider the case
v = 1/2 where both quantities, P(x, t) and C(x, ), can be
expressed in terms of analytic functions [10,11]. The den-
sity exhibits a U-shaped profile, diverging at the ballistic
fronts: P(x, t) = 0(ugt — |x|)/[7(>u} — x*)'/?]. The cor-
relation density function behaves similarly,

Sx—upr) | 8(x +ugt)  Olupt — |x|)
- ,2.1/2 0 o=
Cx, 1) = ug7, [ 72 + /2 2632y,

(13)

From this result it follows that velocity correlations are
negative and nearly constant inside the ballistic cone. The
relative decay rate P(x, 1)/C(x, t) is of the order ¢'/2 now.
The profiles evaluated via direct numerical simulations of
the random walk, cf. Fig. 2(a), perfectly match the analyti-
cal prediction.

Velocity-induced superdiffusion.—Regimes of diffusion
described by the Lévy-walk model are bound by the bal-
listic propagation so that no particles can cross the front
|x| = uyt. One possible way to overcome this limitation is

FIG. 1 (color online). Density of the space-time velocity cor-
relation function for the superdiffusive Lévy walk, Eq. (12), with
v = 3/2 as a function of x and ¢. The red dashed lines indicate
the positions of local maxima x;, on the x-¢ plane which follow
the power-law scaling x. = *=¢/7, while the height of the
maxima decays as t~'~!/7. The inset depicts spatial profiles of
C(x, t) for two different instants of time, ¢ = 20 (thick blue line)
and 50 (thin red line).
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to allow the flight speed to have a broad distribution.
Assume that h(v) is a Lorentz distribution, h(v) =
(mup)'(1 + v?/ud)™!, a velocity PDF frequently
employed in plasma and kinetic theories [23]. For such
velocity PDF, the density of particles is independent of
the flight-time distribution and also possesses the Lorentz
shape in the asymptotic limit [11]: P(x, 1) = uyt/
[7(u37* + x*)]. The expression for the correlation density
function then acquires the form
Mot + L

Clx, t) = uz[—i
(1) oL 7(dt> +x*)  upt

«Ir(t)]. (14)

The first term is proportional to the density but with the
opposite sign and the second depends on the flight-time
distribution. Note that the integral of C(x, r) with respect
to x diverges when W(¢) # 0, meaning an infinite C(z).
In clear contrast, the density of the velocity correlation
function is well defined; see Fig. 2(b).

Discussion.—In all considered regimes there is a region
of negative correlations at the vicinity of the starting point.
This means that the majority of particles found there are
flying in the direction opposite to that of their initial
motion, which we call an echo effect. The shape of the
echo region and the time scaling of its width are model-
specific characteristics. Simulations of a stochastic process
described by a system of Langevin equations (see the
Supplemental Material [24]) show analogous results,
which suggests that our findings are applicable to a broad
class of stochastic transport processes characterized by
finite velocity of moving particles.

Perhaps the best candidate for the analog simulation of
superdiffusive continuous-time random walks is a cold
atom moving in a periodic optical potential. There are
strong evidences, both theoretical [13] and experimental

0.02

(a) (®)J0.01

0.01

P(x,t), C(x,t)

FIG. 2 (color online). Densities of particles, P(x, ) (dashed red
lines), and the spatial density of velocity correlations, C(x, 1)
(solid blue lines) for (a) the Lévy walk in the regime of ballistic
superdiffusion (y = 1/2), Eq. (13), and (b) the case of
Lorentzian velocity PDF, Eq. (14), with (7) = 8(7 — 1).
Correlation functions were obtained by averaging over 103
realizations of the corresponding process. The inset shows
C(0, ) at four different instants of time. Solid line corresponds
to the power law +~3/2. All other parameters are set to 1.

