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a b s t r a c t 

We develop a theoretical model of anomalous transport with polymerization-reaction dynamics. We are 

motivated by the experimental problem of actin polymerization occurring in a microfluidic device with a 

comb-like geometry. Depending on the concentration of reagents, two limiting regimes for the propaga- 

tion of reaction are recovered: the failure of the reaction front propagation and a finite speed of the reac- 

tion front corresponding to the Fisher-Kolmogorov-Petrovskii-Piscounov (FKPP) at the long time asymp- 

totic regime. To predict the relevance of these regimes we obtain an explicit expression for the transient 

time as a function of geometry and parameters of the experimental setup. Explicit analytical expressions 

of the reaction front velocity are obtained as functions of the experimental setup. 

© 2016 Elsevier Ltd. All rights reserved. 

1

 

r  

w  

d  

c  

p  

d  

s  

e  

m  

r  

fl  

d  

p  

s  

c  

p  

c  

i  

m  

t  

t  

(

t  

a  

d  

o  

t  

d  

e  

c  

[  

f  

a  

r

 

d  

c  

p  

a  

p

 

a  

o  

a  

s  

t  

h

0

. Introduction 

Microfluidics is an indispensable tool of modern bio-physical

esearch. It allows to perform complex single-cell experiments

ith an immense throughput and high level of control. A flexible

esign allows for custom geometries and control of flows and

hemical reactions. Recently, to probe the dynamics of actin

olymerization, as well as to use the geometry of microfluidic

evice having the main supply channel with numerous identical

ide channels or chambers of different shapes, the following

xperimental setup, shown in Fig. 1 , has been suggested [1,2] . The

ain channel serves to deliver and fill the side chambers with

eagents where the corresponding reactions can be observed. The

ow in the main channel and diffusion in the side-channels are

ominating means of transport in such devices. Remarkably, the

rocess of diffusion in this particular geometry was extensively

tudied in the context of anomalous diffusion. It is known as a

omb model [3–5] and it was demonstrated that the transport of

articles along the main channel (called backbone in the model)

an become subdiffusive when the particles get trapped by diffus-

ng into the side channels. Until recently it was mostly an abstract

odel, which was, however, extremely useful in understanding

he principles of anomalous subdiffusive transport. In particular,

he comb model was introduced for understanding the anomalous
∗ Corresponding author. Fax: 972-4-829-5755. 
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ransport in percolating clusters [3,4] and it was considered as

 toy model for a porous medium used for exploration of low

imensional percolation clusters [3,6] . It is a particular example

f a non-Markovian phenomenon, which was explained within

he framework of continuous time random walks [4,7,8] . Nowa-

ays, comb-like models are widely used to describe different

xperimental applications like the transport in low-dimensional

omposites [9] , the transport of calcium in spiny dendrites

10–12] . They also play an important role in developing the ef-

ective comb-shaped configuration of antennas [13] and modeling

nd simulating flows in the cardiovascular and ventilatory systems,

elated to techniques of virtual physiology [14] . 

The experimental setup on actin polymerization [1,15] is the

irect implementation of the comb model, where the effects of

omplex diffusion should have a substantial effect on the observed

henomena. Interestingly, the comb structure not only leads to an

nomaly in transport but also to a very remarkable effects on the

ropagation of chemical reactions [12] . 

The goal of this paper is to combine the consideration of

nomalous transport and reaction dynamics to provide the the-

retical grounds for the corresponding experimental efforts. Our

nalytical results on reaction propagation can help to guide the de-

ign of microfluidic devices but also can lead to real experimental

ests of anomalous diffusion and reaction dynamics. For the reac-

ion of polymerization, depending on the concentration of reagents

e can recover such remarkable phenomena as the failure of the

eaction front propagation [16,17] or a finite speed, which eventu-

lly leads to a Fisher-Kolmogorov-Petrovskii-Piscounov (FKPP) long

http://dx.doi.org/10.1016/j.chaos.2016.09.011
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Fig. 1. (Color online) Optical micrograph of a segment of the microfluidics comb- 

like structures (on top). On bottom: microfluidic micrographs of fluorescently- 

labeled, polymerized actin filaments in a comb-like structure. 
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time asymptotic regime [18,19] . In the finite comb geometry of the

experimental setup, these two processes correspond to different

time scales. While the FKPP is a long time asymptotic regime, the

reaction front propagation at subdiffusion is a transient process

and takes place on the intermediate asymptotic times. A rigorous

derivation of the governing equations allowed us to calculate the

characteristic time scale separating these regimes explicitly. This

time scale is determined by the geometry of the microfluidic

device and be used to tune the regimes of diffusion and reactions

in experiments. 

1.1. Experimental setup 

To study the dynamics of actin polymerization in diffusion

controlled comb-like structures, we refer to a multi-height mi-

crofluidic device [1] . The microfluidic system consists of a main

channel with a width h 1 = 5 μm, connected with comb-like

structures that are smaller in width h 2 = 0 . 5 μm. Since the height

of the main channel is ten-fold larger than that of the comb-like

structures, a diffusion interface between the main, advective

channel and the comb-like structure is generated due to the large

hydraulic resistance of the connecting structures. Therefore, it is

possible to add a solution of polymerization-inducing KCl to a

solution of monomeric fluorescently labeled actin, including ATP

necessary for in vitro polymerization, through the main channel,

whereby KCl will diffuse into the comb-like structure and induce

the polymerization of actin monomers into filaments. Similarly,

magnesium (Mg 2+ ) can be used to induce the assembly of actin fil-

aments into fibers. In what follows we will consider a very general

reaction scheme referring to magnesium or KCl as an inducer, and

the reaction itself as a reaction of polymerization. In experiments,

the design of the side chambers can be varied and they can, for ex-

ample, have circular or rectangular shapes. These shapes can also

be incorporated into the analytical approach we develop below. 

