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During recombination, the DNA of parents exchange their genetic information to give rise to a
genetically unique offspring. For recombination to occur, homologous chromosomes need to find each
other and align with high precision. Fission yeast solves this problem by folding chromosomes in loops and
pulling them through the viscous nucleoplasm. We propose a theory of pulled polymer loops to quantify the
effect of drag forces on the alignment of chromosomes. We introduce an external force field to the concept
of a Brownian bridge and thus solve for the statistics of loop configurations in space.
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The process of meiosis lies at the origin of genetic
diversity in nature and is the starting point of gamete
formation [1]. In meiosis, homologous chromosomes are
brought in close physical proximity to exchange genetic
information in a process known as recombination [1–3].
For recombination to occur, homologous chromosomes
need to align and pair up. Pairing is a complex event that
involves the association of homologous loci, the formation
of protein complexes, and the local remodeling of the DNA
such as double-strand breaks [4]. Our goal is to elucidate
the role of viscous forces in the alignment of chromosomes
during meiosis in fission yeast.
Fission yeast Schizosaccharomyces pombe (S. pombe) is

a model organism in cell biology and for studying meiosis
[5–8]. Upon starvation, two cells of opposing mating types
can fuse and proceed to meiosis. Its initial stage is marked
by an extended phase of nuclear oscillations where the
whole nucleus is dragged from one pole of the elongated
zygote to the other [see Fig. 1(a) and Movie S1 in the
Supplemental Material [9]]. Oscillations have a period of
about 10 min and can last for up to 3 h. It was shown that
microtubules and dynein motors drive these oscillations
[15–19]. The exact role of this dramatic nuclear movement,
however, remains unclear [20]. It was suggested that nuclear
movements help to align chromosomes before they may
proceed to pairing and recombination [21,22]. Experimental
data show that the distance between two homologous loci
gradually decreases during the oscillations until they pair
and, conversely, if oscillations are stopped the loci remain far
apart and fail to pair [21]. This observation underlines the
importance of understanding the physical mechanisms that
govern the alignment of the chromosomes preceding the
recombination.
In fission yeast, three pairs of chromosomes are bound

by both ends to the spindle pole body (SPB), which is at the
same time the anchoring point of growing microtubules,

see Fig 1(b). Under the force generated bymolecular motors
anchored to the cell cortex and pulling on microtubules, the
SPB drags the nuclear envelope and the chromosomes
inside. A possible physical mechanism for the alignment
of chromosomes is that viscous drag stretches the chromo-
somes in a loop geometry thus reducing the distance
between homologous loops. This has a metaphoric sim-
ilarity to doing washing in a river. In this Letter, we
investigate how the drag force affects the spatial configu-
ration of pinned polymer loops and how it enhances their
contact probability. Remarkably, within the same frame-
workwe can take into account additional constraints, such as
newly formed recombination spots. To address these prob-
lems we use the ubiquitous freely jointed chain model of a
polymer [23].
Model.—We represent the chromosome by a chain of

beads connected with N freely jointed rods, where the
length of a rod a is given by the Kuhn length of the
chromatin fiber. Here, we focus on the quasistationary
phase of the oscillations when the SPB is pulled with an
almost constant speed v0 [16] from one pole of the
elongated cell to the other. For simplicity, we approximate
the trajectory of the SPB by a straight line.
As the chromosomes are pulled through the nucleoplasm

they experience a friction force. In the comoving frame of
reference associated with the SPB, the relative motion of
the fluid with constant speed results, in our model, in the
constant force jFj ¼ γv0 acting on every bead, where γ is an
isotropic Stokes friction coefficient, Fig. 1(c). The force
points in the positive direction of the z axis. We identify the
first and last beads of the chain with the SPB, thereby
closing the chain to a loop. In the comoving frame these
beads do not move. In addition to regular forces there is a
stochastic component resulting from thermal fluctuations
but also from other active but intrinsically random proc-
esses within the cell, such as the activity of molecular
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motors or transcription. For simplicity we characterize
these by an effective temperature T, which is assumed to
be uniform along the chromosomes [24]. Our goal is to
describe the statistics of a pinned polymer loop as a
function of a constant uniform force and the noise level.
To solve this inherently nonequilibrium problem we make
use of the following mapping to an equilibrium setting.
We denote the position of each bead as ri, i ∈ ½0; N�, and