[25,26], that the diffusion of the atom along the potential is
anomalous and can be reproduced with Lévy-walk models
[26,27]. We suggest that the velocity correlation function
can be measured in experiments and thus will help to build
a proper microscopic model. It is possible to prepare a
strongly localized ensemble with all atoms having near
equal velocities, either by sudden release of atoms from a
ballistically moving deep optical well or by using more
exotic setups [28,29]. For such initial states, the measure-
ment of C(x, t) is equivalent to finding the PDF P(v, x, ¢);
see Eq. (3). The PDF of instantaneous velocities, P(v, 1),
can be measured with the routine time-of-flight technique
[30], when velocity of an atom is transformed into the atom
position, which is then recorded by using the florescence
effect. It is also feasible to measure the spatial distribution
of atoms, P(x, t), by using the florescence image of the
cloud [30]. A measurement of the space-dependent veloc-
ity PDF requires the implementation of the time-of-flight
technique combined with a consecutive deconvolution
procedure [31]. By knowing the spatial distribution of
the cloud at time ¢ (obtained from another experiment
under the same conditions), the deconvolution transform
can be performed numerically on the fluorescent snapshot
of the time-of-flight experiment to reconstruct P(x, v, )
and, consequently, to calculate C(x, 7). More sophisticated
measurement protocols can also be developed [32].

The negative velocity echo, being a distinctive footprint
of CTRWs, can be used as a benchmark to judge the
validity of random-walk approaches to the charge transport
on nanoscale. The velocity echo can be detected by mea-
suring the current-current s-¢ correlations after a local
injection of electrons into a nanotube [33]. A recently
developed terahertz time-domain measurement technique
[34] can be used for the readout. This noninvasive method
is capable to resolve the electron dynamics on picosecond
time scale, thus providing an insight into the real-time
propagation of electrons along the nanotube [35].
Another type of system, where short injection pulses of
charge carriers are routinely used to probe charge trans-
port, is slabs of semiconductors [36]. It is noteworthy that
recent experiments have revealed a good agreement
between the dynamics of holes in a bulk of n-doped InP
slab and a Lévy-walk model [37].

Conclusions.—The spatial dependence of the s-¢ density
of velocity autocorrelations, Eq. (3), can be decomposed
into two contributions. The first is produced by the parti-
cles which have performed several flights before the obser-
vation time. The second originates from the particles that
are still in their first flight. For any random walk with finite
average flight times, the central part of the velocity corre-
lation pattern can be calculated as the time derivative of
the particle’s density.

We believe that the concept developed here can be
utilized for any process that can be described as a
continuous-time random walk, where finite velocities can
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be attributed to the diffusing entities at any instant of time
[38—40]. It is possible to generalize the spatiotemporal
velocity autocorrelation functions to the case of two-
dimensional random walks (see the Supplemental Material
[24]), thus reaching another level of detail in the analysis of
the complex transport phenomena [12,14-16,25,41-43].

This work has been supported by the DFG Grant
No. HA1517/31-2 (S.D. and P. H.).

(1]
(2]

(3]
(4]

(6]

(71
(8]

(9]

(18]

[19]

K. Pearson, Nature (London) 72, 294 (1905); Rayleigh,
ibid. 72, 318 (1905).

J. Klafter and I. M. Sokolov, First Steps in Random Walks:
From Tools to Applications (Oxford University Press,
New York, 2011).

J.B. Keller, Proc. Natl. Acad. Sci. U.S.A. 101, 1120 (2004).
M.F. Shlesinger and J. Klafter, Phys. Rev. Lett. 54, 2551
(1985).

M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter, Nature
(London) 363, 31 (1993).

R. Kubo, N. Hashitsume, and M. Toda, Statistical Physics
1I:  Nonequilibrium Statistical Mechanics (Springer,
New York, 1985).

G. L. Taylor, Proc. London Math. Soc. s2-20, 196 (1922).
A.S.Monin and A. M. Yaglom, Statistical Fluid Mechanics:
Mechanics of Turbulence (Dover, New York, 2007).

J.H. Ferziger and H.G. Kaper, Mathematical Theory of
Transport Processes in Gases (North-Holland, Amsterdam,
1972).

E. Barkai and J. Klafter, Lect. Notes Phys. 511, 373
(1998).

V. Zaburdaev, M. Schmiedeberg, and H. Stark, Phys. Rev.
E 78, 011119 (2008).

T.H. Solomon, E.R. Weeks, and H.L. Swinney, Phys.
Rev. Lett. 71, 3975 (1993).

S. Marksteiner, K. Ellinger, and P. Zoller, Phys. Rev. A 53,
3409 (1996).

F. Bartumeus, J. Catalan, U. Fulco, M. Lyra, and G.
Viswanathan, Phys. Rev. Lett. 88, 097901 (2002); M. A.
Lomholt, K. Tal, R. Metzler, and K. Joseph, Proc. Natl.
Acad. Sci. U.S.A. 105, 11055 (2008); D. W. Sims et al.,
Nature (London) 451, 1098 (2008).