2. Mapping of the Laplace operator on a comb equation 

Mapping the Laplace operators, acting in a three dimensional

continuous-discrete geometry, as in Fig. 1 , on a continuous two

dimensional comb model equation, is related to averaging in the

xyz -space [20–22] over some characteristic volume. 

Anomalous diffusion of the inducer on the comb is described

by the two dimensional probability distribution function (PDF)

P ( x, y, t ), and a special condition is that the displacement in the x
irection is only possible along the structure axis ( x -axis at y = 0 ).

herefore, this two dimensional diffusion is determined by the

iagonal components of a diffusion tensor, where D x (y ) = D x δ(y )

nd D y are the diffusion coefficients in the x and y directions, cor-

espondingly. In this case, the process of mapping of the Laplace

perator on the comb model corresponds to establishing relations

etween the geometry parameters of geometrical constraint for

he Laplace operator and the transport constants D x and D y . 

In reality, we have the Laplace operator, which acts on

he distribution function in a bulk of the main channel

 (x, y, z) = P b (x, y, z) and in fingers (side channels, where re-

ctions take place) P (x, y, z) = P f (x, y, z) . Therefore, the following

lgorithm of mapping can be suggested. In the bulk of an infinite

ength along the x coordinate and yz surface with a cross-section

 × a , one has for the Laplace operator 

 �P b (x, y, z) = D (∂ 2 x + ∂ 2 y + ∂ 2 z ) P (x, y, z) 

ith the diffusivity of the inducer D and boundary conditions for

 (x, y, z) = P b (x, y, z) 

 z P | z= −a/ 2 = ∂ z P | z= a/ 2 = ∂ y P | y = −a/ 2 = ∂ y P | y = a/ 2 = 0 . 

ntegration over z leads to the disappearance of the z component

f the Laplace operator due to the boundary condition. For the

DF, one obtains 
 a/ 2 

−a/ 2 

P b (x, y, z) dz ≈ aP b (x, y, 0) , 

here we used the middle point theorem. Integration over y in

he bulk yields zero except those y regions where the bulk is

onnected with the fingers. Plunging the fingers inside the bulk,

ne arrives at the dynamics along the backbone which is at y = 0 .

ote, that the process of “plunging” mathematically corresponds

o use of the middle point theorem. Therefore, we have for the

ulk diffusion at arbitrary x 

1 

a 3 

∫ a/ 2 

−a/ 2 

d xd yd z�P b (x, y, z) ≈ D∂ 2 x P (x, y = 0 , z = 0) 

= Dδ(y/a ) ∂ 2 x P (x, y ) . (2.1)

ere we disregarded the z coordinate in the distribution function

 (x, y, z = 0) ≡ P (x, y ) . 

Now we consider fingers, which have length h and their xz

ross-section is b × b . It is worth noting that to work with the

ymmetrical PDF, we are mapping the Laplace operator on a

wo-sided symmetrical comb model that is practically, reflected

n a choice of the symmetric boundary conditions at y = ±h . The

aplace operator with diffusivity d inside the fingers reads 

�P f (x, y, z) = d(∂ 2 x + ∂ 2 y + ∂ 2 z ) P (x, y, z) . 

Taking into account the boundary conditions, integra-

ion/averaging over x and z leads to zero, except ∂ 2 y in periodic (in

 ) regions of the fingers at arbitrary x and y ∈ [ −h, h ] . We have for

 single finger 

1 

b 3 

∫ b/ 2 

−b/ 2 

d xd yd z∂ 2 y P (x, y, z) ≈ ∂ 2 y P (x, y, z = 0) . 

Therefore, we obtain the average Laplace operator for the

ngers with the finger density ρ

d 

b 3 

∫ b/ 2 

−b/ 2 

d xd yd zd �P f (x, y, z) ≈ ρd∂ 2 y P (x, y, z = 0) . (2.2)

he finger density ρ is a number of fingers on the interval of

ength a along the x direction. Without restriction of the generality

e take ρ ∼ a / b . Since z component disappears from the averaged

aplace operator, we disregard z again in the distribution function

 (x, y, z = 0) ≡ P (x, y ) . 
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1 Note that ρ = a/b. 
After combining both Eqs. (2.1) and (2.2) , we obtain an effec-

ive equation for the inducer transport along the comb structure

ith parameters related to the experimental geometry a, b and

iffusion constants D and d 

 t P = aDδ(y ) ∂ 2 x P + d ρ∂ 
2 
y P. (2.3)

ere d ρ = dρ = D y is the re-scaled diffusion coefficient and aD =
 x , which both establish the relation with the diffusion tensor of

he comb model [6] . It is worth noting that the diffusion coeffi-

ient in x direction is D (y ) = aDδ(y ) = Dδ(y/a ) . The scaling of the

function by a is convenient and valid in the limit h → ∞ , as well.

One should recognize that the singularity of the diffusion

oefficient results from the mapping of the Laplace operator on

he comb equation (2.3) ; it is the intrinsic transport property

f the comb model. Note that this singularity of the diffusion

oefficient is not trivial and is related to a non-zero flux along

he x coordinates [21,23] . Integrating Eq. (2.3) over y from −ε/ 2

o ε/2: 
∫ ε/ 2 
−ε/ 2 dy . . . , one obtains for the l.h.s. of the equation, after

pplication of the middle point theorem, ε∂ t P (x, y = 0 , t) , which is

xact in the limit ε → 0. This term can be neglected in the limit

→ 0. Considering the r.h.s. of the integration, we obtain that the

erm responsible for the transport in the y direction reads 

 ρ∂ y 

[ 
P (x, y, t) 

∣∣
y = ε/ 2 

− P (x, y, t) 
∣∣

y = −ε/ 2 

] 
. 