r0 ¼ rN ¼ 0 is the loop condition. The potential energy of
the chain is

U ¼ U0 − a
XN

i¼1

Xi

j¼1

Fej; ej ¼
1

a
ðrj − rj−1Þ; ð1Þ

where U0 is a constant and we used the equality
ri ¼ a

P
i
j¼1 ej. We are interested in the marginal distri-

bution of the ith bead at equilibrium, which is determined
by the potential energy of each polymer configuration and
is a function of force and fluctuations.
Force free regime: Brownian bridge solution.—Without

the external force our problem is similar to the Brownian
bridge setup [25–27], a randomwalk in space that returns to
the starting point after N steps, where the role of time is
played by the distance measured along the trajectory. From
all random walk paths of length N we select only those that
return to the origin. The positional probability density
function (PDF) of the ith bead on the loop ρLðri ¼ rÞ can
be found by noting that there have to be two trajectories
with i and N − i steps, respectively, leading to the same

point r. The probability of this event is normalized
by the probability of the trajectory with N steps to form
a loop:

ρLðri ¼ rÞ ¼ ρðri ¼ rjr0 ¼ 0ÞρðrN−i ¼ rjr0 ¼ 0Þ
ρðrN ¼ 0jr0 ¼ 0Þ : ð2Þ

Here, ρðrk ¼ rjr0 ¼ 0Þ is the propagator of the correspond-
ing random walk process. In the case of the random chain
model, the orientation of each rod is independent and
random, and therefore for k ≫ 1, ρðrk ¼ rjr0 ¼ 0Þ is a
Gaussian distribution with a zero mean and a variance that
is a sum of the variances of all individual steps. As a result,
ρLðri ¼ rÞ is also Gaussian with a zero mean and a variance
that is given by

σ2i ¼
σ20→iσ

2
0→N−i

σ20→N
: ð3Þ

Here, σ20→k ¼ a2k is the variance accumulated on the path
from the origin to bead k. Therefore, the fluctuations of the
position of a bead with an index i are described by hr2i i ¼
a2iðN − iÞ=N [25,26]; they are maximal at the midpoint of
the loop, i ¼ N=2, and vanish when approaching the
pinned point i ¼ f0; Ng. If an external force is applied
to each bead, it affects the orientation of the connecting
rods and therefore changes the statistics of the whole chain.
Brownian bridge with an external force.—We rewrite

the potential energy (1) using spherical coordinates with
the z axis pointing in the direction of the force and θi
denoting the angle between the ith rod and the z axis.
By exchanging the summation order in Eq. (1) and using
the loop condition for the z projections of the rodsP

N
i¼1 aei;z ¼ a

P
N
i¼1 cos θi ¼ 0 we arrive at

U ¼ ~U0 þ γav0
XN

j¼1

j cos θj: ð4Þ

To determine the statistical properties of the orientation of
the rods we use the grand-canonical partition function

Z¼
Y

j

Zj ¼
Y

j

Z
2π

0

dϕ
Z

π

0

dθ sinθexp

�
−
ðj−μÞcosθ

2 ~T

�
;

ð5Þ

where we introduced the rescaled temperature ~T¼kBT=
2γav0. The chemical potential μ plays the role of a
Lagrange multiplier and will be determined below. The
partition function Zj can be calculated as

Zj ¼
2 ~T sinh ðj−μÞ

2 ~T

j − μ
: ð6Þ

FIG. 1 (color online). From meiotic oscillations to the polymer
loop model. (a) Sequential images of the moving chromatin and
the spindle pole body (asterisks) during the horsetail oscillation
phase of meiosis in fission yeast [9]. The scale bar is 2 μm; time is
given in minutes. (b) Sketch of the cell during oscillations. Both
ends of each chromosome are bound to the SPB and form loops.
The SPB is pulled by multiple dynein motors (not shown)
walking along microtubules. The SPB is anchored to the nuclear
envelope and entrains the whole nucleus. (c) The polymer loop as
a bead-rod chain. A uniform force field F points in z direction.
Beads are numbered by index i, have positions ri, and are
connected by rods of length a. The loop is pinned at the location
of the SPB, r0 ¼ 0.
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We then compute the mean and variance of cos θj

hcos θji ¼ 2 ~T∂μ lnZj ¼ coth
μ − j

2 ~T
−

2 ~T
μ − j

;

var½cos θj� ¼ 4 ~T2∂2
μ lnZj ¼

4 ~T2

ðj − μÞ2 − csch2
j − μ

2 ~T
: ð7Þ

By using the loop condition a
P

N
i¼1hcos θji ¼ 0 we deter-

mine the chemical potential μ ¼ ðN þ 1Þ=2. For symmetry
reasons, the remaining two average projections of the
rod are zero: hej;xi ¼ hej;yi ¼ 0. The fixed length of
the rod connects fluctuations orthogonal and parallel to
the force he2j;xi ¼ he2j;yi ¼ ð1 − hcos2θjiÞ=2.
This gives us the statistical properties of the orientations