M. de Jager, F.J. Weissing, P.M.J. Herman, B. A. Nolet,
and J. van de Koppel, Science 332, 1551 (2011).

T. H. Harris et al., Nature (London) 486, 545 (2012).
PDF P(v, x, vy, t) has a meaning of density with respect to
variables x, v, and v, whereas ¢ is a parameter. More
formally it could be written as P(v, x, vg|xg, ty; t); how-
ever, we always set x, = 0 and 7, = 0 and use a simplified
notation for the joint PDF in the text.

Although having meaning of the spatial density, C(x, ) is
allowed to be negative. It has a dimension (m/s?).

T. Geisel, J. Nierwetberg, and A. Zacherl, Phys. Rev. Lett.
54, 616 (1985).

[20]
(21]
(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]
(30]
[31]
(32]
(33]
[34]

[35]

[42]

[43]

170604-5

G. Zumofen and J. Klafter, Phys. Rev. E 47, 851 (1993).
A. Saichev and G. Zaslavsky, Chaos 7, 753 (1997).

S. G. Samko, A. A. Kilbas, and O. I. Maritchev, Fractional
Integrals and Derivatives (Gordon and Breach, New York,
1993).

L. Spitzer, Physics of Fully lonized Gases (Interscience,
New York, 1956); T. Koga, Introduction to Kinetic Theory:
Stochastic Processes in Gaseous Systems (Pergamon,
Oxford, 1970).

See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.110.170604 for
further details.

H. Katori, S. Schlipf, and H. Walther, Phys. Rev. Lett. 79,
2221 (1997).

Y. Sagi, M. Brook, I. Almog, and N. Davidson, Phys. Rev.
Lett. 108, 093002 (2012); see also the Supplemental
Material [24].

D. A. Kessler and E. Barkai, Phys. Rev. Lett. 108, 230602
(2012).

M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee,
C.G. Townsend, and W. Ketterle, Phys. Rev. Lett. 78, 582
(1997).

M. 1. Rodas-Verde, H. Michinel, and V. M. Perez-Garcia,
Phys. Rev. Lett. 95, 153903 (2005).

C.S. Adams, M. Sigel, and J. Mlynek, Phys. Rep. 240, 143
(1994).

V. Gerginov, N. Nemitz, S. Weyers, R. Schroder, D.
Griebsch, and R. Wynands, Metrologia 47, 65 (2010).
W. Zhang and L.-M. Duan, Phys. Rev. A 80, 063614
(2009).

A. Crépieux, R. Guyon, P. Devillard, and T. Martin, Phys.
Rev. B 67, 205408 (2003).

Z. Zhong, N.M. Gabor, J.E. Sharping, A.L. Gaeta, and
P.L. McEuen, Nat. Nanotechnol. 3, 201 (2008).

B.F. Habenicht and O.V. Prezhdo, Nat. Nanotechnol. 3,
190 (2008); R. Ulbricht, E. Hendry, J. Shan, T.F. Heinz,
and M. Bonn, Rev. Mod. Phys. 83, 543 (2011).

V.FE. Gantmakher and Y. B. Levinson, Carrier Scattering in
Metals and Semiconductors (Elsevier, Amsterdam, 1987).
S. Luryi, O. Semyonov, A. Subashiev, and Z. Chen, Phys.
Rev. B 86, 201201 (2012).

S. Lepri and A. Politi, Phys. Rev. E 83, 030107 (2011).
A. Dhar, K. Saito, and B. Derrida, Phys. Rev. E 87, 010103
(R) (2013).

N. Korabel and E. Barkai, J. Stat. Mech. (2011) P05022.
V. Zaburdaev, S. Denisov, and P. Hinggi, Phys. Rev. Lett.
106, 180601 (2011); 109, 069903 (2012); S. Denisov, V.
Zaburdaev, and P. Hinggi, Phys. Rev. E 85, 031148
(2012).

P. Cipriani, S. Denisov, and A. Politi, Phys. Rev. Lett. 94,
244301 (2005); L. Delfini, S. Denisov, S. Lepri, R. Livi,
P. K. Mohanty, and A. Politi, Eur. Phys. J. Special Topics
146, 21 (2007).