This corresponds to the two outgoing fluxes from the backbone

n the ± y directions: F + y + F −y . The transport in the x direction,

fter integration, is 

D (y → 0) ∂ 2 x P (x, y = 0 , t) = F x ;y =0 ≡ F x . 

Here, we take a general diffusivity function in the x di-

ection D ( y ) (instead of aD δ( y ) in Eq. (2.3) ). It should be

tressed that the second derivative over x , presented in the form

∂ 2 x P = [ ∂ x P (x + ε/ 2) − ∂ x P (x − ε/ 2)] , ensures both incoming and

utgoing fluxes for F x along the x direction at a point x . Following

he Kirchhoff’s law, we have F x + F + y + F −y = 0 for every point x

nd at y = 0 . Function F x contains both incoming and outgoing

uxes of the probability, while F + y and F −y are both outgoing prob-

bility fluxes. If the latter outgoing fluxes are not zero, the flux F x 
as to be nonzero as well: F x 	 = 0, as containing an incoming flux.

herefore, εD ( y → 0) 	 = 0. Taking D (y ) = 

εaD 
π(y 2 + ε2 ) 

, one obtains in

he limit ε → 0 a nonzero flux F x with D (y ) = Daδ(y ) , which is

he diffusion coefficient in the x direction in Eq. (2.3) . It is worth

oting that this transport property of the comb model makes it

ossible to map the general Laplace operator of the experimental

etup on the comb model by keeping “isomorphism” for the

eometry, or the “topology” of the probability/contaminant fluxes. 

Finally, the boundary conditions for Eq. (2.3) are P (x =
∞ , y, t) = ∂ x P (x = ±∞ , y, t) = 0 and ∂ y P (x, y = ±h, t) = 0 , and

he initial condition is P (x, y, t = 0) = P 0 (x ) δ(y ) . Such a localized

nitial condition and the absence of the convective flows can also

e achieved experimentally. 

. Reaction-transport in a comb 

Amending the comb Eq. (2.3) with a reaction term ρ · C ( P ),

hich also accounts for the density of fingers, we have 

 t P = Dδ(y/a ) ∂ 2 x P + d ρ∂ 
2 
y P − ρC(P ) . (3.1)

he above Eq. (3.1) describes anomalous diffusion of an inducer in

 comb structure together with the reaction of actin polymeriza-

ion. In the simplest case, the reaction term C ( P ) is described by

he second order reaction equation (see Appendix A for details): 

d P 

d t 
= −k (N − P 0 + P ) P, (3.2)

here N is the initial concentration of actin, while k is the rate

onstant of the reaction. 
.1. Solution of linear reaction-transport comb equation: extinction 

ynamics 

If during the reaction time N − P 0 
 P and N 
 P 0 (there is

uch more of actin than inducer), then the second order reaction

q. (3.2) can be simplified to the first order 

d P 

d t 
= −kNP. (3.3) 

ubstituting Eq. (3.3) into Eq. (3.1) yields 

 t P = Daδ(y ) ∂ 2 x P + d ρ∂ 
2 
y P − CP, (3.4)

here C = ρ · k · N is the constant reaction rate. 

The reaction term disappears from Eq. (3.4) by the substitu-

ion 

 = e −Ct P̄ . 

The next step is the Laplace transform 

ˆ L [ ̄P ](t) = 

˜ P (s ) , which

urns Eq. (3.4) to 

 ̃

 P = Daδ(y ) ∂ 2 x 
˜ P + d ρ∂ 

2 
y 

˜ P + P 0 δ(y ) . (3.5)

ts solution can be considered as a product ˜ P (x, y, s ) =
˜  (y, s ) f (x, s ) . The solution inside the fingers is found from

he equation in the Laplace domain 

 ̃

 n (y ) = d ρ∂ 
2 
y ˜ n (y ) 

ith the boundary condition ∂ y ̃  n (y ) | y = ±h = 0 , which yields 

˜ 
 (y, s ) = 

cosh 

[ 
(h − | y | ) √ 

s/d ρ

] 
cosh 

[ 
h 

√ 

s/d ρ

] (3.6) 

nd n (y = 0) = 1 . 

As the solution is sought for in the form 

˜ 
 (x, y, s ) = 

˜ n (y, s ) f (x, s ) , (3.7)

e can write for its second derivative over y 

 

2 
y 

˜ P = 

⎧ ⎨ 

⎩ 

−2 δ(y ) 
√ 

s/d ρ

sinh 

[ 
(h − | y | ) √ 

s/d ρ

] 
cosh 

[ 
h 
√ 

s/d ρ

] + [ s/d ρ ] ̃  n ( y ) 

⎫ ⎬ 

⎭ 

f (x, s ) . 