of the individual rods [28]. The covariance matrix of each
individual rod orientation is diagonal due to the azimuthal
symmetry. In this case, according to the multivariate
Lindeberg-Feller central limit theorem [29,30], the PDF
of the bead position after summing the contributions of
many individual rods is a multivariate Gaussian. For
example, for the propagator in the z direction we have
(for k ≫ 1) a Gaussian distribution with the following
mean and variance:

hzki¼ a
Xk

j¼1

hcosθji; σ20→k;z¼ a2
Xk

j¼1

var½cosθj�: ð8Þ

Importantly, these propagators produce random walk paths
that return to zero only on average, similarly to unbiased
random walk paths in the force-free case. To make sure that
the chain returns to the origin exactly and to describe the
fluctuations of the looped polymer chain we enforce the
Brownian bridge condition (2). So for the z axis we
compute the fluctuations in the position of a bead belong-
ing to a loop by substituting Eq. (8) into Eq. (3). This
analytical result is in agreement with 3D Brownian dynam-
ics simulations of the bead-rod model, see Fig. 2(a) and
Ref. [9]. Fluctuations are decreasing for increasing force
and, interestingly, their magnitudes are different in the
directions along and orthogonal to the force, see Fig. S1 [9].
We can nowquantify the relative separation of two similar

loops. Because of the Gaussian statistics of a single loop,
the relative distance between the two “homologous” beads
on independent loops also has a Gaussian distribution. It has
a zero mean, its variance is double the variance of the bead’s
position in a single loop, and the fluctuations in the x, y, and
z directions need to be summed up. Figure 2(b) shows how
the fluctuations in the relative distance change with temper-
aturewhere each line corresponds to a different position of a
bead on the loop.
Two intersecting loops.—A recombination spot between

two chromosomes forms a tight physical bond, thus
reducing the relative fluctuations and facilitating further
recombination events [7]. In fission yeast, there is another
possible mechanism to form a bond between chromosomal

loops. Centromeres (located close to the midpoints of
chromosomes) were suggested to have a high binding
affinity to each other [21], thus providing an additional
constraint point where the fluctuations are maximal. We
can further generalize the model of the Brownian bridge
with an external force to describe the statistics of two loops
(denoted by 1 and 10) that have an additional constraint at
some intermediate bead position with index c, see Fig. 3(a).
We redefine the loops as shown in Fig. 3(a). LoopA starts

at the pinned point, continues along loop 1, to the constraint
point c, and then returns to the origin along loop 10 by the
path of the same length. LoopB joins the remaining pieces of
the original loops 1 and 10. The statistics of each individual
rod orientation in loops A or B is, however, defined by the
parent loops 1 and 10. Let us focus on loop A and quantify

FIG. 2 (color online). Configurations of the loops in 3D.
(a) Average positions of beads in the direction of the force of
a single loop at different effective temperatures: theory (lines) and
Brownian dynamics simulations (circles). Shaded regions show
the corresponding square root of the variance (see also Fig. S1
[9]). (b) Fluctuations of the three-dimensional separation between
two beads with the same index i but belonging to two different
loops (see the sketch in the inset) as a function of temperature.
i ¼ 150 corresponds to the middle of the loop. Fluctuations are
decreasing for decreasing temperature and for beads closer to the
pinned point. The shaded region denotes the separation below
which the chromosomes are considered to be paired. For a ¼
200 nm this separation corresponds to 400 nm.

0

c
h

2c-h

d

(a) (b)

FIG. 3 (color online). Two loops with an additional constraint.
(a) Two loops 1 and 10 are connected at one additional bead with
index c. Shaded regions indicate the redefined loops A and B. The
separation d between two homologous beads can be calculated
on the new loop A. (b) Fluctuations of the separation in the z
direction between homologous beads of the loops for different
temperatures (circles and solid lines) compared to the uncon-
strained case (dashed lines). The constraint is located at the bead
i ¼ 100. The upper dashed line shows the limit of the uncon-
strained force-free Brownian bridge.
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the relative separation dh between two homologous beads
with indices h and 2c − h, respectively. The PDF of dh ¼
ðrh − r2c−hÞ can be defined as

ρðdhÞ ¼ hδðdh − ðrh − r2c−hÞÞirh;r2c−h ; ð9Þ
where we average over all possible spatial positions of two
homologous beads. For that we use their joint positional
PDF ρh;2c−hðr1; r2Þ obtained similarly to Eq. (2):