D. Froemberg and E. Barkai, Phys. Rev. E 87, 030104
(2013).


http://dx.doi.org/10.1038/072294b0
http://dx.doi.org/10.1038/072318a0
http://dx.doi.org/10.1073/pnas.0307052101
http://dx.doi.org/10.1103/PhysRevLett.54.2551
http://dx.doi.org/10.1103/PhysRevLett.54.2551
http://dx.doi.org/10.1038/363031a0
http://dx.doi.org/10.1038/363031a0
http://dx.doi.org/10.1112/plms/s2-20.1.196
http://dx.doi.org/10.1007/BFb0106949
http://dx.doi.org/10.1007/BFb0106949
http://dx.doi.org/10.1103/PhysRevE.78.011119
http://dx.doi.org/10.1103/PhysRevE.78.011119
http://dx.doi.org/10.1103/PhysRevLett.71.3975
http://dx.doi.org/10.1103/PhysRevLett.71.3975
http://dx.doi.org/10.1103/PhysRevA.53.3409
http://dx.doi.org/10.1103/PhysRevA.53.3409
http://dx.doi.org/10.1103/PhysRevLett.88.097901
http://dx.doi.org/10.1073/pnas.0803117105
http://dx.doi.org/10.1073/pnas.0803117105
http://dx.doi.org/10.1038/nature06518
http://dx.doi.org/10.1126/science.1201187
http://dx.doi.org/10.1038/nature11098
http://dx.doi.org/10.1103/PhysRevLett.54.616
http://dx.doi.org/10.1103/PhysRevLett.54.616
http://dx.doi.org/10.1103/PhysRevE.47.851
http://dx.doi.org/10.1063/1.166272
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.170604
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.170604
http://dx.doi.org/10.1103/PhysRevLett.79.2221
http://dx.doi.org/10.1103/PhysRevLett.79.2221
http://dx.doi.org/10.1103/PhysRevLett.108.093002
http://dx.doi.org/10.1103/PhysRevLett.108.093002
http://dx.doi.org/10.1103/PhysRevLett.108.230602
http://dx.doi.org/10.1103/PhysRevLett.108.230602
http://dx.doi.org/10.1103/PhysRevLett.78.582
http://dx.doi.org/10.1103/PhysRevLett.78.582
http://dx.doi.org/10.1103/PhysRevLett.95.153903
http://dx.doi.org/10.1016/0370-1573(94)90066-3
http://dx.doi.org/10.1016/0370-1573(94)90066-3
http://dx.doi.org/10.1088/0026-1394/47/1/008
http://dx.doi.org/10.1103/PhysRevA.80.063614
http://dx.doi.org/10.1103/PhysRevA.80.063614
http://dx.doi.org/10.1103/PhysRevB.67.205408
http://dx.doi.org/10.1103/PhysRevB.67.205408
http://dx.doi.org/10.1038/nnano.2008.60
http://dx.doi.org/10.1038/nnano.2008.78
http://dx.doi.org/10.1038/nnano.2008.78
http://dx.doi.org/10.1103/RevModPhys.83.543
http://dx.doi.org/10.1103/PhysRevB.86.201201
http://dx.doi.org/10.1103/PhysRevB.86.201201
http://dx.doi.org/10.1103/PhysRevE.83.030107
http://dx.doi.org/10.1103/PhysRevE.87.010103
http://dx.doi.org/10.1103/PhysRevE.87.010103
http://dx.doi.org/10.1088/1742-5468/2011/05/P05022
http://dx.doi.org/10.1103/PhysRevLett.106.180601
http://dx.doi.org/10.1103/PhysRevLett.106.180601
http://dx.doi.org/10.1103/PhysRevLett.109.069903
http://dx.doi.org/10.1103/PhysRevE.85.031148
http://dx.doi.org/10.1103/PhysRevE.85.031148
http://dx.doi.org/10.1103/PhysRevLett.94.244301
http://dx.doi.org/10.1103/PhysRevLett.94.244301
http://dx.doi.org/10.1140/epjst/e2007-00166-y
http://dx.doi.org/10.1140/epjst/e2007-00166-y
http://dx.doi.org/10.1103/PhysRevE.87.030104
http://dx.doi.org/10.1103/PhysRevE.87.030104