Therefore diffusion of the inducer in the bulk-backbone,

etermined by f ( x, s ), is described by the following equation 

a∂ 2 x f − 2 

√ 

sd ρ tanh 

[ 
h 

√ 

s/d ρ

] 
f + P 0 = 0 . (3.8)

he presence of the hyperbolic tangent distinguishes two time

cales and corresponding regimes. At a short time scale, when

 

√ 

s/d ρ 
 1 , we have 

anh [ h 

√ 

s/d ρ] ≈ 1 

nd 

 1 
2 
∂ 2 x f −

√ 

s f + f 0 = 0 , (3.9)

here 

 1 
2 

= 

Da 

2 

√ 

d ρ
= 

D 

√ 

ab 

2 

√ 

d 
(3.10) 

s a generalized diffusion coefficient 1 and f 0 (x ) = P 0 (x ) = P 0 δ(x ) ,

or simplicity. It should be admitted that the generalized diffusion

oefficient in the x direction is independent of the finger’s lengths
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2 Note that if ρ = 1 , then t 0 = h 2 /d, which coincides with the transient time of 

the “classical” comb model [26] . 
By performing the Fourier transform f̄ (k ) = 

ˆ F [ f (x )] , we obtain

f̄ (k, s ) = 

P 0 √ 

s + D 1 
2 
k 2 

. (3.11)

After the Laplace inversion of the solution (3.11) and taking into

account a definition of the Mittag-Leffler function [24] 

E α,β (z) = 

1 

2 π i 

∫ 
G 

r α−βe r 

r α − z 
dr, α, β > 0 , 

we arrive at the solution 

f̄ (k, t) = 

P 0 
2 π i 

∫ σ+ i ∞ 

σ−i ∞ 

e st ds √ 

s + D 1 
2 
k 2 

= 

P 0 √ 

t 
E 1 

2 , 
1 
2 

(
−D 1 

2 
k 2 t 

1 
2 

)
. (3.12)

Inverse Fourier transform of Eq. (3.12) yields a solution in terms of

the Fox function [8] . However, this solution is valid for the “short”

time-scale t � h 2 

d ρ
= 

h 2 b 
da 

. Therefore, it is instructive to obtain an

approximation of the solution in terms of analytical functions.

Using the property E a,b (z) = zE a,a + b (z) + 1 / �(b) for the two pa-

rameter Mittag-Leffler functions [25] , and taking into account that

the Mittag-Leffler function E a , 1 ( z ) of a small argument (| z | � 1 and

z < 0) can be approximated by exponentials [8,24] , we obtain 

E 1 
2 , 

1 
2 

(
−D 1 

2 
k 2 t 

1 
2 

)
≈ −D 1 

2 
k 2 t 

1 
2 exp 

[ 

−
D 1 

2 
k 2 t 

1 
2 

�(3 / 2) 

] 

+ 

1 

�(1 / 2) 
, 

where �(3 / 2) = (1 / 2)�(1 / 2) = 

√ 

π/ 2 is the gamma function.

Now the Fourier inversion can be easily performed that yields for

the approximation [ 

�(3 / 2) 

4 πD 1 
2 
t 

1 
2 

] 

1 
2 

d 2 

d x 2 
exp 

[ 

−x 2 �(3 / 2) 

4 D 1 
2 

√ 

t 

] 

. 

Taking into account the reaction term, we obtain the short-time

scale solution for extinct diffusion in the bulk 

P (x, y = 0 , t < t 0 ) = 

P 0 e 
−Ct δ(x ) √ 

πt 

+ 

P 0 e 
−Ct D 

1 
2 
1 
2 

2(4 πt) 
1 
4 

d 2 

d x 2 
exp 

( 

−
√ 

πx 2 

8 D 1 
2 

√ 

t 

) 

. (3.13)

Note, that this result is relevant for the time scale t � h 2 

d ρ
and is

independent of h that corresponds to the limit of h → ∞ , as well. 

On a long time-scale, the hyperbolic tangent in Eq. (3.8) has a

small argument: 

tanh [ h 

√ 

s/d ρ] ≈ h 

√ 

s/d ρ. 

This corresponds to an equation for normal diffusion 

D (a/ 2 h ) ∂ 2 x f − s f + P 0 /h = 0 , D (a/ 2 h ) ≡ D̄ (3.14)

with a well-known solution. Finally this gives the long-time scale

solution in the bulk 

P (x, y = 0 , t > t 0 ) = e −Ct 

∫ 
dx ′ P 0 (x ′ ) 1 √ 

πh 

2 D̄ t 

× exp 

(
− (x − x ′ ) 2 

4 ̄D t 

)
. (3.15)

When P 0 (x ) = δ(x ) , the Green function coincides with the distri-

bution. 

In Eqs. (3.13) and (3.15) , we have seen that there is a distinct

time scale separating the transport regimes. The corresponding

transient time parameter 

 0 = 

h 

2 

d ρ
= 

h 

2 b 

ad 
(3.16)
s determined from the geometry of the experiment. 2 We should

ote that due to the exponential pre-factor e −Ct and depending

n the parameters, initial subdiffusive dynamics maybe the only

xperimentally detectable regime. 

. Reaction front propagation in a case of high concentration 

f inducer 

In the case when the concentration of the inducer is high

nough, the approximation Eq. (3.3) is not valid anymore, and one

as to take into account the second order reaction, Eq. (3.2) . Thus

he reaction term reads 

(P ) = CP + C 1 P 
2 , C = ρ · k · (N − P 0 ) , C 1 = ρ · k. (4.1)

n this nonlinear case, the exact analytical treatment of Eq. (3.1) is

mpossible, and we apply an analytical approximation to find the

verall velocity of the reaction-polymerization front propagation

ithout resolving the exact shape of the front, namely without

nowledge of the exact distribution function P ( x, y, t ). 