ρh;2c−hðr1; r2Þ ¼
ρ0→hðr1j0Þρh→2c−hðr1jr2Þρ0→2c−hðr2j0Þ

ρ0→2cð0j0Þ
:

ð10Þ
This is a probability density of three pieces of trajectory to
connect two points, provided they belong to the same loop.
Here, ρk→jðr1jr2Þ is the propagator of the randomwalk from
bead k to bead j. To find ρðdhÞ we rewrite Eq. (9) as an
averaging integral:

ρðdhÞ ¼
Z Z

dr1dr2δðdh − ðr1 − r2ÞÞρh;2c−hðr1; r2Þ:
ð11Þ

This integral is easy to evaluate, as every propagator entering
Eq. (11) is a (multivariate) Gaussian with a mean and a
variance determined by the corresponding parts of the
polymer loops contributing to it, as in Eq. (8). As a result
the distribution of dh is also Gaussian and, for example, its z
component has the variance

var½dh;z� ¼ 2
σ20→h;zσ

2
h→c;z

σ20→c;z
: ð12Þ

We see that fluctuations of the distance disappear at the
constraint point [z ¼ c in Eq. (12)], and reduce the overall
distance between the two loops 1 and 10 as compared to the
unconstrained case, see Fig. 3(b).
Discussion.—We can use our analytical results to cal-

culate the force required to bring the chromosomes to a
pairing distance and compare it to the forces estimated
experimentally. The pairing distance is a separation
between the homologous chromosomes that enables the
molecular machinery of recombination to work [31]. In
practice, due to the resolution limitation of fluorescence
microscopy, two labeled homologous loci cannot be dis-
tinguished at a distance of 350–400 nm [21,31,32], thus
setting an upper bound in estimating the pairing distance. As
an example we consider the case when fluctuations fall
below 400 nm. Using Fig. 2(b), which for the Kuhn length
a ¼ 200 nm and N ¼ 300 describes the longest S. pombe
chromosome, we find that the required rescaled temperature
is about ~T ≈ 0.13. From its definition, ~T ¼ kBT=ð2aFÞ, and
by considering thermal fluctuations, the friction force acting
on each bead is F ≈ 8 × 10−14 N.
This force value can be used to roughly estimate the

nucleoplasmic viscosity. Using the Stokes relation

F ¼ 6πηRv, with the velocity v ≈ 2.5 μm=min of the
SPB [16], and a bead radius estimated by a persistence
length R ≈ 100 nm, we obtain η ≈ 0.64 Pa · s. This value is
larger than that reported for higher eukaryotic cells,
0.2–0.28 Pa · s [33,34], but smaller than the value 2.6 Pa ·
s previously found for S. pombe on the basis of measure-
ments of microtubule diffusion [35]. This difference might
result from the dependence of the measured viscosity on the
size of the probe particle [35].
The total force required to pull three pairs of chromo-

somes is estimated in our model as Ftotal ¼ FNtotal, where
Ntotal is the total number of beads. For a Kuhn length of
200 nm [36–39], a compaction ratio of 100 bp=nm [40],
and the nucleotide number 12.6 Mbp in S. pombe chro-
mosomes [5], we have ∼1260 beads representing three
pairs of chromosomes. This implies the total pulling force
Ftotal ≈ 100 pN. The stall force of dynein motors has been
reported within the range of 1–7 pN [41,42]. The total force
then corresponds to 14–100 dynein motors pulling together.
This is consistent with previous measurements reporting
50–100 dynein motors engaged in pulling of the SPB [19].
Thus, the experimentally observed number of dynein
motors can generate a force that, in the steady state regime
of the model, would lead to the alignment of the chromo-
somes. We can use numerical simulations to estimate how
fast a polymer loop reaches its steady-state regime under
the action of the force. After the initial stretching during
∼12 min, the relaxation time to the steady state is of the
order of 3 min (see Fig. S2 [9]), which is less than one
period of the oscillations, thus supporting the relevance of
the steady-state approximation.
To conclude, our results suggest that a rather simple,

physical mechanism governs the alignment of chromo-
somes during meiosis in fission yeast. This alignment is an
important prerequisite for successful chromosome pairing
and recombination. The statistical model of pulled polymer
loops provides a general theoretical framework for a
broader class of polymer systems. Our results may help
to design in vitro experiments on driven DNA loops to
study recombination, and may also apply to bacterial DNA
plasmids subjected to external fields and multilooped
mitotic chromosomes and sister chromatids [43,44]. The
study of the dynamics of pulled polymer loops will be an
interesting and challenging problem for future research.
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