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I. A CASE OF LANGEVIN DYNAMICS

The Langevin equation (LE) is another fundamental
model, complementary to random walks, used for micro-
scopic description of diffusive transport. A close relation-
ship between the LE and random walk models suggests
that the results obtained for the last should stay valid
for the former (and vice versa). It is natural, therefore,
to test the concept of the space-time velocity correlation
function on the standard one-dimensional Langevin pro-
cess, which is governed by the following pair of linear
differential equations:

ẋ= v (1)

v̇= −γv + ξ(t). (2)

Here ξ(t) is white Gaussian noise and 〈ξ(t)ξ(t′)〉 =
Dvδ(t − t′). Similar to the considered random walks,
the key feature of the LE process is a finite velocity of a
diffusing particle at each moment of time. In the asymp-
totic regime, the spatial PDF of the particles obeys the
standard diffusion equation withD = Dv/(2γ

2). There is
also no problem with derivation of the corresponding ve-
locity auto-correlation function, C(t), see Ref. [1]. How-
ever, we were unable to obtain analytic expression for
the s-t correlation function, C(x, t); its derivation for the
case of LE remains an open problem worth of further
investigation [2].

In Fig. 1 we present the results of numerical simula-
tions obtained by propagating equations (1-2) in time.
As expected, the calculated space-time velocity correla-
tion function fits with the analytic prediction, see Eq.(6)
in the main text. Namely, the function C(x, t) is given
by the first time derivative of the spatial PDF, obtained
from the corresponding diffusion equation.

II. GENERALIZATIONS TO HIGHER
DIMENSIONS

The concept of the s-t velocity correlation function can
be extended to higher dimensions in a straightforward
manner.

In the case when velocity directions at each step of a
random walk are isotropic and independent random vari-
ables, general expressions retain their form with the only
modification that the corresponding velocity and coordi-

nates, see Eqs.(3-5)in the main text, have to be replaced
by the corresponding vector quantities, x, k, v → r,k,v.

The increase of the dimensionality has certain conse-
quences though; even for the regime of standard diffusion
the asymptotic analysis is more cumbersome. However,
this does not affect the qualitative outcome. Fig.2 depicts
the results of simulations together with analytical expre-
siions for a two-dimensional random walk in the regime
of normal diffusion. As its one-dimensional predecessor,
the velocity correlation function is given here by the time
derivative of the radial particle PDF, P (r, t).

Two- and three-dimensional random walks are key in-
gredient of the random coil model, simple yet powerful
concept popular in polymer physics [3, 4]. The random
coil model assumes that each monomer –which is a step of
a random walk– has a length l and is randomly oriented
in space, see the inset on Fig. 2. Therefore each configu-
ration of the polymer corresponds to some realization of a
random walk of a fixed step length l with the directions
of consequent steps being uncorrelated. The length of
the polymer L = n · l corresponds to the duration of the
corresponding random walk process. Remarkably, our
results allow to find correlations between the directions
of monomers which are separated by a distance s along
the backbone of the polymer (see green shaded path on
the inset of Fig. 2) while being separated in real space
by a distance |r|. This information might be useful for
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FIG. 1. Spatial density P (x, t) (red dots) and space-time ve-
locity auto-correlation function C(r, t) (blue dots) obtained
by sampling evolution of the system (1 - 2) for t = 40. The
parameters are γ = 0.1 and D = 0.05. The blue line corre-
sponds to the PDF obtained from the corresponding diffusion
equation, the red line is given by the time derivative of the
PDF, see Eq. (6) in the main text.
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FIG. 2. Radial density P (r, t) (red line) and space-time veloc-
ity auto-correlation functions C(r, t) (blue line) for the two-
dimensional diffusion. Dots show the results on numerical
simulations. Speed and average flight time in the exponential
distribution are set to unity, t = 10.

the estimation of monomer-monomer interactions whose
strength depends on the alignment of monomers; one ex-
ample is the homologous recombination of chromosomes
[5] during meiosis.
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