Since we are seeking for the front propagation in the x direc-

ion, the exact shape in the y direction is not important, and we

onsider the distribution as a function of the x coordinate alone

 1 ( x, t ). In other words, the details of dynamics inside the fingers

s not important, and we take into account its overall contribution

o diffusion in the x axis. To this end, the y coordinate is integrated

ut 

 1 (x, t) = 

∫ h 

−h 

P (x, y, t) dy. (4.2)

herefore, this integration in Eq. (3.1) with the reaction term given

n Eq. (4.1) yields an equation in an unclosed form. First of all, we

ake into account that 
 h 

−h 

∂ 2 y P (x, y, t) dy = ∂ y P (x, y, t) 

∣∣∣y = h 

y = −h 
= 0 . 

This leads to 

 t P 1 (x, t) = aD∂ 2 x P (x, y = 0 , t) − CP 1 − C 1 

∫ h 

−h 

P 2 (x, y, t) dy. (4.3)

ere, we have two problematic terms. The first one is P (x, y = 0 , t) ,

hich will be expressed via P 1 ( x, t ). To this end we use the re-

ation (3.7) , where we pay attention to ˜ P (x, y = 0 , s ) = f (x, s ) .

ntegrating Eq. (3.7) over y yields 

˜ 
 1 (x, s ) = 

˜ P (x, y = 0 , s ) 

∫ h 

−h 

˜ n (y, s ) dy 

= 2 ̃

 P (x, y = 0 , s ) 

∫ h 

0 

˜ n (y, s ) dy. 

herefore we can write 

˜ 
 (x, y = 0 , s ) = 

√ 

s/ 4 d ρ tanh 

−1 
[ 

h 

√ 

s/d ρ

] 
· ˜ P 1 . (4.4)

erforming the inverse Laplace transform, we obtain from

q. (4.4) 

 (x, y = 0 , t) = 

1 

2 π i 

∫ σ+ i ∞ 

σ−i ∞ 

ds 

×
∫ ∞ 

0 

d t 1 d t 2 P 1 (x, t 1 ) R 1 (t 2 ) · e −st 1 · e −st 2 · e st 

= 

∫ ∞ 

0 

d t 1 

∫ ∞ 

0 

d t 2 P 1 (t 1 ) R 1 (t 2 ) δ(t − t 1 − t 2 ) 

= 

∫ t 

0 

dt ′ P 1 (t − t ′ ) R 1 (t ′ ) . (4.5)
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3 Eq. (5.5) follows from the derivation ∂ p (H/p) = (∂ p H) /p − H/p 2 = 0 . 
ere we take into account the causality principle P (t − t 1 ) = 0

or t 1 > t , and introduce the kernel R 1 (t) through the Laplace

nversion 

 1 (t) = 

ˆ L 

−1 
[ √ 

s/ 4 d ρ tanh 

−1 
(

h 

√ 

s/d ρ

)] 
. (4.6) 

The second problematic term is the integration of the nonlinear

eaction. We present it in a form convenient for further analytical

reatment. After performing a chain of transformations, presented

n detail in Appendix B , we obtain 

.L.R.T . = 

∫ ∞ 

0 

d t 1 d t 2 P 1 (x, t − t 1 ) P 1 (x, t − t 2 ) 

× 1 

(2 π i ) 2 

∫ σ+ i ∞ 

σ−i ∞ 

˜ R (s 1 , s 2 ) e 
s 1 t 1 e s 2 t 2 d s 1 d s 2 . (4.7) 

n what follows we will denote this term as N.L.R.T. Finally, an

quation for P 1 ( x, t ) reads 

 t P 1 = aD∂ 2 x 

∫ t 

0 

R 1 (t ′ ) P 1 (t − t ′ ) dt ′ − CP 1 

−C 1 

∫ t 

−∞ 

R (t ′ , t ′′ ) P 1 (t − t ′ ) P 1 (t − t ′′ ) d t ′ d t ′′ , (4.8) 

here two-time-point kernel R (t ′ , t ′′ ) is defined in the Laplace

pace, Eq. (4.7) . 

. Hyperbolic scaling for the overall velocity of the reaction 

ront propagation 

To evaluate the overall velocity of the asymptotic front, we fol-

ow the hyperbolic scaling consideration, developed in [27,28] and

dopted in [12] for consideration of the reaction transport front

ropagation in comb structures. Let us introduce a small parame-

er, say ε, at the derivatives with respect to time and space [27,28] .

o this end we re-scale x → x / ε and t → t / ε, while for the PDF

e have 

 1 (x, t) → P ε 1 (x, t) = P 1 

(
x 

ε 
, 

t 

ε 

)
. 

Therefore, one looks for the asymptotic solution in the form of

he Green’s approximation 

 

ε 
1 (x, t) = exp 

[
−G 

ε (x, t) 

ε 

]
. (5.1)

he main strategy of implication of this construction is the limit

 → 0 that yields an asymptotic behavior at finite x and t , where

e have 

xp 

[
−G 

ε (x, t) 

ε 

]
= 0 , 

xcept for the condition when 

 

ε (x, t) = 0 . 

This equation determines the position of the reaction spreading

ront, and in this limit, G (x, t) = lim ε→ 0 G 

ε (x, t) is accounted as

he principal Hamiltonian function [27,28] . Therefore, the Hamil-

onian approach can be applied to calculate the propagation front

elocity. In this case, partial derivatives of G ( x, t ) with respect to

ime and coordinate have the physical meaning of the Hamiltonian

nd the momentum: 

∂G (x, t) 

∂t 
= −H, 

∂G (x, t) 

∂x 
= p. (5.2) 

Now, the ansatz (5.1) for the PDF inside the bulk is inserted in

q. (4.8) , where we also make the scaling change x → 

x and t → 

t .
ε ε 
Let us start from the last term in Eq. (4.8) , which is the reaction

erm. First of all we take into account the following change in the

pper limit of integrations 
 t 

−∞ 

d t ′ ⇒ lim 

ε→ 0 

∫ t 
ε 

−∞ 

d t ′ = 

∫ ∞ 

−∞ 

d t ′ . 

Then, we make the following expansion for P ε 
1 
(x, t 

ε − t ′ ) ≡
 

ε 
1 
(t − εt ′ ) , which reads 

 

ε 
1 (t − εt ′ ) = exp 

[ 
−1 

ε 
G 

ε (t − εt ′ ) 
] 

≈ exp 

[ 
−1 

ε 
G 

ε (t) + t ′ ∂ t G 

ε (t) 
] 
. 

herefore, the nonlinear reaction term reads 

.L.R.T . = 

1 

(2 π i ) 2 
e −2 G 

ε 

ε ·
∫ ∞ 

−∞ 

d t ′ d t ′′ 

×
∫ σ+ i ∞ 

σ−i ∞ 

˜ R (s ′ , s ′′ ) e −(H−s ′ ) t ′ e −(H−s ′′ ) t ′′ ds ′ ds ′′ , (5.3) 

here we use the first equation in (5.2) . Integration over s ′ and s ′ ′ 
s performed with some care, since ˜ R is singular at s ′ = ±s ′′ . The

ain result here is that ˜ R is finite and N.L.R.T . ∼ e −2 G 
ε 
ε , that in

he limit ε → 0 is of the order of o(e −
G ε 
ε ) . Therefore it does not

ontribute to the final result, as the rest of the equation is of the

rder of O (e −
G ε 
ε ) . 

Now we consider the kinetic term taking the time integration

ith R 1 kernel. This reads 
 

t 
ε 

0 

R 1 (t ′ ) e −
G ε (t −εt ′ ,x ) 

ε dt ′ = e −
G ε (t) 

ε 

∫ ∞ 

0 

R 1 (t ′ ) e −Ht ′ dt ′ 

= e −
G ε (t) 

ε ˜ R 1 (H) , 

here ˜ R 1 (H) is defined in Eq. (4.6) . 

Finally, differentiating in the limit ε → 0 where ( N.L.R.T . = 0 )

nd taking into account that the Hamiltonian H and the momen-

um p in Eq. (5.2) are independent of x and t explicitly (which

eads to the absence of mixed derivatives), one obtains that the

inetic Eq. (4.8) becomes a Hamilton-Jacobi equation: 

∂ t G = aD (∂ x G ) 2 ˜ R 1 (H) − C, (5.4)

here G ≡ G (x, t) = lim ε→ 0 G 

ε is the action (principal Hamiltonian

unction) 

 (x, t) = 

∫ t 

0 

[ p(τ ) ̇ x (τ ) − H(p(τ ) , x (τ ))] dτ. 

The rate v at which the front moves is determined by the

ondition G (x, t) = 0 . Together with the Hamilton equations, this

ields 

 = 

˙ x = 

∂H 

∂ p 
, v = 

H 

p 
. (5.5)

he first equation in (5.5) reflects the dispersion condition, while

he second one is a result of the asymptotically free particle dy-

amics, when the action is G (x, t) = px − Ht . Eq. (5.5) is obtained

y taking into account that x = v t . The combination of these two

quations can be replaced 

3 by 

 = min 

H> 0 

H 

p(H) 
= min 

p> 0 

H(p) 

p 
. (5.6) 

To proceed, we take into account that ∂ t G = −H and ∂ x G = p.

e substitute these values in Eq. (5.4) and taking into account Eq.

4.6) for the kernel ˜ R 1 (H) , we obtain Eq. (5.4) in the form 

 = D 1 
2 

p 2 
√ 

H 

[ 
tanh 

(√ 

H t 0 

)] −1 

− C. (5.7)
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Fig. 2. (Color online) Numerical solutions of Eq. (5.8) for the Hamiltonian H vs. 

transient time t 0 for C = −1 (upper plot) and C = 1 (lower plot). The transient time 

t 0 plays a role of a scaling parameter, which reflects various realizations of the comb 

geometry of the experimental setup, shown in Fig. 1 . 

Fig. 3. (Color online) The overall velocity of the reaction front propagation v for 

different realizations of the experimental setup t 0 for C = −1 and D 1 
2 

= 1 . The in- 

sert describes the result for the small values of t 0 (solid line). The fitting plot ( ∗) 

corresponds to t −1 / 4 
0 

curve. 
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The minimum condition Eq. (5.6) for this equation yields 

(3 H + 5 C) · sinh 

(
2 

√ 

H t 0 

)
= 2(H + C) 

√ 

H t 0 . (5.8)

Numerical solutions of Eq. (5.8) for H vs. t 0 are presented in Fig. 2 .

These solutions determine the overall velocity of the reaction front

propagation v for different realizations of the experimental setup,

reflected by parameter t 0 = h 2 b/ad. The result of numerical calcu-

lations of the reaction front velocity is depicted in Fig. 3 , where t 0 
is the scaling parameter. It determines the dependence of the re-

action front velocity v on the geometry of the experimental setups.

As obtained, the solutions depend on the reaction rate C . For

C > 0, there is no positive solutions for H , and the solution of

Eq. (5.6) is at H = 0 for all values of the scaling parameter t 0 . For

C < 0, one obtains non-trivial solutions of Eqs. (5.6) and (5.8) .

We define two regimes with t 0 < 1 and t 0 > 1. The first one is

the subdiffusive regime, when v is a constant function of t 0 . In

the second, diffusive regime, the front velocity is a decreasing

function of t 0 , as it is shown in the insert of Fig. 3 . The fitting

curve (marked by stars) in the insert is v (t 0 ) ∼ 1 /t 1 / 4 
0 

. 

Analytical solutions of Eqs. (5.6) and (5.8) can be also obtained

in the limiting cases of t . As follows from the numerical solutions
0 
n Fig. 2 , the physical values of the energy H are restricted inside

he interval of the order of H ∼ 1. In this case, the asymptotic

olutions of Eqs. (5.6) and (5.8) are determined by the limiting

alues of the scaling parameter t 0 . For the analytical estimation,

e consider two regimes with t 0 
 1 and t 0 � 1. The first one is

he subdiffusive regime, when v is independent of t 0 . In the sec-

nd, diffusive regime, the front velocity is a decreasing function of

 0 , as it is shown in the insert of Fig. 3 . In what follows we obtain

nalytical expressions for the velocities and scaling v = v (t 0 ) . 

.1. Subdiffusive regime t 0 
 1 

In the subdiffusive regime, we obtain 

anh 

(√ 

Ht 0 

)
≈ 1 and 2(H + C) 

√ 

H t 0 / sinh 

(
2 

√ 

H t 0 

)
≈ 0 , 

hich simplifies Eq. (5.8) 

(3 H + 5 C) = 0 . (5.9)

his equation has no solution for C > 0. Therefore, for C > 0 and

 ≥ 0, the only solution for the front velocity is 

 = 

H 

p(H) 
= 0 . 

This means the failure of the front propagation, as expected for

he initial concentration of the inducer less than actin and is in

omplete agreement with numerics. For C < 0 (that corresponds

o P 0 > N ) there is a solution H = 5 | C| / 3 that yields a nonzero

elocity of the reaction front propagation at subdiffusion 

 = 

H 

5 / 4 
√ 

D 1 
2 √ 

H + C 
= 

(
5 

3 

) 5 
4 ·

(
3 

2 

) 1 
2 ·

(
D 

2 
1 
2 

| C| 3 
) 1 

4 

= 

(
5 

3 

) 5 
4 ·

(
3 

2 

) 1 
2 ·

(
D 

2 ab| C| 3 
2 d 

) 1 
4 

. (5.10)

s expected, this result depends on diffusivity of reagents and the

eometry parameters a , and b . However, it is independent of the

nger’s length that makes it possible to arrive at the correct comb

imit h → ∞ , when only subdiffusion takes place. 

.2. Diffusive regime t 0 � 1 

In the opposite case of the diffusion regime, when t 0 � 1, we

ave 

anh 

(√ 

H/d ρ

)
≈ sinh 

(√ 

H/d ρ

)
≈ h 

√ 

H/d ρ. 

Then for C < 0 ( P 0 > N ), we obtain from Eq. (5.8) that H = 2 | C| ,
nd substituting this result in v = H/p(H) , we obtain 

 = 2 

√ 

| C| D 1 
2 

· t 
− 1 

4 

0 
(5.11)

or C > 0, there is no solution of Eq. (5.8) , and the result for the

ront velocity is v = 0 . 

The same results can be obtained from Eq. (5.4) , which in this

imit reads 

 = D̄ p 2 − C, (5.12)

here D̄ is defined in Eq. (3.14) and p = 

√ 

(H + C) / ̄D . This imme-

iately yields 

 = min 

H> 0 

[ 
H ̄D 

1 
2 √ 

(H + C) 

] 
= 0 

or H = 0 , as expected for C > 0. 

The situation changes dramatically for C < 0. In this case, the

quation 

∂H 

∂ p 
= 

H 

p 
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ields 

 ̄D p = D̄ p + 

| C| 
p 

, 

nd the solution is p = 

√ 

| C| / ̄D . Finally, after substitution in the

elocity equation we get 

 = min 

p> 0 

H(p) 

p 
= 

D̄ p 2 + | C| 
p 

= 2 

√ 

D̄ | C| . (5.13)

his is a well known FKPP result for the reaction front velocity

ith the scaled diffusivity D̄ . Taking into account that D 1 
2 

= D̄ 

√ 

t 0 ,

ne arrives at Eq. (5.11) . As we obtained, in this regime the front

elocity scales as v ∼ t −1 / 4 
0 

= (da/h 2 b) 1 / 4 . This analytical result

orresponds to the numerical one, where the both results are

epicted in the insert of Fig. 3 . 

.3. Discussion 

One should recognise that the evaluation of the overall velocity

eaction front propagation in the framework of the hyperbolic

caling is in the complete agreement with the exact solution

f the extinction dynamics. Indeed, as follows from solutions

3.13) and (3.15) for C > 0 (when the actin concentration is large

han inducer), the velocity of the reaction front is zero. These

esults coincide completely with the numerical and analytical

esults obtained by the hyperbolic scaling in the framework of the

amilton-Jacobi equation, when v = 0 . For C < 0 the nonlinear

erm becomes important, however, as follows from solution (3.15) ,

he velocity of the reaction front, obtained from the condition

 C| t − x 2 / 4 ̄D t = 0 , yields the result of Eq. (5.13) v = 2 
√ 

D̄ | C| . There-

ore, for the FKPP dynamics, the linearization of the nonlinear

eaction-transport equation leads to a good approximation for the

elocity of the reaction front propagation. For the subdiffusive

ynamics, the situation is more sophisticated for C < 0, since the

inearization approach is not valid. In this case, the hyperbolic

caling in the framework of the Hamilton-Jacobi equation is the

eliable approach to the problem. 

. Conclusion 

In this paper we considered anomalous transport and reaction

ynamics by providing the theoretical grounds for the possible

xperimental realization of actin polymerization in comb-like ge-

metry. Different regimes for the reaction of polymerization have

een considered, and depending on the concentration of reagents

magnesium, KCl and actin), we recovered both the failure of

eaction front propagation and a finite speed corresponding to

he FKPP long time asymptotic regime. Moreover, we demon-

trated that the geometry of the device determines the time

cale separating the transient regime of subdiffusive transport

rom normal diffusion. These analytical and numerical results on

eaction propagation can help to guide the design of microfluidic

evices which will make advantage of the calculated transport

egimes. Furthermore, they suggest the experimental realization

f anomalous diffusion and reaction dynamics in a flexible, con-

rollable, and affordable way. An interplay between the geometry

esign and the reaction polymerization rate can leads to different

ealizations of the reaction-transport regimes. In particular, for the

ast reaction, or low concentration of the inducer, polymerization

an be terminated before the transition time t 0 . This leads to the

eaction subdiffusion process. In the opposite case of the high

nitial concentration of the inducer, one can observe a transition

rocess from reaction subdiffusion to reaction diffusion. In the

uture it would be interesting to generalize our approach and

nclude the flow in the back-bone channel to explore additional

egimes in the operation of the microfluidic setup. 
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ppendix A. Few points on reaction for definition of the 

eaction term 

The reaction term C ( P ) can be found from the following argu-

ents, see e.g. [29] . For the reaction-polymerization, we use the

ollowing stoichiometry expression A + B ⇒ C, where 

 A ] is concentration of actin 

 B ] is concentration of inducer 

 C] is concentration of polymer 

ere an inducer is both magnesium and KCl. In general case, we

onsider the second order reaction, and also take into account that

 B ] = P (x, y, t) . Therefore, we have 

d P 

d t 
= −kP · [ A ] 

ith the reaction rate k and initial condition [ B (t = 0)] ≡ P (t =
) = P 0 , [ A (t = 0)] = [ A ] 0 = N, [ C] 0 = 0 . 

Let us express [ A ] by P . We have 

 ≡ [ B ] = [ B ] 0 − [ C] = P 0 − [ C] , 

 A ] = [ A ] 0 − [ C] = [ A ] 0 − P 0 + P. 

herefore the reaction equation reads 

d P 

d t 
= −k (N − P 0 + P ) P. (A.1)

f during the reaction time, N − P 0 
 P and N 
 P 0 , the second

rder reaction Eq. (3.2) becomes of the first order 

d P 

d t 
= −kNP. (A.2) 

ubstituting Eq. (A.2) in Eq. (3.1) and denoting C = ρ · k · N yields

q. (3.4) . 

ppendix B. Chain of transformation for N.L.R.T. 

We have the following chain of transformations for the nonlin-

ar reaction term 

.L.R.T . ≡
∫ h 

−h 

P 2 (x, y, t) dy. 

Defining the PDF P ( x, y, t ) by the Laplace invesrsion, in time we

ave 

(2 π i ) 2 · N.L.R.T . = 

∫ σ+ i ∞ 

σ−i ∞ 

e s 1 t ds 1 e 
s 2 t ds 2 

×
∫ h 

−h 

˜ P (x, y, s 1 ) ̃  P (x, y, s 2 ) dy 

= 

∫ σ+ i ∞ 

σ−i ∞ 

e s 1 t ds 1 e 
s 2 t ds 2 ̃  P (x, y = 0 , s 1 ) ̃  P (x, y = 0 , s 2 ) 

×
∫ h 

−h 

˜ n (y, s 1 ) ̃  n (s 2 , y ) dy. 

aking into account the solution in Eq. (4.4) , we have 

(2 π i ) 2 · N.L.R.T . = 

= 

∫ σ+ i ∞ 

σ−i ∞ 

d s 1 d s 2 ˜ R (s 1 , s 2 ) ̃  P 1 (x, s 1 ) ̃  P 1 (x, s 2 ) 

√ 

s 1 s 2 
4 d ρ

http://dx.doi.org/10.13039/501100003977
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[  
× tanh 

−1 
[ 

h 

√ 

s 1 /d ρ

] 
· tanh 

−1 
[ 

h 

√ 

s 2 /d ρ

] 
e s 1 t e s 2 t 

= 

∫ ∞ 

0 

d τ1 d τ2 P 1 (x, τ1 ) P 1 (x, τ2 ) 

∫ σ+ i ∞ 

σ−i ∞ 

d s 1 d s 2 

×
√ 

s 1 s 2 
4 d ρ

· tanh 

−1 
[ 

h 

√ 

s 1 /d ρ

] 
· tanh 

−1 
[ 

h 

√ 

s 2 /d ρ

] 
×e s 1 (t−τ1 ) e s 2 (t−τ2 ) ˜ R (s 1 , s 2 ) , 

where 

R (s 1 , s 2 ) = 

∫ h 

−h 

˜ n (y, s 1 ) ̃  n (s 2 , y ) dy. 

Introducing new variables t − τ1 = t 1 and t − τ2 = t 2 , one

obtains for the time integration ∫ ∞ 

0 

d τ1 = −
∫ −∞ 

t 

d t 1 = 

∫ t 

−∞ 

d t 1 , 

and the same procedure is performed for τ 2 . This finally, yields

the N.L.R.T. in Eq. (4.7) . 
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